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Object-based Video Representations: Shape 
Compression and Object Segmentation

Noel J. Brady

ABSTRACT

Object-based video representations are considered to be useful for easing the process of 
multimedia content production and enhancing user interactivity in multimedia 
productions. Object-based video presents several new technical challenges, however.

Firstly, as with conventional video representations, compression of the video data is a 
requirement. For object-based representations, it is necessary to compress the shape of 
each video object as it moves in time. This amounts to the compression of moving 
binary images. This is achieved by the use of a technique called context-based 
arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks 
and as such it is consistent with the standard tools of video compression. The block- 
based application also facilitates well the exploitation of temporal redundancy in the 
sequence of binary shapes. For the first time, context-based arithmetic encoding is used 
in conjunction with motion compensation to provide inter-frame compression. The 
method, described in this thesis, has been thoroughly tested throughout the MPEG-4 
core experiment process and due to favourable results, it has been adopted as part of the 
MPEG-4 video standard.

The second challenge lies in the acquisition of the video objects. Under normal 
conditions, a video sequence is captured as a sequence of frames and there is no inherent 
information about what objects are in the sequence, not to mention information relating 
to the shape of each object. Some means for segmenting semantic objects from general 
video sequences is required. For this purpose, several image analysis tools may be of 
help and in particular, it is believed that video object tracking algorithms will be 
important. A new tracking algorithm is developed based on piecewise polynomial 
motion representations and statistical estimation tools, e.g. the expectation- 
maximisation method and the minimum description length principle.
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1. I n t r o d u c t i o n

Digital video compression has been among the most popular research and development 

fields during the past twenty years. The result of this concentrated effort has been that a 

number of international standards have been published enabling video communication 

for various applications. These comprise the ITU-T H-series recommendations and the 

ISO/IEC MPEG standards. The compression methods published in ITU-T 

recommendation H.261 [37] have enabled video telephony and tele-conferencing at 

rates ranging from 64 Kbits/s to 2 Mbits/s. The ISO/IEC standard MPEG-1 [50],[54] 

has enabled compressed storage and playback of digital video from hard disks and CD- 

ROM devices, optimised for rates around 1.5 Mbits/s. These two standards are suitable 

for progressive video representations. For applications in the digital television domain, 

methods for interlaced video compression were required. MPEG-2 [32],[55] was built 

on top of MPEG-1 by adding compression tools for interlaced video, thus providing TV 

and studio quality video at rates between 2 Mbits/s and 16 Mbits/s. By 1994, most 

envisaged applications had been provided for by the published standards. Even so, the 

search for increased compression and quality continued. For all applications, network 

bandwidth was proving scarce and costly. Those networks that were widely available, 

did not provide an adequate vehicle for video communications with acceptable quality. 

Additionally, the complexity of the compression algorithms meant that digital video 

encoders and decoders were relatively expensive. For video telephony, there was a 

reliance on the deployment of ISDN for the provision of adequate bandwidth 

communication channels. The slow uptake of ISDN still proves to be a major obstacle to 

the widespread use of personal video terminals for telephony purposes. For TV 

applications, broadcasters welcomed any technology that could increase the number of 

programme channels being broadcast on existing links. Recently, the ITU-T published 

H.263 [38]. The purpose of this standard was to provide increased compression 

performance so that video applications could be enabled on low bit-rate/low quality 

channels. Specifically, the networks targeted were the existing PSTN network and the 

emerging digital mobile networks, e.g. GSM, DECT and UMTS. H.263 succeeded in 

achieving the same quality as H.261, but, with only half the bandwidth. Also, at this
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time (in 1996), it was becoming clear that advances in integrated circuit design would 

soon result in faster general purpose processors capable of bringing video applications 

to the PC without additional hardware support. This was the situation when a new 

standardisation effort was launched by the ISO, i.e. MPEG-4.

MPEG-4 initially endeavoured to produce gains in compression efficiency, allied to the 

provision of new and improved functionality. After an initial round of competitive tests, 

based on new proposed technology, it became apparent that no considerable gains in 

compression could be foreseen. Some new techniques were producing 10-20 % 

improvements over H.263, but it was widely held that gains exceeding 200% would be 

required in order to justify yet another video standard. Despite this, within the MPEG-4 

community the need was strongly felt for new and improved functionalities. Many 

supported the view that there was scope for much improved error resilient video 

representations which could better stand the test of highly error-prone network channels, 

e.g. PSTN and mobile channels. Others sought to provide new representations that were 

more amenable to editing and post production needs, for applications in multimedia 

authoring and TV/film production. Others still saw a need for introducing more user- 

interactivity into multimedia applications, thus merging the concepts of virtual worlds, 

animation and the more traditional visual media. MPEG-4, now almost completed, is 

underpinned by these new and improved functionalities, i.e.

• improved error resilience

• object-based video editing

• object-based interactivity.

This is not to say that MPEG-4 ignored the compression problem. Each new or 

improved functionality is provided, while still endeavouring to maximise compression 

efficiency. In tackling the object-based functionalities, compressed object-based video 

representations were naturally called for. The problems and challenges associated with 

object-based video representations form the subject of this thesis.
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Firstly, it is important to define what exactly is meant by an object-based video

representation. Traditionally, a video sequence is represented as a sequence of images, 

with each image represented by a rectangular grid of pixels and each pixel having an 

associated colour value. In the object-based paradigm, a video sequence consists of one 

or more video objects, where a video object is represented by a sequence of object 

images. An object image is, once again, represented by a rectangular grid of pixels. 

However, the difference is in the fact that each pixel not only has a colour value but also 

a so-called alpha value. This alpha value specifies the degree of transparency for each 

pixel. Therefore, the alpha component of the object image may be used to define the 

spatial support or shape of a 2-D object. A pixel with an alpha value of 255 is 

considered to be part of the object and a pixel with an alpha value of zero is considered 

to be outside the object. The presence of this alpha component enables the composition 

of several object images to form a composited image. The process of composition 

involves blending an object image onto the composited image. The blending is 

controlled by the alpha value specified at each pixel of the foreground object image. If a 

pixel has an alpha value of zero, then it is totally transparent and there is no change in 

the composited image. If the pixel has an alpha value of 255, then it is regarded as 

totally opaque and the composited image pixel takes the colour value of the object 

image pixel. In general, the composition at a pixel is specified as:

in the object image.

So, an object-based video representation differs from traditional representations in that 

it contains this additional alpha information used for composition and in the fact that the 

scene displayed on screen is really due the composition of one or more video objects 

rather than just a single rectangular image. Since each video object is represented 

independently of the other video objects, editing the displayed scene becomes relatively 

easy. This is seen as the single largest advantage of object-based video representations

where p  is the value of the pixel in the composited image and q is the value of the pixel
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since it allows great flexibility and simplicity in the creation of video content. Since 

video objects may be stored independently, it also simplifies the re-use of content. 

Given a database of video objects, a brand new production is possible, simply by being 

able to configure the composition process, answering questions like, what objects? ... in 

what positions? ... at what time? Without the object-based representation, compressed 

video sequences containing the various objects, would have to be decompressed and 

edited in raw uncompressed format to extract the objects of interest (segmentation). 

Then, all of these objects would be composited and re-compressed into a new video 

sequence. The processing power, storage and time requirements for such a procedure are 

inordinately large. Also, in the event that the same object is required for another 

production some months later, the processes of de-compression, segmentation, 

composition and re-compression must all be repeated again. In the light of these 

difficulties, object-based video representations are very attractive, avoiding the need for 

transcoding (i.e. decoding and re-encoding) and allowing for the re-use of segmented 

video objects. However, object-based representations have advantages outside the area 

of content production. They also present the opportunity for a consumer (viewing a 

programme or presentation) to interact with the content. For example, it is now feasible 

for a user to customise his/her TV screen, whereby two programme channels are 

displayed at once, along with several other dynamic information sources (e.g. sports 

results, stock prices). While this kind of display is common today, it is not possible for a 

user to select what content he/she wishes to be displayed. The content make-up is 

decided by the broadcaster and may not be altered by the consumer. Finally, with 

object-based representations, it is also becomes feasible to turn multimedia programmes 

into graphical user interfaces, where the programme contains clickable objects which 

are linked to some response. For example, the user may click on a bear in the zoo in 

order to receive further and more detailed information about it in textual format.

MPEG-4, with its object-based video representation, opens many new exciting avenues 

for the entertainment and multimedia industries and certainly there are many uses which 

have not been foreseen, as yet. Unfortunately, the above scenarios hide a few important 

details. Firstly, the flexibility of object-based representations comes with a penalty in 

terms of compression efficiency. Each video object, as mentioned, must have an alpha
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component, i.e. extra information to compress. In order that the overhead associated 

with the alpha information does not become prohibitive, very efficient alpha 

compression techniques are required to allow high quality broadcasting and storage of 

the video objects. Secondly, there must be some means to acquire the alpha information 

in the first place. In studio productions, it is possible to design the set to allow chroma

keying (blue-screens). An object (always a different colour to the background screen) 

placed in front of the blue-screen can be easily sensed and the alpha information for the 

object can be recovered. However, outside of the studio, it is often not feasible to set up 

the same conditions. As such, some more general means must be provided for acquiring 

the alpha information from a given sequence. The difficulties associated with the 

acquisition of alpha information, often referred to as video segmentation, are a major 

hindrance to the widespread use of object-based video. This thesis addresses the 

problem of video object segmentation along with the problem of alpha compression 

(object shape coding).

Object-based video coding was initially investigated because it was believed that it 

could provide higher compression ratios than those techniques employed in the 

established standards. Chapter 2 studies some of the reasoning behind these beliefs and 

presents some of the earliest developments towards highly compressed representations. 

The review is brought up to date by detailing the motivations of MPEG-4 and briefly 

presenting the approach taken to compressing video objects.

As discussed, a major issue with object-based video relates to the need to compress the 

alpha information. Chapter 3 reviews some suitable shape coding techniques and charts 

the evolution of the solution taken by MPEG-4. The solution developed by the author, 

i.e. context-based arithmetic encoding (CAE) for the shape compression of moving 

objects, is introduced and results are presented that demonstrate its efficiency. The CAE 

approach developed here has been adopted as an essential component of the MPEG-4 

standard.

Chapter 4 is devoted to motion estimation. Estimation methods for the family of 

polynomial motion models are investigated. This family includes models capable of
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dealing with arbitrary rigid body motion. While these advanced motion models have 

been successfully employed in some video compression schemes, the main interest here 

is in their use for motion segmentation and object tracking purposes. They are later 

employed as the basis of the segmentation and tracking methods of chapters 5 and 

chapter 6, respectively. Chapter 4 includes a comparison of various motion estimation 

methods and the development of fast estimation algorithms for these useful motion 

models.

Chapter 5 introduces the problem of video segmentation. Through a number of 

examples, the numerous difficulties of automatic video segmentation are highlighted. A 

basic iterative framework for segmentation is presented and some promising estimation 

tools are described, e.g. the Expectation-Maximisation (EM) algorithm, the Minimum 

Description Length (MDL) principle and mathematical morphology. The chapter 

concludes that the segmentation of semantic objects cannot be achieved only by 

automatic means. Instead, a supervised user-controlled approach relying primarily upon 

automatic tracking algorithms is advocated.

Chapter 6 presents a framework for achieving reliable tracking of a moving video 

object. The framework is implemented using the previously described estimation tools 

(polynomial motion models, EM and MDL) and results are presented for a number of 

sequences. The results suggest that the segmentation of semantic video objects is highly 

feasible given a supervised approach and a powerful tracking algorithm.
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2. O b j e c t - b a s e d  V i d e o  C o d i n g : P a s t  a n d

P r e s e n t

This chapter serves to highlight some of the initial motivations underlying the object- 

based video coding approach [72]. These relate entirely to the desire for more efficient 

video coders. The motivations are illustrated by pointing out important differences 

between object-based and the conventional block-based approach of H.261, MPEG-1 

and so on. This chapter also serves to highlight the difficulties associated with object- 

based coding. It presents and analyses some of the earliest technical solutions to the 

problems of segmentation, shape coding and object-based motion estimation and 

compensation. Much of the following discussion refers to a very prominent object-based 

coding method called SIMOC. SIMOC stands for Simulation Model of COST 21 Iter. 

The COST 21 Iter document [23] fully describes the encoding system and was drafted 

during 1994 based on contributions from all the members of COST 21 Iter. Much of the 

technical content of this document originated from earlier work conducted by the 

University of Hannover [36], [63]. SIMOC constitutes one of the earliest, most 

complete and well-specified object-based encoding algorithms. It comprises not only 

tools for coding shape, motion and texture but also a segmentation approach.

In order to bring the review up to date, the approach of MPEG-4 is briefly discussed and 

contrasted with that of SIMOC. At the time of writing, the MPEG-4 standard is 

approaching completion and it is most interesting to see how it relies, as much as 

possible, on the old established technology of block-based coding, while at the same 

time achieving object-based video representation.

2.1 Classifying Object-based Coders, Motivations and Characteristics

In the following, an object-based video coder is defined to be any coder which utilises 

shape information. There are mainly two types of object-based coders. The first type is 

the compression-oriented variety. Examples of compression-oriented object-based 

coders are SIMOC [23] and SESAME [22]. These algorithms have the primary
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objective of outperforming the compression performance of their block-based 

counterparts by exploiting shape information (see the next sub-section for the associated 

motivations). They can be viewed as comprising an analysis system and a coding 

system. The analysis system is responsible for producing the shape information, i.e. the 

segmentation map of the source images. The coding system compresses the YUV data 

of the source images, using the segmentation map to define the regions on which the 

compressed representation is based. Usually, the coding system is also required to 

compress the shape information. The compression efficiency of such algorithms is 

highly reliant on the analysis system. A good analysis system produces segmentation 

maps that are highly amenable to efficient compression. Hence, it is natural and wise to 

make the analysis system an intrinsic part of the overall encoding algorithm rather than 

to decouple the two sub-systems. An additional characteristic of compression-oriented 

approaches is that the segmentations do not necessarily correspond with the semantic 

content of the source scene. The segmentations are intended to facilitate efficient 

compression, but they do not necessarily facilitate (semantic) content access. 

Furthermore, the methods of shape and texture coding are not specifically designed to 

support content access. Instead, these algorithms exploit all forms of redundancy 

(including inter-object redundancy). As such, access to a single object calls for a full 

decompression of the bitstream.

Semantic content access is the objective of the second type of object-based coder, i.e. 

the content-oriented coder. The dominant characteristic of this type of coder is related to 

the fact that the compressed video bitstream is composed of one or more compressed 

video objects and in particular, to the fact that the representation of a given video object 

is not dependent on the representation of any other video object. That is, inter-object 

redundancy is never exploited. As such, content access (e.g. cut-and-paste operations) is 

possible at the bitstream level without any decompression and re-compression. Just as 

before, the shape of the video object is provided by a segmentation procedure and 

compressed along with the YUV data. However, in the case of content-oriented 

algorithms, the segmentation is not treated as an integral part of the coding algorithm. 

Instead, the shape of the semantic object is correctly viewed as part of the source data 

and not something which the video encoder has any influence upon. The most obvious
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example of a content-oriented video representation is the MPEG-4 video encoder [57], 

see sub-section 2.4.

Now, that the distinction has been made between compression and content-oriented 

object-based video representations, more detail is given on the motivations for 

compression-oriented object-based coders.

2.2 Compression-oriented Motivations
Firstly, it is important to realise that SIMOC and other early object-based coders were 

designed with the sole aim of improved coding efficiency. That is, it was never really 

intended to provide content-based functionality. In the late eighties, work was already 

well advanced in the area of block-based video encoding. The ITU-T recommendation 

H.261 [37] had been published, enabling videotelephony and videoconferencing at rates 

of 64Kbits/s and upwards. It was noted, however, that the quality of these video codecs 

was not acceptable at low bit-rates, i.e. at 64Kbits/s and below. Specifically, low bit-rate 

video contained very disturbing block1 and “mosquito”2 artefacts. These artefacts, as 

illustrated in Figure 2-1, were entirely due to the block-based motion compensation and 

the block-based discrete cosine transform (DCT) employed.

1 Block artefacts are characterised by large transitions in the image intensity. These transitions are found along the 
block borders and are a direct effect o f coarse quantization o f the DCT coefficients and/or the block-based motion 
compensation. In bad cases, the positions of blocks becomes evident in the decoded pictures.
2 “Mosquito” artefacts are the result of a combination of inaccurate motion compensation and coarse DCT 
quantization. The effect is very much a temporal one where disturbing changes in the intensity take place over time. 
Mosquito effects are usually observed close to the edge of a moving object.
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Figure 2-1: Artefacts in low bit-rate block-based video. On the left are high quality video frames 
and on the right are the same frames coded at very low bit-rate. Distortion takes the form of blur, 
blockiness (see top-right) and “ mosquito”  effects (see the noise close to contours of the ball and the 
tra in in the bottom-right image).

Block-based motion compensation, in particular, was considered to be sub-optimal since 

it was extremely limited in the kinds of motion it could synthesise. Protagonists of 

object-based representations ventured that representing video in terms of objects, 

instead of blocks, would lead to an elimination of these troublesome artefacts and higher 

coding gains as a result. Several object-based representations were proposed. The most 

natural of these was the 3-D object model. For these models, 3-D information about the 

scene was required. Considering the difficulty of 3-D analysis and the tight constraints 

placed on the implementation complexity of video codecs, 3-D object-based coding was 

immediately viewed as impractical given the technology of the time. As a result, most 

attention was devoted to investigating 2-D object-based coding. In this case, it was 

required to know only 2-D scene information, i.e. the 2-D shape and location of each 

projected 3-D object was needed. This was deemed to be more feasible since it was not 

so different from the block-based techniques. The outstanding difference was that the 

image would now be partitioned into arbitrarily shaped regions rather than fixed-sized 

blocks. Just as motion prediction and error encoding were used to code each block, so
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motion prediction and error encoding would be used to code each arbitrarily shaped 

region. However, to faciliate 2-D object-based video coding, the shape of each region 

had to be coded and transmitted to the receiver. This was an undesirable overhead. 

Nevertheless, it was hoped that the envisaged advantages of coding in an object-based 

manner would justify this extra bit-rate. Mainly, it was believed that object-based 

motion compensation would significantly improve upon the block-based equivalent. By 

this (hopefully) improved motion compensation, it was proposed that a significant bit- 

rate saving would be made in encoding the prediction error and that this saving would 

exceed the cost of shape transmission. This was the initial justification for 2-D object- 

based video coding.

To fully understand this argument, it is necessary to further analyse the deficiencies in 

block-based motion compensation. Consider a scene containing a single moving object 

translating over a static background. See Figure 2-2 for a simple example. This scene 

contains two motions, a zero motion for the background and a non-zero motion for the 

foreground. In the most basic block-based coder, the motion within the scene is 

represented by a 2-D translational vector for each 16x16 block. Generally, the block- 

based partition will not be “in phase” with the moving foreground object. That is, many 

blocks will contain pixels from the static background, which have zero motion, and 

pixels from the foreground object, which are moving, as is the case in Figure 2-2. For 

those blocks that reside on the occluding edges of the moving object, it is not possible to 

represent the two motions present. The motion vectors for these edge blocks must, 

therefore, be a compromise between representing the zero motion and representing the 

non-zero motion and as such the prediction error for these blocks is expected to be large. 

Consequently, the prediction error encoding is costly and at low bit-rates the 

quantisation noise in the DCT domain is responsible for the aforementioned mosquito 

artefacts.
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M oving  head

Static
background

16x16 p ixel

Figure 2-2: A  simple illustration of the deficiency in the block-based model for motion 
compensation.

Now, imagine that the encoder is still block-based but, the shape and location of the 

moving object is known. Then, for these blocks which overlap a moving edge, two 

motions could be estimated and transmitted. The prediction error and associated coding 

cost would naturally be expected to be smaller. By expending bits to transmit the object 

shape, improved predictions are possible and prediction error encoding is less costly. 

This is one of the main philosophies underlying the object-based approach and it was a 

motivation for Orchard’s block-based approach [68], which attempted to find and 

segment image blocks for which a single motion vector was insufficient.

Another deficiency of the block-based approach is also illustrated in the above example. 

Despite the content of the scene, a block-based encoder must explicitly or implicitly 

transmit motion information for every block in the image. In the given example, there 

are only two motions in the scene. The background is static and the transmission of a 

single zero-valued motion vector would suffice. The foreground object has a 

translational motion and a single motion vector is all that is required here, even if  the 

object covers many blocks. The transmission of the object shape means that a very 

compact motion description can be transmitted for each object. Object-based coders, 

therefore, have the potential to produce improved motion compensated predictions using 

very compact motion representations. Note that, by this argument, it should be expected 

that on higher resolution video, the object-based approach should show more
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improvements over the block-based approach, since at high resolution, block-based 

algorithms must code more block motion vectors [73].

In summary, with respect to the goals of improved coding efficiency, object-based 

coding is promising due to the advanced interframe predictions which are possible. 

Also, very compact object-based motion representations are possible. However, efficient 

shape codes are essential if  a net coding gain is to result. While the arguments in favour 

of object-based video coding seem sound, no object-based coder yet exists which is 

generically applicable to scenes of all types and which is superior to the state-of-the-art 

in low bit-rate block-based coding, i.e. H.263. There are thought to be a number of 

reasons for this. Firstly, the prediction gains achieved with object-based representations 

are often minimal. This point has been illustrated by Wuyts et al [96] albeit in a very 

limited test scenario. Secondly, the use of compact motion codes is not generically 

applicable. Most objects in real scenes do not possess rigid motion. They may be 

constructed of many rigidly moving parts, e.g. articulated objects, but the automatic 

decomposition of an object into its rigidly moving parts is a very difficult task, akin to 

motion segmentation, and it results in additional shape information to be coded. Rigid 

body object models and associated coding systems have been implemented [22], but it is 

unclear yet if  a superior coding performance is attained. For example, the SESAME 

coding scheme of Corset et al [22] did not perform as well as expected in the November 

1995 MPEG-4 subjective tests. Thirdly, shape encoding algorithms have not had the 

time to mature sufficiently and the algorithms used until now were perhaps not optimal. 

Fourthly, the verification of object-based coding schemes has always been hindered by 

the lack of suitable automatic segmentation methods. Many segmentation approaches 

such as change detection [35] almost totally ignore coding constraints, resulting in 

segmentations which are very unsuitable for coding purposes. Fifthly, many people 

working in the field of object-based coding have ignored much of the knowledge and 

experience gained in the area of block-based coding and have chosen instead to 

implement content specific coding schemes, which show improvement only on a small 

subset of sequence types.
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The failure of past attempts in the area of object-based coding has been, in many ways, 

due to the immaturity of the technology. More recently, a technique has been described 

by Karczewicz et al [43] which has compared well with the latest block-based 

technology. This technique has been extensively tested over a large set of test material 

within the MPEG-4 experiment process. The current conclusion is that the small gains 

that can be attained come with an unacceptable cost in terms of implementation 

complexity. The question remains if  the undoubted extra complexity associated with 

compression-oriented object-based schemes will ever be justified. The next sub-section 

describes one of the first and most prominent approaches to object-based coding, i.e. 

SIMOC, and many of the criticisms already spoken of above are illustrated by way of 

example.

2.3 The SIMOC Object-based Coder
Figure 2-3 shows a simplified block diagram of the SIMOC encoder. A segmentation 

algorithm based on change detection methods is used to produce a ternary segmentation 

mask identifying three classes of pixel, i.e. static background, moving area and 

background uncovered. Apart from the first frame of the source sequence, only the 

moving areas and the uncovered background areas are encoded. The shape of the 

moving area is coded using a vertex-based interframe coding method. The motion of the 

moving area is estimated based on a uniform grid of motion vectors. The grid vectors 

within the moving area are encoded and transmitted. Motion-compensated prediction of 

the moving area is performed and so-called model failure regions within it are 

identified. Model failure regions are those that are not well predicted by the motion 

compensation. These regions require the prediction error to be encoded and transmitted. 

Furthermore, the shapes of these regions are also required for transmission. Pixels 

comprising the uncovered background area are also encoded.

SIMOC is significant because it was really the first 2-D object-based video encoder and 

its principles contributed to the MPEG-4 initiative. Unfortunately, it was plagued by the 

fact that assumptions underlying the method imposed too many limitations on the nature 

o f the sequences that it could efficiently code. The main criticism of SIMOC was that it 

was not a generic coder and coding performance was optimised over a very
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unrepresentative class of sequences. As will be explained, several underlying 

assumptions are imposed upon source content and this has much to do with its lack of 

genericity. Despite this, some of the individual coding tools proposed within the 

framework of SIMOC are still considered to be very useful and many have been tested 

during the MPEG-4 standardisation process. The key areas of segmentation, shape 

coding, motion compensation and prediction error coding are now explored in more 

detail.

Analysis System

Synthesis and Coding System

Figure 2-3: Simplified block diagram for SIMOC encoder.

2.3.1 Segm entation  b y  C hange D etection

Change detection represents one of the simplest methods for the segmentation of a 

moving object from a video sequence. When applied to segment an image at time t, the
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algorithm has three inputs, i.e. the images at time t and t-l, plus the moving area mask 

at time t-1. Change detection is applied to the images at t and t-l as follows.

1. Compute the absolute difference image.

2. Median filter the difference image.

3. Threshold the difference image with a fixed threshold to produce the binary change 

detection mask.

4. Clean the change detection mask using morphological filters and small region 

elimination.

The change detection is then modified by setting a pixel to CHANGED, if  the 

corresponding pixel in the moving area mask at t-l is classified as MOVING. This 

change detection mask is deemed to include uncovered background. The final step is to 

detect these uncovered areas, removing them from the change detection mask in order to 

generate the moving area mask for time t.

The median filtering, morphological filtering and small region elimination are intended 

to eliminate the effects of image noise. Interframe changes due to small noise-related 

variations in time, tend to be neglected. This is important because the production of a 

clean spatially coherent moving area mask means that the moving area mask (the shape 

of the moving object) can be highly compressed. The use of the previous moving area 

mask is to ensure some degree of temporal coherence in the resulting sequence of 

moving area masks. A temporally coherent shape sequence is generally defined to be 

one which possesses a high degree of temporal correlation or redundancy. Once again, 

this implies that a high compression ratio can be achieved through the use of interframe 

shape coding techniques. Moreover, actual moving objects in a given sequence 

generally exhibit this temporal characteristic and it is desirable that the moving area 

mask sequence should emulate it. That is, the moving area mask should accurately track 

the moving objects from frame to frame. As we shall see, most effective segmentation 

strategies encompass techniques which ensure both spatial and temporal coherence.
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Several general criticisms are commonly levelled at this change detection approach [96], 

[12]. The whole philosophy of SIMOC, which was built into the change detection 

method, was to isolate the moving area and concentrate the bit usage on that part of the 

picture. With respect to this philosophy, a sequence shot from a moving camera should 

theoretically result in all pixels being classified as part of the moving area and the 

object-based approach degenerates to a traditional frame-based approach. That is, 

SIMOC was an object-based coder only for scenes and sequences with static 

background. Many object-based purists viewed this as a great limitation. In fact, in a 

practical sense the situation was often somewhat worse. To explain, there is the inherent 

assumption in change detection that a pixel within a moving object will experience a 

change in its luminance value. This is not a very general assumption. Objects without 

significant spatial textural detail can move without changing all their pixel values. For 

this reason, with respect to the degenerate case given by the moving camera, the 

practical outcome of change detection was not that the whole frame was classified as 

moving. Very often, the moving area mask would span a significant (but not the whole) 

portion of the frame, yielding a highly complex shape to compress. This, of course, led 

to large bit usage for shape, when it would have been more sensible and efficient to 

signal in the bitstream that the whole frame was moving. For another example of useless 

bit usage for the same reason, consider the example of a white square moving on a 

darker background. As illustrated in Figure 2-4c, the moving area is deemed to be the 

changing area and as such, the coding system is requested to encode two rectangular 

shapes instead of just one. Another problem with change detection is that there is also 

the inherent assumption that all interframe luminance changes are due to an object 

motion. This assumption is seldom justified. For example, changes can be caused by 

sudden changes in the scene lighting conditions or by camera noise. The basic change 

detection approach is over-sensitive to these variations because it uses only frame 

difference information. This point is illustrated in Figure 2-5.

27



Figure 2-4: (a) Synthetic sequence, a section of Miss America moving at a constant horizontal 
velocity, (b) The change detection mask produced for the synthetic sequence in (a), (c) The 
change detection mask produced by a constant colour box moving horizontally on a black 
background.

From the general point of view, it could be argued that the change detection approach 

does not explicitly focus on coding oriented criteria. The task of segmentation in 

compression-oriented algorithms is to arrive at an optimal partition of the image given 

the models and tools employed by the coding system. The SIMOC segmentation 

algorithm is primitive in this sense. It only considers that changed pixels from one 

frame to the next need to be updated somehow. It does not consider how this updating 

will be performed, i.e. the motion compensation and the texture coding methods are not 

considered. In addition, no attempt is made to produce smooth shapes in the 

segmentation map. Thus, there is also no realisation that shape must be encoded. This 

can be noted from some of the change detection results provided in Figure 2-5. Contours 

are noticeably jagged and therefore require more coding effort. Furthermore, only a very 

weak control is exercised on how the moving area mask can change over time. Hence, 

even interframe shape coding strategies are not suitable. Because the change detection 

approach has no appreciation of the coding models, there is no guarantee that the 

resulting object-based representation of the coder will be efficient. In more recent times, 

the basic approach has been augmented by the use of noise modelling and relaxation 

labelling [1]. Sometimes, the moving area mask can be adapted so that its contours 

adhere to natural gradients in the original image. These additions tend to greatly 

improve the performance of change detection methods when applied to noisy sequences. 

The use o f global motion compensation is being investigated to cope with the case when 

there is one foreground object being shot by a moving camera. Despite these undoubted

(a) (b) (c)
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improvements, some additional use o f coding oriented constraints as described in [22] 

are deemed necessary to improve compression efficiency.

Figure 2-5: (a) and (b) are consecutive frames of a 8.33Hz sequence exhibiting illuminatory/noise 
variations, (c) shows the result of the change detection process with a threshold of 2, while (d) is 
the change detection mask with a threshold o f 3.

2.3.2 V ertex-based  C ontour C oding

Among the most common approaches to shape encoding is that based on polygon or 

spline models. These models have been used with relative success in SIMOC, where it 

is required to encode the shape of the foreground object moving on a static background. 

The intraframe approach is very simple. The contour of the object is described by a list 

of vertex locations. Each vertex is described by an (x,y) co-ordinate which resides on the 

contour. The remaining contour points are interpolated by means of a polygon or spline. 

Fixed parameter splines are used so that the spline parameters do not have to be 

transmitted. Only the vertex locations are encoded. This is done by a DPCM method. 

The contour vertices are scanned in a predefined order. The value of the first vertex is 

coded using a fixed length code. For subsequent vertices, the previous vertex is chosen 

as a predictor and only the prediction difference is encoded using an arithmetic 

encoding method.

The efficiency of such a scheme relies on a good method for choosing the vertices. In 

SIMOC, a top-down divide-and-conquer approach is employed. An initial small set of 

vertices are placed at selected contour points. While the contour is still badly 

approximated, further vertices are placed in between existing ones. The final
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representation (within SIMOC) is a lossy one, with the approximated contours being at 

most two pixels distant from the original contours.

In SIMOC, an interframe coding method was developed based on this representation. 

Since each shape is represented at the decoder by a list of vertices, the vertices at frame t 

are used as the prediction for the vertices at frame M-l. In fact, the vertices at frame t are 

displaced according to their motion in order to provide an even better prediction of the 

shape at t+1. The prediction itself is formed by interpolating between the predicted 

vertices. Naturally, this prediction has certain associated errors. These errors are taken 

into account by the insertion and coding of new vertices, which are placed on contour 

points which are not well represented by the prediction. After the insertion of new 

vertices, there may be a certain amount of redundancy in the vertex list. That is, if  three 

vertices roughly lie on the same polygon or spline curve, then the centre one is rejected 

from the vertex list. The result of this is that the encoder must transmit the list of new 

vertices, plus overhead information stating the locations of these new vertices and 

indeed, the rejected vertices.

This method is promising in that it effectively exploits the correlation in smooth object 

contours and it has been proven to be quite efficient for lossy coding. Furthermore, an 

interframe coding mode is possible, thus exploiting temporal correlation in the 

segmentations. Along with chain coding, this method is one of the most popular 

approaches to shape coding. There are still some criticisms of this method but these 

relate mainly to evaluation criteria other than coding efficiency, e.g. implementation 

complexity and end-to-end communications delay.

2.3.3 G rid  Interpolated  M otion  E stim ation  and C om pensation

It has been stated already that object-based coders rely very heavily on effective motion 

compensation. The block-based constant motion fields used within H.261, while 

requiring very little coding bandwidth, do not facilitate very good motion 

compensations. Block-based motion fields contain disturbing discontinuities at the 

block boundaries and these result in very nasty artefacts in the motion compensated
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images. Furthermore, at low bit-rates, these artefacts also appear in the reconstructed 

images. The other problem is that only purely translational motion within the image 

plane can be well synthesised. The designers of SIMOC sought to avoid these blocky 

artefacts and settled on a motion representation that could deal with more general object 

motions. The approach is as follows.

A regular grid is defined on the current image. There is one grid point every 16 pixels 

on every 16th line. For each grid point, a robust hierarchical block-based search [9] is 

employed to compute a half pel motion vector in the range [-4.5,4.5]. This motion 

vector minimises the Mean Absolute Difference (MAD) in the local area of the grid 

point. Once all grid vectors are estimated, a bilinear interpolation of the motion field is 

carried out. This results in a half-pel motion vector for each pixel. Each pixel within the 

moving area is then motion compensated using its interpolated vector. Due to the 

smoother nature of the interpolated motion field, the motion compensated prediction is 

visually pleasing and is devoid of any blockiness. Moreover, the interpolated field turns 

out to be blockwise planar or affine. As we shall see in chapter 4, affine motion models 

are capable of approximating translations, rotations and zooms and hence the 

interpolated field is far more effective than the conventional blockwise constant fields. 

The described interpolated motion representation is therefore very promising.

While the grid interpolated approach is in itself a very sound technique, in the context of 

the object-based coding philosophy, it has a small disadvantage. As pointed out by 

Wuyts et al [96], it is a globally flexible motion model in contrast to the more compact 

rigid object motion models that are recommended above. Thus, with a motion vector at 

each grid point, the representation uses as many bits as that of H.263 and in this sense, it 

does not help to compensate for the extra expenditure in shape.

2.3 .4  M odel F ailu re D etection and C oding

Model failure detection is a method intended to efficiently encode the prediction error 

within the object. The strategy involves detection of the subset of all the object pixels 

that are badly predicted by motion compensation. This subset, termed the model failure
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(MF) region, is then encoded using a VQ technique. Of course, the shape of the MF 

regions also has be coded and transmitted. In the opinion of the author, this is one of the 

most naive aspects of SIMOC. It is a part of the encoder which is really not optimised 

on a representative set o f sequences, but instead, it is designed to perform well only for 

very simple videophone scenes. The model failure regions were intended to detect and 

code unpredictable scene events such as eye openings etc. The assumption was that 

motion compensation would be able to accurately synthesise the remaining events. Of 

course, for sequences with noise, photometric variations or complex motion, motion 

compensation still results in large prediction errors and hence, in general, the MF 

regions detected by SIMOC are rather larger and more disjoint than first intended. When 

the assumptions underlying MF coding break down, the MF coding approach tends to 

be extremely inefficient.

2.3.5 C od ing R esu lts for SIM O C1

SIMOC1 is an open-loop coder. That is to say, it has no buffer regulation mechanism 

and is controlled only by a quality criterion. This criterion states that the PSNR of the 

luminance (Y) component of reconstructed pictures should be 34 dB. In fact, this is only 

enforced in model failure (MF) regions and uncovered background regions. The result is 

that bit usage varies wildly for different input sequences.

The average bit usages per second for each of the three test sequences used are shown in 

Table 2-1. This shows the breakdown of the total bit-rate into bits for shape, motion and 

colour. The bits for colour are entirely due to model failure regions being detected and 

coded. The bit-rate over time is also illustrated in the accompanying graphs of Figure 2- 

6, Figure 2-7 and Figure 2-8.

I
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Table 2-1: The SIMOC bit usage on 3 common (QCIF) test sequences.

Sequence Bits for shape 

(Kbit/s)

Bits for motion 

(Kbit/s)

Bits for colour 

(Kbit/s)

Miss America 7.4 2.3 12.2

Claire 5.8 4.6 20.5

Foreman 15.6 5.6 150.0

When the assumptions underlying the change detection, model failure detection and 

coding approach are correct, as in the cases of Miss America and Claire, reasonably 

efficient performance is possible. However, the sequence Foreman breaks many of the 

model assumptions, i.e. it is taken with a moving camera and the object is undergoing 

fast and complex motion. As a consequence of this, the bit-rate to encode model failure 

areas drastically increases. This illustrates the fragile nature of many object based 

algorithms.

Bit Usage for Miss America

Frame

Figure 2-6: Graph o f the bit-usage breakdown over SO frames of Miss America.
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Frame

Figure 2-7: Graph o f the bit-usage breakdown over 150 frames of Claire.

Frame

Figure 2-8: Graph of the bit-usage breakdown over 50 frames of Foreman.

SIMOC has been treated harshly in terms of its genericity, i.e. the segmentation 

approach works best on low-noise sequences with a static background and the model
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failure coding approach works best when motion is very simple. However, genericity 

appears to be a problem in many object-based coding strategies. That is, most object- 

based coders are optimised for a certain set of conditions and these conditions are 

usually only fulfilled by a small set of sequences. Many people view this non-genericity 

as a fact of life: something which, though unsatisfactory, must be accepted. This has led 

to the development of switched mode coders which profit from being able to code in 

block-based mode or in object-based mode as appropriate [20], [21], [64]. These 

switched coders can choose on a frame by frame basis whether object-based coding is 

suitable, i.e. whether the scene conforms to a restrictive set of assumptions. If the 

assumptions are invalid, then the block-based coder is used as a fallback mode. This 

approach seems to produce good results, but it is rather unwieldy and inefficient from an 

implementation point of view.

2.4 MPEG-4 Video Work

Compression-oriented object-based coding methods have not lived up to the initial 

hopes and aspirations. More time may be required to allow the science to mature so that 

it can outperform the conventional block-based methods. Nevertheless, the recent 

MPEG-4 standardisation effort has placed considerably emphasis on object-based 

coding in order to provide for semantic content access.

MPEG-4 seems to have twin aims. The traditional requirement of coding efficiency is 

still very important, since MPEG-4 is committed to providing universal access to 

multimedia information via mobile networks and other low grade media. However, most 

of the emphasis appears to be on the requirement for content access [56]. The MPEG-4 

video algorithm is of the content-oriented type, as defined in sub-section 2.1 above.

MPEG-4 began by specifying a flexible coding architecture, the MPEG-4 VM [74] 

based on VOPs or Video Object Planes, see Figure 2-9 and Figure 2-10. These VOPs 

are usually regarded as 2-D semantic objects, but on a more abstract level, they are 

merely arbitrarily shaped image regions. Each VOP is composed of YUV pixel data 

plus an alpha channel specifying the shape of the VOP. A video scene is viewed as 

being a composition of VOPs. The analysis/segmentation function (VOP definition) was
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totally decoupled from the coding function. MPEG-4 only deals with the definition of 

the coding and decoding system. It is assumed, for the moment, that the alpha channel 

information is already available (via blue-screening) or that it will, in the future, be 

reliably provided by automatic or semi-automatic means. Note, that this approach is 

different than the SIMOC approach, whereby the analysis and coding were tightly 

coupled.

Figure 2-9: The MPEG-4 VOP-based Video Encoder. The VOP definition stage (the 
segmentation) is not subject to standardisation.

Figure 2-10: The MPEG-4 VOP-based Video Decoder

Through the use of VOPs, content-based access is satisfied. Moreover, by using just one 

VOP comprising all the pixels in the given frame, the coding scheme degenerates to the 

standard H.263-like specifications. In such degenerate cases, no shape information is 

transmitted and hence, a coding efficiency equivalent to or better than H.263 is
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guaranteed. For the most part, very conventional block-based ideas have been tailored in 

order to code the VOP interior. Indeed, the VM is currently an amalgamation of H.263, 

MPEG-2 and the required shape coding algorithm. Therefore, MPEG-4 is wisely 

making use of existing robust technologies. This is in direct contrast to SIMOC, which 

suffered from the use of immature technologies such as model failure coding.

Apart from the required shape coding algorithm, the MPEG-4 video algorithm is not so 

much different from H.263, for example. The interior of the object shape is coded in 

terms of blocks. For interframe coding, each 16x16 block may be motion compensated 

using motion vectors and the residual is encoded by a DCT-based method. The major 

differences come when handling border blocks which are not fully inside the object- 

shape. In these cases, shape adaptive texture coding methods [88] can be used. 

Alternatively, methods of block padding are utilised. For instance, prior to DCT coding, 

an 8x8 pixel border block is padded by more or less extrapolating the pixel values inside 

the object to provide values for those block pixels which are outside. Then, the padded 

8x8 block undergoes the standard DCT coding. For motion compensation, the process is 

similar. The motion vector points to blocks from the previous VOP and these block 

pixels are copied into the predicted VOP. However, since some of the copied block 

pixels may be outside the object shape in the previous frame, padding is used to 

evaluate such undefined pixels. A macroblock layer syntax is defined to represent the 

coded VOP, whereby each macroblock (16x16 pixels) may consist of shape 

information, motion vectors and DCT coefficients. If the shape information indicates 

that the macroblock is transparent, then no further information is coded for that 

macroblock. Similarly, measures are used to ensure no wasteful information is coded for 

transparent 8x8 blocks.

While both efficiency and content access requirements can be provided, a bitstream 

supporting content access is generally not as efficient as one which does not support it. 

Since coding efficiency is always sacrificed in order to provide content access (i.e. 

shape information must be coded), it is unlikely that MPEG-4 will succeed in providing 

content access and significantly higher quality video than is provided by H.263 in the 

same bitstream, for instance. On the other hand, for particular applications, e.g.
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videophone, the content-based representations may present some advantages. These are 

related to content-based rate allocation. For example in videophone applications, it is 

the facial region which is important for effective communication. Let’s suppose a 

videophone scene is decomposed into several VOPs, one of which corresponds to the 

face. For low capacity or noisy channels, it is possible to exploit the VOP-based 

representation to code the facial region with a higher quality. For instance, a higher 

proportion of coding and error protection bits might be allocated to the facial VOP, 

preserving its quality to the detriment of the other less important VOPs. Alternatively, 

the other VOPs might not be transmitted at all, facilitating a talking head videophone.

2.5 Summary

This chapter has reviewed the methods of and motivations for object-based video 

compression. Both compression-oriented and content-oriented approaches have been 

discussed. The failure of object-based approaches to significantly improve upon their 

block-based counterpart has been noted. This failure can, in part, be attributed to an 

immaturity in the segmentation methods and also in the shape compression. There is, 

therefore, a need for improved schemes for both compression-oriented segmentation and 

shape compression. While there are some doubts about the usefulness of compression- 

oriented object-based coders, there is little argument about the use of efficient object- 

based representations for facilitating content-based applications. In this regard, MPEG-4 

will provide a solution that produces efficient video object representations by specifying 

methods for encoding the object shape and texture. However, in order to produce object- 

based video representations, there is a need for a convenient means for segmenting 

semantic video objects from their scenes of origin. These needs set the tone for the 

remainder o f this thesis and new proposed solutions are described and tested.

The next chapter addresses the issue of shape compression, while chapters 4-6 confront 

the segmentation problem. For compression-oriented object-based coding, the need is 

for automatic segmentation methods capable of partitioning an image such that each 

partition can be compressed in a highly efficient way. For these applications, it has been 

established that coding-oriented criteria must be used by the segmentation approach. It 

is believed that many previous compression-oriented coders failed in this respect.
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Chapter 5 develops such a segmentation approach based on motion analysis, the 

expectation-maximisation method and the minimum description length principle. For 

content-oriented applications, there is a clear need for segmentation methods which can 

capture the shape of semantic objects. It is doubtful that this can be achieved by fully 

automatic means and thus a supervised approach is envisaged. In this respect, tracking 

algorithms based on motion analysis are viewed as essential components. Chapter 6 

builds on the motion analysis approach of chapter 5 in order to develop and test a new 

tracking algorithm.
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3. Sh a p e  C o m p r e s s i o n

The outstanding difference between the conventional video standards on one hand and 

object-based video coding as exemplified by SIMOC and the MPEG-4 video 

Verification Model (VM) on the other, is that the compressed video bitstream contains 

shape information. The shape information describes the shape and location of each 

video object in the 2-D scene at every time instance in the sequence. In raw 

uncompressed form, for a particular object, this shape information is most conveniently 

represented by a 2-D binary image as illustrated by Figure 3-1. Pixels with the label 

WHITE are considered to be part of the given object and pixels with the label BLACK 

are considered not to be part of this object. In MPEG-4, this binary image is referred to 

as a binary alpha map. MPEG-4 also allows more general grey level alpha maps. In 

addition to specifying whether a pixel is part of the given object or not, they can specify 

levels of transparency for each pixel. All pixels labelled WHITE are totally opaque, all 

pixels labelled BLACK are fully transparent and those with any other grey level have 

some degree of transparency.

(a) (b)

Figure 3-1: MPEG4 test sequence KIDS, (a) The VOP (consisting of the two children) is 
composited onto a grey background, (b) The binary alpha map for the VOP.

This chapter focusses only on the encoding of binary alpha maps for digital video 

applications. A brief review of established and emerging techniques for shape coding is 

given in section 3.1. Section 3.2 presents a common set of requirements which should
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be fulfilled by the shape encoding. The efforts within MPEG-4 have been responsible 

for the fast evolution of technology in this area and this evolution is described in section 

3.3. Finally, some detail is provided on one of the main tools used in the MPEG-4 VM7 

shape coder, i.e. context-based arithmetic encoding (CAE). This CAE method, which 

has been developed by the author, is very novel due to the fact that it is optimised for a 

block-based syntax and it is capable o f exploiting temporal correlation.

3.1 Review of Shape Coding Techniques
Along the lines of a classification proposed by De Sequeira in [87], the methods of 

coding shape and binary 2-D data and images can be classified into two broad types.

• Bitmap coding

• Contour coding

The bitmap coding class includes context-based arithmetic encoding (CAE) [44], 

modified modified Read (MMR) encoding [40] and run length encoding (RLE) [33]. 

These methods directly encode the binary pixel values within the alpha map. The 

contour coding methods include chain coding and vertex-based coding. These perform 

an initial transformation which converts the binary alpha map into a contour image. 

Coding is then applied to the contour image. A contour image is again a binary image, 

but one where pixels with the value WHITE are those which reside on the edge of the 

object shape and those with value BLACK are either inside or outside the object shape.

3.1.1 Bitm ap Encoding

Bitmap encoding strategies have certain advantages in terms of simplicity and flexibility 

due to the fact that they are applied directly to the binary image. They have been used 

for coding binary images in several FAX standards [47]. Two of the most common and 

well known binary label coding schemes are MMR, as used in FAX coding, and CAE, 

as used in JBIG [41]. In the more recent past, the key algorithms used within the FAX 

standards have come under study within MPEG-4. Initially, both MMR and CAE were
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designed primarily for lossless coding of still images. However, in the context of 

MPEG-4, a means of applying these techniques to lossy coding is necessary.

G3 and G4 FAX Coding: MH, MR and MMR

In the G3 FAX standard [39], several coding strategies are employed. The most basic is 

the Modified-Huffinan (MH) method. This is a simple Huffman encoded RLE scheme 

which can be implemented without requiring large memory for the VLC tables. In this 

scheme, each raster scan line is subjected to MH coding and the line code is terminated 

with an end of line (EOL) code. The Modified-Read (MR) method introduced in the G4 

standard [40] attempts to exploit correlations in the vertical direction as well as the 

horizontal direction. In adjacent lines, the locations of the black-white/white-black 

transitions are likely to be similar. The MR method requires that, while coding the 

current scan line, the previous line be retained in memory to be used as a reference or 

prediction for the current line. Through the use of special codes for representing 

common inter-line events, significant improvements in compression efficiency are 

achieved. The MH method is still used to encode line patterns which cannot be well 

predicted from the reference line. In fact, the MH method is used periodically every K  

lines. This provides error resilience by preventing bit errors in the compressed stream 

from propagating without limit through the reconstructed image. In terms of efficiency, 

the modified-modified-Read (MMR) method further improves upon the MR method. 

The gain in compression is achieved at the expense of error resilience. The EOL codes 

are removed and the periodic usage of MH is omitted. The MMR codes applied in this 

manner are only useful on error free channels or with the help of packet retransmission 

strategies such as automatic repeat request (ARQ). The G3 and G4 compression 

methods are successful due to their ability to provide significant compression while 

minimising computational complexity and memory requirements.

JBIG

JBIG (Joint Bi-Level Image Group) refers to a collaborative effort on the part of the 

ITU-T and ISO to define a progressive coding format for compressed binary images. 

The standard is also known as T.82 [41]. On scanned images of printed characters, the 

observed compression ratios for JBIG have been 1.1 to 1.5 times larger than those for
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MMR. On computer-generated images of printed characters, JBIG is up to 5 times 

better.

One of the key algorithms used within JBIG is context-based arithmetic encoding [44]. 

The image is optionally decomposed into a number of resolution levels. Each resolution 

level is divided into rectangular bands called stripes. A stripe contains a contiguous 

group of lines. The pixels within each stripe are scanned in raster fashion. In JBIG, only 

a subset of the pixels are subjected to the CAE. For each of these pixels j ,  a so-called 

model template is defined. The template contains pixels previously coded, i.e. those in a 

causal neighbourhood of j  and those from the already available lower resolution image. 

Based on the particular configuration within the template, a context number is produced 

for pixel j .  This context number is used to access a probability table which provides the 

probability P( 0) that pixel j  is BLACK and the probability P (l) that pixel j  is WHITE. 

An arithmetic encoder uses these probabilities to produce a highly compressed code for 

all the pixels in the stripe. In JBIG, the probability table is generated from the data being 

encoded, i.e. as each new sample is encoded, the probability model is updated 

accordingly. As such, the probability model can adapt to the statistical characteristics of 

each coded image. More details on the motivations for the CAE approach are given later 

in the chapter.

3.1.2 Contour Encoding

In contrast with bitmap methods, contour encoding techniques require that the initial 

binary image is transformed into a contour image and it is this contour image which is 

encoded. During the decoding process, the reconstructed contours must be filled in order 

to produce the reconstructed binary image. Here, two contour encoding methods are 

discussed, i.e. chain coding [42] and vertex-based methods [23],[30],[36].

Chain Coding

A chain code begins with the (x,y) coordinate of the first contour pixel. This is usually 

transmitted without compression. Starting from the first contour point, the contour is 

traced pixel by pixel in a clockwise or anti-clockwise direction. Each contour pixel 

encountered is encoded by transmitting a value representing the direction passed
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through in order to move from the previous pixel. An example of the possible directions 

(in 8-connectivity) is given in Figure 3-2. An uncompressed chain code in 8 

connectivity is simply a list of 3 bit integers. The code is usually compressed by run 

length encoding (RLE).

Figure 3-2: The basis o f an 8-directional chain code.

Several improvements are possible on this basic scheme. For instance, the set of 

possible directions can be reduced by replacing diagonal directions by a composition of 

a vertical and horizontal direction. This is really a lossy chain code but generally the 

observable distortion is not disturbing. Another improvement to the basic scheme is the 

differential chain code. In this case, the uncompressed chain code is coded by predicting 

each direction from the previous one. This results in a list of prediction errors. The 

prediction errors are then entropy encoded using a VLC table or arithmetic encoding.

Vertex-based Methods

Vertex-based methods also belong to the class of contour encoders. As discussed in the 

previous chapter, the vertex-based representation consists of an ordered list of points in

2-D space. The reconstructed contour is produced by beginning at the top of the list and 

drawing lines or splines between each adjacent pair of vertices. Commonly, some kind 

of optimisation algorithm is required to choose an efficient set of vertices for the 

representation of a given shape. The vertex-based methods have been proved to be 

useful for lossy encoding of smooth contours. For such contours, a small number of 

suitably chosen vertices can be used and yet the reconstruction errors remain small.
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3.1.3 Comparison of Bitmap vs Contour Encoding

In general terms, there is no reason to favour one of these classes of coding techniques 

over the other. Practically, however, the bitmap-based methods have some advantages.

• There is no need to extract the contour map at the encoder.

• There is no need for a filling algorithm at the decoder. Indeed, the design of a robust 

filling algorithm capable of dealing with generic shapes is non-trivial and many 

proposed solutions contain flaws, such as those described in [71].

• The memory access of the bitmap-based algorithms is regular and predictable, 

whereas the memory access of the contour methods is dependent on the nature of the 

data to be encoded. This means that on-chip memory caches cannot be easily used for 

contour based methods.

• Bitmap-based methods like MMR and JBIG are established standardised methods 

whose implementation is known to be feasible.

This very brief review has highlighted that some mature technologies for binary 

image/shape coding have existed for many years. For the extension of these techniques 

to video coding applications, attention needs to be devoted to the new nature of the 

content to be addressed in video applications, i.e. to the fact that high spatial and 

temporal correlations are common, to the need for lossy compression and to the need for 

error resilience. The next section explains what is expected of a shape coding algorithm 

for use in MPEG-4.

3.2 Shape Coding Requirements

While binary image coding has been a well researched topic, the use o f binary shape 

coding in digital video systems presents somewhat different challenges. The challenges 

are the same as those which the standards developers of MPEG-1, MPEG-2, H.261 and

H.263 were presented with, when they began work. These conventional challenges and 

requirements are discussed first and then, those new requirements specifically pertaining 

to the need for content access are outlined.
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3.2.1 General Requirements for Shape Coding

The design of a video compression system begins with identifying the promising 

applications and then deriving a list of essential requirements which need to be fulfilled 

to best enable some or all of the applications. Table 3-1 gives a list of the most common 

requirements for digital video systems, i.e. encoders and decoders. All video 

compression standards up to and including MPEG-4 were developed on the basis of 

such a list of requirements. The difference with MPEG-4 is that an extra compression 

sub-system is required for encoding object shape information. This sub-system must be 

designed such that all the above requirements can still be met. That is, the shape 

encoding/decoding solution must not significantly hinder the fulfilment of the 

requirements.

While much work has been done previously on the representation of shape, not all 

offerings are designed to meet the stringent requirements of video communications. All 

the reviewed techniques of section 3.1, with the exception of the vertex-based methods, 

are only designed to deal with lossless coding of shape, whereas many video 

applications would benefit from a lossy mode allowing adaptive rate regulation and so 

on. Also, when dealing with video, it is known that extra coding efficiency can be 

gained by inter-frame prediction. This should also be true of shape coding. Therefore, 

the provision of an inter-frame coding mode is of prime importance. When dealing with 

video, the error resilience requirement is very important. In most applications, there is 

little possibility of using ARQ due to the delay and decoder buffering that it implies. 

Error resilience is a requirement with increased emphasis when it comes to video 

coding. Therefore, it is imperative that the coded representation for shape in a video 

context is able to provide, or fit into, some error resilient coding framework. Apart from 

these conventional requirements, the new need for content access places more 

limitations on the methods which can be applied, as discussed in the next section.
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Table 3-1: Requirements placed on shape encoder and decoder systems.

Requirem ent Definition Comments

C oding E ffic iency The ability to achieve com pression with the 
m inim um  loss  in  quality. B oth  lo ssless  and 
lo ssy  cod ing  m odes are required.

A ll applications require this.

L ow  C om plexity The encod ing  and d ecod ing processes should be 
realisable in a practical manner and w ith rea
sonable cost.

For c lien t terminals attached to video databases, 
it is particularly desirable i f  the decoding is pro
cess is sim ple and not so important i f  the 
encoding process is com plex.

L ow  D elay The delay  betw een the start o f  encoding at the 
transmitter and the end o f  decoding at the 
decoder should be tolerable.

This is  particularly important in real-tim e 
duplex com m unications, e .g . videophone, 
where delay hinders effective  tw o-w ay com m 
unication.

Error R esilien ce The representation should not be overly  
sen sitive to bit-errors or cell loss.

Particularly tight constraints are im posed in 
real-tim e duplex com m unications where re
transm ission o f  packets is not permitted.

Rate R egulation It should be possib le to control the size  o f  the 
representation by  m ovin g  along the 
rate/distortion curve.

This is useful in m ost transmission  
environm ents but particularly when fixed-rate  
channels are being used.

Scalability A  receiver should easily  be enabled to choose a 
subset o f  the bitstream  and using the subset 
reconstruct som e rendition o f  the fu lly  coded  
entity.

This is useful in broadcast or database 
applications, where networks and receivers w ith  
varying capacities and capabilities exist.

3.2.2 Content Access Requirements

It is not discussed in the introduction of this chapter, but it is possible to represent 

several object (binary) shapes within one 2-D labelled image. Such a shape 

representation is called a segmentation map. Each object in a given scene has an ID 

number or label. The pixels within the segmentation map each have a label. A pixel with 

label i is associated with object i. To encode a segmentation map, there are two 

possibilities. The first is to encode the segmentation map directly, i.e. treat it as an N-bit 

image (where N bits are used to represent each label) and employ the appropriate 

techniques directly to this image. The second approach is to first decompose the 

segmentation map into binary alpha maps and apply binary shape coding techniques to 

each of these while associating the resulting independent codes with an object of given 

ID. The first approach is believed to be more efficient, as explained below. However, it 

does not lend itself well to the provision of content access. To access a particular 

object’s data, the compressed segmentation map must be fully decoded. If the object is 

to be placed into a new scene (Content-based Video Editing), then the destination
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scene’s bitstream must be decoded and re-encoded with the new object included. The 

second approach avoids these problems, but it effectively means that there is a certain 

duplication of information in the bitstream. That is, the contours of object X may also 

form part of the contours of object Y and hence, by independently encoding the binary 

masks for object X and object Y, the shared contours are being encoded twice. This 

inefficiency is a necessary evil in order that flexible content access is provided for.

Although in this chapter only binary shape coding supporting content access is 

discussed, there are however, some applications for which limited content access is 

sufficient and for which direct segmentation map encoding may be more suitable. In a 

real-time encoding scenario, it is currently considered important that a decoder user be 

allowed to interact with the content of the video being viewed. One use of this 

interaction is that the user could assign priorities to one object or another. This priority 

could be transmitted back to the encoder and could be interpreted there as an instruction 

to allocate more bits to the chosen object. The result would be that the selected object is 

enhanced in quality. This scenario is useful in surveillance applications, where video is 

being transmitted over a low grade network, and it does not require full content access. 

In such an application, it would be best to use direct encoding of the segmentation map 

in order to achieve the utmost coding efficiency.

3.3 Evolution of MPEG-4 Binary Shape Coding

The most common techniques for binary shape coding have been reviewed and the 

requirements for MPEG-4 shape coding have been outlined. This section contains a 

review of how the MPEG-4 binary shape coding solution evolved.

MPEG-4 required an efficient shape representation which availed of interframe 

correlation and which could be lossless or lossy. Additionally, complexity, error 

resilience and delay were also important considerations. Prior to MPEG-4, these 

requirements were fulfilled by the development of block-based video encoding methods. 

That is, all previous video standards utilised a block-based algorithm. The reasons for 

this are best explained in relation to the requirements o f Table 3-1.
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Figure 3-3 shows how a QCIF video frame is partitioned into macroblocks, where a 

macroblock corresponds to a 16x16 block of image pixels. The macroblocks are then 

coded in some predefined order. For example, the MBs can be coded in raster scan order 

as indicated in Figure 3-3. Each macroblock is then represented in terms of its motion 

and YUV data in compressed form. This block-based video representation has been 

employed widely and for good reasons, as explained now.

Coding Efficiency

When encoding a video frame, it becomes apparent that there is no one coding approach 

which deals optimally with all areas of the frame. Some picture areas will require 

INTRA coding. Some picture areas will require INTER coding. Some picture areas will 

not require any update at all, but will be accurately predicted from previous frames. The 

use of a block-based representation for the video frame means that the coding approach 

can be adapted on a block basis such that every block is coded the best way possible. 

Blocks residing in still parts of the picture will not be updated. Blocks residing in parts 

of the picture exhibiting simple motions will be INTER coded. Blocks residing in parts 

of the picture where no useful prediction is possible will be INTRA coded. It is this 

local adaptation of the coding mode which gives the block-based approach the 

possibility of achieving very high compression ratios for video. Furthermore, a video 

scene typically contains one or more moving objects. Each object or each part of an 

object can be undergoing a different motion. For efficient interframe coding, some basis 

for local motion analysis and representation must be provided. A block-based 

framework provides a convenient platform for local motion representation.
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97 98 99

Figure 3-3: A  QCIF (176x144 pixels) video frame partitioned into 11x9 
macroblocks, numbered 1 to 99.

Codec Complexity

Block-based algorithms have been successfully implemented on application specific 

integrated circuits and general purpose processors. This has been mainly due to the fact 

that a block-based approach reduces the hardware requirements in terms of memory 

bandwidth. The macroblock, which is the main coding data structure, contains six 

blocks each of size 8x8 pixels. This means that a macroblock contains only 384 bytes of 

data. The small size of the macroblock means that any processor can store several of 

them on-chip, avoiding the delays incurred for memory accesses across a system bus to 

the main memory. Additionally, block-based approaches have also enabled the use of 

parallel and pipelined hardware architectures.

Low Delay

The block-based approach has clear advantages in terms of delay. At the encoder, an 

input buffer receives the current frame from the capture device. The frame is received 

line by line. Once, the sixteenth line is received it is possible to begin 

encoding/transmitting the first line of macroblocks (macroblocks 1 to 11, in Figure 3-3). 

At the receiving end, decoding can begin immediately on receipt of the first compressed 

macroblock. In summary, a block-based representation, in principle, allows encoding
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and decoding delays much less than one video frame in duration, thereby reducing the 

problems of delay and minimising encoder and decoder buffering.

Error Resilience

The general approach to providing error resilient video representations is to insert 

resynchronisation markers (RM) into the bitstream at regular intervals. If a bit error 

occurs, synchronisation is lost only until the next re-synchronisation marker. 

Effectively, a packetized structure is used as depicted below.

R M l Com pressed Data 1 RM 2 C om pressed Data 2 RM3
(C D 1) (C D 2)

If an error is encountered in packet 1 then CD1 is discarded. RM2 is found and 

decoding continues with CD2. This implies that CD2 must have no dependence on the 

pixels represented by CD1. Hence, each packet, consisting of an RM and a CD field, 

contains coded data which has been produced independently of other packets. The 

block-based approach easily fits into this packetised framework. For example and with 

reference to Figure 3-3, CD1 might represent macroblocks 1 to 11, CD2 might represent 

macroblocks 12 to 22 and so on. Only one simple rule must be enforced, i.e. when 

encoding a macroblock within a given packet, no data from outside that packet may be 

used. This ensures that error propagation is limited to within the image area represented 

by the affected packet.

In terms of the requirements covered, the block-based approach is shown to be flexible 

in meeting the multiple demands placed on video systems. Despite this, MPEG-4 

evaluated several non block-based shape coding algorithms based on contour coding 

techniques [62]. Ultimately, however, a block-based solution was favoured. A factor in 

this choice was the fact that the coding of the YUV texture data is performed on a 

macroblock basis. In order to facilitate an elegant syntax, it appeared to be sensible to 

perform the shape coding on a similar basis. The next sections plot the progress in shape 

coding within MPEG by describing chronologically the solutions of the various versions 

of the video Verification Model.
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3.3.2 The VM3 and VM4 Shape Encoder

In July 1996, MPEG-4 published version 3 of the video Verification Model (VM) [57]. 

This contained a block-based shape coder capable of lossy coding and capable of inter- 

frame coding. The shape coder had been designed by Toshiba and Matsushita of Japan 

and was based on a motion compensated DPCM loop as depicted in Figure 3-4. The 

input to the loop is a binary alpha block (BAB) which is 16x16 pixels. When the video 

object is INTER coded, motion compensation (MC) can be carried out to give a 

predicted BAB. In the case of VM3 and VM4, this motion compensated BAB is 

generated using the same motion vectors which are used for motion compensating the 

corresponding YUV macroblock. This is input to a mode decision procedure. This 

procedure has the function of deciding how the current block is to be coded. The BAB 

may be represented in one of four ways as summarised in Table 3-2.

Table 3-2: Description o f BAB coding modes in VM3/VM4

BAB
Coding
Mode

Semantics o f  Decoding Process

A ll Zero The reconstructed B A B  contains on ly  B LA C K /T R A N SPA R EN T pixels.

A ll One The reconstructed B A B  contains only  W H ITE/OPAQUE pixels.

N o t C oded The reconstructed B A B  is  obtained b y  m otion com pensation using the m otion vectors o f  the Y U V  m acroblock. 
N o  replenishm ent o f  the B A B  is performed.

Coded The reconstructed B A B  is obtained by decoding the INTRA M M R  codew ords.
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Input binary 
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Figure 3-4: VM3/VM4 Binary Shape Coder. The method uses motion compensation to exploit 
temporal redunancy and a block-based M M R  method to exploit spatial redundancy.

For coded BABs, three steps are required for their encoding:

1. Downsampling: This allows lossy coding of shape. A BAB may be downsampled 

from 16x16 to 8x8 or 4x4 and then the downsampled BAB is encoded. Rate- 

distortion trade-off points are chosen by setting the downsampling ratio on a per 

block basis to be 1,2 or 4.

2. Modified-Modified-Read (MMR): This step applies MMR coding similar to G4 fax 

coding within the downsampled BAB. Compression ratios of 4:1 or greater are 

possible for the vast majority of BABs. MMR is inherently a lossless coding 

technique and the variety employed in VM3 exploits only spatial correlation.

3. Upsampling: Due to the temporal prediction employed in VM3, it is necessary to 

store the reconstructed alpha map at the encoder. Hence, any downsampled BABs 

must be upsampled to the nominal size of 16x16 prior to being stored in the 

reconstructed frame memory.

Using the described coding algorithm, the representation for each BAB contains three

types of information (all elements o f the representation are compressed using Huffman

variable length codes):

•  The mode decision to tell the decoder which decoding mode to adopt for the BAB.
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• The conversion (downsampling) ratio (CR) to tell the decoder the size of the 

downsampled BAB and the upsampling ratio required for reconstruction of the BAB.

• The MMR stream consisting of a series of run-length codes and mode codes telling 

the decoder how to reconstruct a coded BAB.

The VM3 shape representation set the common basis for all further VM solutions. This 

common basis was defined by the fact that the representation was block-based, that it 

supported temporal prediction and that lossy coding was provided mainly (although not 

exclusively3) by means of prior downsampling.

3.3.3 The VM5 and VM6 Encoder

In November 1996, VM5 was published [59]. A competitive round of experiments 

resulted in a number of improvements being made to the shape coding algorithm. This 

improved algorithm outperformed many contour-based algorithms and also one (non

block) technique based on CAE. The major improvements were the following:

• The motion compensation of the BAB used a specially estimated motion vector, 

which was distinct from the YUV motion vector. The extra motion vector was 

communicated to the decoder and the coding used a spatial predictive method, 

whereby only the prediction error of the motion vector, i.e. the motion vector 

difference, was required to be coded. This change was included because, in general 

the motion vectors estimated on the basis of YUV data are not optimal for the motion 

compensation of shape data.

• The basic MMR method was extended to exploit the predicted BAB, i.e. an INTER 

MMR method was included. This resulted in improved performance towards the 

lossless end of the distortion range. When lossless or near lossless coding is required, 

there are many more coded blocks. The inclusion of INTER MMR meant that many 

o f these coded blocks could be compressed more efficiently.

3 A BAB with almost all white pixels could be encoded by the use o f the All One mode. A BAB with almost all 
black pixels could be encoded by the use of the All Zero mode. A BAB whose motion compensated prediction was 
less than perfect could be coded using the Not Coded mode. Either o f these three measures results in reducing the 
quality of the representation, while saving bit-rate.
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• The MMR method which previously was applied using a horizontal raster scan could 

now also be applied using a vertical scan. For each BAB, the scan type which 

produced the smallest code was used. The chosen scan type was signalled in the 

bitstream.

• Several intricate modifications were made within the MMR method itself to improve 

the compression efficiency.

• For INTER coded video objects, the coding mode of each BAB was encoded 

utilising inter-frame correlation. Since VM5 involved the introduction of new coding 

modes, straightforward VLC coding of the mode information resulted in a 

considerable generation of bits. The rate of the mode information could be reduced 

by exploiting the fact that frequently the coding mode of a given BAB did not change 

much from frame to frame.

The VM5 syntax was more complex than that of VM3. The mode, downsampling and 

MMR information remained, but there were extra coding modes and some extra 

information fields. The coding modes are listed in Table 3-3. The increase in the syntax 

complexity was mainly due to the improved temporal shape prediction using the 

dedicated shape motion vector and the associated INTER MMR method. The shape 

motion vector was represented by a prediction process and the encoding of the 

prediction difference (MVDs -  the motion vector difference of shape) in the bitstream. 

When, as occurs frequently, the prediction difference is zero, this is signalled by a 

special coding mode as indicated in Table 3-3.
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Table 3-3: Description of BAB coding modes in VM5/VM6

BAB Coding Mode Semantics o f  Decoding Process

A ll Zero The reconstructed B A B  contains only  BLA C K /TR A N SPA R E N T  pixels.

A ll One The reconstructed B A B  contains on ly  W H ITE/O PAQ UE p ixels .

IN T R A  M M R The reconstructed B A B  is obtained b y  decoding the INTR A  M M R  codew ords.

N o t Coded &  M V D s = 0 The reconstructed B A B  is obtained by  m otion  com pensation. N o  replenishm ent o f  the B A B  is 
performed. The m otion vector used for m otion  com pensation is obtained by  local spatial 
prediction.

N o t Coded &  M V D s !=0 The reconstructed B A B  is  obtained by  m otion com pensation. N o  rep lenishm ent o f  the B A B  is 
performed. The m otion vector used for m otion  com pensation is  obtained by  loca l spatial 
prediction and the addition o f  a m otion  vector prediction error (M V D s).

IN T ER  M M R  &  M V D s = 0 The reconstructed B A B  is obtained decoding IN T ER  M M R  codew ords. In order to decode  
these, a m otion com pensated B A B  is required. The m otion vector is obtained by  local spatial 
prediction.

INTER  M M R  &  M V D sN O The reconstructed B A B  is obtained decoding INTER  M M R  codew ords. In order to decode  
these, a m otion com pensated B A B  is  required. The m otion vector is obtained by  local spatial 
prediction and the addition o f  M V D s.

3.3.4 The VM7 Encoder

The last major step (in April 1997) in the MPEG standardisation process signalled the 

end of MMR-based coding in MPEG-4 [61]. Many researchers considered the method 

to be very crude and involved, even to the extent of not being understandable or 

implementable without great difficulty. A block-based context-based arithmetic 

encoding (CAE) method was proposed by the author. Results showed this CAE method 

to be superior to MMR for the BAB coding. Despite stiff competition from a very 

efficient vertex-based algorithm, it was decided that MPEG-4 should stay with a block- 

based bitmap algorithm. The VM7 shape coding algorithm (built on top of the VM5 

method) is summarised in Figure 3-5. In comparison with VM3 of Figure 3-4, it can be 

seen that the VM7 encoder comprises its own shape motion estimator and an extra 

decision block for deciding whether the block will be coded by INTRA or INTER 

modes and for deciding upon the scan type. All these additions were inherited from 

VM5. The major step of VM7 was the replacement of INTRA MMR and INTER MMR 

with INTRA CAE and INTER CAE respectively. In the bitstream, the VLC codes of the 

MMR method were replaced by a single binary arithmetic code (BAC). Another small 

change was that the mode information for INTRA coded VOPs now utilised a method
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Figure 3-5: VM7 Binary Shape Coder. The encoder is effectively the same as that of VM5 except 
that the block-based CAE method is included in preference to the previous M M R  method.

using spatial prediction, improving the efficiency of the INTRA shape coding algorithm 

by 4-6%. The remainder o f this chapter is devoted to the details of CAE.

3.4 Context-based Arithmetic Encoding in MPEG-4

Context-based arithmetic encoding has been used in JBIG and has now been adopted for 

MPEG-4. This section discusses the principles and design choices related to CAE 

coding. The precise details of block-based CAE [15], as employed in the MPEG-4 

VM7, are also covered.

3.4.1 C ontext-based  A rithm etic E ncod ing

Let’s assume that there is a random information source which generates a sequence of 

samples. Each sample X may take on any integer value i between 0 and N -l. Successive 

samples are independent of each other and are distributed according to a common 

probability density function represented by P(X=i), for i=0,...,N-1. For this source, 

there exists a lower bound on the number of bits/sample which can be used on average 

to code a sequence of samples generated by the information source. This lower bound is 

given by the first order entropy H( 1), where:
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tf(l) = - £ P ( X  = i ) log2 P ( X  = i)
1=0

N - 1

Consider now a non-random source where successive samples are in some way 

dependent. In this case, a joint probability density function must be known. For 

instance, assuming that samples are to be coded in blocks of two, then the coding bound 

is given by the second order joint entropy, i.e.

H(2) = ~ \ Y Y . P ( X  = i ,X  = j ) log2 P (X  = i ,X  = j )
^  j = 0  1=0

Once again, this represents the lower bound on the number of bits/sample assuming the 

sequence is coded in blocks of two samples. A lower bound on the bits per sample is 

obtained by dividing by two. In general, it may be proven that h ( m ) < H ( M - 1). In other 

words, the larger the block of samples coded, the smaller the coding rate. However, 

coding approaches based on very high order joint PDFs become very unwieldy. Lossless 

vector quantisation (VQ) may be considered as one example of a technique utilising 

joint PDFs. In VQ, coding large blocks of data results in large demands for code-book 

storage. Generally, VQ methods choose the largest data block size possible while 

staying within the complexity limits of the given application.

There is an alternative means of using high order statistics in coding. Consider the w-th 

order joint PDF P(X(ri)>X(n-l),..^f(l)). Rewrite this PDF as P(X(n),C), where C 

represents the set of variables {X(w-l),...,X(l)}. The n-th order conditional entropy may 

now be constructed according to:

w-i
H(n) = - Z  E  P (X  = i>C = j ) log2 P (X  = i\c = j )

Vj 1=0

As may be noted, the conditional entropy depends on a conditional probability P(^|C) 

of order «-1. This representation of entropy suggests a context-based coding approach. 

In contrast to the joint coding approach, samples are coded one at a time and each 

variable X  is coded using a conditional PDF which depends on a context C as defined
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above. Context-based arithmetic encoding (CAE) is a coding system based on 

exploiting conditional probabilities in this manner. As with n-th order VQ, the lower 

bound on the CAE approach is still given by the n-th order entropy. In addition, this 

approach has similar difficulties with respect to the utilisation of high order statistics. 

As will be explained, as the order increases, the context-based approach the storage 

demands also increase.

The analysis to this point suggests that lossless VQ and CAE should yield similar 

coding performance. A simple example reveals that the conditional approach may be 

more efficient in some situations.

Assume a binary source with P(0)=0.5 and P(l)=0.5. Consider a coding approach 

exploiting the second order joint PDFs of this source, where P(0,0)=0.375, 

P(0,l)=0.125, P(l,0)=0.125 and P(l,l)=0.375. The second order joint entropy yields a 

figure of 0.91 bits/sample. Noting the relationship P(A|B) = P(AB)/P(B), the first order 

conditional PDFs are computed as P(0|0)=0.75, P(0|l)=0.25, P(l|0)=0.25 and 

P(l|l)=0.75. The resulting conditional entropy evaluates to 0.82 bits/sample.

The hypothesis that conditional coding approaches are superior to joint coding 

approaches is not explored in any more general way. However, sub-section 3.4.7 

includes some interesting comparisons between CAE and VQ for block-based binary 

shape encoding. The following sub-section explains how context-based arithmetic 

encoding may be used to encode binary images.

3.4.2 B inary  Im age C od ing  U sing  CAE

In most binary images, a high degree of local correlation exists. For a given pixel j ,  if all 

its neighbours are WHITE, then it is highly likely that the value of pixel j  is also 

WHITE. Conversely, if  all its neighbours are BLACK, then it is highly likely that the 

value of pixel j  is also BLACK. In general, the values of the pixels in the 

neighbourhood ofj  will dictate the PDF of the pixel value at j.
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When encoding/decoding a binary image using CAE, pixels are usually 

encoded/decoded in raster order. When decoding the value at pixel j ,  the decoder knows 

the values of all the pixels above and to the left of j .  However, the decoder does not 

know what are the values of pixels below and to the right of j .  This places a simple 

causal constraint on the neighbourhood pixels which can be used to infer the PDF. A 

very common neighbourhood which is used in JBIG is depicted in Figure 3-6. In the 

video coding community, the more usual term for these local neighbourhoods is a 

template.

C9 C8 C7

C6 C5 C4 C3 C2

Cl CO j

Figure 3-6: An example of a neighbourhood template. The pixel to be coded is indicated with a ‘j ’ 
and all pixels which are p art of the template are numbered CO through C9.

The formation of the pixels in a given template can be represented by a ten bit number 

called the context number. The PDF of the pixel j  is conditioned upon this context 

number. Effectively, the pixel j  has 210 possible PDFs. These together form what is 

termed the probability table. Hence, the encoding of the pixel j  involves 3 simple steps:

1. Compute the context number.

2. Use the context number to access the correct PDF from the probability table.

3. Use the PDF and the actual value of the pixel j  to drive an arithmetic encoder [95] 

which stores bits in the output buffer.

After applying this procedure to every pixel in the binary image, the whole image is 

represented by a single (atomic) arithmetic code stored in the output buffer. The 

decoding procedure at each pixel is equally straightforward:

1. Compute the context number.
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2. Use the context number to access the correct PDF from the probability table.

3. Use the PDF and the bits from the arithmetic code to decode the pixel value.

The process is the same at every pixel. The efficiency of the resultant arithmetic code 

depends on how close the PDFs are to the real underlying PDFs of the binary image. 

There are two approaches to defining the PDFs to be used for encoding: adaptive 

models and fixed models.

3.4.3 F ixed  vs A daptive P D F M odels

In a fixed model arithmetic encoder, the probability tables are fixed prior to encoding 

and they are never allowed to change during encoding. These fixed probability tables 

are derived by using a training procedure involving a large data set of representative 

images. The probability tables will, therefore, be optimal in the average sense across 

this training set. If an image whose statistical characteristics are not captured in this 

training set is to be coded, then coding inefficiency is to be expected.

The adaptive model overcomes this dependance on a training set by adapting the 

probabilities as each new pixel is encoded. After a considerable number of pixels have 

been encoded, it would be expected that the probability tables would have adapted to the 

specific statistics of the image being coded. If given a sufficiently large set of samples 

to allow effective adaptation, adaptive models can outperform fixed models. For 

example, adaptive schemes are used in JBIG because the image resolutions are typically 

very high, thereby containing sufficient data to allow for the adaptation to take place. 

On lower resolution images, a fixed table would be the best choice because there are not 

enough samples to cause proper adaptation.

Adaptive models have two disadvantages worthy of mention. The first relates to 

complexity. In order to maintain an adaptive table, extra processing is required at each 

pixel and many update strategies are quite involved computationally. The second 

disadvantage relates to error resilience. If the arithmetic code is subjected to bit errors 

then pixels will be decoded in error. Consequently, the adaptive probability tables at the
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encoder and decoder will diverge and no ^synchronisation will be possible without re

initialising the adaptive tables. Therefore, it is preferable to use fixed tables in situations 

where error-free transmission is unattainable and where sufficiently long periods of 

sustained error-free transmission are not guaranteed. Because video transmission 

systems do not, in general, guarantee sustained error-free transfers, the CAE method of 

VM7 uses only a fixed probability table. The probability tables were generated from a 

training set. For each context number, the table stores the probability that a pixel has a 

zero value. The probabilities are stored in 16 bit precision.

3.4 .4  T em plates and C ontexts

In the MPEG-4 VM7, the JBIG template was the obvious choice for INTRA coded 

BABs. For INTER coded BABs, it was required to exploit the motion compensated 

prediction for the BAB. The most natural way to do this was to construct a template that 

included pixels from the current BAB and the predicted BAB. While doing this, it was 

decided to impose that the probability tables have no more than 1024 entries, i.e. no 

more than ten bits in the context. There were three reasons for this:

1. The probability tables should be small enough to be stored in on-chip processor 

cache memory.

2. The training of probability tables becomes very difficult when there are a large 

number of contexts.

3. The increase in efficiency by using larger contexts was found to be marginal, i.e. 

there is saturation of the performance as one increases the size of a template beyond a 

certain point. This point has been illustrated by the results presented by Moffat in 

[52].

The following choices were made based on experimental findings: (1) For INTRA 

coded BABs, a 10 bit context C = ^ c k - 2k is built for each pixel as illustrated in
k

Figure 3-7a. (2) For INTER coded BABs, a 9 bit context C = ^ c k ■2k is built for each
k

pixel as illustrated in Figure 3-7b.
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3.4.5 Block-based CAE

CAE had previously been applied to binary image coding within JBIG. It has also been 

specifically adapted for object shape coding [10]. However, in JBIG, CAE was used to 

compress image data blocks containing, typically, tens of thousands of pixels. In 

MPEG-4, CAE is applied to blocks, i.e. BABs containing at most 256 pixels. The 

process of coding each BAB is as follows. The arithmetic encoder is initialised. Pixels 

are scanned and coded in raster order. When the last pixel has been encoded, the 

arithmetic encoder is flushed and the arithmetic code is terminated.

C9 C8 C7

C6 C5 C4 C3 C2

C l CO ?

C3 C2 C l

CO ?

C8

C l C 6 / '  C5

C4

Pixels o f  the current 
BA B

alignm ent

Pixels o f  the 
M C  BAB

(a) (b)

Figure 3-7: (a) The INTRA template and context construction, (b) The INTER template and 
context construction. The pixel to be coded is m arked with ‘? \

One disadvantage with this scheme is that the continual initialisation and flushing of the 

arithmetic encoder introduces inefficiency. It is important that these initialisation and 

flushing mechanisms are as efficient as possible. However, even with the most efficient 

of implementations (as in VM7), it is known through experiment that approximately 1 

bit per BAB is being used for the repeated initialisations and flushings. In order to 

benefit from the aforementioned advantages of block-based coding syntaxes, this 

inefficiency must be tolerated. In any case, it is more than compensated for by the 

ability of the coding mode to be adapted on a block-by-block basis.

Another potential problem is that the efficiency of the final compressed BAB code is 

highly dependent on the manner in which pixels outside the BAB are treated. The
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problem is caused by the fact that the coding of many pixels near the edge of the BAB 

relies upon a template and a context construction that includes pixels outside the BAB. 

The same problem is faced when operating in the non-block based mode, whereby the 

template for pixels close to the image borders may contain pixels that are outside the 

image border. The simple approach, in this case, is to set all pixels outside the image to 

BLACK. Applying an analagous strategy when coding a given BAB, all pixels outside 

that BAB are set to zero during context constructions. This is a very inefficient solution 

since it introduces artificial edges between BABs and these result in an increased coding 

bit-rate. A more efficient solution is to use, where possible, the actual pixel values, even 

if  the pixels lie outside the current BAB. The approach taken is as follows.

Figure 3-8 shows a BAB surrounded by a 2 pixel wide border. Assume that this BAB is 

about to be encoded, and that already, the BABs above and to the left of this BAB have 

been encoded. This is the normal situation when the BABs of an image are processed in 

raster order. Of the border pixels, those in the region ABCD are contained within BABs 

which have already been coded. These pixels can be accessed to build the required 

contexts in the current BAB. On the other hand, those border pixels in the region 

marked U are contained within BABs which have not been encoded yet. These pixel 

values cannot be used in the context constructions for the current BAB. This is due to 

the fact that these pixels will not be known at the decoder, when it is about to decode the 

given BAB. A simple modification in the context construction is used to “estimate” the 

values o f these “unknown” pixels. When constructing the INTRA context of Figure 3- 

7a, the following steps are taken in sequence.

1. If (C7 is unknown), C7=C8,

2. If  (C3 is unknown), C3=C4,

3. If (C2 is unknown), C2=C3.
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Figure 3-8: Bordered BAB. A:TOP_LEFT_BORDER. B :TOP_BORDER.
C:TOP_RIGHT_BORDER. D: LEFT_BORDER. U: pixels which are unknown when decoding the 
current BAB.

When constructing the INTER context of Figure 3-7b, the following conditional 

assignment is performed. If (Cl is unknown), C1=C2. This simple template padding 

approach provides a good way to avoid the effect of articifical discontinuities introduced 

by regular assumptions on the values of these “unknown” pixels.

Another important detail is in the construction of the motion compensated BAB. 

Although, a BAB is 16x16 pixels, the nature of the chosen INTER template requires 

access to motion compensated pixels within a one pixel border around the usual 16x16 

motion compensated block as shown in Figure 3-9. That is, it is typical to copy an 

18x18 motion compensated block from the previous alpha map, when constructing 

INTER contexts.
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Figure 3-9: Bordered motion compensated BAB. A: T O PB O R D E R . B: LEFT_BORDER. C: 
RIGHT_BORDER. D: BOTTOM BORDER.

3.4 .6  S im ulation  R esults

In order to show the efficiency of the block-based CAE approach, it has been directly 

compared with a block-based MMR approach. The MMR algorithm used is that which 

was used in VM5 of the MPEG-4 development [60]. In the graphs provided in Figure 3- 

10, the effect of replacing the block-based MMR algorithm of VM5 with the block- 

based CAE algorithm is illustrated. Each graph plots the number of bits for shape per 

VOP against a shape distortion measure Dn. Dn is defined as the number of incorrectly 

coded pixels divided by the number of WHITE pixels in the original shape. The coding 

algorithms were run using 5 different distortion levels in order to produce the graphs. A 

given distortion level is achieved by setting a distortion parameter within the 

algorithms. This distortion parameter defines the maximum allowable distortion within 

each macroblock. For instance within each macroblock, the down-sampling factor, 

described in sub-section 3.3.2, is chosen such that this distortion threshold is not 

exceeded. In addition, a macroblock may not be compressed with the not-coded mode, if 

this also means exceeding the distortion threshold.
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Four shape coding algorithms are compared:

• VM5 INTRA (including MMR coding)

• VM5 INTER (including MMR coding)

• VM5+CAE INTRA

• VM5+CAE INTER

The sequences used were part of the MPEG-4 test set, both QCIF and SIF. The test set 

contained a mixture of synthetic and natural shapes, with varying degrees of motion 

complexity. All sequences were encoded at 10Hz.

Cyclamen

Dn
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Kids

Dn

Robot

68



Logo

Dn

Weather

Dn

Figure 3-10: Simulation results illustrating the efficiency of CAE by comparison with the M M R  
solution of VM5. A ll sequences were encoded at 10 Hz frame rates. The sequences Cyclamen, Kids, 
Robot, and Logo are SIF (352x240 pixels) and the Weather sequence is QCIF (176x144 pixels).

The general trend shown in these graphs is that CAE_INTER > VM INTER > 

CAE_INTRA > VM_INTRA where “>” may be understood as ‘is more efficient than’. 

For INTRA coded shape, CAE results in improvements of between 3% and 11%. For 

INTER coded shape, the gains are in the range 10-28% towards the lossless end of the
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distortion range. For very lossy ( i.e. high Dn) INTER coded shape, the gains due to the 

use of CAE are very small. This is simply explained by the fact that the majority of 

shape blocks are coded by motion compensation and without subsequent MMR/CAE 

coding. That is, the ‘not coded’ modes are used frequently and it is natural that the 

MMR and CAE-based algorithms give similar performance. It is believed, however, that 

binary shape coding algorithms will primarily operate in a lossless or near lossless 

mode. This is due to the fact that very lossy shape can lead to disturbing artefacts in the 

reconstructed sequence, as illustrated in Figure 3-11. These artefacts are more noticeable 

when viewing the sequence in real time and the resultant video is unlikely to be of 

sufficient quality for high-end applications, e.g. post-production for TV and film.

(a) (b)

Figure 3-11: Illustration o f shape distortions, (a) coded VOP with lossless shape, (b) coded VOP 
with lossy shape.

It may be concluded from these results that CAE is a superior compression technique 

for binary shape coding. It is also interesting to note that the use of INTER coding 

brings appreciable gains over INTRA shape coding. On the 10Hz sequences used in the 

simulations, it is observed that up to 2000 bits/VOP may be saved by using INTER 

shape coding. This corresponds to a bit-rate saving of 20Kbits/s. Coding the sequences 

at 30Hz would naturally lead to increased savings by INTER coding.

3 .4 .7  O n the C onsideration  o f  CA E vs VQ

Having presented the block-based CAE approach, the focus now returns to the 

suggestion made in sub-section 3.4.1, i.e. that VQ and CAE may be equally effective for
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lossless compression. Here, some comparisons are made which suggest that CAE may 

be the more effective of the two techniques for the application of block-based binary 

shape coding.

The INTRA CAE approach proposed above for block-based shape coding uses a 10-bit 

context and requires 1024 (16-bit) words to store the probability table. According to the 

definitions of sub-section 3.4.1, this approach exploits 11-th order statistics. In order to 

construct a lossless VQ approach exploiting 11-th order statistics, a VQ block size of 11 

pixels is required. With respect to the CAE approach, the VQ approach has two 

drawbacks. Firstly, the 11-th order VQ approach requires 2048 words to store the 

probability tables (assuming an arithmetic coding approach). Secondly, it is clearly not 

possible to completely tile a 16x16 shape block with a “tile” of size 11 without covering 

some pixels twice. This is inefficient in the coding sense, since it implies that the 11-th 

order VQ approach must code some pixels twice.

The choice of 11-th order statistics in the above comparison may be seen as slightly 

unfair. It is true that the same conclusion could not be made if  4-th order, 8-th order or 

16-th order statistics had been chosen. After all, the tiling problem disappears if  the VQ 

block size is chosen to be 4, 8 or 16. Nevertheless, the comparison does illustrate that 

the contextual coding approach is perhaps more flexible than the joint coding approach. 

In the block-based application, it appears that CAE has the ability to maximise coding 

efficiency irrespective of the statistics order. As illustrated in the tiling analogy, VQ 

does not have this property. This conclusion may be further expanded as follows. The 

flexibility inherent in CAE also allows total freedom in the choice of the template size 

and shape. Given a set of sources, each individual source may call for a different 

template size and shape. CAE can meet this requirement without being hindered by the 

‘tiling’ constraint. In adapting VQ to the same sources, the ‘tiling’ constraint is always 

an obstacle to choosing the optimal block shape. As an example, consider an image 

exhibiting 8-th order joint statistical dependence. A VQ approach, wishing to avoid 

coding any given pixel twice, is constrained to employing a 2x4 or a 4x2 pixel block. 

No such constraints exist in the case of choosing the CAE template. It is ventured that 

this flexibility gives CAE a significant advantage over VQ.
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Another interesting comparison can be drawn based on lossy compression. By its very 

name and by most of it applications, loss is an inherent feature of vector quantisation. In 

lossy VQ applications, uncommon block configurations are mapped to the closest code

book entry. It should be noted that lossy VQ increases requirements in terms of storage 

and necessitates the use of a search mechanism for finding the closest code-book entry 

for a given block configuration. Nevertheless, this lossy coding ability gives VQ an 

advantage over CAE. To the best knowledge of the author, CAE has never been applied 

for lossy coding purposes. For CAE, loss is usually introduced by suitable pre

processing, as in the down-sampling used in MPEG-4. This does not mean that no 

means exist to make CAE inherently lossy, it only suggests that a means remains to be 

found. Neither does it suggest that this makes the CAE approach any less efficient that 

VQ for lossy compression. Experimental evidence may be required to draw more 

decisive conclusions on this issue.

3.5 Summary and Future Work

Several classes of shape coders have been reviewed. The general advantages of bitmap- 

based techniques over contour-based methods are outlined. CAE, a bitmap-based 

method, has been proposed as a very efficient and flexible coding tool. Its adaptation to 

allow operation within a block-based framework has been described in detail. In 

particular, it is shown how CAE can be extended to exploit temporal correlation. Results 

have shown that CAE used in a motion compensated block-based coding algorithm is 

highly efficient, outperforming an advanced MMR algorithm. CAE forms the core of 

the MPEG-4 shape coding solution for this reason, thus enabling many new object- 

based functionalities in a most efficient way. The impetus of MPEG-4 has given rise to 

phenomenal technological advances in a short period of time. This has resulted in a very 

efficient and flexible solution for shape coding. The rate for the video object’s shape 

information very much depends on the complexity and movement of the shape and the 

desired quality. It can be seen from the results presented above that bit-rates vary from 1 

Kbits/s for small simple shapes at low quality, to 30 Kbits/s for larger more complex 

object shapes at high quality. Several directions of research are being followed to add 

the necessary remaining functionality. Efforts are being made to develop an
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enhancement layer shape coder to enable a spatially scalable representation of shape. 

Other efforts are being made to provide interlaced shape coding tools based on CAE. 

Finally and most importantly perhaps, a large effort is being made to modify the basic 

representation so that it is more resilient to bitstream errors. Some preliminary ideas on 

these new aspects are given in [16].
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4. P o l y n o m i a l  M o t io n  M o d e l l i n g

The estimation of motion is extremely important for video compression applications. 

Most of today’s video representations derive a substantial degree of their efficiency 

from exploiting interframe redundancy by way of motion compensation. For video 

coding purposes, simple translational motion models have been used most commonly. 

These have the advantage of being easy to compute and efficient to encode. 

Furthermore, motion is estimated for every 16x16 pixel block and more often than not, 

translational models suffice in synthesising the motion within these small image 

regions. However, there are other applications where the motion representation must be 

capable of representing general 3D motions. Some early 3D motion models and 

estimation methods were presented by Netravali and Salz in [66]. The more recent 

emphasis on object-based video representation has provoked interest in motion 

segmentation as a means of automatically recovering object shape. Segmentation 

approaches based on motion tend to utilize more complex motion models capable of 

representing more general types of motion, i.e. rotations and zooms. The use of these 

more complex models in segmentation systems typically results in simpler, more 

intuitive, segmentation results. Most of the successful applications of these more general 

models have been in segmentation, but they have also been applied for coding oriented 

tasks. For example, they have been experimented with in place of the translational 

models in block-based coders [65], for temporal interpolation of video sequences [7], 

and for region-oriented (non-block-based) motion compensation [43]. In addition, the 

use of motion in object tracking systems is very important and as such, accurate motion 

models are called for. For example, see the tracking system described in chapter 6.

The representation of general 3-D motion can be achieved very well by using simple 

polynomial functions. This chapter is devoted to the study of these polynomial motion 

models. The theoretical justification for their use is discussed and the estimation 

methods are covered in detail. The main new contributions by the author comprise 

comparative studies of several estimation methods and the development of fast 

estimation algorithms. Due to their relevance to the segmentation algorithms presented
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in forthcoming chapters, the chapter concludes with a discussion of robust methods of 

estimation.

4.1 Motion Models and Optical Flow

In most image processing applications, motion is treated as a transformation which 

describes an inter-frame mapping of pixels. That is, the pixel (x,_y) at time t+ 1 

corresponds to a pixel at (x’,y') at time t, which has effectively moved between the two 

spatial positions. This is also the essence of what is termed optical flow [2],[5]. The 

motion at (x,y) is described by a displacement vector (dx.dyj = (x-x’,y-y). While this 

adequately describes local motion, it is typically more useful to use a parametric form to 

describe all the local motions within a given region. In the current video compression 

standards, this parametric model corresponds to (dx,dy) = (ao,bo), where ao and bo are 

the motion parameters to be estimated. This can be termed the constant model and is 

capable only of representing horizontal and vertical translational movements in planes 

parallel to the image plane. This model is inherently limited, but has proved useful for 

block motion compensation where the blocks are quite small, i.e. 16x16 pels. Recently, 

with the increased interest in object-based representations, more complex motion 

models are being investigated. For example, the affine model (dx,dy) = 

(ao+ajx+a¿y, bo+b¡x+b2y) has six parameters and is capable of representing translations, 

rotations within the plane parallel to the image plane as well as other geometric 

transformations, e.g. zoom and shear. It is desirable, however, to be able to 

mathematically represent any arbitrary 3-D motion and in particular, to be able to 

represent the 2-D perspective projection of this motion onto the image plane. 

Fortunately, it is possible to derive the form of this representation [34]. We now follow 

the derivation of the equations describing the 2-D optical flow field due to an arbitrary 

3-D motion.

Let us assume we have a moving camera and a fixed 3-D scene. A co-ordinate system is 

fixed with respect to the camera and the z-axis is parallel to the optical axis. Take a 

point P  in the 3-D scene with co-ordinates (X,Y,Z). This point can be undergoing a 

translation and/or a rotation and the velocity is given by V = - t  -  w x r where

I
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r = [X  Y Z]T 

Tt = (U V JV) , translations in X, Y and Z directions, 

w = [A B C)T , rotations about X, Y and Z axes.

The velocity equation can be expanded out in component form.

X  = - U  -  BZ + CY 

Y = - V  -  CX + AZ 

Z = - W -  AY + BX

Equation 4-1

Assuming perspective projection and a focal length of 1 in the camera, the 

corresponding image point p  -  (x,y) is related to P as follows

x  A  Yx = — and y = — . 
Z Z

Equation 4-2

The optical flow at a point (x,^) in the image is represented by (u,v) where,

u = x  and v =  ÿ .

Equation 4-3

By differentiating the expressions for x andy and substituting the derivatives of X, Y  and 

Z, the velocities within the image plane (the optical flow) are given by:
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. - U  + xW  , 2 ->
x  ------ 1- Axy-  B[x -  1J + Cy

y = V + _ Bxy -  Cx

Notice that this is, in fact, a quadratic function of the image co-ordinate (pc,y) and has 6 

parameters, i.e. (U, V, W,A,B,C) plus a surface or depth parameter Z. In general, the static

3-D scene structure may be represented by a function Z(X, Y). Therefore, the optical flow 

field is due to some 3-D motion and some surface structure. When estimating motion 

according to the above models, there exists the problem of estimating the surface 

function Z(X,Y). Surface structure can be recovered by stereo image processing [70] or 

in the absence of multiple cameras and under the assumption of rigid object motion, so- 

called structure from motion approaches can be used. In our application, the surface 

structure is assumed to have a predefined structure, i.e. planar or parabolic surface 

models are assumed. Under this assumption, the surface model parameters become 

implicit within a polynomial motion model form as explained in the following text.

As a common example, letting the surface be a planar surface, it can be shown that:

Equation 4-4

1
= K +  Lx + My

Z (X, Y)

Substituting this into the Equation 4-4 yields the 8 parameter motion model (labelled B 

in Table 4-1). Table 4-1 summarises several common motion models and highlights the 

important assumptions which have been made in their derivation. Both Dugelay and 

Sanson in [27] and Diehl in [28] discuss the usefulness of these model forms.
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Table 4-1: Common motion models and underlying assumptions

Model Form Assumptions

A x' = (l + a^x + a2y  + a3 

y '  = a4x + (l + a5)y  + a6

•  planar surface, translational m otion or 
rotational m otion about an axis 
perpendicular to the im age plane

B x' = a : +(l + a2)x + a3y  + a7x2 + a sxy 

y ' = a4 + a5x + (l + a6)y + a7xy + asy 2

•  p lanar surface, general 3-D  m otion

C x' = atx2 + a^y1 + a3xy + (l + a4)x + a5y  + a6 

y' = V 2 + b y  + b,xy + btx + ( l + 65)> + b6

•  parabolic surface, general 3-D m otion

As can be seen from Table 4-1, with strict planar or parabolic assumptions on the nature 

of the surface structure, the motion model form is required to be a quadratic function of 

the (x,y) image co-ordinates. The commonly used affine models thus constitute an 

approximation to the general motion forms. This approximation is quite accurate when 

the moving objects are distant from the camera or when the rotational motion 

components are within a plane parallel with the image plane.

4.2 Problem Formulation for Motion Estimation

Given images It+i and It, i.e. consecutive images from a video sequence, the task is to 

compute a parametric description of the inter-frame motion. Since the sequence is likely 

to contain several independently moving areas, the usual approach is to partition the 

image into non-overlapping regions or, in the simplest approach, blocks. As such, the 

final motion description is a combination of the partition method and the motion 

parameters defined on each partition segment. Equivalently, it can be said that the inter

frame motion field is a piece-wise continuous function. Let us therefore assume that 

some partition of the image space is available, Zt+ X, which describes various non

overlapping regions within the image. For each region R  in Zt+i, a motion model form 

must first be chosen. For the reasons given previously, the general polynomial function 

is a good choice. This function is described by:
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x' = x + Br(x)0

Equation 4-5

where x = (x y)T is the pixel location within the image and x' = (*' y')T is the 

corresponding displaced location within the image It . The coefficients of the 

polynomial, i.e. the motion parameters in this case, make up the vector 9 . The xy power 

terms are in the matrix B. A simple example illustrates the mathematical structure of the 

motion model. For a first order model (affine), we have

b t J  1 * 0 0 0̂
U  0 0 1 x yj

0T=(9O ex e2 e\ e4 o,)

Note that, for an n'h order polynomial motion model, 6 is an m -dimensional vector,

where m = (« + 1)(« + 2).

Equation 4-5 describes a mapping between two co-ordinate systems. In terms of motion 

or optic flow, it implies that the pixel at (x ',y ’,i) has moved to (x,y,t+l). Thus, the 

motion estimation problem can be formulated by:

* ,̂(x0

or, alternatively,

^ +i(x) = / ,(x') + Ae(x)-

Equation 4-6

The construction of an objective function based on the brightness constraint leads to a 

least squares optimisation approach. For a given region R, the objective function is
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e(d)= IN*))2 = Z(7'+i(x)_/'(x'̂ )))2
V x e R  V x e R

i.e. a sum-squared error function. Equivalently, the objective function may be the mean 

of the squared errors, i.e.

Equation 4-8

where E() is the expectation or mean over the region R. The task of motion estimation is 

then to find the motion parameter vector 0* which minimises Equation 4-8. Note that, 

this is a non-linear least squares problem because the function 11 (x'(6>)) is not linear in 

the unknown motion model parameters.

4.3 Estimation Methods

The optimisation of non-linear least squares objective functions is performed using 

variants of the Newton method. An interesting comparison of methods was carried out 

by Dugelay and Sanson [28], involving the Newton method, the Gauss-Newton method 

and the adaptive gain gradient method. The conclusion was that the Newton methods 

were comparable, while being more effective that the gradient method. Here, the Gauss- 

Newton (GN) method of [81], [82] and [83] and a Quasi-Newton (QN) method similar 

to that in [27] are compared. As will be seen, these optimisation algorithms are iterative 

and must be initialised with an appropriate guess. For the particular problem of motion 

estimation, these techniques are usually embedded in a multiresolution image 

framework [6] since this:

• aids in the accurate modelling of large motions,

• adds robustness by reducing the effect of noise,

• reduces implementation complexity, and

• reduces the chances of the estimator being trapped in local minima.

Equation 4-7
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4.3.1 Newton’s Method

The Newton method is an iterative method used to find function minima. Let 

/ (x )  denote an arbitrary multivariate function to be minimised. An initial estimate x0 of 

the function’s minimum must be provided. Starting from this point, the Newton method 

computes a search direction p 0, which is said to be a descent direction. That is, by 

moving from the starting point along this direction, a reduction in the evaluation of the 

function can be attained. Given this descent direction, a new search point x, lying some 

specified distance in the descent direction is chosen. The minimisation proceeds by 

stepping along the descent directions through the parameter space until a minimum is 

encountered. The minimum is assumed to have been encountered when a specified 

termination criterion has been satisfied. Most termination criteria rely on the fact that 

the function gradient (i.e. its first derivative) in the neighbourhood of the minimum is

close to zero. A minimum x* might be chosen which satisfies |/'(x*)| < T  where T  is 

some predefined threshold with a value close to zero.

The Newton method, while not being the only technique used in minimisation, is widely 

acknowledged as the most reliable and most efficient. Nevertheless, it has several 

problems. Firstly, it is only capable of finding the local minimum in the catchment area 

of the initial estimate x 0. For complex functions with many spurious minima, a 

straightforward application of the Newton method is unlikely to give satisfactory 

results, since the search is very likely to terminate at a local minimum. Secondly, the 

specification of foolproof termination criteria is difficult. Very often, Newton searches 

will terminate on function saddle-points rather than minima, since saddle-points also 

have zero gradients. For each particular problem, the Newton method must be carefully 

adapted to avail of prior knowledge of the function characteristics or be augmented with 

procedures for function simplification and search initialisation.

The basic Newton iteration is obtained by locally approximating the error function using 

a second order Taylor series, i.e.
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e(x + p) = e(x) + g(x)T.p + p TH(x)p

Equation 4-9

where

¿k(x) ¿fe(x)
g(x) = Ve(x) = ck0 ¿5c_

is the gradient vector of the error function containing the first order derivatives of the 

error function and where H(x) = V2e(x) is the Hessian matrix of the error function

de{x)
containing the second order partial derivatives - . For error functions which can be¿k ĉkj

locally approximated by the Taylor series of Equation 4-9, we should expect robust 

optimisation results and fast convergence properties. Non-optimal results can be 

expected when functions do not adhere to this assumption. The Newton iteration finds 

the step p which minimises this locally approximated quadratic function. This is done 

by taking the derivative and setting the result equal to zero. The result at the iteration k 

is as follows:

Pk = - H (x k)_1-g(xk)

Equation 4-10

where xk is the current search point and pk is a vector denoting the next search direction. 

If, the Hessian matrix is positive definite, then it is assured that the vector pk is a 

descent direction. The resultant step in the space of x is given by:

X k+1 — Xk =  ° P k

Equation 4-11

It should be noted that while pk may be a descent direction, moving any arbitrary 

distance along this direction is no guarantee of obtaining a reduction in the error 

function. In particular, when the current estimate is far for the minimum, it is advisable 

to incorporate a secondary search technique (a line search along the descent direction) to 

find the step size a . It is safe to neglect line searches only in cases when the current
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estimate is close to the minimum, and consequently the magnitude pk is small. 

Unfortunately, line searches add significantly to the computational complexity of the 

overall estimation process. Results dealing with the use of line searches in the motion 

estimation problem are presented in sub-section 4.3.6

The overall iterative structure of the Newton method is depicted in Figure 4-1. There 

are several classes of Newton method. The pure Newton method is used when the 

Hessian matrix (i.e. the second derivatives of the error function) can be computed 

directly based on the error function. However, there are functions for which the Hessian 

is not available and/or would result in very complex calculations. In such cases, the 

Hessian is iteratively constructed using previous values of the gradient vector. These 

methods are termed Quasi-Newton (QN) methods.
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Figure 4-1: Illustration of a Newton method for the optimisation of an arbitrary error function in 
the variables x. For a motion modelling optimisation, x denotes the motion variables and the 
observations or measurements are the current and previous images.
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Background material on the theory and practice of using Newton optimization can be 

found in an article by Brodlie [17], and in books by Dennis and Schnabel [26] and 

Fletcher [29]. The next sections go into more detail on the problem of motion modelling 

and the proposed solutions, i.e. the GN and QN methods. In the following, the main 

emphasis is on the implementation-related aspects of GN and QN. Hence, mathematical 

equations relating to their implementation are presented. To keep the use of complex 

mathematics to a minimum, explanations for the equations are presented in a non

rigorous fashion. The referenced publications contain more rigorous justifications and 

derivations, although several derivations are included in Appendix A. In addition, 

Appendix A contains simplified examples on how the various formulae are utilised.

4.3.2 Quasi-Newton(QN)

Diehl [27] presents a QN system for the solution of the motion modelling problem. The 

QN method used here is based to a certain extent on this previous work. Quasi-Newton 

methods are used when the second derivatives of the error function are difficult to 

evaluate directly. In QN methods, the second derivatives (i.e. the Hessian matrix) are 

approximated from a knowledge of the first derivatives (i.e. the error gradients) at 

several points on the error function. To begin with, some initial estimate C0of the 

Hessian matrix H is made. Based on the mean least squares form of the error function 

(i.e. Equation 4-8), Diehl chose to evaluate the initial Hessian approximate as in 

Equation 4-124.

C„ = E

Equation 4-12

4 A brief justification of this choice is presented in Diehl’s paper [27].
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As derived in Appendix A, the gradient of the error function in Equation 4-8 is 

computed by:

fa'
g(^t) = E j (/,+1 (x) -  I t (x'))

~d!Lr - 1
-  fa . fa J

A first iteration can now be carried out as follows:

e=dt

Equation 4-13

Gx =0o-C~V

Subsequent iterations are given by:

=ok-c-kl .

However, the matrix Ckat each iteration is given by the Broyden-Fletcher-Goldfarb- 

Shanno (BFGS) update formula [17] i.e.

c k+i = Ck + . ! t g (^ )g K )T + 7 ? ry k y k  
g(^k) Sk y*sk

with

yk = g(^k+i) -  g(^k) and sk = ek+1 -

Equation 4-14

The BFGS update formula returns an estimate of the Hessian matrix at the current 

search point. This estimate updates the Hessian (estimated at the previous search point) 

based on the gradient vectors obtained at the current and previous search point. 

Intuitively, it may be helpful to think of the method as extrapolating second order 

derivatives based on a knowledge of the first order derivatives at two distinct search 

points, i.e. 0k and 9k+x. Given a first estimate of the Hessian at the initial search point, 

the intention of the formula is to iteratively build an accurate estimate of the Hessian 

through accumulating knowledge of the first derivatives. Thus, on each iteration k, it is
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only necessary to compute the gradient vector g{dk) of the error function and then to 

employ the BFGS formula to find the next approximation of the Hessian matrix. The 

evaluation of the BFGS update formula is relatively simple. The main computational 

burden is the calculation of the gradient vector. For a given image region, the following 

procedure is employed to compute the gradient vector on each iteration. (The reader is 

required to consult the examples given in Appendix A in order to fully understand the 

procedure).

For all pixels x = (x y)T in the image region, the following are required: 

da’
1. ComputeB = , an mx2 matrix.

2. Evaluate the model and the displaced co-ordinate x' = x + B$.

3. Compute the error e = /,+1(x) -  /,(*')’ a scalar.
/ A

4. Compute the image gradient VI = A  1 , a  2x1 vector.
ds.

5. Compute the Jacobian inverse J 1 =
_ ds.

-ii

,a 2x2 matrix.

6. Compute v = eBJ V I, an mxl vector,

The v vectors are summed over the whole region and the mean is computed to give us 

the error gradient vector.

The sparsity of the matrix B can be exploited in any matrix products with which it is 

involved. The total number of operations required for the computation of the error 

function gradient is directly proportional to the number of pixels in the image region. It 

is also dependant on the model order n since higher model orders mean there are more 

elements in the associated vectors and matrices, i.e. m is large if  n is large.

Diehl [27] suggested that the evaluations of image gradients (step 4) could be avoided at 

each iteration by a simple substitution in Equation 4-13. Although, no mathematical 

justification was provided in the paper, a fast QN (FQN) algorithm is yielded by
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replacing the image gradient with . The FQN computes the error gradient
da da

using

g ( ^ )  = E ( j <+1( x ) - / , ( x ' ) )
da’ [ d a 'V  i ( x )

dO da da

Equation 4-15

The new image gradient is of course independent of the current value of the motion

model and can be evaluated, once and once only, prior to the start of the first iteration. 

This in itself saves computation time, but there is an additional benefit to this method. 

Because the image gradient is known in advance, it is possible to sum the v vectors only 

over those pixels where the image gradient has a substantial value. This can result in 

large speed gains for most images and since pixels with small local gradients do not 

contribute much to the overall error gradient, a relatively accurate approximation (of the 

error gradient) can still be attained. This idea of pixel selection will be exploited in later 

sections of this chapter.

4.3.3 Gauss-Newton(GN)

The GN method can be viewed as a simplification of the pure Newton method, which is 

most suitable when the problem can be expressed as a least-squares regression, whereby 

the task is to fit a mathematical model to the observed data. It does not use an iterative 

update formula for the Hessian (as is done in the QN method), but it does approximate 

the local characteristics of the model function. These approximations result in making 

the direct computation of the second derivatives more feasible. A general treatment of 

Gauss-Newton theory is available in Fletcher’s book [29]. The GN scheme was 

presented in relation to polynomial motion modelling by Sanson [83]. The following 

text presents this GN method.

Consider an iterative approach to the minimisation of the least-squares error function in 

Equation 4-8. At iteration k + 1, the current model estimate is denoted by 9k+l =  0k +A0k
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and the displaced position in the previous image is given as usual by x*+l “ x + ®̂ *+l • 

Thus, the current displaced position may be written as

x i +i = x + b (0 * + A0k ) = x'k +B A  9k

At each pixel, the error at this iteration is expressed by the difference between the 

observed data and the model function, i.e ./<+1(x)-/,(xk+1). Assuming that A0k is small, 

the model function can be approximated as a first order Taylor series as follows:

The derivation given in Appendix A5 shows how this local image approximation leads 

to the Gauss-Newton step 0k+l =0k+Yl{0v) 1.g(ek), where the following expressions are 

used to compute the gradient vectorg and the Hessian matrix H :

§(A ) = e{(A+1 (x) -  11 (x')) ~ ~

e=ev

Equation 4-16

H(^k) = E ^ ( x ' ) ¥
36

< \\T

36
= E

36 3a 36 3a

Equation 4-17

The Gauss-Newton method is the same as the pure Newton method in terms of overall 

approach and structure. The only difference lies in the underlying Taylor series 

approximation. For images which are locally smooth, then the Taylor series 

approximation should be reasonably accurate and thus the GN should be robust and 

exhibit speedy convergence, as would be expected from the pure Newton method.
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In comparison with the QN iteration, the GN iteration is just slightly more 

computationally complex. This is due to the fact that both the Hessian and gradient 

vector must be directly computed. For a given image region, the following procedure is 

adopted on each iteration.

For all pixels x = (x y)T in the image region, the following are required: 

da'
1. Compute B = , an mx2 matrix.

2. Evaluate the model and the displaced co-ordinate x' = x + B0 .

3. Compute the error s  = I l+1 (x )-  I t (x'), a scalar.

cKt (x')
4. Compute the image gradient VI = — - — , a 2x1 vector.da
5. Compute v = BVI, an mx 1 vector.

6. Compute g = ¿rv, an mxl vector.

7. Compute H = w T, an mxm matrix.

The g vectors are summed over the whole region and the mean is computed to give the 

error gradient vector. The H matrices are summed over the whole region and the mean 

is computed to give the Hessian matrix. One should notice that the GN procedure is 

entirely similar to the QN algorithm up to, but not including, step 5. It is the 

multiplications involved with step 7 which mainly account for the GN method’s slightly 

higher complexity. Fortunately, the degree of symmetry existing in step 7 can be 

exploited to reduce the number of computations, see Equation 4-21. As with the QN 

algorithm, the computational complexity of this algorithm is related to the size of the 

image region and to the model order. A more detailed analysis of the computational 

complexity of GN is described in sub-section 4.4.1.

4.3.4 From Discrete to Continuous Image Representations

The Newton method of optimisation is based on continuous functions. However, when 

applying this technique to image processing, there is a general difficulty due to the fact
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that a digital image is a discrete function. To overcome this difficulty, it is necessary to 

convert the digital image into a continuous function in 2-D. In addition, the 

implementation o f  either QN or GN also requires the evaluation o f  image derivatives 

(gradient) in continuous space. To minimise any problems due to errors in computing 

these derivatives, a continuous-space representation o f  the image was constructed. For 

the sake o f  clarity, the methodology is first illustrated in the case o f  a 1-D signal and the 

extension to the 2-D case is then outlined.

Given some interpolation function J[x) and a discrete signal y(k )  with sampling interval 

A x, a signal value can be evaluated at any point in continuous space according to:

where (« + 1) Ax; corresponds to the discrete sample directly before the continuous 

position x c . This equation describes a 4 tap filter. The taps o f  the filter are obtained by 

evaluating the interpolating polynomial at the specified points. The chosen interpolation 

function is a piecewise bi-cubic polynomial based on the work o f Mitchell and Netravali 

[51]. It has the following form.

This polynomial was developed specifically for the purpose o f  reducing aliasing in 

converting from discrete to continuous image representations. It has already been found 

be useful by Sanson in his work on motion estimation. For 2-D image interpolation, a 

second filter is constructed (based on the same polynomial) and the two filters are 

applied in separable fashion according to the following:

«+3

|x |3 -  2 x 2 +1, if  |jc| < 1 

|x |3 + 5x2 - 8 x  + 4, i f  |jc| < 1

m+3

J ( x c , y c)  = Y u f { y c ~ l A y ) Y JI ( k , l ) f ( x c - k A x )
k=n

Equation 4-18
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where (m  + 1)A>> corresponds to the discrete sample directly above the continuous 

position y c . This separable filter allows the evaluation o f  the image intensity at any 

point in continuous space. In addition, it may be seen that the continuous image gradient 

may also be obtained by differentiating Equation 4-18. This yields:

OX i=m k=n

= S / 'O - .  - u v i i t o M * . - ! * * )l=m k=n

Equation 4-19

Therefore, in computing the gradient at continuous positions, it is only necessary to 

derive two new 4 tap filters based on the derivative o f  the interpolating bi-cubic 

polynomial. This derivative polynomial is bi-quadratic in form.

In computational terms, the task o f  computing the image intensity and gradient at a 

given point in continuous space is highly complex. A  total o f  four filters must be 

constructed. There are two filters used to evaluate the continuous intensity and two 

additional filters to evaluate the continuous gradient. Each filter tap requires the 

evaluation o f  either the bi-cubic polynomial or the bi-quadratic polynomial. It should be 

noted that constructing the filters in this way requires a total o f  60 multiplications. This 

is in addition to the 20 multiplications involved in the convolution o f  Equation 4-18 and 

the 40 multiplications involved in the convolutions o f  Equation 4-19.

4.3.5 Details of Implementation

The two optimisation methods described above, i.e. QN and GN, have been 

implemented by the author. An essential difference between the chosen implementation 

and the standard implementations is that a co-ordinate system normalisation is 

performed. This can be simply described by the mapping,
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' ( x - x o f

y  max

where the image region undergoing the motion estimation is bounded by a rectangle 

whose top-left co-ordinate is (xo,yo) and whose dimensions are xmax and _ymax, see Figure

4-2. This was required because it was noted that the Hessian matrices are frequently ill- 

conditioned5. The extent of the ill-conditioning depends upon the model order being 

used (higher order models yielding more ill-conditioned matrices) and on the size of the 

region within the image (larger regions producing more ill-conditioned matrices). The 

normalisation had the effect of producing better conditioned systems, less susceptible to 

noise in the data and to the effects of finite precision arithmetic. In this way, 

considerable improvements in performance were possible, especially for quadratic 

models.

(x0.yo)

Y  max

Figure 4-2: An arbitrary region bounded by a rectangle.

In the author’s implementation, the optimisation system was also embedded in a multi

resolution image pyramid. Both current and previous images were applied to a three 

level pyramidal decomposition. It can be shown experimentally that this is of benefit in 

terms of robustness and computational complexity, when scene motion is large, or more

5 A matrix is said to be ill-conditioned if its rows or columns are nearly linearly dependent.
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generally, when the minimum is substantially different from the initial estimate. Also, 

for the GN method, suitably chosen filters can lead to images at low resolution which 

locally conform to the aforementioned Taylor series approximation. A low-pass 

Gaussian filter was used in the pyramid construction. The use of a multiresolution 

pyramid necessitates the transfer of the polynomial motion models from low resolution 

images to high resolution images. This transfer is achieved as follows.

The general polynomial can be represented by:

i=0 j = 0

Equation 4-20

The task is to transfer a polynomial motion model d' related to the image at resolution 

R ' to a resolution twice this resolution, i.e R = 2R' , such that d(x,y) = 2 d '(x ',y ') . (Here, 

x = 2x' and y  = 2y ' ). Therefore, the following equality must be satisfied.

^ ± ± a ^ r j (yy 
¡= 0  ]= 0  ¡=0 7=0

This is satisfied if  a« = - ^ r .2

The situation is different if  a co-ordinate system normalisation is applied as defined by:

x -x 0 y - y 0 , . x'-xb , y'-y'0
—  » yn=T  and  , y'n = — ]--

A max ^ m ax  A raax - 'm ax

Then a different equality is satisfied, i.e.
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¿ È  W “V =2Ü aij(xV~j (y')nJ
i=0 y=0 i=0 7=0

Now since,

x'
x = — max

2

then jc„ = x'n andyn = y'„ and it follows that aij = 2a,-- satisfies the equality.

A final point on the GN method is also worthy of mention. Regarding the Hessian 

matrix H of Equation 4-17, it can be shown that,

In the GN implementation, the sub-matrices off the main diagonal have been set to zero. 

This approach was taken by Sanson [83] and has two effects. Firstly, it simplifies the 

computation of H and secondly, it leads to better conditioned systems and generally 

better overall performance.

4.3.6 Performance Comparison of Gauss-Newton and Quasi-Newton

Tests were conducted to compare the performances of GN, QN and FQN. The test and 

nature of results are described and a discussion of the findings follows. Each estimation 

method was applied to some video-phone sequences. Both manual and automatic 

segmentations were used to define the various independent regions to which the motion 

estimation was applied. Table 4-2 summarises the test material together with the motion 

models used in each case.

( y *  i l
xx xy

H = where H^Hyy and are symmetric matrices.

Equation 4-21
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Table 4-2: Summary of test material for comparative tests.

Case Sequence Frames used Frame Rate 

(Hz)

Segmentation/

#regions

Motion Model

1 Foreman 200-340 25 Manual/5 quadratic

2 Foreman 200-340 8.33 Manual/5 quadratic

3 Foreman 0-54 8.33 Automatic/70 affine

4 Claire 0-140 5 Automatic/12 affine

The test material is diverse in the sense of the segmentations used. Test cases 1 and 2 

use segmentations containing only a small number of regions, each assumed to be 

moving independently. The other test cases use segmentations containing larger 

numbers of regions6. The nature and magnitude of the motion within the scenes 

themselves is also diverse, ranging from fast/3-D motions in test cases 1 and 2 to 

simpler motions in test case 4.

At each frame of each sequence, the motion of each of the regions was estimated. The 

motion estimates were used to motion compensate the previous original image. Motion 

compensation errors were not propagated in time. Results are presented in terms of the 

motion compensation error magnitude, quantified by the PSNR and the numbers of 

iterations required for convergence. Table 4-3 presents a brief overview of the 

experimental findings via the mean PSNR and iteration figures. The graphs of Figure 4- 

3 illustrate the PSNR result over the length of the sequences.

6 These segmentations were performed using the morphological watershed, see chapter 5.
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Table 4-3: Summary of results of comparative tests. Mean FSNR figures taken over each sequence 
are given as well as the number of iterations until convergence. Here, the format is as follows: 
itera tio n s in low resolution pyramid layer/ medium resolution pyramid layer/ high resolution 
pyramid layer.

GN QN FQN

Case PSNR iterations PSNR iterations PSNR iterations

1 32.89 5/4/3 32.10 4/3/3 31.69 A im

2 26.53 6/3/3 25.69 4/3/2 24.93 3/2/2

3 32.87 5/5/5 32.23 5/4/4 31.57 5/3/3

4 37.75 6/4/3 37.57 5/3/2 37.32 4/2/2

From Table 4-3 and Figure 4-3, it is clear that the QN method is, in general, inferior to 

the GN method. This is particularly evident if  scene motion is large, i.e. the fast camera 

pan in Foreman, see graphs 1 and 2 (frames 280-310). In such cases, the GN can often 

produce motion compensated images with PSNRs 5dB greater than that of the QN 

method. It would appear that the QN method is not very reliable when provided with 

initial estimates far from the solution. In terms of convergence speed, the QN uses 

slightly fewer iterations. But since the QN generally does not converge to a good 

optimum, this advantage is a little dubious.

The fast QN method was also investigated, but proved ineffective relative to the GN 

method. Again, performance suffered mainly during instances of large motion. Motion 

modelling based on FQN, while having the potential to be fast, is considered to lack 

reliability and robustness and may only be suitable when motion magnitudes are known 

to be very small

In summary, the GN method demonstrates good relative robustness even when given 

bad initial estimates of the minimum. Despite this, we can not be sure that the GN is 

always converging to the global minimum of the error function. Indeed, with the 

addition of a line search [75]7, it is observed that, at times, up to a 2dB improvement can 

be attained in prediction quality. This is demonstrated by Figure 4-3e. Although the use

7 An exact line search algorithm based on minimum bracketing and a 1-d minimisation algorithm, devised by Brent, 
was used.
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of line searches is inappropriate due to the substantial additional complexity, i.e. 10-20 

extra function evaluations per iteration, this result does demonstrate that there is some 

scope for improving the GN motion modelling algorithm via the application of 

alternative low complexity methods. Alternatively, the use of line searches can be 

neglected if an attempt is made to find a good initial estimate of the minimum. In the 

application of motion estimation to tracking (as described in Chapter 6), the motion 

estimates for a given video frame may be initialised using the motion estimates of the 

previous frame.

GN vs QN: CASE 1: Foreman 25Hz

frame number

(a)
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GN v s QN: CASE  2: Foreman 8.33Hz

frame number

(b)
GN vs QN: CASE 3: Foreman B.33Hz

framo num ber

(c)
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GN vs QN: CASE  4: Claire 5Hz
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GN vs GN+LS: CASE 3: Foreman B,33Hi

 GN
 GNH.S

(e)

Figure 4-3: The five graphs plot PSNR versus time. This illustrates the relative effectiveness of each 
motion estimation technique.
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4.4 Fast Gauss-Newton Estimation

The previous sub-sections introduced the GN and QN estimation methods and a 

comparision showed that the GN method is superior in terms of finding the optimum. A 

major problem with all Newton-like methods for motion estimation is their 

computational complexity. This sub-section summarises work by the author [13] which 

examines the complexity of GN and suggests methods of reducing it.

4.4.1 Computational Analysis of GN

For the estimation of a general nlh order motion model over a region R, the operations 

listed in Table 4-4 must be carried out at each pixel within each iteration. Note, for an 

nlh order polynomial motion model, 0  is an m -dimensional vector, where 

m = (n + 1)(m + 2). Note also, that at step 7 in Table 4-4, a fast vector product algorithm is 

already used in our implementation. This avails of all the symmetry present and neglects 

the sub-matrices off the main diagonal, setting the elements to zero, as discussed.

Table 4-4: Multiplications per pixel per iteration (MPI) for GN-based motion estimator (m refers to 
the dimension o f the model vector).

Step # Operation #  Multiplications

1 B m/2 8

2 x' = x + B 0 m

3
VI = * < (* ’)

dn
G

4 I

5 v = BVI m

6 g = g + ev m

7 H = H  + w T m/2+m^/4

Summing the rightmost column of Table 4-4, we get what is termed the MPI 

(multiplications/pixel/iteration) figure for GN:

8 This is only a rough approximation but does not significantly effect results or conclusions.
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MPI = I + G + 4m + m2/4

For the gradient and intensity interpolations, 4-tap filters, based on [51], are applied in a 

separable fashion as discussed in sub-section 4.3.4. For this choice, G=100 and 1=20. It 

is emphasised that G includes the construction of all the interpolation filter kernels, i.e. 

even those used for the intensity interpolation. Based on all this information, it can be 

computed that a quadratic modelling task (m=12) has an MPI figure of 204. For a given 

image resolution, it is possible to derive the overall requirement (M) in multiplications 

per second by using

M  = M P I .N .K .F ,

where N  is the number of pixels in the image, K  is the average number of iterations until 

convergence and F  is the frame rate of the video sequence. By way of example, we can 

compute the computational requirement for quadratic motion estimation based on the 

QCIF format at 25Hz to be 388 million multiplications per second. This is based on the 

conservative assumption that only 3 GN iterations are required ( i.e. K=3).

4.4.2 Towards a Fast Implementation

The processing power discussed above is beyond the capabilities of any of today’s 

general purpose processors and therein lies the motivation to look for means of 

simplifying the estimation procedure. Two methods are now suggested through which 

faster algorithms can be achieved. These two methods have been used by the author to 

implement a fast GN algorithm.

LUT-basedInterpolation. Much effort is expended in computing the image intensity and 

gradient at the displaced position. A significant part of this expense is due to the 

construction of the interpolation filter kernels themselves, while the remainder is in 

performing the actual convolutions. The construction of the filter kernels is achieved by 

the evaluation of bi-cubic (for intensity) and biquadratic (for gradient) polynomials. 

This can be avoided by using look-up tables (LUTs) to approximate these polynomial
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functions. Effectively, this means the algorithm stores the filter coefficients instead for 

computing them each time. In this way, a new reduced figure for G can be achieved, i.e. 

G=40. This figure is accounted for solely by the convolution of the image pixels with 

the filter taps. Note that this modification was suggested previously in [7],

Gradient-based Pixel Elimination. The computation of the Hessian and gradient 

involves performing the 7 operations of Table 4-4 at each pixel in the given region and 

summing over all these pixels. One could instead choose to use only every second pixel 

on every second line. This choice is rather arbitrary and has been found to compromise 

the estimation procedure. Instead, a pixel elimination procedure is used based on 

thresholding the image gradient norm. This approach of gradient thresholding is 

motivated by the fact that the equations for the Hessian and gradient are largely 

dependent on the image gradient and that pixels with little gradient information will not 

contribute greatly to the total sum. Diehl [27] adopted a similar strategy within a QN 

estimation algorithm. Due to the nature of the QN algorithm of [27], the gradient 

information was available prior to start of the first iteration. This made it possible to 

apply the pixel elimination strategy from the start. For GN, this is not possible because 

the image gradient utilised depends on the current model estimate. The FGN algorithm 

using this pixel elimination procedure is now summarised.

4.4.3 The Fast GN Algorithm (FGN)

The fast algorithm for the computation of the Hessian and gradient at iteration k is 

summarised by the following:

For all pixels x = (x y f  in the image region, it is required to:

1. Compute the matrix B .

2. Compute the displaced co-ordinate x' = x + B0k.

cf3. Compute the image gradient VI = ’ .ds.

4. If ||VI|| '¿T, continue with step 5. Otherwise, the procedure moves back to step 1 and 

processing begins with the next pixel in the region.
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5. Compute the error

6. Compute the vector v = BVI.

7. Compute the gradient update g = g + S\ ■

8. Compute the hessian update H  = H  + w T.

It can be noted that at each pixel, steps 1-3 must be performed before the threshold- 

based decision is carried out. If desired, the interpolative filters can be derived from 

LUTs as described in sub-section 4.4.2. In the chosen implementation, the threshold T is 

adapted on a pixel-by-pixel basis in order to achieve a given factor of reduction in the 

amount of pixels considered.

4.4.4 Computational Analysis of FGN

It can be shown that the MPI figure for the FGN algorithm is computed thus:

where r is the fraction of pixels not rejected by the thresholding procedure. To reiterate, 

if LUT-based interpolation is used G=40, otherwise G=100. Table 4-5 and Table 4-6 

provide examples of what can be achieved with the two proposed improvements. It can 

be seen that under the joint application of the LUT-based interpolation and the pixel 

elimination strategy, complexity is reduced almost by a factor of 3.

Table 4-5: mpi figures for affine motion estimation where r = 0.2.

G=100 G=40

GN 153 93

FGN 117.8 57.8

with 0 < r < 1
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Table 4-6: mpi figures for quadratic motion estimation where r = 0.2.

G = 1 0 0 G = 4 0

GN 204 144

FGN 135.2 75.2

It is clear that all the proposed modifications result is a more efficient implementation. 

The experimental findings reported in [13] show that the complexity may be reduced by 

a factor of 2-3 without significantly effecting estimation performance.

4.5 Robust Gauss-Newton Estimation

This final sub-section is dedicated to the estimation of the same polynomial motion 

models, but with a slight difference concerning the error function which is optimised. 

The straightforward sum-of-squares error function is overly sensitive to outliers. 

Outliers are defined to be errors within the error signal/image whose absolute magnitude 

is far beyond the average. In the estimation of visual motion, outliers can be due to 

image noise and the appearance or revealing of new objects, previously unencountered. 

It is often very desirable to ignore such phenomena in the computation of motion. For 

instance, often it is required to capture the real motion in the scene. This would, for 

instance, be important in a computer vision application where some action is triggered 

by a particular motion type. In the area of motion segmentation and object tracking, it is 

required to compute models which describe the pure object motion and which are not 

influenced or distorted by the fact that a new region has been uncovered or by the fact 

that there is a lot of image noise. For this reason, it is best to use what are termed robust 

estimators [85],

Sawhney et al [84] performed the estimation of motion parameters 0 in the region R by 

minimising the following generalised error function:

e(0)=  E /°(K 4o-)
VxeR

Equation 4-22
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where the residual error at each pixel x is r(x) = / (+1(x )-  /,(x'(#)) and the parameter 

g  is an error scaling factor usually derived by computing the variance of the residual 

errors in the region R. For the previously introduced sum-of-squares error function of

Equation 4-8, p \r,a )  = —7 . For robust estimation, the Geman-McLure (GM) function
£7

was used instead, i.e.

1 +

A comparison of the squared error (SE) and GM functions are given in Figure 4-4. Note, 

when using the Geman-McLure function, the larger errors contribute less to the overall 

error function.

» ! * ) ‘ s • 5 •

(c) Influence function of squared error 

function

(d) Influence function of the Geman- 

McLure function

Figure 4-4: The top line shows the SE function and GM function. The bottom line shows the 
respective influence functions for each.
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As demonstrated by Sawhney, the gradient and Hessian of the given robust error 

function can be approximated as:

g( ^ ) = ( *) -
e=ev

Equation 4-23

w(x)
39 3a 30 3a

Equation 4-24

where,

w(x) =
2a

(o-2 +K x)2)2

is a weighting function relying on the residual error ( r(x) = IM (x) -  It (x')) at the 

given pixel x. Comparing the above Hessian and gradient to those of Equation 4-16 and 

Equation 4-17, it is clear that the presence of this error weighting function is the only 

difference between the robust estimator and the least squares estimator. This error 

weighting/influence function is depicted in Figure 4-4. It can be concluded that errors 

with large magnitude have very little effect on the estimation process.

By applying these influence functions in the estimation procedure, a technique known as 

weighted least squares (WLS) estimation is being used. To effectively use the WLS 

estimator, the variance of the error distribution cr must be known or ascertained. The 

computation of the error variance itself is highly influenced by outliers and hence 

Sawhney suggested that the median of the error distribution be used to arrive at a more 

representative variance. The following equation was used:
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er = 1.4826 median|r(x)|

Justifications for the use of this equation are given in [84]. In the framework of the 

iterative GN estimator, this variance value should be re-computed before each iteration 

and hence this method is often referred to as iteratively re-weighted least squares 

(IRLS).

4.6 Summary

Generalised polynomial models are capable of representing the effects of rigid 3D 

motions. The estimation of the model parameters requires an iterative approach to 

optimisation. Several optimisation algorithms have been tested by the author and 

compared, here and in other literature, in terms of their ability to minimise the given 

error function. It would appear that the Gauss-Newton method is better than most. 

However, it is noted that the estimation of polynomial motion has some problems. For 

example, the global minimum of the error function is not always found. There is 

possibly some scope for improving results by some suitable initialisation of the search. 

Another problem with the estimation of the motion parameters is that a significant 

amount of computing power is required if real-time performance is to be attained. To 

address this problem, fast Gauss-Newton algorithms have been developed which reduce 

computation time by a factor of 2-3, while only marginally effecting the estimation 

performance. Finally, the basic least squares error function that is usually the basis of 

motion estimation is overly sensitive to outliers. It is shown how a minor modification 

to the general least squares minimisation results in an estimation algorithm that is more 

robust to the effects of noisy images and other factors resulting in statistical outliers.

While most of this chapter focusses on the estimation of motion within a defined region 

of an image, the motion within any given image can be conveniently represented by a 

finite set of polynomial motion models and a corresponding set of support maps 

defining the model which is supported at each pixel. For a given image, the estimation 

of its motion is equivalent to the joint estimation of the model parameters and model
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supports. This is the problem of motion segmentation which is discussed in the next 

chapter. Motion segmentation is one important tool which may allow the efficient 

recovery of object shapes from video sequences and even more importantly, it may play 

a role in facilitating the tracking of objects from frame to frame, as discussed in chapter
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5. I m a g e  S e g m e n t a t i o n

Image segmentation is a widely studied topic. With regard to the subject of object-based 

video representation, image segmentation is required in order to identify the position 

and shape of the various visual objects in an image or video. For a variety of reasons, 

image segmentation is a very difficult task. The kind of segmentations required for 

object-based content access and editing are very demanding. That is, it is usually 

required to identify semantic objects in a scene. With current image representations, 

general methods for the identification of semantic objects from images are not available. 

Semantic segmentation relies on the kind of intelligence which is currently present only 

within the human brain. Existing semantic segmentation systems involve much 

laborious work on the part of the human user, i.e. mouse pointing and clicking. 

Computers can only be trained to understand and process very primitive image 

attributes, i.e. texture and motion. Texture segmentation can be applied in order to 

separate the pixels of the image into regions of coherent texture [19] and similarly, 

motion segmentation is used to identify pixels which are moving with the same velocity 

[11]. While the results of computer generated texture and motion segmentations seldom 

capture the semantic content, computer-based algorithms can be used to ease the task of 

semantic object segmentation by performing these so-called “primitive” processes at 

high speed.

In this chapter, several prominent tools and methodologies for image segmentation 

based on both texture and motion are reviewed. The purpose of the review is:

• to illustrate the difficulties with existing automatic image segmentation and the fact 

that semantic interpretation by automatic means is currently infeasible,

• to introduce the basic techniques of statistical and morphological segmentation that 

are utilised in chapter 6 to develop a new object tracking algorithm, i.e. the 

segmentation of moving objects,

• to show the strength of a joint motion estimation/segmentation approach by Ayer and 

Sawhney [4] based on the Expectation-Maximisation algorithm and the Minimum 

Description Length principle (the EM-MDL approach).
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In addition to the review elements of this chapter, some new work by the author is 

presented. The approach of Ayer and Sawhney emphasised the aspect of motion 

estimation and somewhat neglected the requirement for clean and consistent 

segmentations. The author has augmented their basic algorithm by encorporating 

contextual labelling constraints into the EM algorithm based on local Markov random 

field models. In addition, the computation of the description length used in the MDL is 

improved by considering local correlation in the segmentation labels.

The first sub-sections focus on a statistical approach to image segmentation. In sub

section 5.1, the segmentation problem is viewed as an optimisation problem of high 

dimensionality and a general iterative framework is presented as a possible solution. 

Several examples applying this framework are given. Sub-section 5.2 presents two 

estimation tools, i.e. the Expectation-Maximization method and the Minimum 

Description Length principle, which provide this iterative framework with some 

theoretical basis. The basic premise of statistical segmentation is the allocation of pixels 

to various classes based on the models underlying those classes. However, it is generally 

not useful to limit the pixel labelling task to the consideration of model suitability. It is 

more appropriate to further constrain the labelling according to some local spatial 

contexts. Sub-section 5.2.4 discusses contextual labelling algorithms that impose local 

spatial dependancies using Markov Random Field (MRF) models. Finally, departing 

significantly from the preceeding discussions, morphological image processing methods 

for image segmentation are presented due to the relative success which has been 

achieved by their use in texture segmentation.

5.1 Problem Formulation and Solution

Image segmentation involves a classification of image pixels where two or more classes 

of image pixels exist. Segmentation may be achieved by answering the following simple 

question: Which pixels belong to which classes? However, for most segmentation tasks, 

the following facts are not known, (z) how many classes exist in the image? and (ii) 

what are the models for each class in the image? This is why segmentation is often 

referred to as a “chicken and egg” problem. Without the segmentation, it is unknown
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how many classes exist and it is not possible to directly compute the model parameters

underlying each class. Without the knowledge of the classes and associated model 

parameters, it is not possible to generate the segmentation. This sub-section formulates 

the problem as an optimisation task and presents an iterative framework that can be used 

to unify many approaches to generalised segmentation.

5.1.1 Problem Formulation

There are basically two image characteristics that can currently be used for automatic 

segmentation purposes, i.e. texture and motion. The basic approach to both types of 

segmentation is the same and only differs in terms of the models used.

Texture segmentation involves the derivation of models based on the pixel colours, i.e. 

YUV data or RGB data for colour images, or simply Y data for monochrome images. 

Texture models are basically mathematical functions or processes that approximate the 

image colour over some region of support. Under these models, each pixel coordinate 

(x.y) is assigned a colour value based on the model function g(x,y, 9), where 9 represents 

the model parameters. Any image can be approximated in terms of (i) one or more of 

these models and (ii) a segmentation map identifying the image regions where each 

model is supported. Let I(x,y) be the pixel value at (x,>>) and let I (x,y) be the 

approximated pixel value based on the model. To represent the segmentation, let each 

pixel possess a label z(x,y), where z is a vector of binary values with elements z/, such

that

The image I(x,y) can then be approximated by:

7* (*> y)  = Yj z>(x’ y)g(x> y>
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Given an image I{x,y), the task of texture segmentation is to identify both the 

segmentation labels z(x,y) and the model parameters 0it i=0,l...,G, where G is the 

number of models.

The task of motion segmentation may be summarised in a similar way, except that the 

models used are different. In the case of motion, the models are used to represent an 

image at time t+ 1 based on the image at time t. The image It+\{x,y) is approximated in 

terms of the segmentation and motion models as follows:

Note that this model function relies on the image at time t. The segmentation labels 

z(x,y) and motion parameters must be estimated based on the two images, i.e. /¿+, and

Based on the above model-based image approximations, segmentation can be treated as 

a minimisation problem. That is, the segmentation labels and the model parameters are 

chosen in order to minimise some chosen error function e(), taking account of the error 

between the actual image and the approximated image. This methodology is denoted as 

follows,

above problem formulation for image segmentation is slightly restrictive, relying only 

on the pixel intensities as the observation data. More generally, image segmentation is 

carried out on the basis of observation vectors, sometimes called feature vectors. A 

special case of a feature vector is a scalar representing the pixel intensity, I(x,y). In the 

general case, the observation is represented by:

h

z, T = arg mm e(/, /*)

Equation 5-1

where T = \Qx,Q2,....6g} represents the model parameters for each of the G classes. The
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where M  is the number of image pixels and xi represents the feature vector of the pixel j. 

The feature vector may be consist of any local measurements made at, or centred on the 

pixel in question, e.g. Y, U and V values, local motion parameters [93], local texture 

moments and so on. The choice of features is critical to the performance of the 

segmentation system. Some bad choices of features will be highlighted in the examples 

given in section 5.1.3. It is assumed that the set of observations has a probability density 

function of some known form and that this function is dependent on a set of unknown 

parameters. The unknown parameters are denoted by the vector ¥  and the density

function is written: /(X ;1? ) . For segmentation, the unknown parameter vector ¥

defines the parameter set {z,T}, where Z = \xl ,z1,  zM } represents the

segmentation labels (one label for each pixel).

The unknown parameters are found using the principle of maximum likelihood (ML) 

estimation. The ML principle may be summarised as follows. Given some sample 

observation X=x, the density function becomes a function of the unknown parameters, 

sometimes called the likelihood function. The ML estimate is that parameter vector 

which makes the observations most likely, i.e. it is the value of ¥  which maximises the 

likelihood function /(jc;xf )  . Very often, it is the logarithm of this likelihood function 

(the log-likelihood function) that is maximised, i.e.

'P = arg max log f(x;  'F)

Equation 5-2

To illustrate this principle in a simple manner, consider a case where a random source 

generating independent events is being sampled. Assume that each observation x is 

independently distributed according to a normal density function with an unknown 

mean m and a standard deviation a  equal to one i.e.
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The only unknown parameter is the mean m. It is desired to estimate the mean of the 

source given 2 or more observations. This can be performed using the ML principle as 

follows.

Assume the source is sampled twice yielding observations x l=2 and x2=3. With these 

two observations, a joint density function is constructed noting that x 1 and x2 are 

independent:

- ( x l - m ) 2 - ( x 2 - m )
f (x \ , x2\n i )  = f {x\ \m) f (x2\m} = —  exp

2 n

This density function may be further evaluated by substituting the sample values, 

yielding an expression in one unknown m\

- (2- m ) 2 - ( 3 - m ) 2

^ 6XP

This function is called the likelihood function and it is maximised to find the mean. This 

can be done most conveniently in this case by maximising the logarithm of the 

likelihood function. Maximisation is performed by taking the derivative of the log- 

likelihood function, setting it equal to zero and solving for m. This procedure yields the 

expected result: m = (xl+x2)/2 = 2.5.

This is a very simple example and the ML solution to the segmentation problem is more 

complicated requiring the use of the Expectation-Maximization algorithm as discussed 

in sub-section 5.2.

5.1.2 Iterative Solutions for Segmentation

The segmentation task may be thought of as a minimisation of error, as in the case of 

Equation 5-1, or a maximisation of probability, as in Equation 5-2. In either case, it is



clear that segmentation is an optimisation problem of very high dimensionality. There is 

one label to be estimated for very pixel and there are a number of model parameters. 

Assuming that there are M  pixels in the image, G different classes and K  model 

parameters per class, then there are M+GK unknown parameters. In addition to the high 

dimensionality, there is the outstanding problem of choosing how many classes to apply 

in the segmentation. This number G shall be referred to as the model complexity. 

Naturally, a larger number of models will produce a lower approximation error or a 

higher value in the likelihood function. However, the purpose of segmentation is not to 

use a very large set of models and to partition the image into as many regions as there 

are pixels, for example. Instead, useful segmentations result by finding a good trade-off 

between the fidelity of the image representation and the complexity of the overall 

model.

Due to these difficulties, very few researchers have attempted to solve the segmentation 

problem by direct and simultaneous estimation of all the unknown parameters. Instead, 

the problem is broken down into a number of manageable steps arranged within an 

iterative framework as follows:

I. Parameter Initialisation'. A finite number of classes are decided upon and the

model parameters for each are initialised, i.e. T(0). There are many initialisation 

strategies and some are described later in this chapter.

II. Iterate until stability

A. Pixel Labelling-. Each pixel is allocated to a particular class based on the

model parameters T(t). This yields a new segmentation Z(t).

B. Model Parameter Estimation: The model parameters are re-estimated

based on Z(i) to give T(i+1)

C. Model Complexity Adjustment: It is ascertained whether the number of

models/classes are consistent with the observation data. For instance, 

there may be redundancy, i.e. too many classes, in which case, some

models may be eliminated. Alternatively, there may not be enough
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models, in which case a new model is added. In either case, a change in 

the model complexity G necessitates some pixel reallocation.

In the above iterative approach, stability can be defined as the state where little or no 

pixels are being re-allocated at each iteration or where the values of the model 

parameters have stabilised. Several examples of this framework exist in the literature. 

Some of these are discussed in the next sub-section.

5.1.3 Segmentation Examples

Texture Segmentation and Clustering

Consider that it is desired to segment an image into regions of constant or 

approximately constant intensity. Assume that it is known that G classes exist. The 

model i has the form:

where j  represents a particular pixel. As previously, the image may be approximated as 

follows:

and the task is to find the segmentation labels Z and the model parameters m\ for 

i=J,2...,G. The error at each pixel is specified as follows:

Equation 5-3

The image is initially partitioned into G non-overlapping blocks. For each of the blocks, 

the mean intensity value is computed and used to initialise the model parameter set.
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Based on the initial models, each pixel j  is allocated to the model which produces the 

smallest error as specified in Equation 5-3. Based on this segmentation, the mean 

parameters are re-estimated. This process of estimation and allocation continues until 

stability is reached.

The above illustration of texture segmentation was based only on a one-dimensional 

feature vector. Most images have a three-dimensional colour space, e.g. RGB or YUV. 

Each pixel has an associated vector representing the value of each colour component:

(  \
yj

x j = u.

v V

It is generally better to allow all three components to form the observation data than to 

restrict the observation data to just a single component. In this case, the model function 

is simply a vector-valued function of a vector valued parameter.

(  mjy)̂  
m f  

\m i /

Once again some error criterion is used. For instance,

|xj -  g ( i ,  j)|| =  { y t  -  m\y)^  +  (u j -  n iu)) 2 +  ( v ,  -  m(v)) 2

Equation 5-4

The process of segmenting the image on the basis of these 3-dimensional observation 

vectors is exactly the same as in the 1-dimensional case. The image space is sampled to 

obtain initial estimates for the G models. Based on these initial estimates, allocation is 

carried out by choosing at each pixel j  the model which minimises the error criterion. 

This allocation procedure results in an initial estimate of the segmentation Z. The model
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parameters are re-estimated by taking the mean of the YUV data within each model’s 

region of support. That is, for the Y component

1 MM Vm -' = —  /  z -v  ■> v-'j
l y i j =1

where Nf is the number of pixels allocated to model i. The U and V means are computed 

in an identical fashion. The vectors storing the Y, U and V mean values are termed the 

cluster centres and the error function in Equation 5-4 denotes the distance between the 

feature vector at pixel j  and the cluster centre i. Based on the new cluster centers, pixels 

are again re-allocated according to the distance metric and so on until stability is 

reached.

The approaches that have been outlined for texture segmentation are purposely simple. 

They illustrate the iterative nature of texture segmentation, but they ignore the model 

complexity issue and assume that pixels may be independently classified. Firstly, it is 

assumed that the model complexity G is known in advance and that the initial model 

parameters for each of the G models may be captured by a simple sampling of the 

image. This is rarely the case. The examples on motion segmentation in the next two 

sub-sections will illustrate how some determination of model complexity can be 

achieved. They are not necessarily the best ways, but they will give the reader some 

feeling for the concept o f model complexity. Secondly, the pixel allocation procedures 

described so far, concentrate only on minimising the model approximation error at each 

pixel. As will be demonstrated in this chapter, this is insufficient for the production of 

coherent segmentations. The presence of image noise and the inevitable fact that the 

models are inexact will lead to very incoherent segmentations, where a given model is 

supported by many small spurious and disconnected groups of pixels. The examples on 

motion segmentation serve to present some mechanisms for imposing coherency on the 

segmentation. Additionally, the use of contextual pixel labelling is discussed in sub

section 5.2.4. For further and more detailed treatment of texture analysis and 

segmentation, see the work of Chellappa et al [19] and Tuceryan and Jain [90].
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The clustering schemes illustrated in the previous sub-section can also be used to 

segment an image on the basis of motion. This is what is attempted in the work of Wang 

and Adelson [93]. This approach begins by estimating a motion vector for each pixel 

using a hierarchical optical flow method [6]. These motion vectors formed the 

observation data, i.e.

Motion Segmentation Using Clustering

where dx denotes the horizontal displacement and dy denotes the vertical displacement. 

Roughly speaking, the optical flow field is estimated to minimise the brightness 

constancy constraint at each pixel co-ordinate j=(x,y), i.e.

motion model is fitted to the optical flow field by a least squares approach. The affine 

model is of the form:

The image is partitioned into G non-overlapping blocks and within each block an affine

This initialisation step results in an initial set of motion models with parameters 

T = [dx 02 . . .  9G)T, where each model is represented as:

The allocation rule relies on the distance measure:
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The pixel j  is deemed to be represented by the model i if model i produces the lowest 

value of the expression in Equation 5-5. The least squares parameter estimation and 

pixel allocation are alternated until stability.

In Wang and Adelson’s work, the clustering approach was augmented by techniques 

addressing some of the general problems with segmentation, i.e.

• the assessment of model complexity,

• the attainment of spatial coherence in the segmentation, and

• outlier detection and processing.

The value of G, i.e. the number of models, is initially chosen to be very large and initial 

model parameters are obtained by dividing the image into small blocks and fitting an 

affine model to the optical flow field within each block. Some models are eliminated 

immediately due to the fact that the model fit within the particular block is not good 

enough. Subsequently, a model clustering process is used to reduce the model 

complexity. The initial step in this model clustering is to divide the parameter space of 

Q into a number of equal sized regions, each one with its own cluster centre. Each 

model of the initial set is then allocated to one of these cluster centres. Following this 

first allocation of models, each cluster centre is re-computed by simply taking the mean 

of all the models allocated to that cluster. Given the new cluster centres, the models are 

re-assigned and cluster centres are updated. If during this iteration, two cluster centres 

come within some pre-defined distance of each other, then the two clusters are merged 

into a single cluster. The iterations comprising reassignment, cluster centre updating and 

cluster merging continue until no more clusters are merged and no models are 

reassigned. The model complexity G is given by the number of clusters remaining and 

the initial model parameters are given by the cluster centres. Beginning with these G 

models, the steps of pixel allocation, parameter estimation and model clustering are 

iterated. Therefore, even in subsequent steps, models may be merged.

Equation 5-5
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After each pixel allocation step, the resultant segmentation is post-processed to remove 

small regions, i.e. small connected groups of pixels supported by one or other of the 

models. This gives the segmentation a cleaner more coherent appearance and avoids the 

problems associated with the instability of model parameter estimation in small regions.

A final point to note is that not all pixels are allocated to a model. In order for a pixel to 

be allocated to a model, the model parameters not only have to minimise Equation 5-5, 

but also this minimum value must be lower than some pre-defined threshold. Pixels for 

which no model meets these criteria are left unassigned. These pixels are usually termed 

outliers since they are not well represented by any of the available models. The final 

step in the algorithm is to assign these outlier pixels to the model which minimises the 

intensity distortion between the current image intensity and the motion compensated 

previous image.

The work of Wang and Adelson is impressive and ambitious since they attempt to solve 

many of the general segmentation problems in their scheme. The scheme works very 

well on certain image sequences and less well on others. Two major problems with the 

scheme are apparent:

• The choice of local motion as the observation data was probably not good due to the 

fact that local motion is difficult to accurately estimate. Direct computation of optical 

flow [2],[5], as was used, does not necessarily result in a true and meaningful motion 

representation of the scene. The first pitfall is that an estimation procedure based on 

local image characteristics is prone to the detrimental influences of image noise. To a 

certain extent, multiresolution approaches [6] have addressed this robustness issue. 

Secondly, for any kind of motion estimation, there is the requirement for a sufficient 

level o f image detail or structure to drive the algorithm. Many pixels contain no local 

intensity variation and hence, local motion cannot be recovered unambiguously. 

Furthermore, for totally unambiguous recovery of motion, the local intensity 

structure should contain variations in both the x and y directions. When 2-D structure 

is lacking, the well-known “aperture problem” comes into effect. It has been
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generally agreed that due to these difficulties, optic flow estimation is an 

underconstrained problem [2]. To further constrain the problem, smoothness 

constraints are used, but these are inconsistent with the natural motion discontinuities 

which occur at the boundaries of moving objects. The task then is to somehow avoid 

applying these smoothness constraints at occlusion boundaries. Thus, arises the 

“chicken and egg” problem of segmentation. No accurate motion can be measured 

without shape and no shape can be recovered without motion.

• The determination of model complexity relies upon the use of rather arbitrary 

thresholds. In the model clustering process, it is ordained that no two model clusters 

may be within some pre-defined distance of each other without being coalesced. 

Such thresholds can only be derived on the basis of experimental experience and 

typically, no single threshold suffices for every situation. When thresholds are used 

like this, it is important to have some criterion for adapting the threshold values to 

the context of each new situation. Notice also, that the system provides no 

possibility to recover from mistakes made in the initialisation stages. That is, it is 

possible that some valid motions are eliminated in the model clustering, but it is not 

possible to add new models. The determination of a suitable level of model 

complexity is a very difficult problem.

Quadtree-based Motion Segmentation

Sanson [83] developed a motion segmentation approach based on quadtree-partitioning 

of the image. At the first level, the image is partitioned into G non-overlapping blocks. 

On each of these blocks, an affine motion model is estimated directly from the image 

data using a Gauss-Newton method. At the second level, each block is split in quad-tree 

fashion, see the shaded block in Figure 5-1. It is tested whether it is appropriate to re

allocate any of the sub-blocks to any of the models existing in adjacent blocks. Four 

connectivity defines the adjacency relationship as shown in Figure 5-1.

i
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Figure 5-1: Quadtree decomposition and adjacency relationship

In fact, for each sub-block, there are 3 possibilities:

• The sub-block is not reallocated and remains with the parent model.

• The sub-block is allocated to a neighbouring model.

• The sub-block is attributed a newly estimated model different from either the parent 

model or the neighbouring model.

The sub-block allocation rule is based on the mean-squared error (MSE) computed over 

the sub-block pixels for each of the possible models. To decide between the first two 

cases, that path is taken which leads to the lowest MSE. To decide whether the sub

block might benefit from a new model, this new model is estimated and the 

corresponding MSE is measured. If this new model reduces the MSE by more than 

some specified percentage, the new model is adopted.

Following the re-allocation of the sub-blocks, the motion parameters within each 

connected region are updated. The third step in the iteration is to merge adjacent regions 

possessing a similar motion. This is done by constructing a weighted region adjacency 

graph, with each edge weight in the graph corresponding to the increase in the MSE 

which would result if the region’s model was replaced by the model of its neighbour. A
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minimal spanning tree approach is utilised to merge the nodes in the graph. Merging 

stops when the global error increases beyond some predefined threshold.

At each level/iteration, the same steps are repeated, i.e. sub-block allocation, parameter 

updating and region merging. It is unclear from the paper how successful this approach 

is. However, it is one of the first papers that viewed motion segmentation in an image 

coding context. The obvious goal of Sanson’s system was to generate a segmentation 

with a minimum associated set of motion models, such that the some acceptable global 

motion compensated MSE is attained. It was acknowledged that the majority of bits in 

video coding are used to code the residual error, but it was also clear that an unlimited 

number of models/regions could not be supported while maintaining adequate coding 

efficiency. Sanson sought to find a good trade-off between the model complexity and 

the residual error. Once again, however, ad-hoc methods based on arbitrary thresholds 

were used to tackle this problem. While segmentation, by its nature, must use threshold- 

based decisions, it is best if these thresholds can be derived from, or traced back to, 

some high level concept or mathematical criterion. When the algorithm reacts badly, it 

is easier to re-analyse and modify a high level mathematical criterion than to search 

aimlessly for a threshold that works better. Just like Wang and Adelson, Sanson lacked 

such a formal criterion to help him solve the problem of model complexity. 

Furthermore, Sanson seemed to realise this fact, as he states: “segmentation can also be 

viewed as an optimisation issue. However, in that case, the criterion cannot be 

obviously formulated”.

With regard to the problem of spatial coherency, the adjacency constraints imposed on 

the sub-block re-allocation and merging procedures are designed to produce large 

connected regions of support for each motion model.

5.2 Expectation-Maximisation, Minimum Description Length and 

Contextual Enhancements

It has been highlighted above that segmentation is usually achieved by adopting an 

iterative framework alternating between parameter estimation and pixel allocation. In
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this sub-section, the segmentation problem is formulated as a maximum-likelihood 

problem and the EM algorithm is introduced as the solution. It is noted that the EM 

algorithm fits neatly into the general iterative framework. The difficulty of determining 

the required model complexity has also been highlighted. The minimum description 

length estimate is presented as a tool to properly address the model complexity 

estimation problem. The final aspect of segmentation that is highlighted in the previous 

sub-section is spatial coherency. It is shown how contextual pixel allocation rules can be 

formulated based on local Markov Random Field (MRF) models.

5.2.1 Maximum-Likelihood Estimation

Segmentation may be formulated as a maximum likelihood estimation problem as

follows. Let the observation set be denoted by X = [xt x2 .. .. xM] , where xi is 

the feature vector at the pixel j. The observed data is thought of as a realisation of an 

underlying piece-wise model. The model is described by the model parameters

T = \0l ,d2,....dG\ and the support maps Z={z1,z2,...zG}. As before, the value of the 

support map z; at the pixel j  is denoted Zy . It is equal to 1, if the model i is supported at 

the pixel j  and equal to zero otherwise. Given Z, the observations X are assumed to have 

a conditional probability density function of some known form and dependent upon the

unknown parameters describing the underlying model, i.e. f x\z (X |Z;T).

For a particular observation set X=X, this density function becomes a function of the 

unknown parameters and is called the likelihood function. The maximum likelihood 

estimate of the unknown parameters is given by maximising the likelihood function 

with respect to the unknown parameters. More often, the unknown parameters are found 

by maximising the log-likelihood function:

T = arg max log (x\Z; t )
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To allow a more convenient representation of the density function and simplify the 

estimation resulting procedure, it is assumed that every observation is conditionally 

independent and distributed according to a common density function, thus:

M
/ , lz (x |Z ;T )  = n/,

j=l

Additionally, since only one model is assumed to be supported at each pixel, the 

distribution of each observation xj is dependent only on one model, i.e.

Hence, the ML estimate of T corresponds to maximising the following log-likelihood 

function:

MG
log f x \z  (x|Z; T) = £  X  z ,  lo g (/ÿ (x ,  ; 0t ))

j=\  i=i

Equation 5-6

The problem with applying this strategy is that the support maps Z are not known and as 

such the estimation of the model parameters is not possible by direct MLE. The 

estimation of the model parameters T is therefore said to be a problem of incomplete 

data. Fortunately, if  with a knowledge of Z, maximisation of Equation 5-6 is possible, 

then the joint estimation of T and Z can be given by the expectation-maximisation 

algorithm.

5.2.2 Expectation-Maximisation (EM)

The EM algorithm computes both Z and T by utilising an iterative 2-step approach, 

comprising the expectation step (E-step) and the maximisation step (M-step). This 

iterative structure is depicted in Figure 5-2. Applications of the EM algorithm require
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that a finite initial set of models can be provided, i.e. T(0) = {6}(o)6,2(o),....0<lo)}. On each

EM iteration, the E-step computes the probability that each pixel belongs to each given 

model, i.e. the ownership probabilities. The ownership probabilities can be viewed as a 

soft segmentation. A hard segmentation may be derived by allocating each pixel to that 

model with the highest ownership probability. Given the new ownership probabilities, 

the M-step updates the model parameters. The iterations continue until the model 

parameters have stabilised, or alternatively, until the hard segmentation has stabilised. 

The description of each step is presented below. Note that, the mathematical derivation 

of the EM algorithm is omitted. However, it is emphasised that the presented formulae 

for the E-step assume that the segmentation labels are independently distributed. That is, 

in computing the ownership probability at a given pixel, no consideration is given to the 

neighbouring pixel classifications. For theoretical background on the EM algorithm, see 

[25], [48], [76] and [89],

Figure 5-2: Basic iterative structure of the EM algorithm

To better illustrate the EM formulae, examples are given below. The examples are based 

on an observation set consisting of the intensity at each pixel, and each pixel’s intensity 

value is distributed according to a Gaussian PDF, expressed as a function of the error 

with respect to a given model function g(j,9,) , i.e.
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r?'
v2 of ,

where, ry =Xj-g( j , o)

Equation 5-7

The Expectation Step

The E-step uses Equation 5-8 to compute the ownership probabilities for each pixel j ,  

given the current set of model parameters. That is, ty is the probability that pixel j  

belongs to model i given the current model estimates. The formula can use prior

probabilities ni} = Pr(zy = l) • These prior probabilities may be chosen in a variety of 

different ways and are evaluated as part of the M-step:

T« (xj ’T) = xjfu (x/A )/Z V *  (xj ’ °t)/ t=i

Equation 5-8

Substituting the Gaussian PDF of Equation 5-7 into Equation 5-8, the E-step results in:

( 2 ̂ / G to

L  X v n — r-V ~rtj
\ J ’ / ^  eXPW ) w )

In basic terms, given unbiased prior probabilities, the ownership probability is large 

if  the residual error ry  is small in relation to the variance parameter cr,-.

The Maximisation Step

The M-step uses the ownership probabilities to formulate a ML criterion for the 

estimation of the model parameters T, as given in Equation 5-9:
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CM
Ta+0 = a r g m a x I E s  log^.(x 

1=1 M

Substituting the Gaussian PDF and eliminating terms that are independent of the model 

parameters, the maximisation becomes a minimisation problem as expressed by:
G M

Ta+l)=argnnn ¿ S W
/=1 7=1

Each individual model parameter is given by:
M

0\M ) =arg nun
6 J-1

This is a weighted least squares problem where the weights are defined by the 

ownership probabilities. The model parameters may therefore be obtained by a Gauss- 

Newton method as presented in chapter 4. The M step is also responsible for computing 

any other unknown parameters such as the variance parameter of the PDF, a.  In 

addition, the prior probabilities must be computed in anticipation of the next E-step. 

One possible approach is to set them equal to the current ownership probabilities,

i.e. 7T̂k+l) = T(k). y y

The Hard Decision

The support maps Z may be obtained by setting Zy to 1 if,

Equation 5-9

Ty>Ttj’Vt* i

Equation 5-10

and to zero, otherwise.

In many ways, the EM fits neatly into the iterative framework for segmentation which 

was presented in sub-section 5.1.2. It provides a formal well-understood method for 

solving the extremely difficult problem of joint estimation and segmentation. 

Nevertheless, the EM in no way answers the question of model complexity estimation.
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The next sub-section presents the minimum description length concept. This provides a 

sound theoretical framework for segmentation problems that do not have prior 

information regarding the model complexity.

5.2.3 Minimum Description Length (MDL)

Segmentation, like many other signal processing tasks, may be thought of as fitting 

some model to a set of observed data so that the observed data is accurately represented. 

In particular, segmentation involves the fitting of a piece-wise model to the observed 

data, i.e. the pixels or feature vectors. Given a fixed number of initial models, the EM 

algorithm will fit these models to the observed data. Unfortunately, it is not known in 

advance how many local model pieces are sufficient to describe the observation data. If 

the task of segmentation is to obtain a perfect fit to the data, then it is conceivable to 

choose as many model pieces as required. However, a degenerate case of segmentation 

occurs when there are as many models as pixels. On the other hand, if few models are 

used, then the model representation will be inaccurate and the segmentation will not 

reflect the image content. Several approaches, e.g. those of Sanson and Wang, to 

obtaining a suitable level of model complexity have been reviewed in sub-section 5.1.3. 

These generally follow a top-down strategy, involving model and region splitting, or a 

bottom up strategy involving model merging. Threshold-based rules are used to make 

the split/merge decisions. Very often, however, no justifications exist for the choice of 

the threshold value. The threshold is usually obtained by trial and error and when a 

given image causes the algorithm to fail badly, one is reduced to adjusting the 

thresholds on a case by case basis. The use of arbitrary thresholds and parameters in 

decision criteria is futile. Critical decisions should be based on some sound criterion 

which fits in with the overall goal of the segmentation. One such decision-making 

criterion is described now.

Consider that the task is to compactly represent the image in terms of a finite set of 

models and a segmentation. The finite model set may be chosen from a infinitely large 

set of models. For simplicity, it is assumed that only models of a common form may be
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used, e.g. the segmentation procedure may be limited to using only affine models. Given 

this, the representation length will be made up of 2 main parts:

1. Model Representation: The model parameters of each model chosen from the infinite 

set will have to be encoded. Additionally, the support of each chosen model will have 

to be encoded.

2. Model Error: The model fit error at each pixel will have to be encoded.

In this scenario, it may be seen that increasing the number of models will reduce the 

length of the model error part of the representation, but it also results an increase in the 

length of the model representation. Conversely, minimising the model representation 

length by limiting the number of models, only results in increasing the model error. 

Therefore, minimisation of the overall coding length is achieved through finding the 

optimal balance between the information length of the model representation and that of 

the model error. This idea is the essence of what is referred to as the Minimum 

Description Length principle [77],[78]. While the MDL principle is easily explained by 

consideration of image coding, more generally, it is apt in the information theoretic 

sense to believe that the best model is that which results in the most compact 

representation of the observed data. Using this concept, segmentation is formulated as 

an MDL estimation problem as follows:

❖ = a rg m m //^ )(x(^))

where 'F = (Z, T) represents the model parameters and segmentation support maps, as 

before and ) is the length of the representation of the observed data in terms of

the model parameters and segmentation. This length is now expanded into the 

constituent parts of model parameters, segmentation and model error/residual.

Let R denote the residual of the model fit as represented by:

R = X - M ( T )
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Now, the MDL estimate of model parameters may be written as:

T  = arg m n(ffw (R(¥)) + Hv (>P))

The description length is further developed by specifying probability density functions 

for the quantities being encoded and where applicable, the accuracy with which each 

quantity is encoded. The relationship between the probability density and the encoding 

length is simply:

Hx(X) = - lo g 2 f x{x)

For convenience, the natural logarithm is used from now on, bearing in mind that 

log2 x = C In x where the constant C = (in 2)”1.

To within this constant multiplier, the description length can be then written as:

Hx w (X |Z,T) = - ln /„ |zr(R|Z,T)- ln /z(Z)+ Ht(T)

Equation 5-11

Assuming that the residual data are independently distributed according to a normal 

density function and that these residuals are encoded to the nearest integer then (see [3] 

for details):

M  G

fm .r (R lz> t) = £ 2 > S -0.51n(2*)-1n a, +
j=\ 1=1 V

r iJ
2(7;i /

Equation 5-12

Using the same indépendance assumption for Z,
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M  G

In f z (Z) = X Z z// ln71 \j »
>1 i=l

Finally, some means is required to represent the length of the model parameters T. Let 

each of the G models have k real-valued parameters. As proposed initially by Rissanen 

and commonly used:

i= l Z

Equation 5-14

Combining these last three equations, we get the MDL estimate which has been used for 

the purposes of motion estimation and segmentation by Ayer and Sawhney [3].

The main use of the MDL criterion is for hypothesis testing rather than the direct 

estimation of the model parameters and model complexity. In line with the iterative 

framework discussed in sub-section 5.1.2, the MDL concept is used to adaptively adjust 

the model complexity at each iteration. It may be applied in one of the following ways.

Model Elimination and Merging

In order to test if two models denoted A and B can be merged into one model, the 

description length is firstly computed based on the initial set of models and the 

associated supports. The pixels supporting model A are re-assigned to model B and the 

description length is re-computed. If the description length is reduced, then it is assumed 

that model A can be eliminated and its support is transferred to model B. An alternative 

hypothesis test would involve reassigning the support of model B to model A and re

computing the description length. A positive result would cause the elimination of 

model B. A third possibility exists whereby the supports of A and B are merged and a 

new model parameter vector is estimated for the merged support. This new model 

replaces A and B if it results in a reduction of the description length. This latter kind of

where = Pr(z^=1)

Equation 5-13
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model merging has been used by Zheng et al in [98] to design a system very similar to 

that of Sanson. In contrast to the top-down approach of Sanson, Zheng et al designed a 

bottom up system relying totally on region merging. Similarly, however, model merging 

was carried out under the constraints of adjacency relationships by the construction of a 

weighted region adjacency graph. Each node in the graph represented a single model 

and it associated support. Each edge connecting each pair of nodes had a length equal to 

the reduction in the description length which would result from merging the two model 

supports. The minimisation of the description length was achieved by searching the 

graph for the longest edge and merging the two associated nodes. All edge lengths were 

then re-computed and a further search for the longest edge was carried out. This process 

continued until no further reduction could be achieved, i.e. the edge lengths were all 

negative.

In their work on motion segmentation, Ayer and Sawhney used a similar pruning 

strategy. At each iteration of the segmentation, the most redundant model, i.e. that 

model whose removal led to the largest decrease in the description length, was removed. 

In contrast to the previous examples, no adjacency constraints were imposed. In fact, in 

the general case, any pixel of the redundant model’s support could be re-assigned to any 

other model of the set.

New Model Hypothesis Test

Examples of MDL hypothesis testing are not confined to the reduction of the model set 

but can also be used to test if the current model set is inadequate. For this, it is assumed 

that some new candidate model is estimated. The new model is allowed to compete for 

support with the existing models using some simple assignment rule or based on an E- 

step. Given the new support, the description length can be computed. The new model 

and its support are retained if the description length is decreased.

The disadvantage of using the MDL criterion in the above fashion is related to the 

complexity of performing so many hypothesis tests. When the set of hypotheses is very 

large, this brute-force approach quickly becomes infeasible. While region adjacency 

constraints can be used to reduce the number of hypothesis combinations, it would be
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more convenient if some direct estimation approach could be designed to extract the 

minimal set of hypotheses from some initial set. This is what is attempted in [24] 

wherein a gradient descent method is applied to directly minimise the MDL. In simple 

situations, this is reported to work well. For more complex situations where there are a 

large number of hypotheses or where the supports are complex, the method is embedded 

within a continuation method in order to avoid local minima. Unfortunately, no 

comparative study has been performed as yet to evaluate the relative performance of this 

method against the brute force method.

5.2.4 Contextual Enhancements of EM and MDL

Having covered the fundamentals of the Expectation-Maximization method and the 

Minimum Description Length principle, this sub-section examines the role of statistical 

dependance assumptions in applying these tools. Consider that there are a number of 

image models with known parameters and it is desired to classify each pixel to one of 

the models. The non-contextual allocation rule is to allocate each pixel to the model 

which maximises the likelihood function of the observed data. However, non-contextual 

labelling rules are sensitive to model inconsistencies and image noise and result in 

complex incoherent segmentations. These noisy segmentations may be unusable for 

subsequent purposes. If the application is compression, then noisy segmentations are 

costly in terms of bit-rate. If MDL-based hypothesis testing is being used, then models 

with such noisy supports will almost certainly be eliminated. If the application is image 

interpretation, then such noisy segmentations can be unintelligible and over-complex. 

To get around this difficulty, conditional dependence in the segmentation labels is 

introduced implying a change in the underlying probability density function. The new 

density function results in a likelihood function which contains terms encouraging 

spatial coherence among the segmentation labels. Frequently, conditional dependence is 

expressed in the form of a local Markov random field (MRF). This idea was first used 

by Besag when he developed the Iterated Conditional Mode (ICM) algorithm [8], 

Similar ideas are easily incorporated into the EM algorithm.
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The use of contextual information is also very important when computing the 

description length in MDL-based hypothesis testing. The description length example 

given in the previous sub-section made some very loose assumptions on the probability 

distributions used to describe the residual data and the support map data. For effective 

MDL testing, it is important that the information content in each part of the 

representation is not over-estimated. Independence assumptions, while simplifying the 

derivation and implementation, often lead to over-estimation of the coding length. Some 

improvements in coding length estimates are discussed here also.

Contextual Expectation-Maximisation

Many examples of the Expectation-Maximisation (EM) method arise in the 

segmentation literature [4], [94] and [97]. It has been found that the use of the basic EM 

algorithm, as outlined above, usually results in very noisy segmentations. This has been 

attributed to the nature of the assumptions on which the basic EM algorithm is based. 

The first assumption of the observations X being independently distributed given the 

segmentation Z, is retained in most applications of EM, and of other related techniques 

such as Iterated Conditional Modes (ICM). The second assumption that the labels within 

Z are independently distributed is much to blame for bad performance. Many of the 

attempts to avoid the implications of this second assumption are based on locally 

dependent MRF models9.

Recently, Zhang et al [97] produced an EM algorithm for model-based texture 

segmentation that proposed a means of avoiding the detrimental effects of the 

independence assumptions. Their work resulted in an EM algorithm, whereby the E-step 

involved the consideration of contextual information in the form of an MRF model for 

the segmentation map. Effectively, the E-step becomes a maximum-a-posteriori (MAP) 

estimator of the soft posterior probabilities rÿ . The MAP estimator is implemented 

using a simulated annealing approach or by an approximate recursive method similar to 

the ICM approach. By using the simulated annealing approach, both the indépendance 

assumptions with regard to the observed data X and those associated with the 

segmentation labels Z are overcome. With the ICM-like approach, only the

9 For a brief summary of MRFs and their uses, see [49], Chapter 13.
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indépendance assumption of Z is tackled. The effect of the ICM-like approach is that 

the prior probabilities computed within the M-step and used in the E-step are given by:

= f{zij = ̂ o)) or *t, = f(za = ̂ o))

depending on whether the hard or soft probabilities of the neighbourhood were used.

Any local MRF model is characterised by its neighbourhood and the conditional 

probability density function. One of the most common MRF models is the Ising model 

[49], which is based on an eight neighbourhood scheme as depicted in Figure 5-3. Under 

this model, the M-step (of the EM algorithm) simply becomes

Equation 5-15

where Uy is the number of pixels in the neighbourhood of j  that belong to model i. The 

parameter ft is a positive constant and G is the number of models. To utilise the soft

probabilities generated by the E-step, it has been suggested to evaluate Uy by ^  ziv,
V

where the summation is taken over the prescribed neighbourhood of j .  Again, it is 

worthy of note that the same contextual constraints were applied in developing 

extensions to the ICM method, see [49] and [69].

Figure 5-3: The square pixels constitute the 8-neighbourhood about the circular pixel.
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For the purposes of illustration, an EM-based motion segmentation algorithm was 

applied to an image. Four initial motion models were obtained by partitioning the image 

into 4 blocks and using a robust motion estimator to compute the motion parameters. 

Based on the initial models, an EM algorithm was applied to segment the image. Both 

non-contextual EM and contextual EM approaches were used The contextual approach

used Equation 5-15 with u,y = / ,  r,„ defined on a local 8-neighbourhood. The results are
V

shown in Figure 5-4. Neither result is very impressive due to the ad-hoc initialisation 

procedure and the lack of any mechanism to ascertain the model complexity. 

Nevertheless, the effect of the contextual constraint is clearly manifested in a cleaner 

looking segmentation.

M H  ^  -4 D T  m  y x
(a) (b) (c)

Figure 5-4: Illustration of contextual EM using a local MKF model: (a) the image to be segmented, 
(b) motion segmentation using non-contextual EM, (c) motion segmentation using contextual EM.

In an application of EM to motion segmentation by Weiss and Adelson [94], departing a 

little from the idea of locally dependent MRFs, it was proposed to compute uy using a 

weighted function of the soft probabilities within the local neighbourhood, i.e.

U ij = Z T,vwl / > )
V

Equation 5-16

The authors suggest the use of a weighting function w(j,v) which favours those pixels 

which are closer to j  in geometric and intensity terms, e.g.
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*»{/>) = exp j M  W t7 (1

The overall effect of this idea is that local groups of pixels with similar intensity values 

tend to be attributed to the same motion model. This approach is motivated by the 

reasonable assumption that motion boundaries often coincide with transitions in the 

image intensity or colour. Hence, the resulting segmentations are intended to align the 

contours to texture edges, unlike those contours shown in Figure 5-4. This contextual 

constraint was implemented with an 8-neighbourhood and with o f = 200, <r22 = 40. 

These settings effectively nullify the effect of the pixel proximity, i.e. all pixels v in the 

8 neighbourhood of j  are assumed to be the same distance from j .  The results in Figure

5-5 illustrate that the alignment of the contours with the real moving objects of the scene 

is not significantly better than in Figure 5-4c. Different results can be obtained by 

enlarging the neighbourhood and by varying the parameters of the contextual constraint. 

This is a criticism of the method, since it is not generally desireable to have many 

parameters within the algorithm without any means to estimate their value. Despite the 

difficulty with this approach, the general motivation for aligning motion and texture 

boundaries is worthy of note.

(a) (b)

Figure 5-5: Illustration o f contextual EM using colour constraints, (a) output segmentation (b) 
segmentation contours overlaid on image.

To conclude the discussion on contextual EM, it is clear that simple contextual 

strategies vary only in the manner in which the prior probabilities are computed. It
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should also be noted that cleaner segmentations are obtained if, instead of using 

Equation 5-10 for the hard decision, the support maps Z are obtained by setting zy  to 1

if,

Equation 5-17

Contextual MDL

In the formulation of the description length of sub-section 5.2.3, indépendance 

assumptions were made for the probability distributions of the residual data R and the 

segmentation labels Z. In tackling the indépendance assumptions within the description 

length, it is tempting to assume that some given coding scheme is in operation and 

utilise these coding tools directly. For instance, in Zheng and Blostein, a simple chain 

coding procedure was used to compute the length of the information associated with Z. 

In line with this thinking, one could apply DCT-based coding to the residual data. The 

complexity associated with these coding approaches may be prohibitive, however, and 

it may be more appealing merely to capture some of the coding tool’s assumptions 

within a probabilistic model. For approximations to the coding length for the shape 

information, it is probably reasonable to exploit local correlation via the same MRF 

models used in the contextual EM algorithms. After all, shape compression methods 

using context-based arithmetic encoding (CAE) approaches [44], [15] rely on the same 

kind of correlations. Assuming that the Ising model is used, then Equation 5-13 

becomes

M G (  G / \]
In f z (Z) = X  Z  zy K - l n l  exp ( /^  )

M i=i v (=i

Equation 5-18

This equation is used to estimated the coding length for shape within the MDL 

hypothesis testing framework. However, a better approach would be to utilise a simple 

context-based probability table storing the probability of binary events given the context 

in a predefined neighbourhood. The probability table could be trained on a typical set of
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good segmentations. This would more closely mimic the behaviour of CAE coding 

approaches and could not be considered overly complex.

With regard to the encoding of the residual data, it is well known that in motion- 

compensated video coding systems, the degree of local correlation in the prediction 

error image is very small and most compression is achieved simply by the fact that the 

errors are tightly distributed about zero. Hence, independance assumptions for the 

residual data in the case of motion segmentation are not so inaccurate. The situation 

may very well be different for the case of texture segmentation where it can be imagined 

that significantly more correlation will exist in the residual data. In cases where the 

residual data is still correlated, it is advisable to use some kind of simple local linear 

predictor and encode the prediction errors rather than the residual data themselves.

5.2.5 Motion Segmentation using an EM-MDL Framework

Ayer and Sawhney [4] developed a system primarily for the purpose of simultaneously 

detecting multiple motions in a scene. Their framework, depicted in Figure 5-6, utilises 

the EM algorithm for segmentation and parameter estimation and MDL for hypothesis 

testing. The EM-MDL steps are applied in a coarse to fine manner to the image data 

based on a multiresolution image pyramid.

Figure 5-6: EM-MDL framework for computing multiple motions.
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The initialisation step computes an initial set of polynomial motion models based on a 

block-based partition of the image. A non-contextual EM step is then carried out based 

on the assumption that the residual errors rJ = lj (t+ \)-lj {t,d̂ ) are independently 

distributed with a zero mean Gaussian distribution.

The E-step is given by

nxTy = — exp 
O':

___j_
K2af j 2 , — exp

=1 O'*t=1

where the prior probabilities obey: niX - n n =....... = niU = iti

The M-step comprises the estimation of the motion parameters for each model and an 

update of the prior probabilities.

0, = a r g m in X v /
9 7=1

The motion parameters are robustly estimated by an iteratively re-weighted least squares 

approach. The M-step also computes the values of the variance parameters cr(. using a 

robust estimate. The means of providing these robust estimates has already been 

described in chapter 4.

Following the EM-step, the MDL-step attempts to eliminate the most redundant of the 

models and the iterations continue. The coding length is estimated in the way described 

in sub-section 5.2.3 except that in coding the support maps, linear predictive coding is 

used to incorporate some notion of statistical dependance. When the iterative steps have 

settled upon a minimum set of models, a hard segmentation is computed by means of an 

ICM-like algorithm resulting in a relatively clean final segmentation.
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To illustrate the results o f  the EM-MDL approach, a variation o f  this system has been 

implemented by the author. In subtle contrast to the application o f  Ayer and Sawhney 

which was to recover motion estimates, the main goal o f  the author’s implementation 

was to recover the coherent shape o f  the moving objects. For that reason, the author’s 

implementation places more emphasis o f  contextual approaches, i.e. a contextual EM 

method is used and the MDL exploits local correlation in the segmentation labels. Some 

results are presented in Figure 5-8 and Figure 5-9. The details o f  implementation are as 

follows:

• A  three layer pyramid is used.

• Translational, affine or quadratic motion models can be used.

•  The initialisation step begins with the lowest resolution image o f  the pyramid by 

dividing it into 16 square blocks and estimating the initial motion models. A  number 

o f  non-contextual EM steps are performed until stability. At this lowest resolution, 

the MDL steps are not carried out. Models are only eliminated i f  the EM iteration 

results in an unsupported model, i.e. i f  no pixels are assigned to a particular model, it 

is eliminated.

• For the remaining pyramid layers, contextual EM-MDL steps are used for each 

iteration. The p  parameter o f  the contextual model used in the EM is chosen such 

that the strength o f  context is greater for the finest pyramid layer. This approach is 

chosen so that in the early stages o f  motion estimation, the context has only a small 

influence. Once the motion parameters are more stable then the strength o f  context 

can be increased in order to get a more coherent segmentation. The value o f  p  in the 

finest pyramid level was chosen to be 1.5 based on recommendations given in [49]. 

Values for the coarser levels were chosen in arbitrary fashion in order to lessen the 

MRF field strength. It is conceivable that improvements may be obtained by the use 

o f  an estimator for p .

•  The contextual EM used for the results o f  Figure 5-8, is characterised by the use o f  

an 8 -neighbourhood local MRF model, i.e. it is the same as that used for the results 

in Figure 5-4.
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•  The coding length used in the MDL step is the basic formulation o f  sub-section 5.2.3 

but using statistical dependence when encoding the shape. The context is taken into 

account along the lines o f  Equation 5-18 but with the use o f  a causal local 

neighbourhood as shown in Figure 5-7. Additionally, with respect to encoding the 

residual, it is necessary to detect what pixels are outliers and what pixels are not. A  

uniform probability density function is applied in the coding o f the outlier pixels.

•  For each MDL step, each existing model is removed in turn. For each model 

removed, it is necessary to reallocate the pixels prior to computing the coding length. 

This reallocation is performed by first normalising the posterior probabilities, 

contextually adjusting these probabilities according to Equation 5-15 and applying 

the rule described by Equation 5-17. In this way, pixels that are associated with the 

missing model are re-allocated in a contextual manner.

Figure 5-7: Causal 4-neighbourhood used in coding length estimate of shape in MDL-step

(a) (b)

Figure 5-8: Results of the EM-MDL framework for motion segmentation (Foreman). Foreman is 
viewed with a moving camera and the man is the only moving object. Quadratic motion models 
were used.
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(a) (b) (c)

Figure 5-9: Results of the EM-MDL framework for motion segmentation (Calendar). Calendar is 
viewed with a zooming camera. The moving objects are the calendar, the ball and the toy train. 
Affine motion models were used.

The results o f  this EM-MDL approach to motion segmentation are quite impressive, but 

clearly the results do not lend weight to the belief that semantic segmentations can be 

achieved by automatic means. Apart from this general comment, some specific 

observations can be made on the basis o f  the results.

The first observation relates to the benefits o f  MDL-based hypothesis testing. As can be 

noted by comparing Figure 5-4 and Figure 5-8, the use o f  more and better initial model 

hypotheses allied to the MDL-based model elimination mechanism results in 

significantly better segmentations. Starting from 16 initial motion hypotheses, all but 3 

remain in the final segmentations. Given no initial knowledge about the locations and 

numbers o f  moving objects in each scene, the algorithm returns segmentations which 

distinguish the moving objects with a minimum o f  motion models. However, on the 

more negative side, it should not be overlooked that the brute force approach to MDL 

hypothesis testing is extremely intensive computationally.

The second observation relates to the fact that the regions o f  the segmentation clearly 

coincide with the real moving objects. This shows that the affine and quadratic motion 

models, as estimated by the EM algorithm, can be relied upon to accurately model real 

image motion. A  high confidence can be placed on the fact that the estimated motion 

parameters constitute real and meaningful information about the motion in each scene. 

This is an extremely important fact which means that the motion parameters can be 

safely relied upon for object tracking purposes. Following on this observation, the EM- 

MDL algorithm is used to develop a new object tracking algorithm in chapter 6 .
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The third observation relates to the effects o f  using MRF contextual approaches for 

labelling the pixels within the EM. On one hand, it has to be acknowledged that the 

segmentations are extremely clean and coherent, as is intended. On the other hand, the 

MRF approaches have done nothing to ensure that the segmentation contours are 

accurate, i.e. in most cases contours do not become aligned with the real object’s 

contours. Additional measures are required to improve upon this aspect.

In relation to the inaccurate placement o f  contours, an element o f  blame must be placed 

on the fact that the ownership probabilities (used to eventually give the final hard 

segmentation) are computed based only on the suitability o f  one motion model over the 

others for accurately representing the pixel intensity. It can happen in un-textured 

picture areas that motion is not a good discriminant. In the case o f  Foreman, it can be 

observed that the intensity edges defining the man’s hat are classified as belonging to 

the man, whereas the un-textured interior is classified as part o f  the background. This 

can happen because both the man’s motion and the background motion may be equally 

suited to representing the un-textured area. A  similar problem is evident in the Calendar 

test case where all the textured lettered area o f  the calendar is classified as one moving 

object, whereas the untextured area o f  the calendar is classified as belonging to the 

background. The previously discussed approach o f  Weiss and Adelson suggests a likely 

way o f  improving this situation by utilising intensity and colour information in 

computing the prior probabilities. In chapter 6 , a new contextual EM-based motion 

segmentation algorithm is developed along these lines. The new algorithm makes use o f  

the morphological watershed method for texture segmentation with the intention o f  

generating segmentation contours on common motion and texture edges. The 

morphological watershed is introduced now.
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(a) (b)

Figure 5-10: Results of the EM-MDL framework for motion segmentation (Hall Monitor). The 
only moving object is the man walking down the corridor. Affine motion models were used.

5.3 Morphological Image Segmentation

This chapter has concentrated on statistical approaches to segmentation and most o f  the 

examples have emphasised motion segmentation. Motion analysis is a natural tool for 

segmenting video sequences since very often the objects o f  interest have a distinct 

motion within the scene. Sometimes, however, the object o f  interest is contained within 

a still image or it is a still object within a video sequence. In cases like this, texture 

analysis is more useful than motion analysis. Additionally, it has been noted that even in 

motion segmentation approaches, an appreciation o f  the intensity structure within the 

image is very important. That is, very often motion boundaries coincide with texture 

edges. This idea is being used to improve motion segmentation methods [14], [94].

In the domain o f  texture analysis and segmentation, morphological tools [8 6 ] are 

extremely simple and effective. The classical morphological segmentation approach 

relies on three different tools:

•  filters for image simplification,

• the morphological gradient, and

• the watershed.

The process o f  graylevel image segmentation is described below by way o f  illustration. 

The discussion relies upon an understanding o f  the basic morphological concepts such
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as the structuring element, the operations o f  erosion and dilation and so on. See [79] for 

basic tutorial style coverage o f  morphology and [8 6 ] for theoretical aspects.

5.3.1 Filters and Image Simplification

The first step o f  the process is image simplification. There is a particular class o f  

morphological filter that significantly simplifies the image by removing unwanted 

intensity structures, while exactly preserving the shape o f  the remaining intensity 

structures. There are two basic classes o f  filter in morphology: the open  filter and the 

c lo se  filter. The basic open  filter is used to remove peaks in the intensity function. The 

basic c lo se  filter removes valleys in the intensity function. For the 1-D case, the effects 

o f  these filters may be seen in Figure 5-11. The severity (the extent/width o f  the peaks 

and valleys that are removed) o f  the filter is controlled by the size o f  the structuring 

element. The open and close filters may be applied in cascade (open-close) to eliminate 

both peaks and valleys o f  the intensity function.
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Figure 5-11: 1-D open/close filters. The open filter results in a signal which is always less than the 
original. The close filter results in a signal which is always greater than the original filter. The 
upper graph shows the original signal. The lower graph shows this same signal enveloped above 
and below by the close filtered signal and the open filtered signal respectively.

When applied in 2 dimensions as in image processing, these basic filters cause 

unwanted distortion. Figure 5-12b illustrates this point. For the basic open-close filter, 

almost every important feature o f  the original image is completely obliterated. A  

segmentation based on this ‘simplified image’ would not produce desireable results.
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(a) (b) (c)

Figure 5-12: 2-D morphological filters, (a) the original image, (b) the result of an open-close, (c) the 
result of an open close by reconstruction. All filters used a 5x5 square structuring element.

By utilising what is termed morphological reconstruction [91], it is possible to develop a 

more sensitive class o f  simplification filters. Figure 5-12c shows the result o f  an open- 

close by reconstruction. Notice how much o f  the superfluous detail, e.g. the text on the 

calendar, the spots on the ball, has been removed, while at the same time, the remaining 

contours are positioned in the same locations and maintain their shape almost precisely. 

Filtering by reconstruction is part o f  the class o f  connected operators [80], so-called 

because they can discriminate between various connected components in the image. The 

small connected components corresponding to the spots and text are filtered out whereas 

the larger connected components, e.g. the calendar, are retained.

5.3.2 Morphological Gradient

The next step is to compute the morphological gradient. The morphological gradient is 

used to highlight intensity transitions within an image. The gradient image is 

constructed by eroding the input image, dilating the input image and then taking the 

difference between the erosion and the dilation. In the morphological segmentation 

approach, the watershed is usually applied to the gradient o f  the simplified image to 

yield the final segmentation. Figure 5-13a shows an example o f  the gradient image 

obtained from the simplified image.
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(a) (b) (c)

Figure 5-13: The steps involved in morphological segmentation: (a) shows the morphological 
gradient of the simplified image for Calendar, (b) shows the marker image where each black 
connected component represents the interior of a region to segmented, (c) shows the final 
segmentation contours overlaid upon the original image.

5.3.3 Marker Extraction

The task o f  marker extraction is to mark the interiors o f  the regions that are to form the 

final segmentation. This step can be done manually. For example, a user may merely 

use a mouse to draw on the objects to be segmented. Alternatively, in a fully automatic 

system, some analysis may be done to perform the marking. As an example, the marker 

image shown in Figure 5 -13b is derived by analysing the gradient image for flat regions 

and then filtering the resulting flat regions to remove very small ones. The black regions 

mark the interiors o f  the regions to be segmented, whereas the remaining (white) pixels 

are part o f  the u n certa in ty  region, i.e. it is assumed that somewhere in this uncertainty 

region lie the contours o f  the segmented regions.

5.3.4 Watershed

The final step in the morphogical segmentation approach is to apply the watershed [18],

[92] to the gradient and the marker image. This step finds the segmentation contours 

within the uncertainty region. In fact, a connected operator (reconstruction by erosion) is 

first applied to remove small variations from the gradient image. The result o f  this is 

that the modified gradient only contains the dominant peaks corresponding the largest 

edges in the local sense, i.e. sub-peaks residing upon major peaks are removed or 

flattened. The watershed can be imagined as a flooding process in a mountainous 

terrain. The markers correspond to lakes in the valleys and the valleys are separated by
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ridges as defined by the bright areas o f  the gradient image. The water level begins to 

rise. At a certain points, the water level w ill be such as to merge two adjoining lakes 

into one. The points where this merging takes place are marked as the watershed lines 

and these form the contours o f  the final segmentation. Figure 5-13c shows the watershed 

lines overlaid upon the original image.

It is noted that morphological segmentations have a cleaner appearance than those 

generated by statistical means. This is due to the fact that the idea o f  connectivity in 

inherent in most morphological tools, and hence connectivity is dealt with more 

elegantly than by means o f  adjacency graphs as sometimes used with statistical 

approaches. On the other hand, the exact segmentation obtained by the morphological 

approach is highly dependent on the nature o f  the simplification filter. Larger filters will 

eliminate more o f  the detail and hence the segmentation w ill have fewer regions. 

Automatic choice o f  the filter size for the task at hand is not easy. For instance, it can be 

seen that the calendar in the image Calendar is covered by approximately 12 regions. It 

would have been better i f  it was covered by only one. The problem is to choose a filter 

which eliminates all the other image detail and maintains the main structure o f the 

calendar. This is far from trivial. Additionally, even on merging these 12 regions, the 

resulting contours are not in agreement with the human perception o f the calendar 

shape. This is again due to the unavoidable inadequacies in the simplification process. 

In particular situations such as medical or biological imaging, morphology has proven 

effective. For general segmentation purposes, it is envisaged that this approach will be 

significantly improved by the use o f  user assistance. As a quick example, let’s say the 

user is interested in segmenting the calendar from the scene o f  the example. The user 

draws a line over the image roughly indicating the location and shape o f  the calendar. 

This line is dilated by some amount such that the thin contour line becomes a thick one. 

This thick contour line is then treated by the watershed as the region o f  uncertainty. 

Given this and the modified gradient o f  the image, the contour is snapped by the 

watershed onto the intensity edges as defined in the gradient. There are other ways o f  

achieving this snapping process, but it is believed that the use o f  the watershed is among 

the most intuitive and simple.
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This chapter has reviewed some o f the recent literature on image segmentation. Both 

texture and motion segmentations have been discussed. Both statistical and 

morphological means have been described.

For the statistical approach, it has been shown how segmentation can be construed quite 

conveniently as an optimisation problem. The high complexity o f  solving this problem 

is emphasised and it is illustrated how iterative algorithms can be used to find an elegant 

solution. In particular, the EM algorithm has been discussed at length. The difficulty o f  

initialising these iterative algorithms with reasonable initial models is discussed and 

several approaches are outlined by way o f  example. The necessity for finding the 

simplest set o f  models for image segmentation is also illustrated and MDL-based 

approaches are described. Finally, the need for local contextual models to constrain the 

segmentation is demonstrated. A  promising EM-MDL iterative framework is described 

and implemented. This provides a new improved MDL estimate by taking into account 

local correlation in segmentation labels and uses MRF contextual constraints in the 

computation o f  the EM. Based on this implementation, some results are given for the 

problem o f  motion segmentation. These results are among the best motion segmentation 

results presented to date. Importantly, it is emphasised that results for all sequences have 

been generated without adjusting the algorithm’s parameters. This basic approach is 

believed to be among the most powerful segmentation frameworks available today. 

However, several problems have been noted from observations made on the basis o f  the 

results. While it is clear that the moving objects are captured in the segmentations, the 

contours are not sufficiently accurate for enabling high quality object-based editing, for 

example. In the next chapter, this approach w ill be further extended to deal with spatio- 

temporal segmentation based on motion, i.e. object tracking. Also, to tackle the hitherto 

observed problems, some contextual improvements are proposed and tested.

For the morphological approach, the watershed provides a powerful tool for texture 

analysis producing segmentations composed o f  connected components and with 

excellent contour localisation. This can be used to segment images automatically or in

5.4 Summary
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some supervised manner. It can also be used to align rough segmentations with the 

images intensity edges, which is very useful indeed.

In conclusion, based on the results given in this chapter, the accurate segmentation o f  

semantic objects cannot be attained by automatic means using today’s technologies. 

Today’s technologies do provide us with promising tools for tackling texture and 

motion segmentation. It is envisaged that a combination o f  motion and texture analysis 

augmented with some clever use o f  user input will yield a very efficient means o f  

segmenting semantic objects from general image and video content. The next chapter 

takes this idea one stage further for video segmentation by combining texture and 

motion analysis within a system to be used for tracking identified objects through a 

video sequence.
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6. T r a c k i n g  M o v i n g  O b j e c t s

With regard to requirement for high quality segmentation o f  semantic objects, it has 

been argued in the previous chapter that a user assisted approach is necessary. Given a 

video sequence, it is conceivable and even necessary that the user identifies the object o f  

interest in the first frame o f the sequence. Given this initial semantic segmentation, it is 

also conceivable that a computer-implemented algorithm could be employed to track the 

semantic object as it moves through the subsequent frames o f  the sequence. It is 

believed that effective tracking algorithms are among the most important means by 

which the computer can shorten the laborious task o f  the segmenting semantic video 

objects. This chapter describes a system developed by the author which allows the 

tracking o f  moving objects in a video sequence. The system is similar in structure to that 

discussed in [14]. However, the presented tracking system is novel in the following 

ways:

•  It is implemented using statistical motion estimation and segmentation tools based on 

the same EM and MDL methods introduced in the previous chapter. This is first use 

o f  the EM-MDL tools in a tracking application.

•  For tracking purposes, the EM algorithm has been implemented using a new  

contextual E-step encouraging both spatial and temporal coherence.

•  The spatial aspect to this contextual step (described in sub-section 6.2) uses the 

morphological watershed to create segmentations with contours aligned on motion 

and texture edges. This idea is quite powerful and is not limited to the tracking 

application. It can be used to improve on the motion segmentation results presented 

in the previous chapter as demonstrated by the results in the following sub-sections.

•  The temporal aspect takes the previous frame’s segmentation into account when 

developing the probabilities used to classify each o f  the pixels in the current frame. 

This is described in sub-section 6.1.1.

• The coding length estimate used for the MDL hypothesis testing takes temporal 

correlation in the segmentation into account. Once again, this step is necessary to 

preserve temporal coherence in the resultant segmentations and it is described in sub

section 6 .1 .1 .
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• Finally, the system provides a framework by which objects may be tracked even 

when their motion complexity varies greatly over time. The tracking model 

complexity is adjusted by means o f  a simple hypothesis generation and MDL-based 

validation strategy. This strategy is discussed in sub-section 6.1.2.

6.1 Overview

In the system, each semantic object is regarded as a collection o f  moving regions. These 

moving regions are identified, tracked and finally summed to reform the semantic object 

again. This concept, which is very similar to that used in [45] and [46], is illustrated in 

Figure 6-1 and provides the possibility o f  tracking objects that are not only moving with 

a rigid motion, but also those moving with flexible motion. This is very important, since 

generic objects exhibit generic (flexible) motion. In the following, the term “motion 

segmentation” is used to refer to the segmentation o f  an image or image region into 

moving regions as depicted in Figure 6 - la. When referring to a segmentation 

approximating the shape o f  a semantic object as in Figure 6 -lb , the term “object 

segmentation” or “semantic segmentation” is used. The regions o f  an object 

segmentation are formed by the union o f  one or more regions o f  the motion 

segmentation.

(a) (b)

Figure 6-1: (a) Motion segmentation for the image, (b) Object segmentation by region 
merging, the semantic object shape is given by R1+R2+R8+R7+R6+R9.

The proposed tracking system relies on the estimation o f  accurate scene motion. The 

motion representation is a piece-wise polynomial model comprising a motion 

segmentation and a distinct polynomial model representing the motion within each 

motion region. At each frame, the shapes o f  the regions within the previous frame are
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projected forward into the current frame by using the previous frame’s motion 

representation. This gives an initial estimate o f  the new shapes. The EM is applied to 

refine the shapes and the motion estimates within each o f  the regions. The EM 

algorithm in this case uses a robust GN estimator in the M-step and an E-step availing 

o f  both spatial and temporal contextual information. The use o f  temporal information in 

the EM imposes the necessary consistency in the temporal dimension to facilitate 

tracking. The forward projection o f  the shape and the refinement o f  the projected shape 

comprise what is termed the p ro jec tio n  step . Because the accuracy o f  the motion 

representation is o f  paramount importance, it is necessary to adapt the model complexity 

on a frame-by-frame basis. This is intended to be o f  benefit for tracking objects whose 

motion over time varies greatly from simple rigid motion to more flexible motion. To 

allow for this, a number o f  additional steps are introduced into the system. For a given 

frame, when the projection step has been completed, it is endeavoured to identify new 

motions within the scene. This is done by the d e tec tio n  s te p , i.e. producing new moving 

region hypotheses using an EM algorithm, and then by testing each o f  these hypotheses 

using the MDL approach, i.e. the va lida tion  s tep . An additional feature o f  the system is 

the use o f  texture analysis in the development o f  the contextual constraints placed on the 

EM algorithm. This results in the contours o f  the tracked objects being w ell aligned with 

the texture contours o f  the original images. The high level structure o f  the tracking 

system is shown in Figure 6-2 and is very similar to that presented in [22] for coding 

purposes.

segm entation segm entation

Figure 6-2: High level structure of the tracking algorithm as applied at frame t+ 1
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6.1.1 The Projection Step

•  the current image It+I,

• the previous image I t,

•  the previous frame’s motion models E, = {^.] t , and

•  the previous motion segmentation Z/, denoting the supports for each o f the motion 

models.

The first sub-step is to produce a projected segmentation for time t + 1 and a set o f  prior 

probabilities for the segmentation at time H-l. This is accomplished by forward- 

projecting the support o f  each model. That is, a binary mask is created for each support 

i, whereby a pixel has a value o f  1 i f  it belongs to support i and a value o f  0  otherwise. 

The pixels o f  this binary mask are then displaced according to the inverted motion 

model parameters, i.e. 6i . The displaced binary mask is then subjected to an N x N  mean 

value filter10. This has the effect o f  blurring the mask around the edges, while leaving 

the interior values equal to 1 (see Figure 6-3). When this process has been applied for 

every support, there is one blurred displaced mask for each motion model present in the 

previous frame. From these masks, a prior probability on the tracked segmentation at 

time H-l is computed as follows. Let b y  be the value o f  the blurred displaced mask 

associated with the support o f  motion model i at the pixel j. It is assumed that the 

probability that pixel j  supports model i at time t + 1 is conditional upon the 

segmentation/motion at time t and that this probability is given by:

With reference to Figure 6-2, the inputs to the projection step are:

A .tyj ~ G

'0  
1=1I X -

Equation 6-1

10 n =7 was used for the results presented in the latter part of this chapter.
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For pixels where the denominator o f  Equation 6-1 is 0, then the priors are set equal, i.e.

Sxj = S 2J = ..... = SGJ. An initial motion segmentation o f  the image at time t + 1 can be

obtained by setting z y  to 1 if,

S y > S , J, V t * i

and to zero otherwise. In addition, the motion o f  each support within this initial 

segmentation is initialised with the previous frame’s motion. This has the purpose o f  

providing better initial estimates to the subsequent EM-MDL estimation step which is 

used to refine the initial shape and motion estimates.

(a) (b)

Figure 6-3: Illustration of how to develop the temporal priors, (a) a binary mask depicting a 
forward projection of the region shape into the current frame, (b) based on this mask, a low pass 
filter is applied to produce the blurred mask. The brightness of each pixel in this blurred mask is 
related to the probability that the pixel is part of the moving region.

The EM estimation steps avail o f  the prior probabilities as derived in Equation 6-1 in 

order to ensure that the final segmentation does not diverge far from the initial one. 

Additionally, some local spatial contextual information is integrated in order to allow a 

classification o f  the pixels which is spatially coherent and respecting the textural 

contours o f  the original image. The exact use o f  spatio-temporal context is described in 

sub-section 6 .2 .

In order to allow for moving regions leaving the field o f  view or being occluded, an 

MDL hypothesis test is carried out on certain motion models. This hypothesis test can 

result in the elimination o f  models which have very small supports. The MDL estimate
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used is the same as that described in the previous chapter, with the exception that 

temporal correlation is taken into account in the shape coding part. That is, the shape 

code length is given by:

M G
ln/z(z) = X E zi,ln^ »

7=1 ;=i
where

Equation 6-2

and where uy denotes the number o f  neighbours o f  pixel j  which support model i. A  

causal 4-neighbourhood scheme is recommended. The use o f  the temporal prior 

probabilities in this way averts any danger that a large tracked motion region can be 

eliminated.

The result o f  the projection step is two-fold:

•  a tracked motion segmentation reflecting the new shapes and positions o f  the moving 

regions,

• a polynomial motion representation associated with each region.

At this stage, a semantic segmentation o f  the image can be attained by merging the 

regions o f  the motion segmentation. As shown later, the tracking system can be easily 

configured such that this region merging becomes trivial.

6.1.2 The Detection and Validation Steps

The detection and validation steps are present in the algorithm because it is clear that the 

motion complexity o f  an object w ill vary over time. At some times, the object w ill have 

a very simple motion capable o f  being represented by a single affine model, for 

example. At other times, the motion w ill be more complex and w ill consequently 

require many different supported motion models for accurate representation. The
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tracking algorithm must be capable o f  staying in touch with the motion complexity, 

since i f  it does not, then the projection step already described w ill not be effective and 

the result w ill be a severe loss o f  tracking in situations o f  complex motion. This sub

problem o f  adapting the model complexity is tackled as usual by a system o f hypothesis 

generation and testing. The detection step produces new moving region hypotheses and 

the validation step tests their efficacy.

As stated already, the projection step produces a number o f  distinct motion models and 

the tracked segmentation represents the support o f  each model. For each model/support, 

there exist what are termed o u tlier  pixels. An outlier pixel is one whose intensity value 

is not w ell represented by the motion model that it supports. In the present system, a 

pixel j  supporting a model i is an outlier i f  the residual error at the pixel has a

sufficiently large magnitude. In particular, i f  ry >  2.5cr; , then the pixel j  is deemed to

be an outlier o f  the model i, given that the residual errors o f  this model are normally 

distributed with a standard deviation o f  cr,. Outliers are quite common and may be 

caused by image noise and other unpredictable events. However, outliers can also betray 

the presence o f  a motion which is presently not accounted for. Therefore, the detection 

step uses these outlier pixels to seed the estimation o f  new motion models. These new 

motion models are then allowed to compete for support with the existing motions within 

an EM algorithm.

For the purposes o f  reducing complexity in the system, the detection step has been kept 

quite simple. For each model present in the tracked motion segmentation, a single new  

model is set up to compete with each one. That is, i f  there are 2 models, i.e. A  and B in 

the tracked segmentation, then 2 new models, i.e. C and D are set up, with C competing 

o f  support with A  and D competing for support with B. Competition between A  and C 

is restricted to the zones already supporting A  and similarly for the competition between 

B and D. This effectively means that this detection step is a region splitting process. As 

mentioned, competition is enabled by the EM algorithm with fixed prior probabilities in 

order to delineate the desired regions o f  competition. Additionally, a new contextual 

constraint is utilised based on the morphological watershed. The exact details o f  the EM 

algorithm given here are presented in sub-section 6.2. At this point, it is enough to
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describe the manner in which the initial estimates o f  the supports for the new motion 

models are arrived at.

The first step is the detection o f  the outlier pixels. This yields an outlier mask. The 

outlier pixels are first eroded using a 3x3 structuring element and then dilated using a 

5x5 stucturing element. This has the effect o f  removing isolated outlier pixels and then 

enlarging any remaining outlier clusters. Each pixel o f  this modified outlier mask is then 

allocated to one o f  the new motion models. As an example, outlier pixels occupying the 

support o f  model A  would be allocated to model C, whereas those occupying the 

support o f  model B would be allocated to model D. These allocations determine the 

initial supports for the new models and a first M-step is applied on that basis to arrive at 

a first estimate o f  the parameters for the new motion models. The reason for the 

morphological filtering described above, is so that a reasonable initial estimate o f  

motion is possible, based on some consistent set o f  pixels.

Based on the initial motion estimates and supports for the new models, a number o f EM 

iterations are performed to allow the new models to compete for support and to refme 

their parameter estimates. When the EM algorithm has stabilised, a segmentation is 

produced representing the supports o f  the existing motions and the new motions. This 

segmentation is termed the p r o p o s e d  m otion  segm en ta tion . Hypothesis validation is 

carried out by firstly measuring the MDL based on the proposed segmentation and all its 

associated models. One by one, the new motions are removed. When a new motion is 

removed, the pixels o f  its support revert to being allocated to the original existing 

motion and the parameters o f  this existing motion are restored to the values they 

originally had in the tracked segmentation. The MDL is, once again, measured in the 

absense o f  the new motion. I f the MDL is not reduced, then this new motion is accepted 

as a valid hypothesis. Otherwise, the new motion and its support are discarded. The final 

segmentation is the same as the tracked segmentation except when any new motion 

hypothesis is deemed valid. In that case, the final motion segmentation contains the 

support for the valid new motion(s). This segmentation and the associated motions are 

then used to perform the projection step for the next frame.
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In chapter 5, there has already been some discussion on local MRF fields used for the 

purposes o f  producing clean coherent segmentations. However, it is observed that 

results are seldom ideal. It can be noted that MRF fields will produce nice smooth 

contours in the segmentation, but these contours are often somewhat inaccurate with 

respect to the human perception o f  where the contours should be. When motion does not 

sufficiently constrain the segmentation field, then the MRF constraint w ill simply opt 

for the smoothest contour. Additionally and more to the point, MRFs can also be 

responsible for propagating more dominant labels into under-constrained images 

regions. To avoid these kind o f  problems, two new spatial constraints are introduced 

based on texture segmentations derived by the application o f  the morphological 

watershed. Both encourage the segmentation to align the motion contours to intensity 

edges as defined in the watershed.

The constraints presented here are motivated by the need for segmentations to be clean 

and coherent, while not suffering from the negative effects o f  local MRF constraints. 

Furthermore, they are motivated by the assumption that texture contours and motion 

contours should be aligned. That is, in general, it is assumed that each independently 

moving object in a scene has an occluding boundary which separates it from the other 

objects and that this occluding boundary is characterised by a transition in the motion 

field o f  the scene a n d  the intensity map o f the image. In chapter 5, the morphological 

approach to segmentation is highlighted due to the fact that very clean texture 

segmentations can be produced. Additionally, each class o f  pixels in the segmentation 

forms a connected component termed a watershed region. Finally, contours are 

generally very accurate due to the connected operators used in the simplification 

process. All these features make the morphological watershed very attractive in the 

domain o f  texture analysis and it is chosen here to form the basis o f  two related spatial 

constraints for application to the motion segmentation problem.

The first constraint may be summarised by contrasting it with the MRF-based 

constraints. The MRF constraint is characterised by a neighbourhood scheme where:

6.2 New Contextual Methods
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•  the neighbourhood scheme is regular, i.e. the same neighbourhood scheme is used at 

each pixel and

•  the neighbourhood scheme is overlapping, i.e. the neighbourhoods o f  adjacent pixels

N ow, consider that each pixel j  has a neighbourhood scheme which:

•  may be unique to that pixel, i.e. the neighbourhood scheme is not regular,

•  may not necessarily overlap with the neighbourhoods o f  neighbouring pixels, i.e. the 

neighbourhood scheme is not overlapping at all pixels, and

•  is defined by those pixels which fall into the same watershed region as the pixel j .

Based on the usual mathematical form o f the MRF constraint, the watershed-based 

constraint can be summarised as follows:

In Equation 6-3, Sj denotes the watershed region o f  the pixel j .  It is a 

region/neighbourhood about pixel j  defined by a spatial (watershed) segmentation o f  the 

current image. The parameter f t  is a positive number specifying the strength o f  the

every neighbourhood, but results do not exhibit a large dépendance on its value.

The use o f  the watershed in this way was first presented in [14]. Results show that it can 

be extremely effective under certain conditions. Figure 6-4 demonstrates the strengths 

and weaknesses o f  the approach as applied within a motion-based EM-MDL 

segmentation framework. Note that these hard segmentations are attained by labelling

overlap.

where

Equation 6-3

spatial constraint within each neighbourhood. For simulations, it has been set to 1.5 for
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the pixels according to the maximum value o f  . It can be noted from the results that 

the use o f  this constraint and hard decision is equivalent to classifying watershed 

regions, instead o f  individual pixels, i.e. all pixels o f  a given watershed region are 

classified to the same model. This can be effective when, as happens in Foreman, the 

contours o f  the moving object are captured by the watershed segmentation. However, if  

the watershed does not accurately capture these contours, then the ‘inaccurate’ contours 

w ill also be reflected in the final motion segmentation. Some displeasing results o f  this 

nature can be observed in the Calendar results and to a lesser extent in the case o f  Hall 

Monitor. A  worst case o f  this negative behaviour occurs when the moving object is 

small and the watershed has been produced using large filters. In such cases, the object 

is eliminated by the simplification filter used when deriving the watershed regions. Its 

contours are not, therefore, reflected in the watershed and hence the moving object can 

never be detected. An instance o f  this worse case effect is presented in [14]. In order to 

avoid this kind o f  effect, the results o f  Figure 6-4 are generated on the basis o f  a very 

fine watershed, i.e. a small simplification filter was used. While the worst case effect is 

not so much in evidence, it is clear that certain important contours are not captured, i.e. 

those o f  the spotted ball are not captured, while those o f  the calendar itself are quite 

inaccurate in certain areas. On the positive side, these segmentations are indeed very 

clean and coherently presented. More importantly and in contrast to the results given in 

the previous chapter for MRF constraints, the segmentation contours are extremely 

accurate in many cases.

The coherency exhibited by these segmentations is a feature which is used in the 

tracking algorithm by the detection/validation step. The detection step has the task o f  

proposing new models and ascertaining the support o f  the new models. The validation 

step eliminates any model which is not useful in reducing the MDL. For a new model to 

pass the validation test, it is extremely important that the support is coherent, i.e. the 

shape part o f  the coding length is small. The constraint just described meets this need 

very well. On the other hand, it has been found that it is not suitable for use in the 

projection step due to the fact that incorrect contours ordained by the detection step are, 

more often than not, carried through into the subsequent frames. Additionally, it has

i
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also been noted that the contours o f  a tracked moving region which at some point in

time coincide with a watershed line, generally tend to cling to that watershed line. 

Hence, for the projection step, it is desirable to use the watershed in a weaker capacity. 

Additionally, for the projection step, it is required to integrate the spatial constraint with 

the temporal probabilities as derived by Equation 6-1.

A  weaker version o f  the watershed-based constraint is obtained by modifying the basic 

MRF neighbourhood scheme at the pixel j  such that the influence o f  the neighbourhood 

pixels not in the same watershed region as the pixel j  is down-weighted. For example,

Note that N j  is the normal 8 -neighbourhood and S j is the watershed region o f  the pixel j .

where

Equation 6-4
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Figure 6-4: These are the results of EM-MDL motion segmentation using a watershed-based 
contextual constraint as implemented on Foreman (Frame 224, 25Hz), Mobile (Frame 25,10Hz) and 
Hall Monitor( Frame 52, 10Hz). The left column shows the locations of the watershed lines. The 
middle column shows the motion segmentation map and the right column shows the motion contours 
overlaid upon the input images.

The constraint o f  Equation 6-4 is the same as the local MRF-based constraint, except 

that its ability to propagate dominant labels across the watershed lines is diminished. 

This constraint produces slightly noisier results than the full-blown watershed 

constraint. On the other hand, it avoids the negative behaviour o f  the straightforward 

MRF constraint, while having a tendancy to align motion contours to the watershed 

contours. The weakened watershed constraint is used effectively in the projection step 

where it is augmented by the temporal prior probabilities as follows:
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Xy =  5y exp[ p u ^  X  StJ e x p (^ .)
/ i=i

This spatio-temporal constraint allows a classification o f  the pixels in the uncertainty 

regions surrounding the contours o f  the motion projected segmentation within the 

projection step. The classification is biased, encouraging results to be similar to the 

segmentation o f  motion-projected segmentation, while also encouraging smooth 

contours which are aligned to a watershed lines where appropriate.

To summarise on the use o f  contextual constraints, the detection step o f  the tracking 

algorithm requires spatial coherency and hence it uses an EM algorithm based on 

Equation 6-3. In the projection step, a spatio-temporal constraint with a weaker reliance 

on the watershed is used, based on Equation 6-5.

6.3 Simulation Results of Tracking Algorithm

The algorithm described above is designed for tracking moving regions within a video 

sequence. The algorithm relies on having a segmentation o f  the first frame. This can be 

provided by automatic means, for example, by a motion segmentation algorithm. 

Alternatively, a more accurate initial segmentation may be provided by a supervised 

approach. This sub-section presents results for both types o f  initialisation. It is 

demonstrated that in the case where the initial segmentation corresponds well with the 

semantic object, the tracking algorithm is capable o f  generating good semantic 

segmentations for subsequent frames under conditions o f  moderate motion.

6.3.1 Tracking with Automatic Initialisation

Figure 6-5, Figure 6-6  and Figure 6-7 show the results o f  the tracking system as 

initialised by an automatic motion segmentation. With this initialisation, the algorithm 

produces a temporally coherent motion segmentation sequence, but it is necessary to 

manually allocate each sub-region o f  the motion segmentation between the object o f  

interest and the background. While this is not the ideal initialisation procedure, the

Equation 6-5
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results still demonstrate the performance o f  the tracking capability. The top row o f each 

figure shows the partition o f  the images into the moving regions and the bottom row 

shows examples o f  how these regions, when merged, form semantic objects. In the 

results shown, this merging o f  the regions is achieved manually. That is, for each frame 

shown, the user chooses the motion regions which best cover the semantic object. This 

is a non-ideal method for merging. As shall be seen with supervised initialisation, this 

manual work can be eliminated.

While tracking is good in general, some small problems are evident from the results.

•  For small objects, e.g. the men in Hall Monitor, accurate contours are difficult to 

obtain.

•  The initialisation procedure based on motion means that the first frame segmentation 

is non-ideal and often these problems are not eliminated by the tracking procedure. 

This can be seen when considering that the contours o f  the calendar in the Calendar 

sequence. The boundary o f  the calendar is not w ell captured in the first frame and 

although improvements are evident as tracking ensues, the exact boundary is never 

obtained.

•  From the segmentations for Calendar, it would not be possible to extract only the 

moving ball from the scene without also taking the train. See the results for frame 

150 in Figure 6 -6 . This is due to the fact that, at some point, the tracking algorithm 

no longer detects that the ball’s motion is different from that o f  the train. This is 

mainly due to the fact that under an affine motion model, the rotating round surface 

o f  the ball cannot be well synthesised.

•  Since the tracking and classification is highly reliant on motion criteria, it can happen 

that objects with a similar intensity to the background are not discriminated very 

well. The man’s hat in Foreman is one example o f  this.

• Another problem evident in the Foreman sequence is that beginning from the 

imperfect initialisation, it takes some time for the whole moving semantic object to 

be identified.
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It is expected that some o f  these problems can be eliminated by a better initialisation 

provided by a user controlled segmentation algorithm.

Figure 6-6: Calendar tracking results: frames 3, 90, 150 (10 Hz sequence was analysed) Frame 3 
was the first frame analysed. Affine models were used. Top-row: the motion segmentations. Bottom 
row: the object segmentations.

Figure 6-5: Hall Monitor tracking results: frames 52,130,220 (10Hz sequence was analysed). Frame 
52 was the first frame analysed. Affine motion models were used. Top-row: the motion 
segmentations. Bottom row: the object segmentations.
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Figure 6-7: Foreman result: frames 200, 225, 250. (25Hz sequence was analysed). Frame 200 was 
the first frame analysed. Quadratic models were used. Top-row: the motion segmentations. 
Bottom row: the object segmentations.

6.3.2 Tracking with Supervised Initialisation

For supervised initialisation, the initial segmentation o f  the first frame is provided by a 

supervised EM algorithm based on the work o f  O ’Connor e t a l  [67]. This is the only use 

o f  human intervention to aid the video segmentation algorithm. The segmentation o f the 

first frame typically labels the object o f  interest with one value and the remainder o f  the 

image with another value. The remainder o f  the image is termed the background and the 

label value is termed the background label value. Provided with this segmentation, the 

overall function o f  the algorithm is to track the object o f  interest thoughout the 

subsequent frames o f  the sequence.

The first step in fulfilling this task is to estimate the motion within the object o f  interest 

and within the background region. There are a number o f  options in computing this 

motion. In the presented results, the initial motion over the whole object o f  interest is 

estimated as a single polynomial function, i.e. affine or quadratic. Alternatively, the
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initial motion within the object o f  interest could be attained by generating a set o f  

motion hypotheses and allowing them to compete. The former approach was chosen due 

to the fact that it is simpler and works w ell in cases where the initial motion o f  the 

object is rigid. The next step is to perform a modified detection step, whereby a new  

motion may be proposed only within the object o f  interest. That is, the detection step 

does not attempt to find new motions within the background area. The new motion is 

validated as usual by MDL-based criteria. At this point, the following information is 

available:

• the shape o f  the object o f  interest, i.e. the semantic segmentation for the first frame 

(as is provided by the methods presented in [67]),

• a motion segmentation o f  the object o f  interest (identifying at most two motion 

regions w ithin the object), and

• the motion parameters associated with the motion segmentation.

These three pieces o f  information are used in the projection step to find the new shape 

o f the object in the next frame. This is achieved by forward motion compensating the 

regions o f  the motion segmentation and running an EM algorithm to refine the so-given 

in i tia l estimates o f  the projected segmentation and associated motion parameters. The 

union o f  all the projected sub-segmentation regions forms the new shape o f  the object as 

per Figure 6-1. Following this, the detection/validation step is again applied in order to 

detect and estimate any new motions. The implementation o f  the 

projection/detection/validation step is identical to that o f  the unsupervised algorithm and 

these steps are applied at every frame.

The only differences between the supervised and unsupervised algorithm are:

• The initial shape o f  the object o f  interest is given at the start o f  the algorithm.

• The detection step only sub-segments within the object o f  interest. In this way, the 

motion complexity o f  the object o f  interest is adapted, whereas the motion 

complexity o f  the background is not adapted. This detection approach is also such 

that pixels o f  background area are labelled with a single known value at the 

beginning and pixels labelled with any other value are deemed to be part o f  the object
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o f  interest. Indeed, this allows a simple automatic process to be applied for making 

the union o f regions and producing the final shape o f  the object o f  interest in each 

frame o f  the sequence.

Figure 6-8: Initial supervised segmentations for the two test sequences

Figure 6-9: Foreman tracking results: Frames shown are numbered 25, 50,75,100,125,150,175, 
and 200.

Figure 6-10: Effect of occlusion on tracking : Frames shown are numbered 252,254,256 and 258.
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The results o f  the tracking algorithm with the supervised initialisation are shown for the 

Foreman sequence and Mother and Daughter sequence. The initialised semantic objects 

are shown in Figure 6 -8 . A summary o f  the tracking results for Foreman over an 8 

second duration is shown in Figure 6-9. The Foreman results are impressive when one 

considers that there are approximately five million pixels in this 8  second moving video 

sequence and that the tracking algorithm has rightfully classified the vast majority o f  

them. However, the small percentage o f  mis-classified pixels are very noticeable in 

some cases. Some flaws are evident in the region o f  the man’s hat. This is due to the fact 

that the pixel classification is based on luminance information only (i.e. the watershed is 

based on the luminance component; the suitability o f  a given motion model is quantified 

in terms o f  its ability to synthesise the luminance information). That is, no chominance 

information is used. Since the luminance content o f  the hat is very similar to the 

background, this makes discrimination very difficult. Figure 6-10 shows the case when 

the man’s hand is swept across his face and away again. This kind o f  occlusion and 

unocclusion causes the tracking performance to rapidly deteriorate without the 

possibility o f  unassisted recovery.

Figure 6-11: Mother-Daughter (30 Hz) results: Frames shown are numbered 60,120,180, and 
240.

The Mother-Daughter sequence possesses much simpler motion than the Foreman 

sequence and hence results would be expected to be very good. However, this 

expectation is not fulfilled. Firstly, when using the weakened contextual constraint o f  

Equation 6-4, the segmentations become very noisy around the object edges and 

eventually, after several tracked frames the whole consistency o f  the object is eroded. 

The root o f this problem is the almost total emphasis on motion criteria for allocating 

pixels. The motion o f  the semantic object is w ell estimated and it does the task o f  

forward projection very well. However, when it comes to refining the shape o f  the 

projected object, it happens that the object motion can be equally applicable to the
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background regions. That is, many background pixels get allocated to the foreground 

object due to the fact that the foreground motion is quite suitable for them also. This 

discrimination problem occurs because this sequence possesses a combination o f  

untextured background and very small motion magnitudes in the foreground object. 

Hence, for many pixels, the motion-based discrimination criteria applied in the EM 

steps do not work well. This observation leads to the conclusion that the exact 

placement o f  the object contours at each tracking step should not be heavily reliant on 

motion. The projection step should rely on motion information to get a first estimate o f  

the object shape, but in refining this first estimate texture-related criteria should be 

emphasised more.

Given that the weakened constraint did not operate w ell on this sequence, the full 

watershed constraint o f  Equation 6-3 is used for the presentation o f  results. The 

drawbacks with this constraint are evident from Figure 6-11. The problems are, as 

outlined previously, that the watershed is attracted to the dominant contours within the 

image. As the object moves, the tracked object contours may come close to a more 

dominant contour, i.e. a contour with a more contrasted intensity edge. At this point, the 

watershed has the effect o f  locking the tracked object contour onto the dominant contour 

and due to the temporal constraint inherent in the tracking algorithm, this dominant 

contour remains for the duration o f  the tracking process. This is the reason why the 

tracked object shape appears to grow in size over time.

6.4 Summary

A  novel approach to semantic object tracking is presented in this chapter. This approach 

relies on piecewise motion models for an accurate estimate o f  the object’s motion. The 

object’s motion is used to forward project the object’s shape and a new spatially and 

temporally constrained EM algorithm is formulated to refine the projected shape and the 

motion estimates. The reliance on accurate motion representation calls for the use o f  a 

hypothesis generation/validation process for adapting the motion model complexity to 

the varying degrees o f  motion being exhibited by the actual object.
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The refinement o f  the object’s shape is an aspect to which much attention has been paid. 

Various new constraints based on the watershed have been experimented with. The 

particular emphasis is on obtaining very accurate contour placement by aligning them to 

texture edges. The results o f  this approach show an improvement over the traditional 

MRF-based approaches for basic motion segmentation.

More generally, the results o f  the proposed tracking system are promising. It is believed 

that the overall approach is sound, but that much improvement is possible in the area o f  

actually making the final decisions on where to place the contours o f  the tracked object. 

The contextual constraints presented here for this purpose are far from perfect and could 

undoubtedly be improved upon. Alternative approaches to contour localisation might 

also prove useful.

As is usual, complexity is always an important issue when processing video data. The 

complexity o f  the approach may be attributed to:

•  the iterative nature o f  the EM algorithm,

• the motion estimation by the Gauss-Newton method (also an iterative estimator), and

•  the brute-force MDL-based hypothesis validation procedures.

For a more practical deployment o f  the proposed algorithm, it would be advisable to 

look at methods which can maintain the necessary performance, but which might be less 

complex. The software implementing the algorithm is totally unoptimised but it should 

be said that it can require 10-20  hours run to process 10  seconds o f  video at full frame- 

rate on a Sparc-20 workstation.

In general terms, it can be concluded that the segmentation o f  semantic video objects 

might be efficiently performed by supervised approaches. One simple approach has 

been illustrated whereby a good initial supervised segmentation o f the object is provided 

in the first frame and tracked throughout the remainder o f  the sequence. From results, it 

is clear that further supervision w ill need to be employed at certain locations in the 

sequence. This is due to inadequacies in the automatic tracking algorithm and due to
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events which cannot be w ell coped with, e.g. occlusion/un-occlusion. When such flaws 

appear in the tracked segmentation, the user w ill be required to correct it. Supervised 

video segmentation is still very much a problem area and much work w ill be required to 

make it practical over a wide range o f  video source material. Future research should 

concentrate on the following aspects:

•  supervised segmentation o f  semantic objects from single images as in [67],

•  improved tracking algorithms as presented here, with particular emphasis on suitable 

methods for maintaing accurate contour localisation throughout time, and

•  methods and image representations to ease the correction o f  segmentations at any 

point in a sequence.

The overall goal o f  this research should be to minimise the intervention o f  the user so 

that accurate and useful semantic objects can be obtained with a minimum o f effort.
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7. C o n c l u s i o n s

Object-based video compression was proposed in the mid-eighties and aimed at 

providing higher quality compressed video. For a variety o f reasons, this aim has not 

been achieved. Early efforts such as SIMOC suffered because o f  the immaturity o f  the 

topic. MPEG-4 has since adopted object-based methods and developed very efficient 

compression techniques. MPEG-4 is selling object-based technology to industry based 

on a belief that many new and useful functionalities can be provided. In particular, it 

eases the process o f  content provision and allows much needed interactivity in 

multimedia programmes. Several new technical challenges are presented by this focus 

on object-based technology. Two problems in particular are addressed this thesis, i.e. 

shape compression and video segmentation. In each area, this thesis has reviewed 

previous solutions and then presented new solutions which exhibit varying degrees o f  

success.

The design o f  compression methods for object shape has been tackled very successfully. 

An algorithm utilising context-based arithmetic encoding has been developed by the 

author. The new aspect o f  this algorithm lies in the fact that a block-based paradigm is 

chosen and in the fact that context-based arithmetic encoding is used for inter-frame 

coding. The algorithm is capable o f  providing very efficient lossless and lossy codes for 

object shape, while also meeting ancillary requirements such as feasible implementation 

complexity. Indeed, the algorithm performed so well in competitive tests, that the 

MPEG-4 working group has adopted it as part o f  the new MPEG-4 international 

standard. In addition, the author has filed a patent application based on elements o f  this 

block-based CAE. Finally, it should be noted that some minor adaptations to the main 

algorithm are necessary to provide error resilient representations and compression o f  

interlaced alpha channels. The author describes these adaptations in [16].

The second problem addressed is video segmentation, i.e. the acquisition o f  the object 

shape (alpha maps) from the video sequence in which the object resides. The approach 

taken in this thesis is highly reliant on motion estimation and segmentation. In the area
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o f  motion estimation, polynomial motion models have been used since these are 

effective in synthesising the effects o f  real 3-D object motion. Several well-known 

Newton-based methods, notably Quasi-Newton and Gauss-Newton methods, have been 

compared for estimating these models. This work has added to the volume o f  

knowledge on the estimation o f  polynomial motion models and resulted in showing that, 

as in previous literature, the Gauss-Newton method is a superior estimator. The thesis 

has highlighted that the complexity o f  Newton-based estimators is sufficiently high that 

their use in real-time systems is difficult. To address this problem, a fast Gauss-Newton 

algorithm has been developed. This fast algorithm benefits by minimising the size o f  the 

observation set, i.e. the number o f  image pixels which are considered by the estimator, 

and by using look up tables for the implementation o f  the image interpolation filters. 

Computational analysis reveals that the fast algorithm can work 2-3 times faster while 

maintaining excellent estimation performance.

Chapter 5 discusses several automatic segmentation approaches. In particular, a motion 

segmentation approach was implemented using the Expectation-Maximisation (EM) 

algorithm and the Minimum Description Length (MDL) principle. The method treats 

segmentation as a complex model fitting optimisation problem. The optimisation 

criterion seeks to minimise the inter-frame coding cost o f  the video frame as represented 

by the segmentation and the motion parameters associated with each segment. To 

facilitate this goal, some effective coding model for the shape information is required in 

both the E-step (responsible for classifying pixels) and in the coding cost itself (used in 

the MDL-based hypothesis validation). The author has chosen to use local Markov 

random field (MRF) models for this purpose because these are quite similar in principle 

to the coding models used in the CAE shape compression method. Specifically, the 

description length (used for MDL hypothesis testing) uses an MRF model to estimate 

the coding length for representing the segmentation map and a similar MRF model has 

been incorporated into the E-step in order to produce spatially coherent segmentation 

maps. The results o f  this approach are judged (subjectively) to be at least as good as 

those presented by Ayer and Sawhney and better than those presented by Wang and 

Adelson. However, with respect to the goal o f  aiding in the task o f  high quality semantic 

segmentation, some deficiencies are very evident. While the general shape o f  the

180



moving objects can be recovered and the segmentations are very clean and coherent, the 

location o f  the contours is not sufficiently accurate to be used in real applications such 

as video editing and so on. The overall concept o f  minimising coding cost is intuitively 

attractive. However, the results suggest that a segmentation minimising inter-frame 

coding cost does not necessarily correspond with a segmentation which accurately 

captures the contours o f  the semantic objects. Based on this observation, the author has 

developed new methods for improving upon the placement o f  the segmentation 

contours, as summarised in the following paragraph.

As discussed in chapter 6 , the observation that motion boundaries generally coincide 

with texture edges has led the author to develop a new and powerful contextual E-step 

based on the morphological watershed. When computing the ownership probabilities for 

a given pixel, the probabilities o f  other pixels in the same watershed region are 

considered. In effect, the watershed constraint results in an E-step which classifies 

watershed regions rather than pixels. When, as is very often the case, the watershed 

accurately captures the contours o f  the moving semantic object, then the resulting 

segmentations show significant improvement over the MRF-based E-step. However, 

when the watershed occasionally overlooks an important contour, then this contour will 

not appear in the final segmentation.

Since the overall aim o f  the segmentation work presented in this thesis relates to the 

segmentation o f  video sequences and not merely to the segmentation o f  single images, 

the development o f  tracking mechanisms is very apt. The EM-MDL scheme (augmented 

with the watershed-based E-step and improved description length) has been 

encorporated for the first time within a framework designed to track moving objects 

throughout a sequence The algorithm relies on the maintenance o f  a piecewise 

polynomial motion model for the moving object. This model is used to project the 

segmentation from frame to frame and this provides a good initial guess o f  the location 

and shape o f  the object in the future frame. Given the initial guess, contextual 

expectation-maximisation is used to refine the estimated shape. For this refinement step, 

the author has devised novel methods which allow the projected segmentation o f  the 

object to have influence within the segmentation process for the current frame. It
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involves deriving conditional probabilities for the current segmentation based on the 

previous segmentation and then integrating these probabilities into the E-step which 

refines the initial guess given by the motion projected object shape. Thus, the E-step o f  

the tracking algorithm combines these temporally-derived probabilities with the 

aforementioned spatial watershed-based constraint. The segmentations produced in this 

way are therefore clean and coherent in both space and time. Also significant is the fact 

the framework uses a piecewise motion model which is adapted at each frame to the 

complexity o f  the underlying object motion. This is achieved by mechanism for 

generating new hypotheses and an MDL-based hypothesis tester which can eliminate 

both old and new hypotheses. By this mechanism, the number o f  motion models and 

corresponding motion regions used to project the object shape varies in accordance with 

the varying nature o f  the object motion.

The performance o f  the proposed tracking algorithm is good in some cases and bad in 

others. The EM-MDL tools can produce motion representations which are consistent 

with the real object motion and these motion representations can be relied upon to 

accurately project the object shape from frame to frame. However, the criteria used in 

classifying pixels are not robust. These criteria suffer from the common difficulty in 

accurately placing a contour, especially when the associated intensity edge is afflicted 

by either o f  two extreme characteristics, i.e. when the edge has little or no intensity 

gradient or when the edge is located in a ‘busy’ part o f  scene amidst other possibly more 

dominant and sharper edges. In either case, the watershed can fail to help choose a 

suitable contour location. In addition to this common problem, the pixel classification 

criterion is founded on motion model suitability. That is, in the absence o f  any other 

constraint, a pixel is classified to the model which most accurately represents the pixel. 

In cases where the object motion is slight, this can cause some unexpected problems as 

has been demonstrated by applying the method to the seemingly simple Mother- 

Daughter sequence.

The results o f  the tracking algorithm have been obtained using a supervised 

segmentation o f the first frame o f the sequence and despite the aforementioned 

shortcomings, it must still be observed that, in each image, a significant proportion o f
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the object’s contour is captured with an accuracy which could suffice in high quality 

applications. It is only is cases o f  highly complex motion and/or occlusion that the 

algorithm fails drastically. Hence, it is believed that some or all o f  the innovations 

presented in this thesis can prove useful in future supervised video segmentation 

systems. Due to the accurate tracking and the use o f  the texture oriented watershed 

constaint, it appears that the algorithm can relieve the user o f  a significant work-load.

An increasing number o f  researchers, including the author, firmly believe that the shape 

o f semantic video objects in 2-D images can o n ly  be accurately recovered by a 

supervised approach. The supervised approach allows the human user to complete the 

tasks that a computer is incapable of. Future segmentation work should initially 

concentrate on building an integrated application around the presented image analysis 

engine or some similarly functioning engine. The major components o f  such a 

supervised segmentation tool can be envisaged. The tool should comprise an advanced 

graphical user interface for capturing the wishes and knowledge o f  the human user, and 

this information should be fed to a powerful automatic image analysis engine to perform 

the necessary remaining tasks o f  placing the exact object contours. The human 

interaction has the function o f  performing the semantic interpretation, i.e. selecting the 

object to be segmented, correcting the segmentation results: all tasks which the 

computer is incapable of. The graphical interface is the link between what the user 

intends, i.e. the segmentation o f  a particular semantic object, and the language that the 

image analysis engine understands, i.e. texture and motion primitives. It is believed that, 

currently, the graphical interface is a much under-estimated component o f  the system 

which w ill have a significant result on the eventual system performance and ease o f  use. 

This belief is motivated by the prediction (based on experience) that no matter how  

powerful the image analysis engine is, the time consumed in any given segmentation 

task w ill be dominated by the interaction o f  the user. The tools provided for this 

interaction should be thought over very carefully, as should their link with the 

underlying image primitives. The final part o f  the system, the image analysis engine, 

comprises all the automatic algorithmic elements for placing contours, classifying pixels 

and tracking moving objects.
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Examples o f  similar commercial image editing systems, e.g. Corel, Adobe Photoshop 

and Automedia’s Automasker, should be studied to glean valuable experience in the 

way graphical user interfaces can be designed effectively. When a first system prototype 

exists, it w ill provide a good platform for effective evaluation o f  new or improved 

versions o f  the image analysis engine. Ultimately, this approach, based on evaluation o f  

the integrated system, may lead to high quality supervised segmentation systems and 

hopefully, this w ill arrive in time to enable the new multimedia applications which 

MPEG-4 promises.
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Appendix A

A l. Quadratic Motion Model: An Example

The quadratic m otion m odel is expanded below  but first som e generalised definitions.

x' = (x' /)J;x = (x j/) 

For a m odel o f  order n,
i n i  \
'Z 'Z a(ixH y J
¡“0 j=0

i l V ' V
\  i=0 ]= 0 y

x' = x + = x + B 0,

f  ctc' 3 y 'V  

<%00 ^00

where B  = $EL
3 6 )

chc' 3 y '

cb nn.

6 = {60 6X ........... 0m_j) =(<20o

and m =  (n + 2)(n +1);

and

a nn * 0 0

For a quadratic m odel (n=2) w e get,

x' = x+(fl00 + v +«u y +v 2 +a 2\x y + an  y z)

y'  =  y  + (*oo + *10* + bny  + b20x 2 + b2lxy + b22y 2)

B =

a10 «a a20 «21 «22 *00 K K *20
X y *2 xy y 2 0 0 0 0 0 o"
0 0 0 0 0 1 X y *2 xy y 2)

A -l



A2. A QN Estimation Example

For QN, it is necessary only to calculate the error gradient vector at each iteration according

3 9

~3a'~ " * , ( ? ) }

.  & . 3a  j
0=01

For a quadratic model,

—  = R r =
39

3 ¿_

3s.

1 x  y  x 2 x y  y 2 0 0 0  0  0  0 >r

0 0 0  0  0  0  1 x  y  x 2, x y  y 2 j

( 3k'
' l  + a ^ + l a ^ x  + a n y  bl0 + 2 b20x  + b2ly  N 

 ̂ a n  +  a2lx  +  2^ 22̂  1 +  bu + b21x  + 2 b22y ;

3a

3x 3k
3k' 3y'
3y 3 y)

3k¿r,(x)
I 3y )

x=x'

A3. A GN Estimation Example

For GN, the Hessian and gradient are evaluated according to:

0=ek

and

h (é¡,) = E 3 a ’ ^ , ( X' ) Y da!

3 9  3a V 3 9  3a
0=0̂

at each iteration.
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For a quadratic model,

—  = R r = 
dO

*,(»0
da

V1-
1 x y  
0 0 0

dtx
3 , ( X)

. 4" -

X

0
xy
0

0 0 0
1 x y

0 o o Y
x xy y  J

A4. Gradient derivation for QN

The error function is given by:

The gradient o f  the error function with respect to 6  is:

> i £ ! '

B y the chain rule,

Equation A -l

* , ( * ' )  _ at! 81 A?) _ da' r fa'V &'(*')
dO ee da’ 8Q da da

and substituting this into Equation A -l yields
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da' * ,(* ■ ) !
.  . da

A5. Gradient and Hessian derivation for GN

The error function is given by:

A e ) = y 2 Ei(/„,W-/,(x'))i}

Equation A-2

At iteration fc+1, w e can approximate w ith a first order Taylor series as discussed in

Chapter 4.

. d i ,  

da j

(Ax»)

(BAff.)

and then substituting this into Equation A -2, w e get an approximated error function which  

is quadratic in  the the variable A0k .

e {A 0 k)  =  / 2 E
da

T \  2

B . A 0 k

For convenience, w e w ill write VI = 

is written as,

<3T,(xi)
^  and e = IM (x)- I , ( x i ) . The error function now
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e[AOk) = y 2E { ( s - V I ’-B.Aety }

Equation A-3

To find the minimum, we differentiate Equation A-3 with respect to A 0 k and set the result 

to zero.

Cê k -■ = e { b t V I (^ -V I TB.A0k)} = e { b t V I £ -  B TVIVITB.A0k} = 0

Solving for A0k , we get

A0k = E {(B rV l)(B rV l)r }"'.E{BrVI£) or Afl, = H ( ^ ) ' ' .g ( ^ )
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