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Object-based Video Representations: Shape
Compression and Object Segmentation

Noel J. Brady
ABSTRACT

Object-based video representations are considered to be useful for easing the process of
multimedia content production and enhancing user interactivity in multimedia
productions. Object-based video presents several new technical challenges, however.

Firstly, as with conventional video representations, compression of the video data is a
requirement. For object-based representations, it is necessary to compress the shape of
each video object as it moves in time. This amounts to the compression of moving
binary images. This is achieved by the use of a technique called context-based
arithmetic encoding. The technique is utilised by applying it to rectangular pixel blocks
and as such it is consistent with the standard tools of video compression. The block-
based application also facilitates well the exploitation of temporal redundancy in the
sequence of binary shapes. For the first time, context-based arithmetic encoding is used
in conjunction with motion compensation to provide inter-frame compression. The
method, described in this thesis, has been thoroughly tested throughout the MPEG-4
core experiment process and due to favourable results, it has been adopted as part of the
MPEG-4 video standard.

The second challenge lies in the acquisition of the video objects. Under normal
conditions, avideo sequence is captured as a sequence of frames and there is no inherent
information about what objects are in the sequence, not to mention information relating
to the shape of each object. Some means for segmenting semantic objects from general
video sequences is required. For this purpose, several image analysis tools may be of
help and in particular, it is believed that video object tracking algorithms will be
important. A new tracking algorithm is developed based on piecewise polynomial
motion representations and statistical estimation tools, e.g. the expectation-
maximisation method and the minimum description length principle.
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GLOSSARY

image channel specifying the degree of transparency for each
pixel

efficient method of encoding data given the probability
distribution of that data

automatic repeat request: the ability of a receiver to detect a
transmission error and to request the re-transmission of the

corrupt data

binary alpha block: ablock of pixels from abinary alpha
channel

studio procedure through which a foreground object shape
maybe recovered

context-based arithmetic encoding: efficient method for
compressing binary image data

Compact-Disc/Read Only Memory: a high density storage disk
used for removable read-only memory on computer systems

procedure by which avideo programme is produced by putting
together one or more visual objects in space and time

a European collaborative group coordinating research on video
coding for telecommunications

Discrete Cosine Transform: a reversible transform used to
achieve redundancy removal in image compression systems

Digital European Cordless Telephone: a system supporting the
use of mobile telephony within local areas

Differential Pulse Coding Modulation: a coding method using
prediction and finite precision quantisation

Expectation-Maximisation: an iterative parameter estimation
method for solving problems of incomplete data

Gauss Newton: a simplification on the Newton method, used for
function optimisation

avector of first-order derivatives for multi-variable functions
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INTRA

compression

INTER
compression

ISDN

ISO

ITU-T

JBIG

MAD

MB

MDL

ML

motion
compensation

MPEG

MR

MRF

Global System Mobile: a single system supporting mobile
telephony on aworldwide basis

a matrix of second-order derivatives for multi-variable functions

iterative conditional modes: a method used to incorporate
contextual models into the segmentation process

the compression of an image by eliminating spatial
redundancies within a single video frame

the compression of an image by eliminating spatial and temporal
redundancies between video frames

Integrated Services Digital Network: a public digital network
intended to replace PSTN while also adding new and improved
services

International Standards Organisation

International Telecommunications Union

Joint Bilevel Image Group: an ISO/ITU-T group that designed a
system for binary image compression

Mean Absolute Difference

Macro-Block: a defined subset of an image on which
compression tools are applied ( a macro-block contains 16x16
pixels)

Minimum Description Length principle: a means of defining an
optimisation criterion for model fitting problems where no

bound on the complexity of the model is specified

Maximum Likelihood estimation: a method of parameter
estimation based on a choice of the most likely parameter values

a method used to achieve INTER compression by using the
estimated inter-frame motion

Motion Picture Experts Group: an 1SO working group dealing
with the standardisation of coding methods for multimedia data

Modified Read: a simple coding method used in FAX systems

Markov Random Fields: a convenient means to impose local
contextual constraints on a classification or segmentation



procedure
MSE Mean Squared Error

MUX Abbreviation for multiplexor, a device used to combine several
information channels into one

optical flow amap of 2-D vectors representing the apparent pixel motion
between two images of a sequence

outlier an event which does not belong to any existing group

PDF Probability Density Function

progressive a representation which facilitates fast transmission of initially
representation low quality pictures, with the quality building up over time as

further transmitted data is used to enhance the picture.

PSTN Public Services Telephone Network: the conventional analogue
telephone network

QN Quasi-Newton: a simplification on the Newton method, used for
function optimisation

RGB colour-space a System used for representing image colour whereby a pixel has
a colour combining various degrees of red, green and blue

RLE Run Length Encoding: a coding method based on assumption
that a data sequence contains long consequtive runs of one or
more data values

segmentation the process of grouping image pixels according to some
common characteristic

SIMOC an early object-based video compression algorithm developed
within COST 21 Iter

template for a given pixel, the template is a definition of the other pixels
in the local neighbourhood

UMTS Universal Mobile Telecommunications System: a system
intended to unify mobile networking standards while providing
higher bandwidth

VLC Variable Length Coding: a coding method by which the more

frequent events are represented with the shorter codes.

VM Verification Model: ain-progress description of a coding



method as it moves towards standardisation

VOP Video Object Plane: the raw representation of a video object at
any given time instant, any image consisting of Y,U,V and alpha
channels

VQ Vector Quantisation: compression method using tables to store

common data combinations
watershed ameans of image segmentation using morphological methods

YUV colour-space a colour space which is related to the RGB colour space by a
linear transformation



1. Introduction

Digital video compression has been among the most popular research and development
fields during the past twenty years. The result of this concentrated effort has been that a
number of international standards have been published enabling video communication
for various applications. These comprise the ITU-T H-series recommendations and the
ISO/IEC MPEG standards. The compression methods published in ITU-T
recommendation H.261 [37] have enabled video telephony and tele-conferencing at
rates ranging from 64 Kbits/s to 2 Mbits/s. The ISO/IEC standard MPEG-1 [50],[54]
has enabled compressed storage and playback of digital video from hard disks and CD-
ROM devices, optimised for rates around 1.5 Mbits/s. These two standards are suitable
for progressive video representations. For applications in the digital television domain,
methods for interlaced video compression were required. MPEG-2 [32],[55] was built
on top of MPEG-1 by adding compression tools for interlaced video, thus providing TV
and studio quality video at rates between 2 Mbits/s and 16 Mbits/s. By 1994, most
envisaged applications had been provided for by the published standards. Even so, the
search for increased compression and quality continued. For all applications, network
bandwidth was proving scarce and costly. Those networks that were widely available,
did not provide an adequate vehicle for video communications with acceptable quality.
Additionally, the complexity of the compression algorithms meant that digital video
encoders and decoders were relatively expensive. For video telephony, there was a
reliance on the deployment of ISDN for the provision of adequate bandwidth
communication channels. The slow uptake of ISDN still proves to be a major obstacle to
the widespread use of personal video terminals for telephony purposes. For TV
applications, broadcasters welcomed any technology that could increase the number of
programme channels being broadcast on existing links. Recently, the ITU-T published
H.263 [38]. The purpose of this standard was to provide increased compression
performance so that video applications could be enabled on low bit-rate/low quality
channels. Specifically, the networks targeted were the existing PSTN network and the
emerging digital mobile networks, e.g. GSM, DECT and UMTS. H.263 succeeded in
achieving the same quality as H.261, but, with only half the bandwidth. Also, at this



time (in 1996), it was becoming clear that advances in integrated circuit design would
soon result in faster general purpose processors capable of bringing video applications
to the PC without additional hardware support. This was the situation when a new

standardisation effort was launched by the I1SO, i.e. MPEG-4.

MPEG-4 initially endeavoured to produce gains in compression efficiency, allied to the
provision of new and improved functionality. After an initial round of competitive tests,
based on new proposed technology, it became apparent that no considerable gains in
compression could be foreseen. Some new techniques were producing 10-20 %
improvements over H.263, but it was widely held that gains exceeding 200% would be
required in order to justify yet another video standard. Despite this, within the MPEG-4
community the need was strongly felt for new and improved functionalities. Many
supported the view that there was scope for much improved error resilient video
representations which could better stand the test of highly error-prone network channels,
e.g. PSTN and mobile channels. Others sought to provide new representations that were
more amenable to editing and post production needs, for applications in multimedia
authoring and TV/film production. Others still saw a need for introducing more user-
interactivity into multimedia applications, thus merging the concepts of virtual worlds,
animation and the more traditional visual media. MPEG-4, now almost completed, is

underpinned by these new and improved functionalities, i.e.

* improved error resilience
» object-based video editing

» object-based interactivity.

This is not to say that MPEG-4 ignored the compression problem. Each new or
improved functionality is provided, while still endeavouring to maximise compression
efficiency. In tackling the object-based functionalities, compressed object-based video
representations were naturally called for. The problems and challenges associated with

object-based video representations form the subject of this thesis.



Firstly, it is important to define what exactly is meant by an object-based video
representation. Traditionally, a video sequence is represented as a sequence of images,
with each image represented by a rectangular grid of pixels and each pixel having an
associated colour value. In the object-based paradigm, a video sequence consists of one
or more video objects, where a video object is represented by a sequence of object
images. An object image is, once again, represented by a rectangular grid of pixels.
However, the difference is in the fact that each pixel not only has a colour value but also
a so-called alpha value. This alpha value specifies the degree of transparency for each
pixel. Therefore, the alpha component of the object image may be used to define the
spatial support or shape of a 2-D object. A pixel with an alpha value of 255 is
considered to be part of the object and a pixel with an alpha value of zero is considered
to be outside the object. The presence of this alpha component enables the composition
of several object images to form a composited image. The process of composition
involves blending an object image onto the composited image. The blending is
controlled by the alpha value specified at each pixel of the foreground object image. Ifa
pixel has an alpha value of zero, then it is totally transparent and there is no change in
the composited image. If the pixel has an alpha value of 255, then it is regarded as
totally opaque and the composited image pixel takes the colour value of the object

image pixel. In general, the composition at a pixel is specified as:

wherep is the value of the pixel in the composited image and q is the value of the pixel

in the object image.

So, an object-based video representation differs from traditional representations in that
it contains this additional alpha information used for composition and in the fact that the
scene displayed on screen is really due the composition of one or more video objects
rather than just a single rectangular image. Since each video object is represented
independently of the other video objects, editing the displayed scene becomes relatively

easy. This is seen as the single largest advantage of object-based video representations
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since it allows great flexibility and simplicity in the creation of video content. Since
video objects may be stored independently, it also simplifies the re-use of content.
Given a database of video objects, a brand new production is possible, simply by being
able to configure the composition process, answering questions like, what objects? ... in
what positions? ... at what time? Without the object-based representation, compressed
video sequences containing the various objects, would have to be decompressed and
edited in raw uncompressed format to extract the objects of interest (segmentation).
Then, all of these objects would be composited and re-compressed into a new video
sequence. The processing power, storage and time requirements for such a procedure are
inordinately large. Also, in the event that the same object is required for another
production some months later, the processes of de-compression, segmentation,
composition and re-compression must all be repeated again. In the light of these
difficulties, object-based video representations are very attractive, avoiding the need for
transcoding (i.e. decoding and re-encoding) and allowing for the re-use of segmented
video objects. However, object-based representations have advantages outside the area
of content production. They also present the opportunity for a consumer (viewing a
programme or presentation) to interact with the content. For example, it is now feasible
for a user to customise his/lher TV screen, whereby two programme channels are
displayed at once, along with several other dynamic information sources (e.g. sports
results, stock prices). While this kind of display is common today, it is not possible for a
user to select what content he/she wishes to be displayed. The content make-up is
decided by the broadcaster and may not be altered by the consumer. Finally, with
object-based representations, it is also becomes feasible to turn multimedia programmes
into graphical user interfaces, where the programme contains clickable objects which
are linked to some response. For example, the user may click on a bear in the zoo in

order to receive further and more detailed information about it in textual format.

MPEG-4, with its object-based video representation, opens many new exciting avenues
for the entertainment and multimedia industries and certainly there are many uses which
have not been foreseen, as yet. Unfortunately, the above scenarios hide a few important
details. Firstly, the flexibility of object-based representations comes with a penalty in

terms of compression efficiency. Each video object, as mentioned, must have an alpha
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component, i.e. extra information to compress. In order that the overhead associated
with the alpha information does not become prohibitive, very efficient alpha
compression techniques are required to allow high quality broadcasting and storage of
the video objects. Secondly, there must be some means to acquire the alpha information
in the first place. In studio productions, it is possible to design the set to allow chroma-
keying (blue-screens). An object (always a different colour to the background screen)
placed in front of the blue-screen can be easily sensed and the alpha information for the
object can be recovered. However, outside of the studio, it is often not feasible to set up
the same conditions. As such, some more general means must be provided for acquiring
the alpha information from a given sequence. The difficulties associated with the
acquisition of alpha information, often referred to as video segmentation, are a major
hindrance to the widespread use of object-based video. This thesis addresses the
problem of video object segmentation along with the problem of alpha compression

(object shape coding).

Object-based video coding was initially investigated because it was believed that it
could provide higher compression ratios than those techniques employed in the
established standards. Chapter 2 studies some of the reasoning behind these beliefs and
presents some of the earliest developments towards highly compressed representations.
The review is brought up to date by detailing the motivations of MPEG-4 and briefly

presenting the approach taken to compressing video objects.

As discussed, a major issue with object-based video relates to the need to compress the
alpha information. Chapter 3 reviews some suitable shape coding techniques and charts
the evolution of the solution taken by MPEG-4. The solution developed by the author,
i.e. context-based arithmetic encoding (CAE) for the shape compression of moving
objects, is introduced and results are presented that demonstrate its efficiency. The CAE
approach developed here has been adopted as an essential component of the MPEG-4

standard.

Chapter 4 is devoted to motion estimation. Estimation methods for the family of

polynomial motion models are investigated. This family includes models capable of



dealing with arbitrary rigid body motion. While these advanced motion models have
been successfully employed in some video compression schemes, the main interest here
is in their use for motion segmentation and object tracking purposes. They are later
employed as the basis of the segmentation and tracking methods of chapters 5 and
chapter 6, respectively. Chapter 4 includes a comparison of various motion estimation
methods and the development of fast estimation algorithms for these useful motion

models.

Chapter 5 introduces the problem of video segmentation. Through a number of
examples, the numerous difficulties of automatic video segmentation are highlighted. A
basic iterative framework for segmentation is presented and some promising estimation
tools are described, e.g. the Expectation-Maximisation (EM) algorithm, the Minimum
Description Length (MDL) principle and mathematical morphology. The chapter
concludes that the segmentation of semantic objects cannot be achieved only by
automatic means. Instead, a supervised user-controlled approach relying primarily upon

automatic tracking algorithms is advocated.

Chapter 6 presents a framework for achieving reliable tracking of a moving video
object. The framework is implemented using the previously described estimation tools
(polynomial motion models, EM and MDL) and results are presented for a number of
sequences. The results suggest that the segmentation of semantic video objects is highly

feasible given a supervised approach and a powerful tracking algorithm.
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2. Object-based Video Coding: Past and

Present

This chapter serves to highlight some of the initial motivations underlying the object-
based video coding approach [72]. These relate entirely to the desire for more efficient
video coders. The motivations are illustrated by pointing out important differences
between object-based and the conventional block-based approach of H.261, MPEG-1
and so on. This chapter also serves to highlight the difficulties associated with object-
based coding. It presents and analyses some of the earliest technical solutions to the
problems of segmentation, shape coding and object-based motion estimation and
compensation. Much of the following discussion refers to a very prominent object-based
coding method called SIMOC. SIMOC stands for Simulation Model of COST 21 Iter.
The COST 21 Iter document [23] fully describes the encoding system and was drafted
during 1994 based on contributions from all the members of COST 21 Iter. Much of the
technical content of this document originated from earlier work conducted by the
University of Hannover [36], [63]. SIMOC constitutes one of the earliest, most
complete and well-specified object-based encoding algorithms. It comprises not only

tools for coding shape, motion and texture but also a segmentation approach.

In order to bring the review up to date, the approach of MPEG-4 is briefly discussed and
contrasted with that of SIMOC. At the time of writing, the MPEG-4 standard is
approaching completion and it is most interesting to see how it relies, as much as
possible, on the old established technology of block-based coding, while at the same

time achieving object-based video representation.

2.1 Classifying Object-based Coders, Motivations and Characteristics

In the following, an object-based video coder is defined to be any coder which utilises
shape information. There are mainly two types of object-based coders. The first type is
the compression-oriented variety. Examples of compression-oriented object-based

coders are SIMOC [23] and SESAME [22]. These algorithms have the primary
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objective of outperforming the compression performance of their block-based
counterparts by exploiting shape information (see the next sub-section for the associated
motivations). They can be viewed as comprising an analysis system and a coding
system. The analysis system is responsible for producing the shape information, i.e. the
segmentation map of the source images. The coding system compresses the YUV data
of the source images, using the segmentation map to define the regions on which the
compressed representation is based. Usually, the coding system is also required to
compress the shape information. The compression efficiency of such algorithms is
highly reliant on the analysis system. A good analysis system produces segmentation
maps that are highly amenable to efficient compression. Hence, it is natural and wise to
make the analysis system an intrinsic part of the overall encoding algorithm rather than
to decouple the two sub-systems. An additional characteristic of compression-oriented
approaches is that the segmentations do not necessarily correspond with the semantic
content of the source scene. The segmentations are intended to facilitate efficient
compression, but they do not necessarily facilitate (semantic) content access.
Furthermore, the methods of shape and texture coding are not specifically designed to
support content access. Instead, these algorithms exploit all forms of redundancy
(including inter-object redundancy). As such, access to a single object calls for a full

decompression of the bitstream.

Semantic content access is the objective of the second type of object-based coder, i.e.
the content-oriented coder. The dominant characteristic of this type of coder is related to
the fact that the compressed video bitstream is composed of one or more compressed
video objects and in particular, to the fact that the representation of a given video object
is not dependent on the representation of any other video object. That is, inter-object
redundancy is never exploited. As such, content access (e.g. cut-and-paste operations) is
possible at the bitstream level without any decompression and re-compression. Just as
before, the shape of the video object is provided by a segmentation procedure and
compressed along with the YUV data. However, in the case of content-oriented
algorithms, the segmentation is not treated as an integral part of the coding algorithm.
Instead, the shape of the semantic object is correctly viewed as part of the source data

and not something which the video encoder has any influence upon. The most obvious
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example of a content-oriented video representation is the MPEG-4 video encoder [57],

see sub-section 2.4.

Now, that the distinction has been made between compression and content-oriented
object-based video representations, more detail is given on the motivations for

compression-oriented object-based coders.

2.2 Compression-oriented Motivations

Firstly, it is important to realise that SIMOC and other early object-based coders were
designed with the sole aim of improved coding efficiency. That is, it was never really
intended to provide content-based functionality. In the late eighties, work was already
well advanced in the area of block-based video encoding. The ITU-T recommendation
H.261 [37] had been published, enabling videotelephony and videoconferencing at rates
of 64Kbits/s and upwards. It was noted, however, that the quality of these video codecs
was not acceptable at low bit-rates, i.e. at 64Kbits/s and below. Specifically, low bit-rate
video contained very disturbing blockl and “mosquito”2 artefacts. These artefacts, as
illustrated in Figure 2-1, were entirely due to the block-based motion compensation and

the block-based discrete cosine transform (DCT) employed.

1Block artefacts are characterised by large transitions in the image intensity. These transitions are found along the
block borders and are a direct effect of coarse quantization of the DCT coefficients and/or the block-based motion
compensation. In bad cases, the positions ofblocks becomes evident in the decoded pictures.

2 “Mosquito” artefacts are the result of a combination of inaccurate motion compensation and coarse DCT
quantization. The effect is very much a temporal one where disturbing changes in the intensity take place over time.
Mosquito effects are usually observed close to the edge of a moving object.
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Figure 2-1. Artefacts in low bit-rate block-based video. On the left are high qualit?; video frames
and on the right are the same frames coded at very low bit-rate. Distortion takes the form of blur,
blockiness (see top-rlghte and “mosquito” effects (see the noise close to contours of the ball and the
train in the bottom-right image).

Block-based motion compensation, in particular, was considered to be sub-optimal since
it was extremely limited in the kinds of motion it could synthesise. Protagonists of
object-based representations ventured that representing video in terms of objects,
instead of blocks, would lead to an elimination of these troublesome artefacts and higher
coding gains as a result. Several object-based representations were proposed. The most
natural of these was the 3-D object model. For these models, 3-D information about the
scene was required. Considering the difficulty of 3-D analysis and the tight constraints
placed on the implementation complexity of video codecs, 3-D object-based coding was
immediately viewed as impractical given the technology of the time. As a result, most
attention was devoted to investigating 2-D object-based coding. In this case, it was
required to know only 2-D scene information, i.e. the 2-D shape and location of each
projected 3-D object was needed. This was deemed to be more feasible since it was not
so different from the block-based techniques. The outstanding difference was that the
image would now be partitioned into arbitrarily shaped regions rather than fixed-sized

blocks. Just as motion prediction and error encoding were used to code each block, so
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motion prediction and error encoding would be used to code each arbitrarily shaped
region. However, to faciliate 2-D object-based video coding, the shape of each region
had to be coded and transmitted to the receiver. This was an undesirable overhead.
Nevertheless, it was hoped that the envisaged advantages of coding in an object-based
manner would justify this extra bit-rate. Mainly, it was believed that object-based
motion compensation would significantly improve upon the block-based equivalent. By
this (hopefully) improved motion compensation, it was proposed that a significant bit-
rate saving would be made in encoding the prediction error and that this saving would
exceed the cost of shape transmission. This was the initial justification for 2-D object-

based video coding.

To fully understand this argument, it is necessary to further analyse the deficiencies in
block-based motion compensation. Consider a scene containing a single moving object
translating over a static background. See Figure 2-2 for a simple example. This scene
contains two motions, a zero motion for the background and a non-zero motion for the
foreground. In the most basic block-based coder, the motion within the scene is
represented by a 2-D translational vector for each 16x16 block. Generally, the block-
based partition will not be “in phase” with the moving foreground object. That is, many
blocks will contain pixels from the static background, which have zero motion, and
pixels from the foreground object, which are moving, as is the case in Figure 2-2. For
those blocks that reside on the occluding edges of the moving object, it is not possible to
represent the two motions present. The motion vectors for these edge blocks must,
therefore, be a compromise between representing the zero motion and representing the
non-zero motion and as such the prediction error for these blocks is expected to be large.
Consequently, the prediction error encoding is costly and at low bit-rates the
quantisation noise in the DCT domain is responsible for the aforementioned mosquito

artefacts.
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Figure 2-2: A simple illustration ofthe deficiency in the block-based model for motion
compensation.

Now, imagine that the encoder is still block-based but, the shape and location of the
moving object is known. Then, for these blocks which overlap a moving edge, two
motions could be estimated and transmitted. The prediction error and associated coding
cost would naturally be expected to be smaller. By expending bits to transmit the object
shape, improved predictions are possible and prediction error encoding is less costly.
This is one of the main philosophies underlying the object-based approach and it was a
motivation for Orchard’s block-based approach [68], which attempted to find and

segment image blocks for which a single motion vector was insufficient.

Another deficiency of the block-based approach is also illustrated in the above example.
Despite the content of the scene, a block-based encoder must explicitly or implicitly
transmit motion information for every block in the image. In the given example, there
are only two motions in the scene. The background is static and the transmission of a
single zero-valued motion vector would suffice. The foreground object has a
translational motion and a single motion vector is all that is required here, even if the
object covers many blocks. The transmission of the object shape means that a very
compact motion description can be transmitted for each object. Object-based coders,
therefore, have the potential to produce improved motion compensated predictions using
very compact motion representations. Note that, by this argument, it should be expected

that on higher resolution video, the object-based approach should show more
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improvements over the block-based approach, since at high resolution, block-based

algorithms must code more block motion vectors [73].

In summary, with respect to the goals of improved coding efficiency, object-based
coding is promising due to the advanced interframe predictions which are possible.
Also, very compact object-based motion representations are possible. However, efficient
shape codes are essential if a net coding gain is to result. While the arguments in favour
of object-based video coding seem sound, no object-based coder yet exists which is
generically applicable to scenes of all types and which is superior to the state-of-the-art
in low bit-rate block-based coding, i.e. H.263. There are thought to be a number of
reasons for this. Firstly, the prediction gains achieved with object-based representations
are often minimal. This point has been illustrated by Wuyts et al [96] albeit in a very
limited test scenario. Secondly, the use of compact motion codes is not generically
applicable. Most objects in real scenes do not possess rigid motion. They may be
constructed of many rigidly moving parts, e.g. articulated objects, but the automatic
decomposition of an object into its rigidly moving parts is a very difficult task, akin to
motion segmentation, and it results in additional shape information to be coded. Rigid
body object models and associated coding systems have been implemented [22], but it is
unclear yet if a superior coding performance is attained. For example, the SESAME
coding scheme of Corset et al [22] did not perform as well as expected in the November
1995 MPEG-4 subjective tests. Thirdly, shape encoding algorithms have not had the
time to mature sufficiently and the algorithms used until now were perhaps not optimal.
Fourthly, the verification of object-based coding schemes has always been hindered by
the lack of suitable automatic segmentation methods. Many segmentation approaches
such as change detection [35] almost totally ignore coding constraints, resulting in
segmentations which are very unsuitable for coding purposes. Fifthly, many people
working in the field of object-based coding have ignored much of the knowledge and
experience gained in the area of block-based coding and have chosen instead to
implement content specific coding schemes, which show improvement only on a small

subset of sequence types.
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The failure of past attempts in the area of object-based coding has been, in many ways,
due to the immaturity of the technology. More recently, a technique has been described
by Karczewicz et al [43] which has compared well with the latest block-based
technology. This technique has been extensively tested over a large set of test material
within the MPEG-4 experiment process. The current conclusion is that the small gains
that can be attained come with an unacceptable cost in terms of implementation
complexity. The question remains if the undoubted extra complexity associated with
compression-oriented object-based schemes will ever be justified. The next sub-section
describes one of the first and most prominent approaches to object-based coding, i.e.
SIMOC, and many of the criticisms already spoken of above are illustrated by way of

example.

2.3 The SIMOC Object-based Coder

Figure 2-3 shows a simplified block diagram of the SIMOC encoder. A segmentation
algorithm based on change detection methods is used to produce a ternary segmentation
mask identifying three classes of pixel, i.e. static background, moving area and
background uncovered. Apart from the first frame of the source sequence, only the
moving areas and the uncovered background areas are encoded. The shape of the
moving area is coded using a vertex-based interframe coding method. The motion of the
moving area is estimated based on a uniform grid of motion vectors. The grid vectors
within the moving area are encoded and transmitted. Motion-compensated prediction of
the moving area is performed and so-called model failure regions within it are
identified. Model failure regions are those that are not well predicted by the motion
compensation. These regions require the prediction error to be encoded and transmitted.
Furthermore, the shapes of these regions are also required for transmission. Pixels

comprising the uncovered background area are also encoded.

SIMOC is significant because it was really the first 2-D object-based video encoder and
its principles contributed to the MPEG-4 initiative. Unfortunately, it was plagued by the
fact that assumptions underlying the method imposed too many limitations on the nature
of the sequences that it could efficiently code. The main criticism of SIMOC was that it

was not a generic coder and coding performance was optimised over a very
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unrepresentative class of sequences. As will be explained, several underlying
assumptions are imposed upon source content and this has much to do with its lack of
genericity. Despite this, some of the individual coding tools proposed within the
framework of SIMOC are still considered to be very useful and many have been tested
during the MPEG-4 standardisation process. The key areas of segmentation, shape
coding, motion compensation and prediction error coding are now explored in more

detail.

Analysis System

Synthesis and Coding System

Figure 2-3: Simplified block diagram for SIMOC encoder.

2.3.1 Segmentation by Change Detection

Change detection represents one of the simplest methods for the segmentation of a

moving object from a video sequence. When applied to segment an image at time t, the
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algorithm has three inputs, i.e. the images at time t and t-I, plus the moving area mask

at time t-1. Change detection is applied to the images at t and t-1 as follows.

1. Compute the absolute difference image.

2. Median filter the difference image.

3. Threshold the difference image with a fixed threshold to produce the binary change
detection mask.

4. Clean the change detection mask using morphological filters and small region

elimination.

The change detection is then modified by setting a pixel to CHANGED, if the
corresponding pixel in the moving area mask at t-1 is classified as MOVING. This
change detection mask is deemed to include uncovered background. The final step is to
detect these uncovered areas, removing them from the change detection mask in order to

generate the moving area mask for time t.

The median filtering, morphological filtering and small region elimination are intended
to eliminate the effects of image noise. Interframe changes due to small noise-related
variations in time, tend to be neglected. This is important because the production of a
clean spatially coherent moving area mask means that the moving area mask (the shape
of the moving object) can be highly compressed. The use of the previous moving area
mask is to ensure some degree of temporal coherence in the resulting sequence of
moving area masks. A temporally coherent shape sequence is generally defined to be
one which possesses a high degree of temporal correlation or redundancy. Once again,
this implies that a high compression ratio can be achieved through the use of interframe
shape coding techniques. Moreover, actual moving objects in a given sequence
generally exhibit this temporal characteristic and it is desirable that the moving area
mask sequence should emulate it. That is, the moving area mask should accurately track
the moving objects from frame to frame. As we shall see, most effective segmentation

strategies encompass techniques which ensure both spatial and temporal coherence.
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Several general criticisms are commonly levelled at this change detection approach [96],
[12]. The whole philosophy of SIMOC, which was built into the change detection
method, was to isolate the moving area and concentrate the bit usage on that part of the
picture. With respect to this philosophy, a sequence shot from a moving camera should
theoretically result in all pixels being classified as part of the moving area and the
object-based approach degenerates to a traditional frame-based approach. That is,
SIMOC was an object-based coder only for scenes and sequences with static
background. Many object-based purists viewed this as a great limitation. In fact, in a
practical sense the situation was often somewhat worse. To explain, there is the inherent
assumption in change detection that a pixel within a moving object will experience a
change in its luminance value. This is not a very general assumption. Objects without
significant spatial textural detail can move without changing all their pixel values. For
this reason, with respect to the degenerate case given by the moving camera, the
practical outcome of change detection was not that the whole frame was classified as
moving. Very often, the moving area mask would span a significant (but not the whole)
portion of the frame, yielding a highly complex shape to compress. This, of course, led
to large bit usage for shape, when it would have been more sensible and efficient to
signal in the bitstream that the whole frame was moving. For another example of useless
bit usage for the same reason, consider the example of a white square moving on a
darker background. As illustrated in Figure 2-4c, the moving area is deemed to be the
changing area and as such, the coding system is requested to encode two rectangular
shapes instead ofjust one. Another problem with change detection is that there is also
the inherent assumption that all interframe luminance changes are due to an object
motion. This assumption is seldom justified. For example, changes can be caused by
sudden changes in the scene lighting conditions or by camera noise. The basic change
detection approach is over-sensitive to these variations because it uses only frame

difference information. This point is illustrated in Figure 2-5.
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Fi?ure 2-4; (% Synthetic sequence, a section of Miss America moving at a constant horizontal

velocity, (b) The change detection mask produced for the synthetic sequence in (a), (cg The

BhaT(ge detgcnon mask produced by a constant colour box moving horizontally on a black
ackground.

From the general point of view, it could be argued that the change detection approach
does not explicitly focus on coding oriented criteria. The task of segmentation in
compression-oriented algorithms is to arrive at an optimal partition of the image given
the models and tools employed by the coding system. The SIMOC segmentation
algorithm is primitive in this sense. It only considers that changed pixels from one
frame to the next need to be updated somehow. It does not consider how this updating
will be performed, i.e. the motion compensation and the texture coding methods are not
considered. In addition, no attempt is made to produce smooth shapes in the
segmentation map. Thus, there is also no realisation that shape must be encoded. This
can be noted from some of the change detection results provided in Figure 2-5. Contours
are noticeably jagged and therefore require more coding effort. Furthermore, only a very
weak control is exercised on how the moving area mask can change over time. Hence,
even interframe shape coding strategies are not suitable. Because the change detection
approach has no appreciation of the coding models, there is no guarantee that the
resulting object-based representation of the coder will be efficient. In more recent times,
the basic approach has been augmented by the use of noise modelling and relaxation
labelling [1]. Sometimes, the moving area mask can be adapted so that its contours
adhere to natural gradients in the original image. These additions tend to greatly
improve the performance of change detection methods when applied to noisy sequences.
The use of global motion compensation is being investigated to cope with the case when

there is one foreground object being shot by a moving camera. Despite these undoubted
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improvements, some additional use of coding oriented constraints as described in [22]

are deemed necessary to improve compression efficiency.

Figure 2-5: (a) and (b) are consecutive frames of a 8.33Hz sequence exhibiting illuminatorylnois.e
variations, (c) shows the result of the change detection process with a threshold of 2, while (d) is
the change detection mask with a threshold of 3.

2.3.2 Vertex-based Contour Coding

Among the most common approaches to shape encoding is that based on polygon or
spline models. These models have been used with relative success in SIMOC, where it
is required to encode the shape of the foreground object moving on a static background.
The intraframe approach is very simple. The contour of the object is described by a list
of vertex locations. Each vertex is described by an (x,y) co-ordinate which resides on the
contour. The remaining contour points are interpolated by means of a polygon or spline.
Fixed parameter splines are used so that the spline parameters do not have to be
transmitted. Only the vertex locations are encoded. This is done by a DPCM method.
The contour vertices are scanned in a predefined order. The value of the first vertex is
coded using a fixed length code. For subsequent vertices, the previous vertex is chosen
as a predictor and only the prediction difference is encoded using an arithmetic

encoding method.

The efficiency of such a scheme relies on a good method for choosing the vertices. In
SIMOC, a top-down divide-and-conquer approach is employed. An initial small set of
vertices are placed at selected contour points. While the contour is still badly

approximated, further vertices are placed in between existing ones. The final
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representation (within SIMOC) is a lossy one, with the approximated contours being at

most two pixels distant from the original contours.

In SIMOC, an interframe coding method was developed based on this representation.
Since each shape is represented at the decoder by a list of vertices, the vertices at frame t
are used as the prediction for the vertices at frame M-I. In fact, the vertices at frame t are
displaced according to their motion in order to provide an even better prediction of the
shape at t+1. The prediction itself is formed by interpolating between the predicted
vertices. Naturally, this prediction has certain associated errors. These errors are taken
into account by the insertion and coding of new vertices, which are placed on contour
points which are not well represented by the prediction. After the insertion of new
vertices, there may be a certain amount of redundancy in the vertex list. That is, if three
vertices roughly lie on the same polygon or spline curve, then the centre one is rejected
from the vertex list. The result of this is that the encoder must transmit the list of new
vertices, plus overhead information stating the locations of these new vertices and

indeed, the rejected vertices.

This method is promising in that it effectively exploits the correlation in smooth object
contours and it has been proven to be quite efficient for lossy coding. Furthermore, an
interframe coding mode is possible, thus exploiting temporal correlation in the
segmentations. Along with chain coding, this method is one of the most popular
approaches to shape coding. There are still some criticisms of this method but these
relate mainly to evaluation criteria other than coding efficiency, e.g. implementation

complexity and end-to-end communications delay.

2.3.3 Grid Interpolated Motion Estimation and Compensation

It has been stated already that object-based coders rely very heavily on effective motion
compensation. The block-based constant motion fields used within H.261, while
requiring very little coding bandwidth, do not facilitate very good motion
compensations. Block-based motion fields contain disturbing discontinuities at the

block boundaries and these result in very nasty artefacts in the motion compensated
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images. Furthermore, at low bit-rates, these artefacts also appear in the reconstructed
images. The other problem is that only purely translational motion within the image
plane can be well synthesised. The designers of SIMOC sought to avoid these blocky
artefacts and settled on a motion representation that could deal with more general object

motions. The approach is as follows.

A regular grid is defined on the current image. There is one grid point every 16 pixels
on every 16th line. For each grid point, a robust hierarchical block-based search [9] is
employed to compute a half pel motion vector in the range [-4.5,4.5]. This motion
vector minimises the Mean Absolute Difference (MAD) in the local area of the grid
point. Once all grid vectors are estimated, a bilinear interpolation of the motion field is
carried out. This results in a half-pel motion vector for each pixel. Each pixel within the
moving area is then motion compensated using its interpolated vector. Due to the
smoother nature of the interpolated motion field, the motion compensated prediction is
visually pleasing and is devoid of any blockiness. Moreover, the interpolated field turns
out to be blockwise planar or affine. As we shall see in chapter 4, affine motion models
are capable of approximating translations, rotations and zooms and hence the
interpolated field is far more effective than the conventional blockwise constant fields.

The described interpolated motion representation is therefore very promising.

While the grid interpolated approach is in itself a very sound technique, in the context of
the object-based coding philosophy, it has a small disadvantage. As pointed out by
Wouyts et al [96], it is a globally flexible motion model in contrast to the more compact
rigid object motion models that are recommended above. Thus, with a motion vector at
each grid point, the representation uses as many bits as that of H.263 and in this sense, it

does not help to compensate for the extra expenditure in shape.

2.3.4 Model Failure Detection and Coding

Model failure detection is a method intended to efficiently encode the prediction error
within the object. The strategy involves detection of the subset of all the object pixels

that are badly predicted by motion compensation. This subset, termed the model failure
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(MF) region, is then encoded using a VQ technique. Of course, the shape of the MF
regions also has be coded and transmitted. In the opinion of the author, this is one of the
most naive aspects of SIMOC. It is a part of the encoder which is really not optimised
on a representative set of sequences, but instead, it is designed to perform well only for
very simple videophone scenes. The model failure regions were intended to detect and
code unpredictable scene events such as eye openings etc. The assumption was that
motion compensation would be able to accurately synthesise the remaining events. Of
course, for sequences with noise, photometric variations or complex motion, motion
compensation still results in large prediction errors and hence, in general, the MF
regions detected by SIMOC are rather larger and more disjoint than first intended. When
the assumptions underlying MF coding break down, the MF coding approach tends to

be extremely inefficient.

2.3.5 Coding Results for SIMOC1

SIMOCL1 is an open-loop coder. That is to say, it has no buffer regulation mechanism
and is controlled only by a quality criterion. This criterion states that the PSNR of the
luminance (Y) component of reconstructed pictures should be 34 dB. In fact, this is only
enforced in model failure (MF) regions and uncovered background regions. The result is

that bit usage varies wildly for different input sequences.

The average bit usages per second for each of the three test sequences used are shown in
Table 2-1. This shows the breakdown of the total bit-rate into bits for shape, motion and
colour. The bits for colour are entirely due to model failure regions being detected and
coded. The bit-rate over time is also illustrated in the accompanying graphs of Figure 2-
6, Figure 2-7 and Figure 2-8.
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Table 2-1: The SIMOC bit usage on 3 common (QCIF) test sequences.

Sequence Bits for shape Bits for motion Bits for colour
(Kbit/s) (Kbit/s) (Kbit/s)

Miss America 7.4 2.3 12.2

Claire 5.8 4.6 20.5

Foreman 15.6 5.6 150.0

When the assumptions underlying the change detection, model failure detection and
coding approach are correct, as in the cases of Miss America and Claire, reasonably
efficient performance is possible. However, the sequence Foreman breaks many of the
model assumptions, i.e. it is taken with a moving camera and the object is undergoing
fast and complex motion. As a consequence of this, the bit-rate to encode model failure
areas drastically increases. This illustrates the fragile nature of many object based

algorithms.

Bit Usage for Miss America

Frame

Figure 2-6: Graph of the bit-usage breakdown over SOframes of Miss America.



Frame

Figure 2-7: Graph of the bit-usage breakdown over 150 frames of Claire.

Frame

Figure 2-8: Graph of the bit-usage hreakdown over 50 frames of Foreman.

SIMOC has been treated harshly in terms of its genericity, i.e. the segmentation

approach works best on low-noise sequences with a static background and the model
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failure coding approach works best when motion is very simple. However, genericity
appears to be a problem in many object-based coding strategies. That is, most object-
based coders are optimised for a certain set of conditions and these conditions are
usually only fulfilled by a small set of sequences. Many people view this non-genericity
as a fact of life: something which, though unsatisfactory, must be accepted. This has led
to the development of switched mode coders which profit from being able to code in
block-based mode or in object-based mode as appropriate [20], [21], [64]. These
switched coders can choose on a frame by frame basis whether object-based coding is
suitable, i.e. whether the scene conforms to a restrictive set of assumptions. If the
assumptions are invalid, then the block-based coder is used as a fallback mode. This
approach seems to produce good results, but it is rather unwieldy and inefficient from an

implementation point of view.

2.4 MPEG-4 Video Work

Compression-oriented object-based coding methods have not lived up to the initial
hopes and aspirations. More time may be required to allow the science to mature so that
it can outperform the conventional block-based methods. Nevertheless, the recent
MPEG-4 standardisation effort has placed considerably emphasis on object-based

coding in order to provide for semantic content access.

MPEG-4 seems to have twin aims. The traditional requirement of coding efficiency is
still very important, since MPEG-4 is committed to providing universal access to
multimedia information via mobile networks and other low grade media. However, most
of the emphasis appears to be on the requirement for content access [56]. The MPEG-4

video algorithm is of the content-oriented type, as defined in sub-section 2.1 above.

MPEG-4 began by specifying a flexible coding architecture, the MPEG-4 VM [74]
based on VOPs or Video Object Planes, see Figure 2-9 and Figure 2-10. These VOPs
are usually regarded as 2-D semantic objects, but on a more abstract level, they are
merely arbitrarily shaped image regions. Each VOP is composed of YUV pixel data
plus an alpha channel specifying the shape of the VOP. A video scene is viewed as

being a composition of VOPs. The analysis/segmentation function (VOP definition) was
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totally decoupled from the coding function. MPEG-4 only deals with the definition of
the coding and decoding system. It is assumed, for the moment, that the alpha channel
information is already available (via blue-screening) or that it will, in the future, be
reliably provided by automatic or semi-automatic means. Note, that this approach is
different than the SIMOC approach, whereby the analysis and coding were tightly

coupled.

Figure 2-9: The MPEG-4 VOP-based Video Encoder. The VOP definition stage (the
segmentation) is not subject to standardisation.

Figure 2-10: The MPEG-4 VOP-based Video Decoder

Through the use of VOPs, content-based access is satisfied. Moreover, by using just one
VOP comprising all the pixels in the given frame, the coding scheme degenerates to the
standard H.263-like specifications. In such degenerate cases, no shape information is

transmitted and hence, a coding efficiency equivalent to or better than H.263 is
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guaranteed. For the most part, very conventional block-based ideas have been tailored in
order to code the VOP interior. Indeed, the VM is currently an amalgamation of H.263,
MPEG-2 and the required shape coding algorithm. Therefore, MPEG-4 is wisely
making use of existing robust technologies. This is in direct contrast to SIMOC, which

suffered from the use of immature technologies such as model failure coding.

Apart from the required shape coding algorithm, the MPEG-4 video algorithm is not so
much different from H.263, for example. The interior of the object shape is coded in
terms of blocks. For interframe coding, each 16x16 block may be motion compensated
using motion vectors and the residual is encoded by a DCT-based method. The major
differences come when handling border blocks which are not fully inside the object-
shape. In these cases, shape adaptive texture coding methods [88] can be used.
Alternatively, methods of block padding are utilised. For instance, prior to DCT coding,
an 8x8 pixel border block is padded by more or less extrapolating the pixel values inside
the object to provide values for those block pixels which are outside. Then, the padded
8x8 block undergoes the standard DCT coding. For motion compensation, the process is
similar. The motion vector points to blocks from the previous VOP and these block
pixels are copied into the predicted VOP. However, since some of the copied block
pixels may be outside the object shape in the previous frame, padding is used to
evaluate such undefined pixels. A macroblock layer syntax is defined to represent the
coded VOP, whereby each macroblock (16x16 pixels) may consist of shape
information, motion vectors and DCT coefficients. If the shape information indicates
that the macroblock is transparent, then no further information is coded for that
macroblock. Similarly, measures are used to ensure no wasteful information is coded for

transparent 8x8 blocks.

While both efficiency and content access requirements can be provided, a bitstream
supporting content access is generally not as efficient as one which does not support it.
Since coding efficiency is always sacrificed in order to provide content access (i.e.
shape information must be coded), it is unlikely that MPEG-4 will succeed in providing
content access and significantly higher quality video than is provided by H.263 in the

same bitstream, for instance. On the other hand, for particular applications, e.g.
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videophone, the content-based representations may present some advantages. These are
related to content-based rate allocation. For example in videophone applications, it is
the facial region which is important for effective communication. Let’s suppose a
videophone scene is decomposed into several VOPs, one of which corresponds to the
face. For low capacity or noisy channels, it is possible to exploit the VOP-based
representation to code the facial region with a higher quality. For instance, a higher
proportion of coding and error protection bits might be allocated to the facial VOP,
preserving its quality to the detriment of the other less important VOPs. Alternatively,

the other VOPs might not be transmitted at all, facilitating a talking head videophone.

2.5 Summary

This chapter has reviewed the methods of and motivations for object-based video
compression. Both compression-oriented and content-oriented approaches have been
discussed. The failure of object-based approaches to significantly improve upon their
block-based counterpart has been noted. This failure can, in part, be attributed to an
immaturity in the segmentation methods and also in the shape compression. There is,
therefore, a need for improved schemes for both compression-oriented segmentation and
shape compression. While there are some doubts about the usefulness of compression-
oriented object-based coders, there is little argument about the use of efficient object-
based representations for facilitating content-based applications. In this regard, MPEG-4
will provide a solution that produces efficient video object representations by specifying
methods for encoding the object shape and texture. However, in order to produce object-
based video representations, there is a need for a convenient means for segmenting
semantic video objects from their scenes of origin. These needs set the tone for the

remainder of this thesis and new proposed solutions are described and tested.

The next chapter addresses the issue of shape compression, while chapters 4-6 confront
the segmentation problem. For compression-oriented object-based coding, the need is
for automatic segmentation methods capable of partitioning an image such that each
partition can be compressed in a highly efficient way. For these applications, it has been
established that coding-oriented criteria must be used by the segmentation approach. It

is believed that many previous compression-oriented coders failed in this respect.
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Chapter 5 develops such a segmentation approach based on motion analysis, the
expectation-maximisation method and the minimum description length principle. For
content-oriented applications, there is a clear need for segmentation methods which can
capture the shape of semantic objects. It is doubtful that this can be achieved by fully
automatic means and thus a supervised approach is envisaged. In this respect, tracking
algorithms based on motion analysis are viewed as essential components. Chapter 6
builds on the motion analysis approach of chapter 5 in order to develop and test a new

tracking algorithm.
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3. Shape Compression

The outstanding difference between the conventional video standards on one hand and
object-based video coding as exemplified by SIMOC and the MPEG-4 video
Verification Model (VM) on the other, is that the compressed video bitstream contains
shape information. The shape information describes the shape and location of each
video object in the 2-D scene at every time instance in the sequence. In raw
uncompressed form, for a particular object, this shape information is most conveniently
represented by a 2-D binary image as illustrated by Figure 3-1. Pixels with the label
WHITE are considered to be part of the given object and pixels with the label BLACK
are considered not to be part of this object. In MPEG-4, this binary image is referred to
as a binary alpha map. MPEG-4 also allows more general grey level alpha maps. In
addition to specifying whether a pixel is part of the given object or not, they can specify
levels of transparency for each pixel. All pixels labelled WHITE are totally opaque, all
pixels labelled BLACK are fully transparent and those with any other grey level have

some degree of transparency.

(@) (b)

Figure 3-1: MPEG4 test sequence KIDS,T(a) The VOP (consisting of the two children) is
composited onto a grey background, (b) The binary alpha map for the VOP.

This chapter focusses only on the encoding of binary alpha maps for digital video
applications. A briefreview of established and emerging techniques for shape coding is

given in section 3.1. Section 3.2 presents a common set of requirements which should
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be fulfilled by the shape encoding. The efforts within MPEG-4 have been responsible
for the fast evolution of technology in this area and this evolution is described in section
3.3. Finally, some detail is provided on one of the main tools used in the MPEG-4 VM7
shape coder, i.e. context-based arithmetic encoding (CAE). This CAE method, which
has been developed by the author, is very novel due to the fact that it is optimised for a

block-based syntax and it is capable of exploiting temporal correlation.

3.1 Review of Shape Coding Techniques
Along the lines of a classification proposed by De Sequeira in [87], the methods of

coding shape and binary 2-D data and images can be classified into two broad types.

* Bitmap coding

» Contour coding

The bitmap coding class includes context-based arithmetic encoding (CAE) [44],
modified modified Read (MMR) encoding [40] and run length encoding (RLE) [33].
These methods directly encode the binary pixel values within the alpha map. The
contour coding methods include chain coding and vertex-based coding. These perform
an initial transformation which converts the binary alpha map into a contour image.
Coding is then applied to the contour image. A contour image is again a binary image,
but one where pixels with the value WHITE are those which reside on the edge of the

object shape and those with value BLACK are either inside or outside the object shape.

3.1.1 Bitmap Encoding

Bitmap encoding strategies have certain advantages in terms of simplicity and flexibility
due to the fact that they are applied directly to the binary image. They have been used
for coding binary images in several FAX standards [47]. Two of the most common and
well known binary label coding schemes are MMR, as used in FAX coding, and CAE,
as used in JBIG [41]. In the more recent past, the key algorithms used within the FAX
standards have come under study within MPEG-4. Initially, both MMR and CAE were
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designed primarily for lossless coding of still images. However, in the context of

MPEG-4, ameans of applying these techniques to lossy coding is necessary.

G3 and G4 FAX Coding: MH, MR and MMR

In the G3 FAX standard [39], several coding strategies are employed. The most basic is
the Modified-Huffinan (MH) method. This is a simple Huffman encoded RLE scheme
which can be implemented without requiring large memory for the VLC tables. In this
scheme, each raster scan line is subjected to MH coding and the line code is terminated
with an end of line (EOL) code. The Modified-Read (MR) method introduced in the G4
standard [40] attempts to exploit correlations in the vertical direction as well as the
horizontal direction. In adjacent lines, the locations of the black-white/white-black
transitions are likely to be similar. The MR method requires that, while coding the
current scan line, the previous line be retained in memory to be used as a reference or
prediction for the current line. Through the use of special codes for representing
common inter-line events, significant improvements in compression efficiency are
achieved. The MH method is still used to encode line patterns which cannot be well
predicted from the reference line. In fact, the MH method is used periodically every K
lines. This provides error resilience by preventing bit errors in the compressed stream
from propagating without limit through the reconstructed image. In terms of efficiency,
the modified-modified-Read (MMR) method further improves upon the MR method.
The gain in compression is achieved at the expense of error resilience. The EOL codes
are removed and the periodic usage of MH is omitted. The MMR codes applied in this
manner are only useful on error free channels or with the help of packet retransmission
strategies such as automatic repeat request (ARQ). The G3 and G4 compression
methods are successful due to their ability to provide significant compression while

minimising computational complexity and memory requirements.

JBIG

JBIG (Joint Bi-Level Image Group) refers to a collaborative effort on the part of the
ITU-T and ISO to define a progressive coding format for compressed binary images.
The standard is also known as T.82 [41]. On scanned images of printed characters, the

observed compression ratios for JBIG have been 1.1 to 1.5 times larger than those for
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MMR. On computer-generated images of printed characters, JBIG is up to 5 times

better.

One of the key algorithms used within JBIG is context-based arithmetic encoding [44].
The image is optionally decomposed into a number of resolution levels. Each resolution
level is divided into rectangular bands called stripes. A stripe contains a contiguous
group of lines. The pixels within each stripe are scanned in raster fashion. In JBIG, only
a subset of the pixels are subjected to the CAE. For each of these pixelsj, a so-called
model template is defined. The template contains pixels previously coded, i.e. those in a
causal neighbourhood ofj and those from the already available lower resolution image.
Based on the particular configuration within the template, a context number is produced
for pixelj. This context number is used to access a probability table which provides the
probability P(0) that pixelj is BLACK and the probability P(I) that pixelj is WHITE.
An arithmetic encoder uses these probabilities to produce a highly compressed code for
all the pixels in the stripe. In JBIG, the probability table is generated from the data being
encoded, i.e. as each new sample is encoded, the probability model is updated
accordingly. As such, the probability model can adapt to the statistical characteristics of
each coded image. More details on the motivations for the CAE approach are given later

in the chapter.

3.1.2 Contour Encoding

In contrast with bitmap methods, contour encoding techniques require that the initial
binary image is transformed into a contour image and it is this contour image which is
encoded. During the decoding process, the reconstructed contours must be filled in order
to produce the reconstructed binary image. Here, two contour encoding methods are

discussed, i.e. chain coding [42] and vertex-based methods [23],[30],[36].

Chain Coding

A chain code begins with the (x,y) coordinate of the first contour pixel. This is usually
transmitted without compression. Starting from the first contour point, the contour is
traced pixel by pixel in a clockwise or anti-clockwise direction. Each contour pixel

encountered is encoded by transmitting a value representing the direction passed
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through in order to move from the previous pixel. An example ofthe possible directions
(in 8-connectivity) is given in Figure 3-2. An uncompressed chain code in 8
connectivity is simply a list of 3 bit integers. The code is usually compressed by run

length encoding (RLE).

Figure 3-2: The basis of an 8-directional chain code.

Several improvements are possible on this basic scheme. For instance, the set of
possible directions can be reduced by replacing diagonal directions by a composition of
a vertical and horizontal direction. This is really a lossy chain code but generally the
observable distortion is not disturbing. Another improvement to the basic scheme is the
differential chain code. In this case, the uncompressed chain code is coded by predicting
each direction from the previous one. This results in a list of prediction errors. The

prediction errors are then entropy encoded using a VLC table or arithmetic encoding.

Vertex-based Methods

Vertex-based methods also belong to the class of contour encoders. As discussed in the
previous chapter, the vertex-based representation consists of an ordered list of points in
2-D space. The reconstructed contour is produced by beginning at the top of the list and
drawing lines or splines between each adjacent pair of vertices. Commonly, some kind
of optimisation algorithm is required to choose an efficient set of vertices for the
representation of a given shape. The vertex-based methods have been proved to be
useful for lossy encoding of smooth contours. For such contours, a small number of

suitably chosen vertices can be used and yet the reconstruction errors remain small.
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3.1.3 Comparison of Bitmap vs Contour Encoding

In general terms, there is no reason to favour one of these classes of coding techniques

over the other. Practically, however, the bitmap-based methods have some advantages.

* There is no need to extract the contour map at the encoder.

» There is no need for a filling algorithm at the decoder. Indeed, the design of a robust
filling algorithm capable of dealing with generic shapes is non-trivial and many
proposed solutions contain flaws, such as those described in [71].

* The memory access of the bitmap-based algorithms is regular and predictable,
whereas the memory access of the contour methods is dependent on the nature of the
data to be encoded. This means that on-chip memory caches cannot be easily used for
contour based methods.

* Bitmap-based methods like MMR and JBIG are established standardised methods

whose implementation is known to be feasible.

This very brief review has highlighted that some mature technologies for binary
image/shape coding have existed for many years. For the extension of these techniques
to video coding applications, attention needs to be devoted to the new nature of the
content to be addressed in video applications, i.e. to the fact that high spatial and
temporal correlations are common, to the need for lossy compression and to the need for
error resilience. The next section explains what is expected of a shape coding algorithm

for use in MPEG-4.

3.2 Shape Coding Requirements

While binary image coding has been a well researched topic, the use of binary shape
coding in digital video systems presents somewhat different challenges. The challenges
are the same as those which the standards developers of MPEG-1, MPEG-2, H.261 and
H.263 were presented with, when they began work. These conventional challenges and
requirements are discussed first and then, those new requirements specifically pertaining

to the need for content access are outlined.
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3.2.1 General Requirements for Shape Coding

The design of a video compression system begins with identifying the promising
applications and then deriving a list of essential requirements which need to be fulfilled
to best enable some or all of the applications. Table 3-1 gives a list of the most common
requirements for digital video systems, i.e. encoders and decoders. All video
compression standards up to and including MPEG-4 were developed on the basis of
such a list of requirements. The difference with MPEG-4 is that an extra compression
sub-system is required for encoding object shape information. This sub-system must be
designed such that all the above requirements can still be met. That is, the shape
encoding/decoding solution must not significantly hinder the fulfilment of the

requirements.

While much work has been done previously on the representation of shape, not all
offerings are designed to meet the stringent requirements of video communications. All
the reviewed techniques of section 3.1, with the exception of the vertex-based methods,
are only designed to deal with lossless coding of shape, whereas many video
applications would benefit from a lossy mode allowing adaptive rate regulation and so
on. Also, when dealing with video, it is known that extra coding efficiency can be
gained by inter-frame prediction. This should also be true of shape coding. Therefore,
the provision of an inter-frame coding mode is of prime importance. When dealing with
video, the error resilience requirement is very important. In most applications, there is
little possibility of using ARQ due to the delay and decoder buffering that it implies.
Error resilience is a requirement with increased emphasis when it comes to video
coding. Therefore, it is imperative that the coded representation for shape in a video
context is able to provide, or fit into, some error resilient coding framework. Apart from
these conventional requirements, the new need for content access places more

limitations on the methods which can be applied, as discussed in the next section.

46



Table 3-1: Requirements placed on shape encoder and decoder systems.

Requirement

Coding Efficiency

Low Complexity

Low Delay

Error Resilience

Rate Regulation

Scalability

Definition

The ability to achieve compression with the
minimum loss in quality. Both lossless and
lossy coding modes are required.

The encoding and decoding processes should be
realisable in a practical manner and with rea-
sonable cost.

The delay between the start of encoding at the
transmitter and the end of decoding at the
decoder should be tolerable.

The representation should not be overly
sensitive to bit-errors or cell loss.

It should be possible to control the size of the
representation by moving along the
rate/distortion curve.

A receiver should easily be enabled to choose a
subset of the bitstream and using the subset
reconstruct some rendition of the fully coded

Comments

All applications require this.

For client terminals attached to video databases,
it is particularly desirable if the decoding is pro-
cess is simple and not so important if the
encoding process is complex.

This is particularly important in real-time
duplex communications, e.g. videophone,
where delay hinders effective two-way comm-
unication.

Particularly tight constraints are imposed in
real-time duplex communications where re-
transmission ofpackets is not permitted.

This is
environments but particularly when fixed-rate
channels are being used.

useful in most  transmission

This is wuseful in broadcast or database
applications, where networks and receivers with

varying capacities and capabilities exist.

entity.

3.2.2 Content Access Requirements

It is not discussed in the introduction of this chapter, but it is possible to represent

several object (binary) shapes within one 2-D labelled image. Such a shape
representation is called a segmentation map. Each object in a given scene has an ID
number or label. The pixels within the segmentation map each have a label. A pixel with
label i is associated with object i. To encode a segmentation map, there are two
possibilities. The first is to encode the segmentation map directly, i.e. treat it as an N-bit
image (where N bits are used to represent each label) and employ the appropriate
techniques directly to this image. The second approach is to first decompose the
segmentation map into binary alpha maps and apply binary shape coding techniques to
each of these while associating the resulting independent codes with an object of given
ID. The first approach is believed to be more efficient, as explained below. However, it
does not lend itself well to the provision of content access. To access a particular
object’s data, the compressed segmentation map must be fully decoded. If the object is

to be placed into a new scene (Content-based Video Editing), then the destination
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scene’s bitstream must be decoded and re-encoded with the new object included. The
second approach avoids these problems, but it effectively means that there is a certain
duplication of information in the bitstream. That is, the contours of object X may also
form part of the contours of object Y and hence, by independently encoding the binary
masks for object X and object Y, the shared contours are being encoded twice. This

inefficiency is a necessary evil in order that flexible content access is provided for.

Although in this chapter only binary shape coding supporting content access is
discussed, there are however, some applications for which limited content access is
sufficient and for which direct segmentation map encoding may be more suitable. In a
real-time encoding scenario, it is currently considered important that a decoder user be
allowed to interact with the content of the video being viewed. One use of this
interaction is that the user could assign priorities to one object or another. This priority
could be transmitted back to the encoder and could be interpreted there as an instruction
to allocate more bits to the chosen object. The result would be that the selected object is
enhanced in quality. This scenario is useful in surveillance applications, where video is
being transmitted over a low grade network, and it does not require full content access.
In such an application, it would be best to use direct encoding of the segmentation map

in order to achieve the utmost coding efficiency.

3.3 Evolution of MPEG-4 Binary Shape Coding

The most common techniques for binary shape coding have been reviewed and the
requirements for MPEG-4 shape coding have been outlined. This section contains a

review ofhow the MPEG-4 binary shape coding solution evolved.

MPEG-4 required an efficient shape representation which availed of interframe
correlation and which could be lossless or lossy. Additionally, complexity, error
resilience and delay were also important considerations. Prior to MPEG-4, these
requirements were fulfilled by the development of block-based video encoding methods.
That is, all previous video standards utilised a block-based algorithm. The reasons for

this are best explained in relation to the requirements of Table 3-1.
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Figure 3-3 shows how a QCIF video frame is partitioned into macroblocks, where a
macroblock corresponds to a 16x16 block of image pixels. The macroblocks are then
coded in some predefined order. For example, the MBs can be coded in raster scan order
as indicated in Figure 3-3. Each macroblock is then represented in terms of its motion
and YUV data in compressed form. This block-based video representation has been

employed widely and for good reasons, as explained now.

Coding Efficiency

When encoding a video frame, it becomes apparent that there is no one coding approach
which deals optimally with all areas of the frame. Some picture areas will require
INTRA coding. Some picture areas will require INTER coding. Some picture areas will
not require any update at all, but will be accurately predicted from previous frames. The
use of a block-based representation for the video frame means that the coding approach
can be adapted on a block basis such that every block is coded the best way possible.
Blocks residing in still parts of the picture will not be updated. Blocks residing in parts
of the picture exhibiting simple motions will be INTER coded. Blocks residing in parts
of the picture where no useful prediction is possible will be INTRA coded. It is this
local adaptation of the coding mode which gives the block-based approach the
possibility of achieving very high compression ratios for video. Furthermore, a video
scene typically contains one or more moving objects. Each object or each part of an
object can be undergoing a different motion. For efficient interframe coding, some basis
for local motion analysis and representation must be provided. A block-based

framework provides a convenient platform for local motion representation.
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Figure 3-3: A QCIF (176x144 é)ixels) video frame partitioned into 11x9
macroblocks, numbered 1to %9.

Codec Complexity

Block-based algorithms have been successfully implemented on application specific
integrated circuits and general purpose processors. This has been mainly due to the fact
that a block-based approach reduces the hardware requirements in terms of memory
bandwidth. The macroblock, which is the main coding data structure, contains six
blocks each of size 8x8 pixels. This means that a macroblock contains only 384 bytes of
data. The small size of the macroblock means that any processor can store several of
them on-chip, avoiding the delays incurred for memory accesses across a system bus to
the main memory. Additionally, block-based approaches have also enabled the use of

parallel and pipelined hardware architectures.

Low Delay

The block-based approach has clear advantages in terms of delay. At the encoder, an
input buffer receives the current frame from the capture device. The frame is received
line by line. Once, the sixteenth line is received it is possible to begin
encoding/transmitting the first line of macroblocks (macroblocks 1to 11, in Figure 3-3).
At the receiving end, decoding can begin immediately on receipt of the first compressed

macroblock. In summary, a block-based representation, in principle, allows encoding



and decoding delays much less than one video frame in duration, thereby reducing the

problems of delay and minimising encoder and decoder buffering.

Error Resilience

The general approach to providing error resilient video representations is to insert
resynchronisation markers (RM) into the bitstream at regular intervals. If a bit error
occurs, synchronisation is lost only until the next re-synchronisation marker.

Effectively, a packetized structure is used as depicted below.

RMI Compressed Data 1 RM2 Compressed Data 2 RM3
(Cb1) (CD2)

If an error is encountered in packet 1 then CD1 is discarded. RM2 is found and
decoding continues with CD2. This implies that CD2 must have no dependence on the
pixels represented by CD1. Hence, each packet, consisting of an RM and a CD field,
contains coded data which has been produced independently of other packets. The
block-based approach easily fits into this packetised framework. For example and with
reference to Figure 3-3, CD1 might represent macroblocks 1to 11, CD2 might represent
macroblocks 12 to 22 and so on. Only one simple rule must be enforced, i.e. when
encoding a macroblock within a given packet, no data from outside that packet may be
used. This ensures that error propagation is limited to within the image area represented

by the affected packet.

In terms of the requirements covered, the block-based approach is shown to be flexible
in meeting the multiple demands placed on video systems. Despite this, MPEG-4
evaluated several non block-based shape coding algorithms based on contour coding
techniques [62]. Ultimately, however, a block-based solution was favoured. A factor in
this choice was the fact that the coding of the YUV texture data is performed on a
macroblock basis. In order to facilitate an elegant syntax, it appeared to be sensible to
perform the shape coding on a similar basis. The next sections plot the progress in shape
coding within MPEG by describing chronologically the solutions of the various versions

of the video Verification Model.
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3.3.2 The VM3 and VM4 Shape Encoder

In July 1996, MPEG-4 published version 3 of the video Verification Model (VM) [57].
This contained a block-based shape coder capable of lossy coding and capable of inter-
frame coding. The shape coder had been designed by Toshiba and Matsushita of Japan
and was based on a motion compensated DPCM loop as depicted in Figure 3-4. The
input to the loop is a binary alpha block (BAB) which is 16x16 pixels. When the video
object is INTER coded, motion compensation (MC) can be carried out to give a
predicted BAB. In the case of VM3 and VM4, this motion compensated BAB is
generated using the same motion vectors which are used for motion compensating the
corresponding YUV macroblock. This is input to a mode decision procedure. This
procedure has the function of deciding how the current block is to be coded. The BAB

may be represented in one of four ways as summarised in Table 3-2.

Table 3-2: Description of BAB coding modes in VM3/VM4

BAB Semantics o fDecoding Process
Coding
Mode
All Zero The reconstructed BAB contains only BLACK/TRANSPARENT pixels.
All One The reconstructed BAB contains only WHITE/OPAQUE pixels.
Not Coded The reconstructed BAB is obtained by motion compensation using the motion vectors of the YUV macroblock.

No replenishment of the BAB is performed.

Coded The reconstructed BAB is obtained by decoding the INTRA MMR codewords.
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mode

» To bitstream

cR jMMR
ecodewords
Input binary Block-based
alpha block Mode Block MMR
Decision I- Downsampler Coder
MC binary
alpha block
Block Shape binary
. alphablock  Block
Motion Frame P
. Upsampler
Compensation Memory

Figure 3-4: VM3/VM4 Binary Shape Coder. The method uses motion compensation to exploit
temporal redunancy and a block-based MM R method to exploit spatial redundancy.

For coded BABS, three steps are required for their encoding:

1. Downsampling: This allows lossy coding of shape. A BAB may be downsampled
from 16x16 to 8x8 or 4x4 and then the downsampled BAB is encoded. Rate-
distortion trade-off points are chosen by setting the downsampling ratio on a per
block basis to be 1,2 or 4.

2. Modified-Modified-Read (MMR): This step applies MMR coding similar to G4 fax
coding within the downsampled BAB. Compression ratios of 4:1 or greater are
possible for the vast majority of BABs. MMR is inherently a lossless coding
technique and the variety employed in VM3 exploits only spatial correlation.

3. Upsampling: Due to the temporal prediction employed in VM3, it is necessary to
store the reconstructed alpha map at the encoder. Hence, any downsampled BABs
must be upsampled to the nominal size of 16x16 prior to being stored in the

reconstructed frame memory.

Using the described coding algorithm, the representation for each BAB contains three
types of information (all elements of the representation are compressed using Huffman
variable length codes):

* The mode decision to tell the decoder which decoding mode to adopt for the BAB.
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» The conversion (downsampling) ratio (CR) to tell the decoder the size of the
downsampled BAB and the upsampling ratio required for reconstruction ofthe BAB.
 The MMR stream consisting of a series of run-length codes and mode codes telling

the decoder how to reconstruct a coded BAB.

The VM3 shape representation set the common basis for all further VM solutions. This
common basis was defined by the fact that the representation was block-based, that it
supported temporal prediction and that lossy coding was provided mainly (although not

exclusively3 by means of prior downsampling.

3.3.3 The VM5 and VM6 Encoder

In November 1996, VM5 was published [59]. A competitive round of experiments
resulted in a number of improvements being made to the shape coding algorithm. This
improved algorithm outperformed many contour-based algorithms and also one (non-

block) technique based on CAE. The major improvements were the following:

* The motion compensation of the BAB used a specially estimated motion vector,
which was distinct from the YUV motion vector. The extra motion vector was
communicated to the decoder and the coding used a spatial predictive method,
whereby only the prediction error of the motion vector, i.e. the motion vector
difference, was required to be coded. This change was included because, in general
the motion vectors estimated on the basis of YUV data are not optimal for the motion
compensation of shape data.

* The basic MMR method was extended to exploit the predicted BAB, i.e. an INTER
MMR method was included. This resulted in improved performance towards the
lossless end of the distortion range. When lossless or near lossless coding is required,
there are many more coded blocks. The inclusion of INTER MMR meant that many

ofthese coded blocks could be compressed more efficiently.

3 A BAB with almost all white pixels could be encoded by the use of the All One mode. A BAB with almost all
black pixels could be encoded by the use of the All Zero mode. A BAB whose motion compensated prediction was
less than perfect could be coded using the Not Coded mode. Either of these three measures results in reducing the
quality of the representation, while saving bit-rate.
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* The MMR method which previously was applied using a horizontal raster scan could
now also be applied using a vertical scan. For each BAB, the scan type which
produced the smallest code was used. The chosen scan type was signalled in the
bitstream.

» Several intricate modifications were made within the MMR method itselfto improve
the compression efficiency.

* For INTER coded video objects, the coding mode of each BAB was encoded
utilising inter-frame correlation. Since VM5 involved the introduction of new coding
modes, straightforvard VLC coding of the mode information resulted in a
considerable generation of bits. The rate of the mode information could be reduced
by exploiting the fact that frequently the coding mode of a given BAB did not change

much from frame to frame.

The VM5 syntax was more complex than that of VM3. The mode, downsampling and
MMR information remained, but there were extra coding modes and some extra
information fields. The coding modes are listed in Table 3-3. The increase in the syntax
complexity was mainly due to the improved temporal shape prediction using the
dedicated shape motion vector and the associated INTER MMR method. The shape
motion vector was represented by a prediction process and the encoding of the
prediction difference (MVDs - the motion vector difference of shape) in the bitstream.
When, as occurs frequently, the prediction difference is zero, this is signalled by a

special coding mode as indicated in Table 3-3.
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Table 3-3: Description of BAB coding modes in VM5/VM6

BAB Coding Mode

All Zero
All One
INTRAMMR

Not Coded & MVDs =0

Semantics ofDecoding Process

The reconstructed BAB contains only BLACK/TRANSPARENT pixels.
The reconstructed BAB contains only WHITE/OPAQUE pixels.
The reconstructed BAB is obtained by decoding the INTRA MMR codewords.

The reconstructed BAB is obtained by motion compensation. No replenishment of the BAB is

performed. The motion vector used for motion compensation is obtained by local spatial
prediction.

Not Coded & MVDs!=0 The reconstructed BAB is obtained by motion compensation. No replenishmentof the BAB is

performed. The motion vector used for motion compensation is obtained by local spatial
prediction and the addition of amotion vector prediction error (MVDs).

INTERMMR & MVDs=0 The reconstructed BAB is obtained decoding INTER MMR codewords. In order to decode
these, a motion compensated BAB is required. The motion vector is obtained by local spatial
prediction.

INTER MMR & MVDsNO The reconstructed BAB is obtained decoding INTER MMR codewords. In order to decode

these, a motion compensated BAB is required. The motion vector is obtained by local spatial
prediction and the addition of MV Ds.

3.3.4 The VM7 Encoder

The last major step (in April 1997) in the MPEG standardisation process signalled the
end of MMR-based coding in MPEG-4 [61]. Many researchers considered the method
to be very crude and involved, even to the extent of not being understandable or
implementable without great difficulty. A block-based context-based arithmetic
encoding (CAE) method was proposed by the author. Results showed this CAE method
to be superior to MMR for the BAB coding. Despite stiff competition from a very
efficient vertex-based algorithm, it was decided that MPEG-4 should stay with a block-
based bitmap algorithm. The VM7 shape coding algorithm (built on top of the VM5
method) is summarised in Figure 3-5. In comparison with VM3 of Figure 3-4, it can be
seen that the VM7 encoder comprises its own shape motion estimator and an extra
decision block for deciding whether the block will be coded by INTRA or INTER
modes and for deciding upon the scan type. All these additions were inherited from
VM5. The major step of VM7 was the replacement of INTRA MMR and INTER MMR
with INTRA CAE and INTER CAE respectively. In the bitstream, the VLC codes of the
MMR method were replaced by a single binary arithmetic code (BAC). Another small

change was that the mode information for INTRA coded VOPs now utilised a method
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Figure 3-5: VM7 Binary Shape Coder. The encoder is effectively the same as that of VM5 except
that the block-based CAE method is included in preference to the previous MM R method.

using spatial prediction, improving the efficiency of the INTRA shape coding algorithm

by 4-6%. The remainder ofthis chapter is devoted to the details of CAE.

3.4 Context-based Arithmetic Encoding in MPEG-4

Context-based arithmetic encoding has been used in JBIG and has now been adopted for
MPEG-4. This section discusses the principles and design choices related to CAE
coding. The precise details of block-based CAE [15], as employed in the MPEG-4

VM7, are also covered.

3.4.1 Context-based Arithmetic Encoding

Let’s assume that there is a random information source which generates a sequence of
samples. Each sample X may take on any integer value i between 0 and N -1. Successive
samples are independent of each other and are distributed according to a common
probability density function represented by P(X=i), for i=0,...,N-1 For this source,
there exists a lower bound on the number of bits/sample which can be used on average
to code a sequence of samples generated by the information source. This lower bound is

given by the first order entropy H(1), where:
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N-1

HWM=- £ P(X =i)log2 P(X =)

1=0

Consider now a non-random source where successive samples are in some way
dependent. In this case, a joint probability density function must be known. For
instance, assuming that samples are to be coded in blocks of two, then the coding bound

is given by the second orderjoint entropy, i.e.

H(2) =~\Y Y .P (X =i,X =j)log2P (X =i,X =j)

Once again, this represents the lower bound on the number of bits/sample assuming the
sequence is coded in blocks of two samples. A lower bound on the bits per sample is
obtained by dividing by two. In general, it may be proven that nh (m) <H (M - 1). In other
words, the larger the block of samples coded, the smaller the coding rate. However,
coding approaches based on very high orderjoint PDFs become very unwieldy. Lossless
vector quantisation (VQ) may be considered as one example of a technique utilising
joint PDFs. In VQ, coding large blocks of data results in large demands for code-book
storage. Generally, VQ methods choose the largest data block size possible while

staying within the complexity limits of the given application.

There is an alternative means of using high order statistics in coding. Consider the w-th
order joint PDF P(X(ri)>X(n-1),..~f(l)). Rewrite this PDF as P(X(n),C), where C
represents the set of variables {X(w-I),...,.X(I)}. The n-th order conditional entropy may

now be constructed according to:

W
H(n) :-Z\JEOP(X =i>C=j)log2P (X =i\c =j)

As may be noted, the conditional entropy depends on a conditional probability P("|C)
of order «-1. This representation of entropy suggests a context-based coding approach.
In contrast to the joint coding approach, samples are coded one at a time and each

variable X is coded using a conditional PDF which depends on a context C as defined
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above. Context-based arithmetic encoding (CAE) is a coding system based on
exploiting conditional probabilities in this manner. As with n-th order VQ, the lower
bound on the CAE approach is still given by the n-th order entropy. In addition, this
approach has similar difficulties with respect to the utilisation of high order statistics.
As will be explained, as the order increases, the context-based approach the storage

demands also increase.

The analysis to this point suggests that lossless VQ and CAE should yield similar
coding performance. A simple example reveals that the conditional approach may be

more efficient in some situations.

Assume a binary source with P(0)=0.5 and P(1)=0.5. Consider a coding approach
exploiting the second order joint PDFs of this source, where P(0,0)=0.375,
P(0,1)=0.125, P(1,0)=0.125 and P(l,1)=0.375. The second order joint entropy yields a
figure of 0.91 bits/sample. Noting the relationship P(A|B) = P(AB)/P(B), the first order
conditional PDFs are computed as P(0|0)=0.75, P(0|l)=0.25, P(l1/0)=0.25 and
P(1|1)=0.75. The resulting conditional entropy evaluates to 0.82 bits/sample.

The hypothesis that conditional coding approaches are superior to joint coding
approaches is not explored in any more general way. However, sub-section 3.4.7
includes some interesting comparisons between CAE and VQ for block-based binary
shape encoding. The following sub-section explains how context-based arithmetic

encoding may be used to encode binary images.

3.4.2 Binary Image Coding Using CAE

In most binary images, a high degree of local correlation exists. For a given pixelj, ifall
its neighbours are WHITE, then it is highly likely that the value of pixel j is also
WHITE. Conversely, if all its neighbours are BLACK, then it is highly likely that the
value of pixel j is also BLACK. In general, the values of the pixels in the

neighbourhood ofj will dictate the PDF of the pixel value atj.
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When encoding/decoding a binary image using CAE, pixels are usually
encoded/decoded in raster order. When decoding the value at pixelj, the decoder knows
the values of all the pixels above and to the left of j. However, the decoder does not
know what are the values of pixels below and to the right ofj. This places a simple
causal constraint on the neighbourhood pixels which can be used to infer the PDF. A
very common neighbourhood which is used in JBIG is depicted in Figure 3-6. In the
video coding community, the more usual term for these local neighbourhoods is a

template.

C9 C8 C7
C6 C5 C4 C3 C2

Cl (60) j

Figure 3-6: An example of a neighbourhood template. The pixel to be coded is indicated with a j’
and all pixels which are part of the template are numbered CO through C9.

The formation of the pixels in a given template can be represented by a ten bit number
called the context number. The PDF of the pixel j is conditioned upon this context
number. Effectively, the pixel j has 210 possible PDFs. These together form what is

termed the probability table. Hence, the encoding ofthe pixelj involves 3 simple steps:

1. Compute the context number.
2. Use the context number to access the correct PDF from the probability table.
3. Use the PDF and the actual value of the pixelj to drive an arithmetic encoder [95]

which stores bits in the output buffer.
After applying this procedure to every pixel in the binary image, the whole image is
represented by a single (atomic) arithmetic code stored in the output buffer. The

decoding procedure at each pixel is equally straightforward:

1. Compute the context number.
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2. Use the context number to access the correct PDF from the probability table.

3. Use the PDF and the bits from the arithmetic code to decode the pixel value.

The process is the same at every pixel. The efficiency of the resultant arithmetic code
depends on how close the PDFs are to the real underlying PDFs of the binary image.
There are two approaches to defining the PDFs to be used for encoding: adaptive

models and fixed models.

3.4.3 Fixed vs Adaptive PDF Models

In a fixed model arithmetic encoder, the probability tables are fixed prior to encoding
and they are never allowed to change during encoding. These fixed probability tables
are derived by using a training procedure involving a large data set of representative
images. The probability tables will, therefore, be optimal in the average sense across
this training set. If an image whose statistical characteristics are not captured in this

training set is to be coded, then coding inefficiency is to be expected.

The adaptive model overcomes this dependance on a training set by adapting the
probabilities as each new pixel is encoded. After a considerable number of pixels have
been encoded, it would be expected that the probability tables would have adapted to the
specific statistics of the image being coded. If given a sufficiently large set of samples
to allow effective adaptation, adaptive models can outperform fixed models. For
example, adaptive schemes are used in JBIG because the image resolutions are typically
very high, thereby containing sufficient data to allow for the adaptation to take place.
On lower resolution images, a fixed table would be the best choice because there are not

enough samples to cause proper adaptation.

Adaptive models have two disadvantages worthy of mention. The first relates to
complexity. In order to maintain an adaptive table, extra processing is required at each
pixel and many update strategies are quite involved computationally. The second
disadvantage relates to error resilience. If the arithmetic code is subjected to bit errors

then pixels will be decoded in error. Consequently, the adaptive probability tables at the
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encoder and decoder will diverge and no “synchronisation will be possible without re-
initialising the adaptive tables. Therefore, it is preferable to use fixed tables in situations
where error-free transmission is unattainable and where sufficiently long periods of
sustained error-free transmission are not guaranteed. Because video transmission
systems do not, in general, guarantee sustained error-free transfers, the CAE method of
VM7 uses only a fixed probability table. The probability tables were generated from a
training set. For each context number, the table stores the probability that a pixel has a

zero value. The probabilities are stored in 16 bit precision.

3.4.4 Templates and Contexts

In the MPEG-4 VM7, the JBIG template was the obvious choice for INTRA coded
BABs. For INTER coded BABS, it was required to exploit the motion compensated
prediction for the BAB. The most natural way to do this was to construct a template that
included pixels from the current BAB and the predicted BAB. While doing this, it was
decided to impose that the probability tables have no more than 1024 entries, i.e. no

more than ten bits in the context. There were three reasons for this:

1. The probability tables should be small enough to be stored in on-chip processor
cache memory.

2. The training of probability tables becomes very difficult when there are a large
number of contexts.

3. The increase in efficiency by using larger contexts was found to be marginal, i.e.
there is saturation of the performance as one increases the size of a template beyond a
certain point. This point has been illustrated by the results presented by Moffat in
[52].

The following choices were made based on experimental findings: (1) For INTRA

coded BABs, a 10 bit context C =" ¢ k-2k is built for each pixel as illustrated in
k

Figure 3-7a. (2) For INTER coded BABs, a 9 bit context C =" ¢ k ®k is built for each
k

pixel as illustrated in Figure 3-7b.
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3.4.5 Block-based CAE

CAE had previously been applied to binary image coding within JBIG. It has also been
specifically adapted for object shape coding [10]. However, in JBIG, CAE was used to
compress image data blocks containing, typically, tens of thousands of pixels. In
MPEG-4, CAE is applied to blocks, i.e. BABs containing at most 256 pixels. The
process of coding each BAB is as follows. The arithmetic encoder is initialised. Pixels
are scanned and coded in raster order. When the last pixel has been encoded, the

arithmetic encoder is flushed and the arithmetic code is terminated.

C9 C8 C7 C3 C2 Cl Pixels of the current
BAB
c6 Cc5 C4 C3 C2 co ?
alignment
cl co ?
(of:}
cl C6/' C5 Pixels of the
MC BAB
C4
(a) (b)

Figure 3-7: (a) The INTRA template and context construction, (b) The INTER template and
context construction. The pixel to be coded is marked with “?\

One disadvantage with this scheme is that the continual initialisation and flushing of the
arithmetic encoder introduces inefficiency. It is important that these initialisation and
flushing mechanisms are as efficient as possible. However, even with the most efficient
of implementations (as in VMY7), it is known through experiment that approximately 1
bit per BAB is being used for the repeated initialisations and flushings. In order to
benefit from the aforementioned advantages of block-based coding syntaxes, this
inefficiency must be tolerated. In any case, it is more than compensated for by the

ability of the coding mode to be adapted on a block-by-block basis.

Another potential problem is that the efficiency of the final compressed BAB code is

highly dependent on the manner in which pixels outside the BAB are treated. The
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problem is caused by the fact that the coding of many pixels near the edge of the BAB
relies upon a template and a context construction that includes pixels outside the BAB.
The same problem is faced when operating in the non-block based mode, whereby the
template for pixels close to the image borders may contain pixels that are outside the
image border. The simple approach, in this case, is to set all pixels outside the image to
BLACK. Applying an analagous strategy when coding a given BAB, all pixels outside
that BAB are set to zero during context constructions. This is a very inefficient solution
since it introduces artificial edges between BABs and these result in an increased coding
bit-rate. A more efficient solution is to use, where possible, the actual pixel values, even

if the pixels lie outside the current BAB. The approach taken is as follows.

Figure 3-8 shows a BAB surrounded by a 2 pixel wide border. Assume that this BAB is
about to be encoded, and that already, the BABs above and to the left of this BAB have
been encoded. This is the normal situation when the BABs of an image are processed in
raster order. Of the border pixels, those in the region ABCD are contained within BABs
which have already been coded. These pixels can be accessed to build the required
contexts in the current BAB. On the other hand, those border pixels in the region
marked U are contained within BABs which have not been encoded yet. These pixel
values cannot be used in the context constructions for the current BAB. This is due to
the fact that these pixels will not be known at the decoder, when it is about to decode the
given BAB. A simple modification in the context construction is used to “estimate” the
values of these “unknown” pixels. When constructing the INTRA context of Figure 3-

7a, the following steps are taken in sequence.
1 If (C7 is unknown), C7=CS8,

2. 1T (C3 is unknown), C3=C4,
3. If (C2 is unknown), C2=C3.
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Figure 3-8: Bordered BAB. A:TOP_LEFT_BORDER. B:TOP_BORDER.
C:TOP_RIGHT_BORDER. D: LEFT_BORDER. U: pixels which are unknown when decoding the
current BAB.

When constructing the INTER context of Figure 3-7b, the following conditional
assignment is performed. If (Cl is unknown), C1=C2. This simple template padding
approach provides a good way to avoid the effect of articifical discontinuities introduced

by regular assumptions on the values of these “unknown” pixels.

Another important detail is in the construction of the motion compensated BAB.
Although, a BAB is 16x16 pixels, the nature of the chosen INTER template requires
access to motion compensated pixels within a one pixel border around the usual 16x16
motion compensated block as shown in Figure 3-9. That is, it is typical to copy an
18x18 motion compensated block from the previous alpha map, when constructing

INTER contexts.
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Figure 3-9: Bordered motion compensated BAB. A: TOPBORDER. B: LEFT_BORDER. C:
RIGHT_BORDER.D: BOTTOM BORDER.

3.4.6 Simulation Results

In order to show the efficiency of the block-based CAE approach, it has been directly
compared with a block-based MMR approach. The MMR algorithm used is that which
was used in VM5 ofthe MPEG-4 development [60]. In the graphs provided in Figure 3-
10, the effect of replacing the block-based MMR algorithm of VM5 with the block-
based CAE algorithm is illustrated. Each graph plots the number of bits for shape per
VOP against a shape distortion measure Dn. Dn is defined as the number of incorrectly
coded pixels divided by the number of WHITE pixels in the original shape. The coding
algorithms were run using 5 different distortion levels in order to produce the graphs. A
given distortion level is achieved by setting a distortion parameter within the
algorithms. This distortion parameter defines the maximum allowable distortion within
each macroblock. For instance within each macroblock, the down-sampling factor,
described in sub-section 3.3.2, is chosen such that this distortion threshold is not
exceeded. In addition, a macroblock may not be compressed with the not-coded mode, if

this also means exceeding the distortion threshold.
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Four shape coding algorithms are compared:

VM5 INTRA (including MMR coding)
VM5 INTER (including MMR coding)
VM5+CAE INTRA

VM5+CAE INTER
The sequences used were part of the MPEG-4 test set, both QCIF and SIF. The test set

contained a mixture of synthetic and natural shapes, with varying degrees of motion

complexity. All sequences were encoded at 10Hz.

Cyclamen

Dn
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Kids

Dn

Robot



Logo

Dn

Weather

Dn

Figur,e 3-10: Simulation results iIIustrating the efficiency of CAE by comparison with the MMR
solution of VM5. All sequences were encoded at 10 Hz frame rates. The sequences Cyclamen, Kids,
Robot, and Logo are SIF (352x240 pixels) and the Weather sequence is QCIF (176x144 pixels).

The general trend shown in these graphs is that CAE_INTER > VM INTER >
CAE_INTRA > VM_INTRA where “>” may be understood as ‘is more efficient than’.
For INTRA coded shape, CAE results in improvements of between 3% and 11%. For
INTER coded shape, the gains are in the range 10-28% towards the lossless end of the
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distortion range. For very lossy (i.e. high Dn) INTER coded shape, the gains due to the
use of CAE are very small. This is simply explained by the fact that the majority of
shape blocks are coded by motion compensation and without subsequent MMR/CAE
coding. That is, the ‘not coded’ modes are used frequently and it is natural that the
MMR and CAE-based algorithms give similar performance. It is believed, however, that
binary shape coding algorithms will primarily operate in a lossless or near lossless
mode. This is due to the fact that very lossy shape can lead to disturbing artefacts in the
reconstructed sequence, as illustrated in Figure 3-11. These artefacts are more noticeable
when viewing the sequence in real time and the resultant video is unlikely to be of

sufficient quality for high-end applications, e.g. post-production for TV and film.

(@) (b)

Fi%;ure 3-11; lllustration of shape distortions, (a) coded VOP with lossless shape, (b) coded VOP
with lossy shape.

It may be concluded from these results that CAE is a superior compression technique
for binary shape coding. It is also interesting to note that the use of INTER coding
brings appreciable gains over INTRA shape coding. On the 10Hz sequences used in the
simulations, it is observed that up to 2000 bits/VOP may be saved by using INTER
shape coding. This corresponds to a bit-rate saving of 20Kbits/s. Coding the sequences

at 30Hz would naturally lead to increased savings by INTER coding.

3.4.7 On the Consideration of CAE vs VQ

Having presented the block-based CAE approach, the focus now returns to the

suggestion made in sub-section 3.4.1, i.e. that VQ and CAE may be equally effective for
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lossless compression. Here, some comparisons are made which suggest that CAE may
be the more effective of the two techniques for the application of block-based binary

shape coding.

The INTRA CAE approach proposed above for block-based shape coding uses a 10-bit
context and requires 1024 (16-bit) words to store the probability table. According to the
definitions of sub-section 3.4.1, this approach exploits 11-th order statistics. In order to
construct a lossless VQ approach exploiting 11-th order statistics, a VQ block size of 11
pixels is required. With respect to the CAE approach, the VQ approach has two
drawbacks. Firstly, the 11-th order VQ approach requires 2048 words to store the
probability tables (assuming an arithmetic coding approach). Secondly, it is clearly not
possible to completely tile a 16x16 shape block with a “tile” of size 11 without covering
some pixels twice. This is inefficient in the coding sense, since it implies that the 11-th

order VQ approach must code some pixels twice.

The choice of 11-th order statistics in the above comparison may be seen as slightly
unfair. It is true that the same conclusion could not be made if 4-th order, 8-th order or
16-th order statistics had been chosen. After all, the tiling problem disappears if the VQ
block size is chosen to be 4, 8 or 16. Nevertheless, the comparison does illustrate that
the contextual coding approach is perhaps more flexible than the joint coding approach.
In the block-based application, it appears that CAE has the ability to maximise coding
efficiency irrespective of the statistics order. As illustrated in the tiling analogy, VQ
does not have this property. This conclusion may be further expanded as follows. The
flexibility inherent in CAE also allows total freedom in the choice of the template size
and shape. Given a set of sources, each individual source may call for a different
template size and shape. CAE can meet this requirement without being hindered by the
‘tiling’ constraint. In adapting VQ to the same sources, the ‘tiling’ constraint is always
an obstacle to choosing the optimal block shape. As an example, consider an image
exhibiting 8-th order joint statistical dependence. A VQ approach, wishing to avoid
coding any given pixel twice, is constrained to employing a 2x4 or a 4x2 pixel block.
No such constraints exist in the case of choosing the CAE template. It is ventured that

this flexibility gives CAE a significant advantage over VQ.
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Another interesting comparison can be drawn based on lossy compression. By its very
name and by most of it applications, loss is an inherent feature of vector quantisation. In
lossy VQ applications, uncommon block configurations are mapped to the closest code-
book entry. It should be noted that lossy VQ increases requirements in terms of storage
and necessitates the use of a search mechanism for finding the closest code-book entry
for a given block configuration. Nevertheless, this lossy coding ability gives VQ an
advantage over CAE. To the best knowledge of the author, CAE has never been applied
for lossy coding purposes. For CAE, loss is usually introduced by suitable pre-
processing, as in the down-sampling used in MPEG-4. This does not mean that no
means exist to make CAE inherently lossy, it only suggests that a means remains to be
found. Neither does it suggest that this makes the CAE approach any less efficient that
VQ for lossy compression. Experimental evidence may be required to draw more

decisive conclusions on this issue.

3.5 Summary and Future Work

Several classes of shape coders have been reviewed. The general advantages of bitmap-
based techniques over contour-based methods are outlined. CAE, a bitmap-based
method, has been proposed as a very efficient and flexible coding tool. Its adaptation to
allow operation within a block-based framework has been described in detail. In
particular, it is shown how CAE can be extended to exploit temporal correlation. Results
have shown that CAE used in a motion compensated block-based coding algorithm is
highly efficient, outperforming an advanced MMR algorithm. CAE forms the core of
the MPEG-4 shape coding solution for this reason, thus enabling many new object-
based functionalities in a most efficient way. The impetus of MPEG-4 has given rise to
phenomenal technological advances in a short period of time. This has resulted in a very
efficient and flexible solution for shape coding. The rate for the video object’s shape
information very much depends on the complexity and movement of the shape and the
desired quality. It can be seen from the results presented above that bit-rates vary from 1
Kbits/s for small simple shapes at low quality, to 30 Kbits/s for larger more complex
object shapes at high quality. Several directions of research are being followed to add

the necessary remaining functionality. Efforts are being made to develop an
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enhancement layer shape coder to enable a spatially scalable representation of shape.
Other efforts are being made to provide interlaced shape coding tools based on CAE.
Finally and most importantly perhaps, a large effort is being made to modify the basic
representation so that it is more resilient to bitstream errors. Some preliminary ideas on

these new aspects are given in [16].
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4. Polynomial Motion Modelling

The estimation of motion is extremely important for video compression applications.
Most of today’s video representations derive a substantial degree of their efficiency
from exploiting interframe redundancy by way of motion compensation. For video
coding purposes, simple translational motion models have been used most commonly.
These have the advantage of being easy to compute and efficient to encode.
Furthermore, motion is estimated for every 16x16 pixel block and more often than not,
translational models suffice in synthesising the motion within these small image
regions. However, there are other applications where the motion representation must be
capable of representing general 3D motions. Some early 3D motion models and
estimation methods were presented by Netravali and Salz in [66]. The more recent
emphasis on object-based video representation has provoked interest in motion
segmentation as a means of automatically recovering object shape. Segmentation
approaches based on motion tend to utilize more complex motion models capable of
representing more general types of motion, i.e. rotations and zooms. The use of these
more complex models in segmentation systems typically results in simpler, more
intuitive, segmentation results. Most of the successful applications ofthese more general
models have been in segmentation, but they have also been applied for coding oriented
tasks. For example, they have been experimented with in place of the translational
models in block-based coders [65], for temporal interpolation of video sequences [7],
and for region-oriented (non-block-based) motion compensation [43]. In addition, the
use of motion in object tracking systems is very important and as such, accurate motion

models are called for. For example, see the tracking system described in chapter 6.

The representation of general 3-D motion can be achieved very well by using simple
polynomial functions. This chapter is devoted to the study of these polynomial motion
models. The theoretical justification for their use is discussed and the estimation
methods are covered in detail. The main new contributions by the author comprise
comparative studies of several estimation methods and the development of fast

estimation algorithms. Due to their relevance to the segmentation algorithms presented
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in forthcoming chapters, the chapter concludes with a discussion of robust methods of

estimation.

4.1 Motion Models and Optical Flow

In most image processing applications, motion is treated as a transformation which
describes an inter-frame mapping of pixels. That is, the pixel (x_y) at time t+1
corresponds to a pixel at (x%y") at time t, which has effectively moved between the two
spatial positions. This is also the essence of what is termed optical flow [2],[5]. The
motion at (x,y) is described by a displacement vector (dx.dyj = (x-x3y-y). While this
adequately describes local motion, it is typically more useful to use a parametric form to
describe all the local motions within a given region. In the current video compression
standards, this parametric model corresponds to (dx,dy) = (ao,bo), where ao and bo are
the motion parameters to be estimated. This can be termed the constant model and is
capable only of representing horizontal and vertical translational movements in planes
parallel to the image plane. This model is inherently limited, but has proved useful for
block motion compensation where the blocks are quite small, i.e. 16x16 pels. Recently,
with the increased interest in object-based representations, more complex motion
models are being investigated. For example, the affine model (dx,dy) =
(ao+ajx+agy, bo+bjx+bay) has six parameters and is capable of representing translations,
rotations within the plane parallel to the image plane as well as other geometric
transformations, e.g. zoom and shear. It is desirable, however, to be able to
mathematically represent any arbitrary 3-D motion and in particular, to be able to
represent the 2-D perspective projection of this motion onto the image plane.
Fortunately, it is possible to derive the form of this representation [34]. We now follow
the derivation of the equations describing the 2-D optical flow field due to an arbitrary

3-D motion.

Let us assume we have a moving camera and a fixed 3-D scene. A co-ordinate system is
fixed with respect to the camera and the z-axis is parallel to the optical axis. Take a
point P in the 3-D scene with co-ordinates (X,Y,Z). This point can be undergoing a

translation and/or a rotation and the velocity is givenby V=-t - wxr where
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r=[X Y Z]T
t=(U VvV J\/)T, translations in X, Y and Z directions,

w=[A B C)T, rotations about X, Y and Z axes.

The velocity equation can be expanded out in component form.

X =-U-BZ+CY
Y=-V-CX+AZ
Z=-W- AY + BX

Equation 4-1

Assuming perspective projection and a focal length of 1 in the camera, the

corresponding image pointp - (X,y) is related to P as follows

Equation 4-2

The optical flow at a point (x,”) in the image is represented by (u,v) where,

u=xandv=yYy.

Equation 4-3

By differentiating the expressions for x andy and substituting the derivatives ofX, Y and

Z, the velocities within the image plane (the optical flow) are given by:
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Equation 4-4

Notice that this is, in fact, a quadratic function of the image co-ordinate (pcy) and has 6
parameters, i.e. (U, V, W,A,B,C) plus a surface or depth parameter Z. In general, the static
3-D scene structure may be represented by a function Z(X, Y). Therefore, the optical flow
field is due to some 3-D motion and some surface structure. When estimating motion
according to the above models, there exists the problem of estimating the surface
function Z(X,Y). Surface structure can be recovered by stereo image processing [70] or
in the absence of multiple cameras and under the assumption of rigid object motion, so-
called structure from motion approaches can be used. In our application, the surface
structure is assumed to have a predefined structure, i.e. planar or parabolic surface
models are assumed. Under this assumption, the surface model parameters become

implicit within a polynomial motion model form as explained in the following text.

As a common example, letting the surface be a planar surface, it can be shown that:

=K+ Lx+M
Z(X,Y) y

Substituting this into the Equation 4-4 yields the 8 parameter motion model (labelled B
in Table 4-1). Table 4-1 summarises several common motion models and highlights the
important assumptions which have been made in their derivation. Both Dugelay and

Sanson in [27] and Diehl in [28] discuss the usefulness of these model forms.
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Table 4-1: Common motion models and underlying assumptions

Model Form Assumptions
A X' = (| +anx + a2y +a3 ¢ planar surface, translational motion or
, rotational motion about an axis
y' =ad+(l+ady +ab perpendicular to the image plane
B X' =a: +(l +a2)x +ady +a7x2 +asxy e planar surface, general 3-D motion
y' =ad4+abx + (I +ab)y +arxy +asy?2
C X' = atx2+ayl+aky+(l +adx +a%y +a6 * parabolic surface, general 3-D motion

y' =V 2+by +b,xy+btx +(1 +65>+b6

As can be seen from Table 4-1, with strict planar or parabolic assumptions on the nature
of the surface structure, the motion model form is required to be a quadratic function of
the (x,y) image co-ordinates. The commonly used affine models thus constitute an
approximation to the general motion forms. This approximation is quite accurate when
the moving objects are distant from the camera or when the rotational motion

components are within a plane parallel with the image plane.

4.2 Problem Formulation for Motion Estimation

Given images It+i and It, i.e. consecutive images from a video sequence, the task is to
compute a parametric description of the inter-frame motion. Since the sequence is likely
to contain several independently moving areas, the usual approach is to partition the
image into non-overlapping regions or, in the simplest approach, blocks. As such, the
final motion description is a combination of the partition method and the motion
parameters defined on each partition segment. Equivalently, it can be said that the inter-
frame motion field is a piece-wise continuous function. Let us therefore assume that
some partition of the image space is available, zt+X which describes various non-
overlapping regions within the image. For each region R in Zt+i, a motion model form
must first be chosen. For the reasons given previously, the general polynomial function

is a good choice. This function is described by:
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X" =x +Br(x)0

Equation 4-5

where x=(x y)T is the pixel location within the image and x'=(*" y)T is the
corresponding displaced location within the image It. The coefficients of the
polynomial, i.e. the motion parameters in this case, make up the vector 9. The xy power
terms are in the matrix B. A simple example illustrates the mathematical structure of the

motion model. For a first order model (affine), we have

bty 1% oo o

Uo 0 1Ix yj
0T=(90ex e2e\ edo,)

Note that, for an n'rorder polynomial motion model, 6 is an m-dimensional vector,

wherem=(«+ )« +2).

Equation 4-5 describes a mapping between two co-ordinate systems. In terms of motion
or optic flow, it implies that the pixel at (x',y%i) has moved to (x,y,t+l). Thus, the

motion estimation problem can be formulated by:

* A (X0

or, alternatively,

M) =/,(X7) + Ae(X)-
Equation 4-6

The construction of an objective function based on the brightness constraint leads to a

least squares optimisation approach. For a given region R, the objective function is
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- INR=ZEH )P

XeR

Equation 4-7

i.e. a sum-squared error function. Equivalently, the objective function may be the mean

of the squared errors, i.e.

Equation 4-8

where E() is the expectation or mean over the region R. The task of motion estimation is
then to find the motion parameter vector 0* which minimises Equation 4-8. Note that,
this is a non-linear least squares problem because the function 11(x'(6>))is not linear in

the unknown motion model parameters.

4.3 Estimation Methods

The optimisation of non-linear least squares objective functions is performed using
variants of the Newton method. An interesting comparison of methods was carried out
by Dugelay and Sanson [28], involving the Newton method, the Gauss-Newton method
and the adaptive gain gradient method. The conclusion was that the Newton methods
were comparable, while being more effective that the gradient method. Here, the Gauss-
Newton (GN) method of [81], [82] and [83] and a Quasi-Newton (QN) method similar
to that in [27] are compared. As will be seen, these optimisation algorithms are iterative
and must be initialised with an appropriate guess. For the particular problem of motion
estimation, these techniques are usually embedded in a multiresolution image
framework [6] since this:

* aids in the accurate modelling of large motions,

* adds robustness by reducing the effect ofnoise,

» reduces implementation complexity, and

 reduces the chances of the estimator being trapped in local minima.
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4.3.1 Newton’s Method

The Newton method is an iterative method used to find function minima. Let
/(x) denote an arbitrary multivariate function to be minimised. An initial estimate x0of
the function’s minimum must be provided. Starting from this point, the Newton method
computes a search direction p0, which is said to be a descent direction. That is, by
moving from the starting point along this direction, a reduction in the evaluation of the
function can be attained. Given this descent direction, a new search point x, lying some
specified distance in the descent direction is chosen. The minimisation proceeds by
stepping along the descent directions through the parameter space until a minimum is
encountered. The minimum is assumed to have been encountered when a specified
termination criterion has been satisfied. Most termination criteria rely on the fact that

the function gradient (i.e. its first derivative) in the neighbourhood of the minimum is

close to zero. A minimum x* might be chosen which satisfies |/'(x*)| < T where T is

some predefined threshold with a value close to zero.

The Newton method, while not being the only technique used in minimisation, is widely
acknowledged as the most reliable and most efficient. Nevertheless, it has several
problems. Firstly, it is only capable of finding the local minimum in the catchment area
of the initial estimate x0. For complex functions with many spurious minima, a
straightforward application of the Newton method is unlikely to give satisfactory
results, since the search is very likely to terminate at a local minimum. Secondly, the
specification of foolproof termination criteria is difficult. Very often, Newton searches
will terminate on function saddle-points rather than minima, since saddle-points also
have zero gradients. For each particular problem, the Newton method must be carefully
adapted to avail of prior knowledge of the function characteristics or be augmented with

procedures for function simplification and search initialisation.

The basic Newton iteration is obtained by locally approximating the error function using

a second order Taylor series, i.e.
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e(x+p) =e(x) +g(x)T.p +pTH(X)p
Equation 4-9
where

¢k(x) ¢fe(¥)

09=Vek) = o s

is the gradient vector of the error function containing the first order derivatives of the

error function and where H(x) = V2e(x) is the Hessian matrix of the error function

de{x)

g,k’\ck] . For error functions which can be

containing the second order partial derivatives

locally approximated by the Taylor series of Equation 4-9, we should expect robust
optimisation results and fast convergence properties. Non-optimal results can be
expected when functions do not adhere to this assumption. The Newton iteration finds
the step p which minimises this locally approximated quadratic function. This is done
by taking the derivative and setting the result equal to zero. The result at the iteration k

is as follows:

Pk = - H(xk)_1-g(xk)

Equation 4-10

where xKis the current search point and pkis a vector denoting the next search direction.
If, the Hessian matrix is positive definite, then it is assured that the vector pk is a

descent direction. The resultant step in the space of x is given by:

Xk+tl —Xk = °Pk

Equation 4-11

It should be noted that while pk may be a descent direction, moving any arbitrary
distance along this direction is no guarantee of obtaining a reduction in the error
function. In particular, when the current estimate is far for the minimum, it is advisable
to incorporate a secondary search technique (a line search along the descent direction) to

find the step size a . It is safe to neglect line searches only in cases when the current
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estimate is close to the minimum, and consequently the magnitude pk is small.
Unfortunately, line searches add significantly to the computational complexity of the
overall estimation process. Results dealing with the use of line searches in the motion

estimation problem are presented in sub-section 4.3.6

The overall iterative structure of the Newton method is depicted in Figure 4-1. There
are several classes of Newton method. The pure Newton method is used when the
Hessian matrix (i.e. the second derivatives of the error function) can be computed
directly based on the error function. However, there are functions for which the Hessian
is not available and/or would result in very complex calculations. In such cases, the
Hessian is iteratively constructed using previous values of the gradient vector. These

methods are termed Quasi-Newton (QN) methods.
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Figure 4-1: Illustration of a Newton method for the optimisation of an arbitrary error function in
the variables x. For a motion modelling optimisation, X denotes the motion variables and the
observations or measurements are the current and previous images.



Background material on the theory and practice of using Newton optimization can be
found in an article by Brodlie [17], and in books by Dennis and Schnabel [26] and
Fletcher [29]. The next sections go into more detail on the problem of motion modelling
and the proposed solutions, i.e. the GN and QN methods. In the following, the main
emphasis is on the implementation-related aspects of GN and QN. Hence, mathematical
equations relating to their implementation are presented. To keep the use of complex
mathematics to a minimum, explanations for the equations are presented in a non-
rigorous fashion. The referenced publications contain more rigorous justifications and
derivations, although several derivations are included in Appendix A. In addition,

Appendix A contains simplified examples on how the various formulae are utilised.

4.3.2 Quasi-Newton(QN)

Diehl [27] presents a QN system for the solution of the motion modelling problem. The
QN method used here is based to a certain extent on this previous work. Quasi-Newton
methods are used when the second derivatives of the error function are difficult to
evaluate directly. In QN methods, the second derivatives (i.e. the Hessian matrix) are
approximated from a knowledge of the first derivatives (i.e. the error gradients) at
several points on the error function. To begin with, some initial estimate COof the
Hessian matrix H is made. Based on the mean least squares form of the error function
(i.e. Equation 4-8), Diehl chose to evaluate the initial Hessian approximate as in

Equation 4-124

Equation 4-12

4 A briefjustification of this choice is presented in Diehl’s paper [27].
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As derived in Appendix A, the gradient of the error function in Equation 4-8 is

computed by:

N . fa' ~dLr 4
g(™t) = Ej (/,4(x) - 11(x")) Ty fa J@ct

Equation 4-13

A first iteration can now be carried out as follows:
&=00C~V
Subsequent iterations are given by:
=ok-c-H.

However, the matrix Ckat each iteration is given by the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) update formula [17] i.e.

cki =Ck+ . It g(™M)gK)T+7?rykyk
9("k) K y*sk
with

yk = g("k+i)- g("*k) and sk = ekt -

Equation 4-14

The BFGS update formula returns an estimate of the Hessian matrix at the current
search point. This estimate updates the Hessian (estimated at the previous search point)
based on the gradient vectors obtained at the current and previous search point.
Intuitively, it may be helpful to think of the method as extrapolating second order
derivatives based on a knowledge of the first order derivatives at two distinct search
points, i.e. Ok and 9k+x Given a first estimate of the Hessian at the initial search point,
the intention of the formula is to iteratively build an accurate estimate of the Hessian

through accumulating knowledge of the first derivatives. Thus, on each iteration k, it is
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only necessary to compute the gradient vector g{dk) of the error function and then to

employ the BFGS formula to find the next approximation of the Hessian matrix. The
evaluation of the BFGS update formula is relatively simple. The main computational
burden is the calculation of the gradient vector. For a given image region, the following
procedure is employed to compute the gradient vector on each iteration. (The reader is
required to consult the examples given in Appendix A in order to fully understand the

procedure).

For all pixels x=(x y)Tin the image region, the following are required:

da
1. ComputeB = , an mx2 matrix.

N

. Evaluate the model and the displaced co-ordinate x' = x + B$.

w

. Compute the error e=/,+(x) - /,(*")’” a scalar.

I A
. Compute the image gradient VI = /3 1, a 2x1 vector.
S.

N

o

Compute the Jacobian inverse J 1= 4 ,a 2X2 matrix.
S.

6. Compute v = eBJ"V I, anmxI vector,

The v vectors are summed over the whole region and the mean is computed to give us

the error gradient vector.

The sparsity of the matrix B can be exploited in any matrix products with which it is
involved. The total number of operations required for the computation of the error
function gradient is directly proportional to the number of pixels in the image region. It
is also dependant on the model order n since higher model orders mean there are more

elements in the associated vectors and matrices, i.e. mis large if n is large.

Diehl [27] suggested that the evaluations of image gradients (step 4) could be avoided at
each iteration by a simple substitution in Equation 4-13. Although, no mathematical

justification was provided in the paper, a fast QN (FQN) algorithm is yielded by



replacing the image gradient 4 with w The FQN computes the error gradient
a a

using

) da’[da'V i(x)
9(M) =E (G901 45 ga  da

Equation 4-15

The new image gradient is of course independent of the current value of the motion
model and can be evaluated, once and once only, prior to the start of the first iteration.
This in itself saves computation time, but there is an additional benefit to this method.
Because the image gradient is known in advance, it is possible to sum the v vectors only
over those pixels where the image gradient has a substantial value. This can result in
large speed gains for most images and since pixels with small local gradients do not
contribute much to the overall error gradient, a relatively accurate approximation (of the
error gradient) can still be attained. This idea of pixel selection will be exploited in later

sections of this chapter.

4.3.3 Gauss-Newton(GN)

The GN method can be viewed as a simplification of the pure Newton method, which is
most suitable when the problem can be expressed as a least-squares regression, whereby
the task is to fit a mathematical model to the observed data. It does not use an iterative
update formula for the Hessian (as is done in the QN method), but it does approximate
the local characteristics of the model function. These approximations result in making
the direct computation of the second derivatives more feasible. A general treatment of
Gauss-Newton theory is available in Fletcher’s book [29]. The GN scheme was
presented in relation to polynomial motion modelling by Sanson [83]. The following

text presents this GN method.

Consider an iterative approach to the minimisation of the least-squares error function in

Equation 4-8. At iteration k+1, the current model estimate is denoted by ok+ = Ok +A0k
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and the displaced position in the previous image is given as usual by x*H “X+®@™+H e

Thus, the current displaced position may be written as

xi+ =x+b(0* tAOk) =Xk +BAa %

At each pixel, the error at this iteration is expressed by the difference between the

observed data and the model function, i.e./<t(x)-/,(xk+l). Assuming that A0k is small,

the model function can be approximated as a first order Taylor series as follows:

The derivation given in Appendix A5 shows how this local image approximation leads

to the Gauss-Newton step OkH =0k+YKOv) 1g(ek), where the following expressions are

used to compute the gradient vectorg and the Hessian matrix H :

S(A) =e{(Ad(x)- 11(x)). -

e=ev

Equation 4-16

A ' <\T
Hw =g~ (X)¥ -E
36 36 36 3 36 3

Equation 4-17

The Gauss-Newton method is the same as the pure Newton method in terms of overall
approach and structure. The only difference lies in the underlying Taylor series
approximation. For images which are locally smooth, then the Taylor series
approximation should be reasonably accurate and thus the GN should be robust and

exhibit speedy convergence, as would be expected from the pure Newton method.
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In comparison with the QN iteration, the GN iteration is just slightly more
computationally complex. This is due to the fact that both the Hessian and gradient
vector must be directly computed. For a given image region, the following procedure is

adopted on each iteration.

For all pixels x=(x Y)Tin the image region, the following are required:

da
1. ComputeB = , @n mx2 matrix.

2. Evaluate the model and the displaced co-ordinate x' = x+ BO .

3. Compute the error s = 1 H1(x)- 1t(x"), ascalar.

) ) cKt(x")
4. Compute the image gradient VI = i a 2x1 vector.

5. Compute v = BV, an mx1 vector.

6. Compute g = ¢rv, an mxI vector.

7. Compute H =w T, an mxm matrix.

The g vectors are summed over the whole region and the mean is computed to give the
error gradient vector. The H matrices are summed over the whole region and the mean
is computed to give the Hessian matrix. One should notice that the GN procedure is
entirely similar to the QN algorithm up to, but not including, step 5. It is the
multiplications involved with step 7 which mainly account for the GN method’s slightly
higher complexity. Fortunately, the degree of symmetry existing in step 7 can be
exploited to reduce the number of computations, see Equation 4-21. As with the QN
algorithm, the computational complexity of this algorithm is related to the size of the
image region and to the model order. A more detailed analysis of the computational

complexity of GN is described in sub-section 4.4.1.

4.3.4 From Discrete to Continuous Image Representations

The Newton method of optimisation is based on continuous functions. However, when

applying this technique to image processing, there is a general difficulty due to the fact
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that a digital image is a discrete function. To overcome this difficulty, it is necessary to
convert the digital image into a continuous function in 2-D. In addition, the
implementation of either QN or GN also requires the evaluation of image derivatives
(gradient) in continuous space. To minimise any problems due to errors in computing
these derivatives, a continuous-space representation of the image was constructed. For
the sake of clarity, the methodology is first illustrated in the case of a 1-D signal and the

extension to the 2-D case is then outlined.

Given some interpolation functionJ[x) and a discrete signal y(k) with sampling interval

AX, a signal value can be evaluated at any point in continuous space according to:

«+3

where (« + 1) Ax; corresponds to the discrete sample directly before the continuous
position xc. This equation describes a 4 tap filter. The taps of the filter are obtained by
evaluating the interpolating polynomial at the specified points. The chosen interpolation
function is a piecewise bi-cubic polynomial based on the work of Mitchell and Netravali

[51]. It has the following form.

IX|3- 2x2 +1, iffid <1
x|3+5X2-8x +4, if[jd<1

This polynomial was developed specifically for the purpose of reducing aliasing in
converting from discrete to continuous image representations. It has already been found
be useful by Sanson in his work on motion estimation. For 2-D image interpolation, a
second filter is constructed (based on the same polynomial) and the two filters are

applied in separable fashion according to the following:

m+3

J(xc,yc) = Yuf{yc~IAy)|2(:|;|JI(k,I)f(xc-kAx)

Equation 4-18
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where (m + )A> corresponds to the discrete sample directly above the continuous
position yc. This separable filter allows the evaluation of the image intensity at any
point in continuous space. In addition, it may be seen that the continuous image gradient

may also be obtained by differentiating Equation 4-18. This yields:

OX I=m k=n

=§:‘ﬁ'0-.-uviki:r¥oM P B |

Equation 4-19

Therefore, in computing the gradient at continuous positions, it is only necessary to
derive two new 4 tap filters based on the derivative of the interpolating bi-cubic

polynomial. This derivative polynomial is bi-quadratic in form.

In computational terms, the task of computing the image intensity and gradient at a
given point in continuous space is highly complex. A total of four filters must be
constructed. There are two filters used to evaluate the continuous intensity and two
additional filters to evaluate the continuous gradient. Each filter tap requires the
evaluation of either the bi-cubic polynomial or the bi-quadratic polynomial. It should be
noted that constructing the filters in this way requires a total of 60 multiplications. This
is in addition to the 20 multiplications involved in the convolution of Equation 4-18 and

the 40 multiplications involved in the convolutions of Equation 4-19.

4.3.5 Details of Implementation

The two optimisation methods described above, i.e. QN and GN, have been
implemented by the author. An essential difference between the chosen implementation
and the standard implementations is that a co-ordinate system normalisation is

performed. This can be simply described by the mapping,
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"(x-xof

y max

where the image region undergoing the motion estimation is bounded by a rectangle
whose top-left co-ordinate is (xo,yo) and whose dimensions are xna and _ynax see Figure
4-2. This was required because it was noted that the Hessian matrices are frequently ill-
conditioned5 The extent of the ill-conditioning depends upon the model order being
used (higher order models yielding more ill-conditioned matrices) and on the size of the
region within the image (larger regions producing more ill-conditioned matrices). The
normalisation had the effect of producing better conditioned systems, less susceptible to
noise in the data and to the effects of finite precision arithmetic. In this way,
considerable improvements in performance were possible, especially for quadratic

models.

(x0.yo0)

Figure 4-2: An arbitrary region bounded by a rectangle.

In the author’s implementation, the optimisation system was also embedded in a multi-
resolution image pyramid. Both current and previous images were applied to a three
level pyramidal decomposition. It can be shown experimentally that this is of benefit in

terms of robustness and computational complexity, when scene motion is large, or more

5 A matrix is said to be ill-conditioned if its rows or columns are nearly linearly dependent.
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generally, when the minimum is substantially different from the initial estimate. Also,
for the GN method, suitably chosen filters can lead to images at low resolution which
locally conform to the aforementioned Taylor series approximation. A low-pass
Gaussian filter was used in the pyramid construction. The use of a multiresolution
pyramid necessitates the transfer of the polynomial motion models from low resolution

images to high resolution images. This transfer is achieved as follows.

The general polynomial can be represented by:

=0j=0

Equation 4-20

The task is to transfer a polynomial motion model d' related to the image at resolution
R' to aresolution twice this resolution, i.e R=2R" , such that d(x,y) =2d'(x",y'). (Here,

x=2x" and Yy = 2y'). Therefore, the following equality must be satisfied.

Nt ot aNrjlyy
i=0 ]1=0 i=0 7=0

This is satisfied if a« :-2’\ r.

The situation is different if a co-ordinate system normalisation is applied as defined by:

X-X0 -y0 , . X'-xb , -y'0
- » yn =%’ y and . yn :Y ]X—
A max max A raax -'max

Then a different equality is satisfied, i.e.
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¢ EWV =AU aiv~j(y)n

I=0 y=0 I=0 7=0

Now since,
x' max

then js, =Xnandyn=y,,and it follows that ajj = 25— satisfies the equality.

A final point on the GN method is also worthy of mention. Regarding the Hessian

matrixH of Equation 4-17, it can be shown that,

H= Y where H~ Hyy and are symmetric matrices.

Equation 4-21

In the GN implementation, the sub-matrices off the main diagonal have been set to zero.
This approach was taken by Sanson [83] and has two effects. Firstly, it simplifies the
computation of H and secondly, it leads to better conditioned systems and generally

better overall performance.

4.3.6 Performance Comparison of Gauss-Newton and Quasi-Newton

Tests were conducted to compare the performances of GN, QN and FQN. The test and
nature of results are described and a discussion of the findings follows. Each estimation
method was applied to some video-phone sequences. Both manual and automatic
segmentations were used to define the various independent regions to which the motion
estimation was applied. Table 4-2 summarises the test material together with the motion

models used in each case.
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Table 4-2: Summary of test material for comparative tests.

Case  Sequence Framesused FrameRate  Segmentation/ Motion Model

(H2) #regions
1 Foreman  200-340 25 Manual/5 quadratic
2 Foreman  200-340 8.33 Manual/5 quadratic
3 Foreman  0-54 8.33 Automatic/70  affine
4 Claire 0-140 5 Automatic/12  affine

The test material is diverse in the sense of the segmentations used. Test cases 1 and 2
use segmentations containing only a small number of regions, each assumed to be
moving independently. The other test cases use segmentations containing larger
numbers of regionsé. The nature and magnitude of the motion within the scenes
themselves is also diverse, ranging from fast/3-D motions in test cases 1 and 2 to

simpler motions in test case 4.

At each frame of each sequence, the motion of each of the regions was estimated. The
motion estimates were used to motion compensate the previous original image. Motion
compensation errors were not propagated in time. Results are presented in terms of the
motion compensation error magnitude, quantified by the PSNR and the numbers of
iterations required for convergence. Table 4-3 presents a brief overview of the
experimental findings via the mean PSNR and iteration figures. The graphs of Figure 4-

3 illustrate the PSNR result over the length of the sequences.

6 These segmentations were performed using the morphological watershed, see chapter 5.
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Table 4-3: Summary of results of comparative tests. Mean FSNR figures taken over each sequence
are given as well as the number of iterations until convergence. Here, the format is as follows:
iterations in low resolution pyramid layer/ medium resolution pyramid layer/ high resolution
pyramid layer.

GN QN FQON
Case PSNR iterations PSNR iterations PSNR iterations

1 32.89  5/4/3 32.10  4/3/3 3169 Aim
2 26.53  6/3/3 25.69  4/3/2 2493 3/2/2
3 32.87  5/5/5 32.23  5/4/4 31.57 5/3/3
4 37.75  6/4/3 37.57 5/3/2 37.32  4/2/2

From Table 4-3 and Figure 4-3, it is clear that the QN method is, in general, inferior to
the GN method. This is particularly evident if scene motion is large, i.e. the fast camera
pan in Foreman, see graphs 1 and 2 (frames 280-310). In such cases, the GN can often
produce motion compensated images with PSNRs 5dB greater than that of the QN
method. It would appear that the QN method is not very reliable when provided with
initial estimates far from the solution. In terms of convergence speed, the QN uses
slightly fewer iterations. But since the QN generally does not converge to a good

optimum, this advantage is a little dubious.

The fast QN method was also investigated, but proved ineffective relative to the GN
method. Again, performance suffered mainly during instances of large motion. Motion
modelling based on FQN, while having the potential to be fast, is considered to lack
reliability and robustness and may only be suitable when motion magnitudes are known

to be very small

In summary, the GN method demonstrates good relative robustness even when given
bad initial estimates of the minimum. Despite this, we can not be sure that the GN is
always converging to the global minimum of the error function. Indeed, with the
addition of a line search [75]7, it is observed that, at times, up to a 2dB improvement can

be attained in prediction quality. This is demonstrated by Figure 4-3e. Although the use

7 An exact line search algorithm based on minimum bracketing and a 1-d minimisation algorithm, devised by Brent,
was used.
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of line searches is inappropriate due to the substantial additional complexity, i.e. 10-20
extra function evaluations per iteration, this result does demonstrate that there is some
scope for improving the GN motion modelling algorithm via the application of
alternative low complexity methods. Alternatively, the use of line searches can be
neglected if an attempt is made to find a good initial estimate of the minimum. In the
application of motion estimation to tracking (as described in Chapter 6), the motion
estimates for a given video frame may be initialised using the motion estimates of the

previous frame.

GN vs QN: CASE 1: Foreman 25Hz

frame number

(@)
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GN vs QN: CASE 2: Foreman 8.33Hz

frame number

()

GN vs QN: CASE 3: Foreman B.33Hz

framo number

©
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GN vs QN: CASE 4: Claire 5Hz

- GN
7 o
o FQN
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(d)
GN vs GN+LS: CASE 3: Foreman B,33Hi
GN
% GNH.S

)

Figure 4-3: The five graphs plot PSNR versus time. This illustrates the relative effectiveness of each
motion estimation technique.
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4.4 Fast Gauss-Newton Estimation

The previous sub-sections introduced the GN and QN estimation methods and a
comparision showed that the GN method is superior in terms of finding the optimum. A
major problem with all Newton-like methods for motion estimation is their
computational complexity. This sub-section summarises work by the author [13] which

examines the complexity of GN and suggests methods of reducing it.

4.4.1 Computational Analysis of GN

For the estimation of a general nlh order motion model over a region R, the operations
listed in Table 4-4 must be carried out at each pixel within each iteration. Note, for an
nih order polynomial motion model, o is an m-dimensional vector, where
m =(n+1(m+2). Note also, that at step 7 in Table 4-4, a fast vector product algorithm is
already used in our implementation. This avails of all the symmetry present and neglects

the sub-matrices off the main diagonal, setting the elements to zero, as discussed.

Table 4-4: Multiplications per pixel per iteration (MP1) for GN-based motion estimator (m refers to
the dimension of the model vector).

Step #  Operation # Multiplications
1 B m/2 8
2 x'=x + B0 m
3 VI = *<(*)
n
4 |
5 v=BVI m
6 g=g+6ev m
7 H=H+wT m/2+m”~/4

Summing the rightmost column of Table 4-4, we get what is termed the MPI

(multiplications/pixel/iteration) figure for GN:

8 This is only a rough approximation but does not significantly effect results or conclusions.
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MPI =1 +G+4m+n24

For the gradient and intensity interpolations, 4-tap filters, based on [51], are applied in a
separable fashion as discussed in sub-section 4.3.4. For this choice, G=100 and 1=20. It
is emphasised that G includes the construction of all the interpolation filter kernels, i.e.
even those used for the intensity interpolation. Based on all this information, it can be
computed that a quadratic modelling task (m=12) has an MPI figure of 204. For a given
image resolution, it is possible to derive the overall requirement (M) in multiplications

per second by using

M =MPI.N.K.F,

where N is the number of pixels in the image, K is the average number of iterations until
convergence and F is the frame rate of the video sequence. By way of example, we can
compute the computational requirement for quadratic motion estimation based on the
QCIF format at 25Hz to be 388 million multiplications per second. This is based on the

conservative assumption that only 3 GN iterations are required (i.e. K=3).

4.4.2 Towards a Fast Implementation

The processing power discussed above is beyond the capabilities of any of today’s
general purpose processors and therein lies the motivation to look for means of
simplifying the estimation procedure. Two methods are now suggested through which
faster algorithms can be achieved. These two methods have been used by the author to

implement a fast GN algorithm.

LUT-basedInterpolation. Much effort is expended in computing the image intensity and
gradient at the displaced position. A significant part of this expense is due to the
construction of the interpolation filter kernels themselves, while the remainder is in
performing the actual convolutions. The construction of the filter kernels is achieved by
the evaluation of bi-cubic (for intensity) and biquadratic (for gradient) polynomials.

This can be avoided by using look-up tables (LUTS) to approximate these polynomial
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functions. Effectively, this means the algorithm stores the filter coefficients instead for
computing them each time. In this way, a new reduced figure for G can be achieved, i.e.
G=40. This figure is accounted for solely by the convolution of the image pixels with

the filter taps. Note that this modification was suggested previously in [7],

Gradient-based Pixel Elimination. The computation of the Hessian and gradient
involves performing the 7 operations of Table 4-4 at each pixel in the given region and
summing over all these pixels. One could instead choose to use only every second pixel
on every second line. This choice is rather arbitrary and has been found to compromise
the estimation procedure. Instead, a pixel elimination procedure is used based on
thresholding the image gradient norm. This approach of gradient thresholding is
motivated by the fact that the equations for the Hessian and gradient are largely
dependent on the image gradient and that pixels with little gradient information will not
contribute greatly to the total sum. Diehl [27] adopted a similar strategy within a QN
estimation algorithm. Due to the nature of the QN algorithm of [27], the gradient
information was available prior to start of the first iteration. This made it possible to
apply the pixel elimination strategy from the start. For GN, this is not possible because
the image gradient utilised depends on the current model estimate. The FGN algorithm

using this pixel elimination procedure is now summarised.

4.4.3 The Fast GN Algorithm (FGN)

The fast algorithm for the computation of the Hessian and gradient at iteration k is

summarised by the following:

For all pixels x=(x yf in the image region, it is required to:
1. Compute the matrix B.

2. Compute the displaced co-ordinate x* =x+ BOk.

3. Compute the image gradient vI = Cfda T

4. 1f |M||"¢ T, continue with step 5. Otherwise, the procedure moves back to step 1 and

processing begins with the next pixel in the region.
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5. Compute the error
6. Compute the vector v=BVI.
7. Compute the gradient update g=g+S =

8. Compute the hessian update H =H +w T.

It can be noted that at each pixel, steps 1-3 must be performed before the threshold-
based decision is carried out. If desired, the interpolative filters can be derived from
LUTSs as described in sub-section 4.4.2. In the chosen implementation, the threshold T is
adapted on a pixel-by-pixel basis in order to achieve a given factor of reduction in the

amount of pixels considered.

4.4.4 Computational Analysis of FGN

It can be shown that the MP1 figure for the FGN algorithm is computed thus:

with 0<r<1

where r is the fraction of pixels not rejected by the thresholding procedure. To reiterate,
if LUT-based interpolation is used G=40, otherwise G=100. Table 4-5 and Table 4-6
provide examples of what can be achieved with the two proposed improvements. It can
be seen that under the joint application of the LUT-based interpolation and the pixel

elimination strategy, complexity is reduced almost by a factor of 3.

Table 4-5: mpi figures for affine motion estimation where r = 0.2.

G=100 G=40
GN 153 93
FGN 117.8 57.8
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Table 4-6: mpi figures for quadratic motion estimation where r = 0.2.

G=100 G=40
GN 204 144
FGN 135.2 75.2

It is clear that all the proposed modifications result is a more efficient implementation.
The experimental findings reported in [13] show that the complexity may be reduced by

a factor of 2-3 without significantly effecting estimation performance.

4.5 Robust Gauss-Newton Estimation

This final sub-section is dedicated to the estimation of the same polynomial motion
models, but with a slight difference concerning the error function which is optimised.
The straightforward sum-of-squares error function is overly sensitive to outliers.
Outliers are defined to be errors within the error signal/image whose absolute magnitude
is far beyond the average. In the estimation of visual motion, outliers can be due to
image noise and the appearance or revealing of new objects, previously unencountered.
It is often very desirable to ignore such phenomena in the computation of motion. For
instance, often it is required to capture the real motion in the scene. This would, for
instance, be important in a computer vision application where some action is triggered
by a particular motion type. In the area of motion segmentation and object tracking, it is
required to compute models which describe the pure object motion and which are not
influenced or distorted by the fact that a new region has been uncovered or by the fact
that there is a lot of image noise. For this reason, it is best to use what are termed robust

estimators [85],

Sawhney et al [84] performed the estimation of motion parameters 0 in the region R by

minimising the following generalised error function:

e(0)= E/°(K40-)

VxeR

Equation 4-22
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where the residual error at each pixel x is r&)=/#(x)- /,x"@) and the parameter

g is an error scaling factor usually derived by computing the variance of the residual

errors in the region R. For the previously introduced sum-of-squares error function of

Equation 4-8, p\r,a) = E? . For robust estimation, the Geman-McLure (GM) function

was used instead, i.e.

1+

A comparison of the squared error (SE) and GM functions are given in Figure 4-4. Note,

when using the Geman-McLure function, the larger errors contribute less to the overall

error function.

» Lo * ) * s e 5
(c) Influence function of squared error (d) Influence function of the Geman-

function McLure function

Figure 4-4: The top line shows the SE function and GM function. The bottom line shows the
respective influence functions for each.
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As demonstrated by Sawhney, the gradient and Hessian of the given robust error

function can be approximated as:

gt ~ ) = (M-

e=ev

Equation 4-23

w(x)
39 3 30 3a

Equation 4-24
where,

2a
w(x) =
(0-2+KXx)2)2

is a weighting function relying on the residual error ( r(x) = IM(x) - 1t(x")) at the
given pixel x. Comparing the above Hessian and gradient to those of Equation 4-16 and
Equation 4-17, it is clear that the presence of this error weighting function is the only
difference between the robust estimator and the least squares estimator. This error
weighting/influence function is depicted in Figure 4-4. It can be concluded that errors

with large magnitude have very little effect on the estimation process.

By applying these influence functions in the estimation procedure, a technique known as
weighted least squares (WLS) estimation is being used. To effectively use the WLS
estimator, the variance of the error distribution crmust be known or ascertained. The
computation of the error variance itself is highly influenced by outliers and hence
Sawhney suggested that the median of the error distribution be used to arrive at a more

representative variance. The following equation was used:
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er = 1.4826 median|r(x)|

Justifications for the use of this equation are given in [84]. In the framework of the
iterative GN estimator, this variance value should be re-computed before each iteration
and hence this method is often referred to as iteratively re-weighted least squares
(IRLS).

4.6 Summary

Generalised polynomial models are capable of representing the effects of rigid 3D
motions. The estimation of the model parameters requires an iterative approach to
optimisation. Several optimisation algorithms have been tested by the author and
compared, here and in other literature, in terms of their ability to minimise the given
error function. It would appear that the Gauss-Newton method is better than most.
However, it is noted that the estimation of polynomial motion has some problems. For
example, the global minimum of the error function is not always found. There is
possibly some scope for improving results by some suitable initialisation of the search.
Another problem with the estimation of the motion parameters is that a significant
amount of computing power is required if real-time performance is to be attained. To
address this problem, fast Gauss-Newton algorithms have been developed which reduce
computation time by a factor of 2-3, while only marginally effecting the estimation
performance. Finally, the basic least squares error function that is usually the basis of
motion estimation is overly sensitive to outliers. It is shown how a minor modification
to the general least squares minimisation results in an estimation algorithm that is more

robust to the effects of noisy images and other factors resulting in statistical outliers.

While most of this chapter focusses on the estimation of motion within a defined region
of an image, the motion within any given image can be conveniently represented by a
finite set of polynomial motion models and a corresponding set of support maps
defining the model which is supported at each pixel. For a given image, the estimation

of its motion is equivalent to the joint estimation of the model parameters and model
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supports. This is the problem of motion segmentation which is discussed in the next
chapter. Motion segmentation is one important tool which may allow the efficient
recovery of object shapes from video sequences and even more importantly, it may play

arole in facilitating the tracking of objects from frame to frame, as discussed in chapter
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5. Image Segmentation

Image segmentation is a widely studied topic. With regard to the subject of object-based
video representation, image segmentation is required in order to identify the position
and shape of the various visual objects in an image or video. For a variety of reasons,
image segmentation is a very difficult task. The kind of segmentations required for
object-based content access and editing are very demanding. That is, it is usually
required to identify semantic objects in a scene. With current image representations,
general methods for the identification of semantic objects from images are not available.
Semantic segmentation relies on the kind of intelligence which is currently present only
within the human brain. Existing semantic segmentation systems involve much
laborious work on the part of the human user, i.e. mouse pointing and clicking.
Computers can only be trained to understand and process very primitive image
attributes, i.e. texture and motion. Texture segmentation can be applied in order to
separate the pixels of the image into regions of coherent texture [19] and similarly,
motion segmentation is used to identify pixels which are moving with the same velocity
[11]. While the results of computer generated texture and motion segmentations seldom
capture the semantic content, computer-based algorithms can be used to ease the task of
semantic object segmentation by performing these so-called “primitive” processes at

high speed.

In this chapter, several prominent tools and methodologies for image segmentation

based on both texture and motion are reviewed. The purpose of the review is:

* to illustrate the difficulties with existing automatic image segmentation and the fact
that semantic interpretation by automatic means is currently infeasible,

 to introduce the basic techniques of statistical and morphological segmentation that
are utilised in chapter 6 to develop a new object tracking algorithm, i.e. the
segmentation of moving objects,

» to show the strength of ajoint motion estimation/segmentation approach by Ayer and
Sawhney [4] based on the Expectation-Maximisation algorithm and the Minimum

Description Length principle (the EM-MDL approach).
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In addition to the review elements of this chapter, some new work by the author is
presented. The approach of Ayer and Sawhney emphasised the aspect of motion
estimation and somewhat neglected the requirement for clean and consistent
segmentations. The author has augmented their basic algorithm by encorporating
contextual labelling constraints into the EM algorithm based on local Markov random
field models. In addition, the computation of the description length used in the MDL is

improved by considering local correlation in the segmentation labels.

The first sub-sections focus on a statistical approach to image segmentation. In sub-
section 5.1, the segmentation problem is viewed as an optimisation problem of high
dimensionality and a general iterative framework is presented as a possible solution.
Several examples applying this framework are given. Sub-section 5.2 presents two
estimation tools, i.e. the Expectation-Maximization method and the Minimum
Description Length principle, which provide this iterative framework with some
theoretical basis. The basic premise of statistical segmentation is the allocation of pixels
to various classes based on the models underlying those classes. However, it is generally
not useful to limit the pixel labelling task to the consideration of model suitability. It is
more appropriate to further constrain the labelling according to some local spatial
contexts. Sub-section 5.2.4 discusses contextual labelling algorithms that impose local
spatial dependancies using Markov Random Field (MRF) models. Finally, departing
significantly from the preceeding discussions, morphological image processing methods
for image segmentation are presented due to the relative success which has been

achieved by their use in texture segmentation.

5.1 Problem Formulation and Solution

Image segmentation involves a classification of image pixels where two or more classes
of image pixels exist. Segmentation may be achieved by answering the following simple
question: Which pixels belong to which classes? However, for most segmentation tasks,
the following facts are not known, (z) how many classes exist in the image? and (ii)
what are the models for each class in the image? This is why segmentation is often

referred to as a “chicken and egg” problem. Without the segmentation, it is unknown
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how many classes exist and it is not possible to directly compute the model parameters
underlying each class. Without the knowledge of the classes and associated model
parameters, it is not possible to generate the segmentation. This sub-section formulates
the problem as an optimisation task and presents an iterative framework that can be used

to unify many approaches to generalised segmentation.

5.1.1 Problem Formulation

There are basically two image characteristics that can currently be used for automatic
segmentation purposes, i.e. texture and motion. The basic approach to both types of

segmentation is the same and only differs in terms of the models used.

Texture segmentation involves the derivation of models based on the pixel colours, i.e.
YUV data or RGB data for colour images, or simply Y data for monochrome images.
Texture models are basically mathematical functions or processes that approximate the
image colour over some region of support. Under these models, each pixel coordinate
(x.y) is assigned a colour value based on the model function g(x,y, 9), where 9 represents
the model parameters. Any image can be approximated in terms of (i) one or more of
these models and (ii) a segmentation map identifying the image regions where each
model is supported. Let I(x,y) be the pixel value at (x> and let I (x)y) be the
approximated pixel value based on the model. To represent the segmentation, let each
pixel possess a label z(x,y), where z is a vector of binary values with elements z/, such
that

The image I(x,y) can then be approximated by:

7C>y) =Yz Xy)g(x>y>
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Given an image I{x)y), the task of texture segmentation is to identify both the

segmentation labels z(x,y) and the model parameters 0Oit i=0,l...,G, where G is the

number of models.

The task of motion segmentation may be summarised in a similar way, except that the
models used are different. In the case of motion, the models are used to represent an
image at time t+ 1 based on the image at time t. The image It+\{x,y) is approximated in

terms of the segmentation and motion models as follows:

Note that this model function relies on the image at time t. The segmentation labels

z(x,y) and motion parameters must be estimated based on the two images, i.e. /¢+, and

h

Based on the above model-based image approximations, segmentation can be treated as
a minimisation problem. That is, the segmentation labels and the model parameters are
chosen in order to minimise some chosen error function e(), taking account of the error
between the actual image and the approximated image. This methodology is denoted as

follows,

z, T=argmme(/, /%)
Equation 5-1

where T =\QxQ2,....69} represents the model parameters for each of the G classes. The
above problem formulation for image segmentation is slightly restrictive, relying only
on the pixel intensities as the observation data. More generally, image segmentation is
carried out on the basis of observation vectors, sometimes called feature vectors. A
special case of a feature vector is a scalar representing the pixel intensity, I(x,y). In the

general case, the observation is represented by:
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where M is the number of image pixels and xi represents the feature vector of the pixelj.
The feature vector may be consist of any local measurements made at, or centred on the
pixel in question, e.g. Y, U and V values, local motion parameters [93], local texture
moments and so on. The choice of features is critical to the performance of the
segmentation system. Some bad choices of features will be highlighted in the examples
given in section 5.1.3. Itis assumed that the set of observations has a probability density
function of some known form and that this function is dependent on a set of unknown

parameters. The unknown parameters are denoted by the vector ¥ and the density

function is written: /(X ;). For segmentation, the unknown parameter vector ¥

defines the parameter set {z,T}, where Z =\xl,z1, zM} represents the

segmentation labels (one label for each pixel).

The unknown parameters are found using the principle of maximum likelihood (ML)
estimation. The ML principle may be summarised as follows. Given some sample
observation X=x, the density function becomes a function of the unknown parameters,
sometimes called the likelihood function. The ML estimate is that parameter vector

which makes the observations most likely, i.e. it is the value of ¥ which maximises the

likelihood function /(jc;X) . Very often, it is the logarithm of this likelihood function

(the log-likelihood function) that is maximised, i.e.

'P = argmaxlog f(x; 'F)

Equation 5-2

To illustrate this principle in a simple manner, consider a case where a random source
generating independent events is being sampled. Assume that each observation X is
independently distributed according to a normal density function with an unknown

mean m and a standard deviation a equal to one i.e.
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The only unknown parameter is the mean m. It is desired to estimate the mean of the
source given 2 or more observations. This can be performed using the ML principle as

follows.

Assume the source is sampled twice yielding observations x1=2 and x2=3. With these
two observations, a joint density function is constructed noting that x1 and x2 are

independent:

-(xI-m)2-(x2-m)

f(x\,x2\ni) = f{x\\m)f(x2\m} = exp

2n
This density function may be further evaluated by substituting the sample values,

yielding an expression in one unknown m\

-(2-m)2-(3-m)?
N P
This function is called the likelihood function and it is maximised to find the mean. This
can be done most conveniently in this case by maximising the logarithm of the
likelihood function. Maximisation is performed by taking the derivative of the log-
likelihood function, setting it equal to zero and solving for m. This procedure yields the

expected result: m = (x1+x2)/2 = 2.5.

This is a very simple example and the ML solution to the segmentation problem is more
complicated requiring the use of the Expectation-Maximization algorithm as discussed

in sub-section 5.2.

5.1.2 Iterative Solutions for Segmentation

The segmentation task may be thought of as a minimisation of error, as in the case of

Equation 5-1, or a maximisation of probability, as in Equation 5-2. In either case, it is



clear that segmentation is an optimisation problem of very high dimensionality. There is
one label to be estimated for very pixel and there are a number of model parameters.
Assuming that there are M pixels in the image, G different classes and K model
parameters per class, then there are M+GK unknown parameters. In addition to the high
dimensionality, there is the outstanding problem of choosing how many classes to apply
in the segmentation. This number G shall be referred to as the model complexity.
Naturally, a larger number of models will produce a lower approximation error or a
higher value in the likelihood function. However, the purpose of segmentation is not to
use a very large set of models and to partition the image into as many regions as there
are pixels, for example. Instead, useful segmentations result by finding a good trade-off
between the fidelity of the image representation and the complexity of the overall

model.

Due to these difficulties, very few researchers have attempted to solve the segmentation
problem by direct and simultaneous estimation of all the unknown parameters. Instead,
the problem is broken down into a number of manageable steps arranged within an

iterative framework as follows:

. Parameter Initialisation’. A finite number of classes are decided upon and the

model parameters for each are initialised, i.e. T(0). There are many initialisation

strategies and some are described later in this chapter.

1. Iterate until stability

A. Pixel Labelling-. Each pixel is allocated to a particular class based on the

model parameters T(t). This yields a new segmentation Z(t).

B. Model Parameter Estimation: The model parameters are re-estimated
based on Z (i) to give T(i+)

C. Model Complexity Adjustment: It is ascertained whether the number of
models/classes are consistent with the observation data. For instance,
there may be redundancy, i.e. too many classes, in which case, some

models may be eliminated. Alternatively, there may not be enough
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models, in which case a new model is added. In either case, a change in

the model complexity G necessitates some pixel reallocation.

In the above iterative approach, stability can be defined as the state where little or no
pixels are being re-allocated at each iteration or where the values of the model
parameters have stabilised. Several examples of this framework exist in the literature.

Some of these are discussed in the next sub-section.

5.1.3 Segmentation Examples

Texture Segmentation and Clustering

Consider that it is desired to segment an image into regions of constant or
approximately constant intensity. Assume that it is known that G classes exist. The

model i has the form:

wherej represents a particular pixel. As previously, the image may be approximated as

follows:

and the task is to find the segmentation labels Z and the model parameters m\ for

iI=J,2...,G. The error at each pixel is specified as follows:

Equation 5-3

The image is initially partitioned into G non-overlapping blocks. For each of the blocks,

the mean intensity value is computed and used to initialise the model parameter set.
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Based on the initial models, each pixelj is allocated to the model which produces the
smallest error as specified in Equation 5-3. Based on this segmentation, the mean
parameters are re-estimated. This process of estimation and allocation continues until

stability is reached.

The above illustration of texture segmentation was based only on a one-dimensional
feature vector. Most images have a three-dimensional colour space, e.g. RGB or YUV.

Each pixel has an associated vector representing the value of each colour component:

A\
b\

X j

vV

It is generally better to allow all three components to form the observation data than to
restrict the observation data to just a single component. In this case, the model function

is simply a vector-valued function of a vector valued parameter.

(myy®
m f
\mi /

Once again some error criterion is used. For instance,

IXj - g( DIl ={yt- my)* +(uj - niu)2+ (v, - m(v)2

Equation 5-4

The process of segmenting the image on the basis of these 3-dimensional observation
vectors is exactly the same as in the 1-dimensional case. The image space is sampled to
obtain initial estimates for the G models. Based on these initial estimates, allocation is
carried out by choosing at each pixelj the model which minimises the error criterion.

This allocation procedure results in an initial estimate of the segmentation Z. The model



parameters are re-estimated by taking the mean of the YUV data within each model’s

region of support. That is, for the Y component

where Nf is the number of pixels allocated to model i. The U and V means are computed
in an identical fashion. The vectors storing the Y, U and V mean values are termed the
cluster centres and the error function in Equation 5-4 denotes the distance between the
feature vector at pixelj and the cluster centre i. Based on the new cluster centers, pixels
are again re-allocated according to the distance metric and so on until stability is

reached.

The approaches that have been outlined for texture segmentation are purposely simple.
They illustrate the iterative nature of texture segmentation, but they ignore the model
complexity issue and assume that pixels may be independently classified. Firstly, it is
assumed that the model complexity G is known in advance and that the initial model
parameters for each of the G models may be captured by a simple sampling of the
image. This is rarely the case. The examples on motion segmentation in the next two
sub-sections will illustrate how some determination of model complexity can be
achieved. They are not necessarily the best ways, but they will give the reader some
feeling for the concept of model complexity. Secondly, the pixel allocation procedures
described so far, concentrate only on minimising the model approximation error at each
pixel. As will be demonstrated in this chapter, this is insufficient for the production of
coherent segmentations. The presence of image noise and the inevitable fact that the
models are inexact will lead to very incoherent segmentations, where a given model is
supported by many small spurious and disconnected groups of pixels. The examples on
motion segmentation serve to present some mechanisms for imposing coherency on the
segmentation. Additionally, the use of contextual pixel labelling is discussed in sub-
section 5.2.4. For further and more detailed treatment of texture analysis and

segmentation, see the work of Chellappa et al [19] and Tuceryan and Jain [90].
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Motion Segmentation Using Clustering

The clustering schemes illustrated in the previous sub-section can also be used to
segment an image on the basis of motion. This is what is attempted in the work of Wang
and Adelson [93]. This approach begins by estimating a motion vector for each pixel
using a hierarchical optical flow method [6]. These motion vectors formed the

observation data, i.e.

where dx denotes the horizontal displacement and dy denotes the vertical displacement.
Roughly speaking, the optical flow field is estimated to minimise the brightness

constancy constraint at each pixel co-ordinatej=(x,y), i.e.

The image is partitioned into G non-overlapping blocks and within each block an affine
motion model is fitted to the optical flow field by a least squares approach. The affine

model is of the form:

This initialisation step results in an initial set of motion models with parameters

T=[dx 02 ... 9QT, where each model is represented as:

The allocation rule relies on the distance measure:
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Equation 5-5

The pixelj is deemed to be represented by the model i if model i produces the lowest
value of the expression in Equation 5-5. The least squares parameter estimation and

pixel allocation are alternated until stability.

In Wang and Adelson’s work, the clustering approach was augmented by techniques
addressing some of the general problems with segmentation, i.e.

» the assessment of model complexity,

* the attainment of spatial coherence in the segmentation, and

* outlier detection and processing.

The value of G, i.e. the number of models, is initially chosen to be very large and initial
model parameters are obtained by dividing the image into small blocks and fitting an
affine model to the optical flow field within each block. Some models are eliminated
immediately due to the fact that the model fit within the particular block is not good
enough. Subsequently, a model clustering process is used to reduce the model
complexity. The initial step in this model clustering is to divide the parameter space of
Q into a number of equal sized regions, each one with its own cluster centre. Each
model of the initial set is then allocated to one of these cluster centres. Following this
first allocation of models, each cluster centre is re-computed by simply taking the mean
of all the models allocated to that cluster. Given the new cluster centres, the models are
re-assigned and cluster centres are updated. If during this iteration, two cluster centres
come within some pre-defined distance of each other, then the two clusters are merged
into a single cluster. The iterations comprising reassignment, cluster centre updating and
cluster merging continue until no more clusters are merged and no models are
reassigned. The model complexity G is given by the number of clusters remaining and
the initial model parameters are given by the cluster centres. Beginning with these G
models, the steps of pixel allocation, parameter estimation and model clustering are

iterated. Therefore, even in subsequent steps, models may be merged.
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After each pixel allocation step, the resultant segmentation is post-processed to remove
small regions, i.e. small connected groups of pixels supported by one or other of the
models. This gives the segmentation a cleaner more coherent appearance and avoids the

problems associated with the instability of model parameter estimation in small regions.

A final point to note is that not all pixels are allocated to a model. In order for a pixel to
be allocated to a model, the model parameters not only have to minimise Equation 5-5,
but also this minimum value must be lower than some pre-defined threshold. Pixels for
which no model meets these criteria are left unassigned. These pixels are usually termed
outliers since they are not well represented by any of the available models. The final
step in the algorithm is to assign these outlier pixels to the model which minimises the
intensity distortion between the current image intensity and the motion compensated

previous image.

The work of Wang and Adelson is impressive and ambitious since they attempt to solve
many of the general segmentation problems in their scheme. The scheme works very
well on certain image sequences and less well on others. Two major problems with the

scheme are apparent:

» The choice of local motion as the observation data was probably not good due to the
fact that local motion is difficult to accurately estimate. Direct computation of optical
flow [2],[5], as was used, does not necessarily result in a true and meaningful motion
representation of the scene. The first pitfall is that an estimation procedure based on
local image characteristics is prone to the detrimental influences of image noise. To a
certain extent, multiresolution approaches [6] have addressed this robustness issue.
Secondly, for any kind of motion estimation, there is the requirement for a sufficient
level of image detail or structure to drive the algorithm. Many pixels contain no local
intensity variation and hence, local motion cannot be recovered unambiguously.
Furthermore, for totally unambiguous recovery of motion, the local intensity
structure should contain variations in both the x andy directions. When 2-D structure

is lacking, the well-known *“aperture problem” comes into effect. It has been
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generally agreed that due to these difficulties, optic flow estimation is an
underconstrained problem [2]. To further constrain the problem, smoothness
constraints are used, but these are inconsistent with the natural motion discontinuities
which occur at the boundaries of moving objects. The task then is to somehow avoid
applying these smoothness constraints at occlusion boundaries. Thus, arises the
“chicken and egg” problem of segmentation. No accurate motion can be measured

without shape and no shape can be recovered without motion.

» The determination of model complexity relies upon the use of rather arbitrary
thresholds. In the model clustering process, it is ordained that no two model clusters
may be within some pre-defined distance of each other without being coalesced.
Such thresholds can only be derived on the basis of experimental experience and
typically, no single threshold suffices for every situation. When thresholds are used
like this, it is important to have some criterion for adapting the threshold values to
the context of each new situation. Notice also, that the system provides no
possibility to recover from mistakes made in the initialisation stages. That is, it is
possible that some valid motions are eliminated in the model clustering, but it is not
possible to add new models. The determination of a suitable level of model

complexity is avery difficult problem.

Quadtree-based Motion Segmentation

Sanson [83] developed a motion segmentation approach based on quadtree-partitioning
of the image. At the first level, the image is partitioned into G non-overlapping blocks.
On each of these blocks, an affine motion model is estimated directly from the image
data using a Gauss-Newton method. At the second level, each block is split in quad-tree
fashion, see the shaded block in Figure 5-1. It is tested whether it is appropriate to re-
allocate any of the sub-blocks to any of the models existing in adjacent blocks. Four

connectivity defines the adjacency relationship as shown in Figure 5-1.
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Figure 5-1: Quadtree decomposition and adjacency relationship

In fact, for each sub-block, there are 3 possibilities:

» The sub-block is not reallocated and remains with the parent model.
» The sub-block is allocated to a neighbouring model.
» The sub-block is attributed a newly estimated model different from either the parent

model or the neighbouring model.

The sub-block allocation rule is based on the mean-squared error (MSE) computed over
the sub-block pixels for each of the possible models. To decide between the first two
cases, that path is taken which leads to the lowest MSE. To decide whether the sub-
block might benefit from a new model, this new model is estimated and the
corresponding MSE is measured. If this new model reduces the MSE by more than

some specified percentage, the new model is adopted.

Following the re-allocation of the sub-blocks, the motion parameters within each
connected region are updated. The third step in the iteration is to merge adjacent regions
possessing a similar motion. This is done by constructing a weighted region adjacency
graph, with each edge weight in the graph corresponding to the increase in the MSE

which would result if the region’s model was replaced by the model of its neighbour. A
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minimal spanning tree approach is utilised to merge the nodes in the graph. Merging

stops when the global error increases beyond some predefined threshold.

At each level/iteration, the same steps are repeated, i.e. sub-block allocation, parameter
updating and region merging. It is unclear from the paper how successful this approach
is. However, it is one of the first papers that viewed motion segmentation in an image
coding context. The obvious goal of Sanson’s system was to generate a segmentation
with a minimum associated set of motion models, such that the some acceptable global
motion compensated MSE is attained. It was acknowledged that the majority of bits in
video coding are used to code the residual error, but it was also clear that an unlimited
number of models/regions could not be supported while maintaining adequate coding
efficiency. Sanson sought to find a good trade-off between the model complexity and
the residual error. Once again, however, ad-hoc methods based on arbitrary thresholds
were used to tackle this problem. While segmentation, by its nature, must use threshold-
based decisions, it is best if these thresholds can be derived from, or traced back to,
some high level concept or mathematical criterion. When the algorithm reacts badly, it
is easier to re-analyse and modify a high level mathematical criterion than to search
aimlessly for a threshold that works better. Just like Wang and Adelson, Sanson lacked
such a formal criterion to help him solve the problem of model complexity.
Furthermore, Sanson seemed to realise this fact, as he states: “segmentation can also be
viewed as an optimisation issue. However, in that case, the criterion cannot be

obviously formulated”.

With regard to the problem of spatial coherency, the adjacency constraints imposed on
the sub-block re-allocation and merging procedures are designed to produce large

connected regions of support for each motion model.

5.2 Expectation-Maximisation, Minimum Description Length and

Contextual Enhancements

It has been highlighted above that segmentation is usually achieved by adopting an

iterative framework alternating between parameter estimation and pixel allocation. In



this sub-section, the segmentation problem is formulated as a maximume-likelihood
problem and the EM algorithm is introduced as the solution. It is noted that the EM
algorithm fits neatly into the general iterative framework. The difficulty of determining
the required model complexity has also been highlighted. The minimum description
length estimate is presented as a tool to properly address the model complexity
estimation problem. The final aspect of segmentation that is highlighted in the previous
sub-section is spatial coherency. It is shown how contextual pixel allocation rules can be

formulated based on local Markov Random Field (MRF) models.

5.2.1 Maximum-Likelihood Estimation

Segmentation may be formulated as a maximum likelihood estimation problem as

follows. Let the observation set be denoted by X =[xt x2 .. .. XM , where xi is
the feature vector at the pixelj. The observed data is thought of as a realisation of an
underlying piece-wise model. The model is described by the model parameters
T =\01,d2,....dG\ and the support maps Z={z1z2...zG. As before, the value of the
support map z; at the pixelj is denoted Zy . Itis equal to 1, if the model i is supported at

the pixelj and equal to zero otherwise. Given Z, the observations X are assumed to have

a conditional probability density function of some known form and dependent upon the

unknown parameters describing the underlying model, i.e. f x\z(X|Z;T).

For a particular observation set X=X, this density function becomes a function of the
unknown parameters and is called the likelihood function. The maximum likelihood
estimate of the unknown parameters is given by maximising the likelihood function
with respect to the unknown parameters. More often, the unknown parameters are found

by maximising the log-likelihood function:

T = argmaxlog (xX\Z;t)
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To allow a more convenient representation of the density function and simplify the
estimation resulting procedure, it is assumed that every observation is conditionally

independent and distributed according to a common density function, thus:

M
/1z(x|Z:T) = n/,
j=I

Additionally, since only one model is assumed to be supported at each pixel, the

distribution of each observation xj is dependent only on one model, i.e.

Hence, the ML estimate of T corresponds to maximising the following log-likelihood

function:

MG

logf x\2(x|Z; T)=£ X z, log(/y(x, ;0t))
=\ i=i

Equation 5-6

The problem with applying this strategy is that the support maps Z are not known and as
such the estimation of the model parameters is not possible by direct MLE. The
estimation of the model parameters T is therefore said to be a problem of incomplete
data. Fortunately, if with a knowledge of Z, maximisation of Equation 5-6 is possible,
then the joint estimation of T and Z can be given by the expectation-maximisation

algorithm.

5.2.2 Expectation-Maximisation (EM)

The EM algorithm computes both Z and T by utilising an iterative 2-step approach,
comprising the expectation step (E-step) and the maximisation step (M-step). This

iterative structure is depicted in Figure 5-2. Applications of the EM algorithm require
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that a finite initial set of models can be provided, i.e. T = {6}(0620),....040)}. On each

EM iteration, the E-step computes the probability that each pixel belongs to each given
model, i.e. the ownership probabilities. The ownership probabilities can be viewed as a
soft segmentation. A hard segmentation may be derived by allocating each pixel to that
model with the highest ownership probability. Given the new ownership probabilities,
the M-step updates the model parameters. The iterations continue until the model
parameters have stabilised, or alternatively, until the hard segmentation has stabilised.
The description of each step is presented below. Note that, the mathematical derivation
of the EM algorithm is omitted. However, it is emphasised that the presented formulae
for the E-step assume that the segmentation labels are independently distributed. That is,
in computing the ownership probability at a given pixel, no consideration is given to the
neighbouring pixel classifications. For theoretical background on the EM algorithm, see
[25], [48], [76] and [89],

Figure 5-2: Basic iterative structure of the EM algorithm

To better illustrate the EM formulae, examples are given below. The examples are based
on an observation set consisting of the intensity at each pixel, and each pixel’s intensity
value is distributed according to a Gaussian PDF, expressed as a function of the error

with respect to a given model function g(j,9,), i.e.



r?'
v2of,

where, ry =Xj-g(j,0)

Equation 5-7

The Expectation Step
The E-step uses Equation 5-8 to compute the ownership probabilities for each pixelj,

given the current set of model parameters. That is, ty is the probability that pixel j

belongs to model i given the current model estimates. The formula can use prior

probabilities ni} = Pr(zy = 1) » These prior probabilities may be chosen in a variety of

different ways and are evaluated as part of the M-step:

TG )= XJFUG/AY/ZV * 63D
Equation 5-8

Substituting the Gaussian PDF of Equation 5-7 into Equation 5-8, the E-step results in:

_F_2A /G

(
, XV v
Loy eﬂbw ) "

l
~ =Ho

In basic terms, given unbiased prior probabilities, the ownership probability s large

if the residual error ry is small in relation to the variance parameter o:-.
The Maximisation Step

The M-step uses the ownership probabilities to formulate a ML criterion for the

estimation of the model parameters T, as given in Equation 5-9:
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Tat0 =argmaxIlEs log”™.(x
= M

Equation 5-9

Substituting the Gaussian PDF and eliminating terms that are independent of the model

parameters, the maximisation becomes a minimisation problem as expressed by:

G M

Ta+l)=argnnn¢ S W
/=1 7=1

Each individual model parameter is given by:

M
0\M) =arg nun
6 J-1

This is a weighted least squares problem where the weights are defined by the
ownership probabilities. The model parameters may therefore be obtained by a Gauss-
Newton method as presented in chapter 4. The M step is also responsible for computing
any other unknown parameters such as the variance parameter of the PDF, a. In
addition, the prior probabilities must be computed in anticipation of the next E-step.

One possible approach is to set them equal to the current ownership probabilities,

i.e. 7Pk = TR

The Hard Decision

The support maps Z may be obtained by setting 2y to 1if,

Ty>THVE*|

Equation 5-10

and to zero, otherwise.
In many ways, the EM fits neatly into the iterative framework for segmentation which
was presented in sub-section 5.1.2. It provides a formal well-understood method for

solving the extremely difficult problem of joint estimation and segmentation.

Nevertheless, the EM in no way answers the question of model complexity estimation.
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The next sub-section presents the minimum description length concept. This provides a
sound theoretical framework for segmentation problems that do not have prior

information regarding the model complexity.

5.2.3 Minimum Description Length (MDL)

Segmentation, like many other signal processing tasks, may be thought of as fitting
some model to a set of observed data so that the observed data is accurately represented.
In particular, segmentation involves the fitting of a piece-wise model to the observed
data, i.e. the pixels or feature vectors. Given a fixed number of initial models, the EM
algorithm will fit these models to the observed data. Unfortunately, it is not known in
advance how many local model pieces are sufficient to describe the observation data. If
the task of segmentation is to obtain a perfect fit to the data, then it is conceivable to
choose as many model pieces as required. However, a degenerate case of segmentation
occurs when there are as many models as pixels. On the other hand, if few models are
used, then the model representation will be inaccurate and the segmentation will not
reflect the image content. Several approaches, e.g. those of Sanson and Wang, to
obtaining a suitable level of model complexity have been reviewed in sub-section 5.1.3.
These generally follow a top-down strategy, involving model and region splitting, or a
bottom up strategy involving model merging. Threshold-based rules are used to make
the split/merge decisions. Very often, however, no justifications exist for the choice of
the threshold value. The threshold is usually obtained by trial and error and when a
given image causes the algorithm to fail badly, one is reduced to adjusting the
thresholds on a case by case basis. The use of arbitrary thresholds and parameters in
decision criteria is futile. Critical decisions should be based on some sound criterion
which fits in with the overall goal of the segmentation. One such decision-making

criterion is described now.
Consider that the task is to compactly represent the image in terms of a finite set of

models and a segmentation. The finite model set may be chosen from a infinitely large

set of models. For simplicity, it is assumed that only models of a common form may be
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used, e.g. the segmentation procedure may be limited to using only affine models. Given

this, the representation length will be made up of 2 main parts:

1. Model Representation: The model parameters of each model chosen from the infinite
set will have to be encoded. Additionally, the support of each chosen model will have
to be encoded.

2. Model Error: The model fit error at each pixel will have to be encoded.

In this scenario, it may be seen that increasing the number of models will reduce the
length of the model error part of the representation, but it also results an increase in the
length of the model representation. Conversely, minimising the model representation
length by limiting the number of models, only results in increasing the model error.
Therefore, minimisation of the overall coding length is achieved through finding the
optimal balance between the information length of the model representation and that of
the model error. This idea is the essence of what is referred to as the Minimum
Description Length principle [77],[78]. While the MDL principle is easily explained by
consideration of image coding, more generally, it is apt in the information theoretic
sense to believe that the best model is that which results in the most compact
representation of the observed data. Using this concept, segmentation is formulated as

an MDL estimation problem as follows:

=argmm//™)(x(™))

where 'F=(Z, T) represents the model parameters and segmentation support maps, as

before and ) is the length of the representation of the observed data in terms of

the model parameters and segmentation. This length is now expanded into the

constituent parts of model parameters, segmentation and model error/residual.

Let R denote the residual of the model fit as represented by:

R=x-m (1)
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Now, the MDL estimate of model parameters may be written as:
T =argmn(ffw (R(¥)) + HV(>P))

The description length is further developed by specifying probability density functions
for the quantities being encoded and where applicable, the accuracy with which each
guantity is encoded. The relationship between the probability density and the encoding
length is simply:

Hx(X) =-log2f x{x)

For convenience, the natural logarithm is used from now on, bearing in mind that

log2x = C Inx where the constant C= (in2)’1.

To within this constant multiplier, the description length can be then written as:

Hxw (X|Z,T)=-In/,,|zr(R|Z,T)- In/z(Z)+ H(T)
Equation 5-11

Assuming that the residual data are independently distributed according to a normal
density function and that these residuals are encoded to the nearest integer then (see [3]

for details):

M G

fMmr@Et)=£ 2 > S -0.51n(2¥)-1na, + >
® ) ==Y, n(H-In

A75
Equation 5-12

Using the same indépendance assumption for Z,
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Infz(Z)=X Z z/In7}
nfz(2Z) >1i:|Z N7y »
where = Pr(z"=1)

Equation 5-13

Finally, some means is required to represent the length of the model parameters T. Let
each of the G models have k real-valued parameters. As proposed initially by Rissanen

and commonly used:

Equation 5-14

Combining these last three equations, we get the MDL estimate which has been used for

the purposes of motion estimation and segmentation by Ayer and Sawhney [3].

The main use of the MDL criterion is for hypothesis testing rather than the direct
estimation of the model parameters and model complexity. In line with the iterative
framework discussed in sub-section 5.1.2, the MDL concept is used to adaptively adjust

the model complexity at each iteration. It may be applied in one of the following ways.

Model Elimination and Merging

In order to test if two models denoted A and B can be merged into one model, the
description length is firstly computed based on the initial set of models and the
associated supports. The pixels supporting model A are re-assigned to model B and the
description length is re-computed. If the description length is reduced, then it is assumed
that model A can be eliminated and its support is transferred to model B. An alternative
hypothesis test would involve reassigning the support of model B to model A and re-
computing the description length. A positive result would cause the elimination of
model B. A third possibility exists whereby the supports of A and B are merged and a
new model parameter vector is estimated for the merged support. This new model

replaces A and B if it results in a reduction of the description length. This latter kind of
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model merging has been used by Zheng et al in [98] to design a system very similar to
that of Sanson. In contrast to the top-down approach of Sanson, Zheng et al designed a
bottom up system relying totally on region merging. Similarly, however, model merging
was carried out under the constraints of adjacency relationships by the construction of a
weighted region adjacency graph. Each node in the graph represented a single model
and it associated support. Each edge connecting each pair of nodes had a length equal to
the reduction in the description length which would result from merging the two model
supports. The minimisation of the description length was achieved by searching the
graph for the longest edge and merging the two associated nodes. All edge lengths were
then re-computed and a further search for the longest edge was carried out. This process
continued until no further reduction could be achieved, i.e. the edge lengths were all

negative.

In their work on motion segmentation, Ayer and Sawhney used a similar pruning
strategy. At each iteration of the segmentation, the most redundant model, i.e. that
model whose removal led to the largest decrease in the description length, was removed.
In contrast to the previous examples, no adjacency constraints were imposed. In fact, in
the general case, any pixel of the redundant model’s support could be re-assigned to any

other model of the set.

New Model Hypothesis Test

Examples of MDL hypothesis testing are not confined to the reduction of the model set
but can also be used to test if the current model set is inadequate. For this, it is assumed
that some new candidate model is estimated. The new model is allowed to compete for
support with the existing models using some simple assignment rule or based on an E-
step. Given the new support, the description length can be computed. The new model

and its support are retained if the description length is decreased.

The disadvantage of using the MDL criterion in the above fashion is related to the
complexity of performing so many hypothesis tests. When the set of hypotheses is very
large, this brute-force approach quickly becomes infeasible. While region adjacency

constraints can be used to reduce the number of hypothesis combinations, it would be



more convenient if some direct estimation approach could be designed to extract the
minimal set of hypotheses from some initial set. This is what is attempted in [24]
wherein a gradient descent method is applied to directly minimise the MDL. In simple
situations, this is reported to work well. For more complex situations where there are a
large number of hypotheses or where the supports are complex, the method is embedded
within a continuation method in order to avoid local minima. Unfortunately, no
comparative study has been performed as yet to evaluate the relative performance of this

method against the brute force method.

5.2.4 Contextual Enhancements of EM and MDL

Having covered the fundamentals of the Expectation-Maximization method and the
Minimum Description Length principle, this sub-section examines the role of statistical
dependance assumptions in applying these tools. Consider that there are a number of
image models with known parameters and it is desired to classify each pixel to one of
the models. The non-contextual allocation rule is to allocate each pixel to the model
which maximises the likelihood function of the observed data. However, non-contextual
labelling rules are sensitive to model inconsistencies and image noise and result in
complex incoherent segmentations. These noisy segmentations may be unusable for
subsequent purposes. If the application is compression, then noisy segmentations are
costly in terms of bit-rate. I1f MDL-based hypothesis testing is being used, then models
with such noisy supports will almost certainly be eliminated. If the application is image
interpretation, then such noisy segmentations can be unintelligible and over-complex.
To get around this difficulty, conditional dependence in the segmentation labels is
introduced implying a change in the underlying probability density function. The new
density function results in a likelihood function which contains terms encouraging
spatial coherence among the segmentation labels. Frequently, conditional dependence is
expressed in the form of a local Markov random field (MRF). This idea was first used
by Besag when he developed the Iterated Conditional Mode (ICM) algorithm [8],

Similar ideas are easily incorporated into the EM algorithm.



The use of contextual information is also very important when computing the
description length in MDL-based hypothesis testing. The description length example
given in the previous sub-section made some very loose assumptions on the probability
distributions used to describe the residual data and the support map data. For effective
MDL testing, it is important that the information content in each part of the
representation is not over-estimated. Independence assumptions, while simplifying the
derivation and implementation, often lead to over-estimation of the coding length. Some

improvements in coding length estimates are discussed here also.

Contextual Expectation-Maximisation

Many examples of the Expectation-Maximisation (EM) method arise in the
segmentation literature [4], [94] and [97]. It has been found that the use of the basic EM
algorithm, as outlined above, usually results in very noisy segmentations. This has been
attributed to the nature of the assumptions on which the basic EM algorithm is based.
The first assumption of the observations X being independently distributed given the
segmentation Z, is retained in most applications of EM, and of other related techniques
such as Iterated Conditional Modes (ICM). The second assumption that the labels within
Z are independently distributed is much to blame for bad performance. Many of the
attempts to avoid the implications of this second assumption are based on locally

dependent MRF models9.

Recently, Zhang et al [97] produced an EM algorithm for model-based texture
segmentation that proposed a means of avoiding the detrimental effects of the
independence assumptions. Their work resulted in an EM algorithm, whereby the E-step
involved the consideration of contextual information in the form of an MRF model for
the segmentation map. Effectively, the E-step becomes a maximum-a-posteriori (MAP)

estimator of the soft posterior probabilities ry. The MAP estimator is implemented

using a simulated annealing approach or by an approximate recursive method similar to
the ICM approach. By using the simulated annealing approach, both the indépendance
assumptions with regard to the observed data X and those associated with the

segmentation labels Z are overcome. With the ICM-like approach, only the

9 For abrief summary of MRFs and their uses, see [49], Chapter 13.
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indépendance assumption of Z is tackled. The effect of the ICM-like approach is that

the prior probabilities computed within the M-step and used in the E-step are given by:

=f{z§="0)) or *t, = f(za= "0))

depending on whether the hard or soft probabilities of the neighbourhood were used.

Any local MRF model is characterised by its neighbourhood and the conditional
probability density function. One of the most common MRF models is the Ising model
[49], which is based on an eight neighbourhood scheme as depicted in Figure 5-3. Under

this model, the M-step (of the EM algorithm) simply becomes

Equation 5-15

where Uy is the number of pixels in the neighbourhood ofj that belong to model i. The

parameter ft is a positive constant and G is the number of models. To utilise the soft

probabilities generated by the E-step, it has been suggested to evaluate Uy by ™ ziv,

\

where the summation is taken over the prescribed neighbourhood ofj. Again, it is
worthy of note that the same contextual constraints were applied in developing

extensions to the ICM method, see [49] and [69].

Figure 5-3: The square pixels constitute the 8-neighbourhood about the circular pixel.



For the purposes of illustration, an EM-based motion segmentation algorithm was
applied to an image. Four initial motion models were obtained by partitioning the image
into 4 blocks and using a robust motion estimator to compute the motion parameters.
Based on the initial models, an EM algorithm was applied to segment the image. Both

non-contextual EM and contextual EM approaches were used The contextual approach

used Equation 5-15 with uy =/, r,, defined on a local 8-neighbourhood. The results are

\%

shown in Figure 5-4. Neither result is very impressive due to the ad-hoc initialisation
procedure and the lack of any mechanism to ascertain the model complexity.
Nevertheless, the effect of the contextual constraint is clearly manifested in a cleaner

looking segmentation.

M H A 4DT m yX
@ (b) ©

Figure 5-4: Illustration of contextual EM using a local MKF model: (a) the image to be segmented,
(b) motion segmentation using non-contextual EM, (c) motion segmentation using contextual EM.

In an application of EM to motion segmentation by Weiss and Adelson [94], departing a
little from the idea of locally dependent MRFs, it was proposed to compute uy using a

weighted function of the soft probabilities within the local neighbourhood, i.e.

i = 2 T,VW”>)
Equation 5-16

The authors suggest the use of a weighting function w(j,v) which favours those pixels

which are closer toj in geometric and intensity terms, e.g.
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The overall effect of this idea is that local groups of pixels with similar intensity values
tend to be attributed to the same motion model. This approach is motivated by the
reasonable assumption that motion boundaries often coincide with transitions in the
image intensity or colour. Hence, the resulting segmentations are intended to align the

contours to texture edges, unlike those contours shown in Figure 5-4. This contextual

constraint was implemented with an 8-neighbourhood and with of = 200, 92 = 40.
These settings effectively nullify the effect of the pixel proximity, i.e. all pixels v in the
8 neighbourhood ofj are assumed to be the same distance fromj. The results in Figure
5-5 illustrate that the alignment of the contours with the real moving objects of the scene
is not significantly better than in Figure 5-4c. Different results can be obtained by
enlarging the neighbourhood and by varying the parameters of the contextual constraint.
This is a criticism of the method, since it is not generally desireable to have many
parameters within the algorithm without any means to estimate their value. Despite the
difficulty with this approach, the general motivation for aligning motion and texture

boundaries is worthy of note.

@ (b)

Figure 5-5: Illustration of contextual EM using colour constraints, (a) output segmentation (b)
segmentation contours overlaid on image.

To conclude the discussion on contextual EM, it is clear that simple contextual

strategies vary only in the manner in which the prior probabilities are computed. It
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should also be noted that cleaner segmentations are obtained if, instead of using
Equation 5-10 for the hard decision, the support maps Z are obtained by setting zy to 1
if,

Equation 5-17

Contextual MDL

In the formulation of the description length of sub-section 5.2.3, indépendance
assumptions were made for the probability distributions of the residual data R and the
segmentation labels Z. In tackling the indépendance assumptions within the description
length, it is tempting to assume that some given coding scheme is in operation and
utilise these coding tools directly. For instance, in Zheng and Blostein, a simple chain
coding procedure was used to compute the length of the information associated with Z.
In line with this thinking, one could apply DCT-based coding to the residual data. The
complexity associated with these coding approaches may be prohibitive, however, and
it may be more appealing merely to capture some of the coding tool’s assumptions
within a probabilistic model. For approximations to the coding length for the shape
information, it is probably reasonable to exploit local correlation via the same MRF
models used in the contextual EM algorithms. After all, shape compression methods
using context-based arithmetic encoding (CAE) approaches [44], [15] rely on the same
kind of correlations. Assuming that the Ising model is used, then Equation 5-13

becomes

MG ( G [/ \]
Infz(Z)=X Z zyK -1n | exp(/™)
MiE Vv @

Equation 5-18

This equation is used to estimated the coding length for shape within the MDL
hypothesis testing framework. However, a better approach would be to utilise a simple
context-based probability table storing the probability of binary events given the context

in a predefined neighbourhood. The probability table could be trained on a typical set of
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good segmentations. This would more closely mimic the behaviour of CAE coding

approaches and could not be considered overly complex.

With regard to the encoding of the residual data, it is well known that in motion-
compensated video coding systems, the degree of local correlation in the prediction
error image is very small and most compression is achieved simply by the fact that the
errors are tightly distributed about zero. Hence, independance assumptions for the
residual data in the case of motion segmentation are not so inaccurate. The situation
may very well be different for the case of texture segmentation where it can be imagined
that significantly more correlation will exist in the residual data. In cases where the
residual data is still correlated, it is advisable to use some kind of simple local linear

predictor and encode the prediction errors rather than the residual data themselves.

5.2.5 Motion Segmentation using an EM-MDL Framework

Ayer and Sawhney [4] developed a system primarily for the purpose of simultaneously
detecting multiple motions in a scene. Their framework, depicted in Figure 5-6, utilises
the EM algorithm for segmentation and parameter estimation and MDL for hypothesis
testing. The EM-MDL steps are applied in a coarse to fine manner to the image data

based on a multiresolution image pyramid.

Figure 5-6: EM-MDL framework for computing multiple motions.
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The initialisation step computes an initial set of polynomial motion models based on a
block-based partition of the image. A non-contextual EM step is then carried out based
on the assumption that the residual errors =Ij(t+\)-1j{td™ are independently

distributed with a zero mean Gaussian distribution.

The E-step is given by

nx i
Ty=—exp —- _
V=5 PProafj 4™

where the prior probabilities obey: niX-n n =....... =niU=iti

The M-step comprises the estimation of the motion parameters for each model and an

update of the prior probabilities.

0 =argminXv/

9 7=1

The motion parameters are robustly estimated by an iteratively re-weighted least squares
approach. The M-step also computes the values of the variance parametersag using a
robust estimate. The means of providing these robust estimates has already been

described in chapter 4.

Following the EM-step, the MDL-step attempts to eliminate the most redundant of the
models and the iterations continue. The coding length is estimated in the way described
in sub-section 5.2.3 except that in coding the support maps, linear predictive coding is
used to incorporate some notion of statistical dependance. When the iterative steps have
settled upon a minimum set of models, a hard segmentation is computed by means of an

ICM-like algorithm resulting in a relatively clean final segmentation.
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To illustrate the results of the EM-MDL approach, a variation of this system has been

implemented by the author. In subtle contrast to the application of Ayer and Sawhney

which was to recover motion estimates, the main goal of the author’s implementation

was to recover the coherent shape of the moving objects. For that reason, the author’s

implementation places more emphasis of contextual approaches, i.e. a contextual EM

method is used and the MDL exploits local correlation in the segmentation labels. Some

results are presented in Figure 5-8 and Figure 5-9. The details of implementation are as

follows:

A three layer pyramid is used.

Translational, affine or quadratic motion models can be used.

The initialisation step begins with the lowest resolution image of the pyramid by
dividing it into 16 square blocks and estimating the initial motion models. A number
of non-contextual EM steps are performed until stability. At this lowest resolution,
the MDL steps are not carried out. Models are only eliminated if the EM iteration
results in an unsupported model, i.e. if no pixels are assigned to a particular model, it
is eliminated.

For the remaining pyramid layers, contextual EM-MDL steps are used for each
iteration. The p parameter of the contextual model used in the EM is chosen such
that the strength of context is greater for the finest pyramid layer. This approach is
chosen so that in the early stages of motion estimation, the context has only a small
influence. Once the motion parameters are more stable then the strength of context
can be increased in order to get a more coherent segmentation. The value of p in the
finest pyramid level was chosen to be 1.5 based on recommendations given in [49].
Values for the coarser levels were chosen in arbitrary fashion in order to lessen the
MRF field strength. It is conceivable that improvements may be obtained by the use
of an estimator for p .

The contextual EM used for the results of Figure 5-8, is characterised by the use of
an s-neighbourhood local MRF model, i.e. it is the same as that used for the results

in Figure 5-4,
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» The coding length used in the MDL step is the basic formulation of sub-section 5.2.3
but using statistical dependence when encoding the shape. The context is taken into
account along the lines of Equation 5-18 but with the use of a causal local
neighbourhood as shown in Figure 5-7. Additionally, with respect to encoding the
residual, it is necessary to detect what pixels are outliers and what pixels are not. A
uniform probability density function is applied in the coding of the outlier pixels.

e For each MDL step, each existing model is removed in turn. For each model
removed, it is necessary to reallocate the pixels prior to computing the coding length.
This reallocation is performed by first normalising the posterior probabilities,
contextually adjusting these probabilities according to Equation 5-15 and applying
the rule described by Equation 5-17. In this way, pixels that are associated with the

missing model are re-allocated in a contextual manner.

Figure 5-7: Causal 4-neighbourhood used in coding length estimate of shape in MDL-step

(a) (b)
Figure 5-8: Results of the EM-MDL framework for motion segmentation (Foreman). Foreman is

viewed with a moving camera and the man is the only moving object. Quadratic motion models
were used.
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(@) (b) (c)

Figure 5-9: Results of the EM-MDL framework for motion segmentation (Calendar). Calendar is
viewed with a zooming camera. The moving objects are the calendar, the ball and the toy train.
Affine motion models were used.

The results of this EM-MDL approach to motion segmentation are quite impressive, but
clearly the results do not lend weight to the belief that semantic segmentations can be
achieved by automatic means. Apart from this general comment, some specific

observations can be made on the basis of the results.

The first observation relates to the benefits of MDL-based hypothesis testing. As can be
noted by comparing Figure 5-4 and Figure 5-8, the use of more and better initial model
hypotheses allied to the MDL-based model elimination mechanism results in
significantly better segmentations. Starting from 16 initial motion hypotheses, all but 3
remain in the final segmentations. Given no initial knowledge about the locations and
numbers of moving objects in each scene, the algorithm returns segmentations which
distinguish the moving objects with a minimum of motion models. However, on the
more negative side, it should not be overlooked that the brute force approach to MDL

hypothesis testing is extremely intensive computationally.

The second observation relates to the fact that the regions of the segmentation clearly
coincide with the real moving objects. This shows that the affine and quadratic motion
models, as estimated by the EM algorithm, can be relied upon to accurately model real
image motion. A high confidence can be placed on the fact that the estimated motion
parameters constitute real and meaningful information about the motion in each scene.
This is an extremely important fact which means that the motion parameters can be
safely relied upon for object tracking purposes. Following on this observation, the EM-

MDL algorithm is used to develop a new object tracking algorithm in chapter 6.
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The third observation relates to the effects of using MRF contextual approaches for
labelling the pixels within the EM. On one hand, it has to be acknowledged that the
segmentations are extremely clean and coherent, as is intended. On the other hand, the
MRF approaches have done nothing to ensure that the segmentation contours are
accurate, i.e. in most cases contours do not become aligned with the real object’s

contours. Additional measures are required to improve upon this aspect.

In relation to the inaccurate placement of contours, an element of blame must be placed
on the fact that the ownership probabilities (used to eventually give the final hard
segmentation) are computed based only on the suitability of one motion model over the
others for accurately representing the pixel intensity. It can happen in un-textured
picture areas that motion is not a good discriminant. In the case of Foreman, it can be
observed that the intensity edges defining the man’s hat are classified as belonging to
the man, whereas the un-textured interior is classified as part of the background. This
can happen because both the man’s motion and the background motion may be equally
suited to representing the un-textured area. A similar problem is evident in the Calendar
test case where all the textured lettered area of the calendar is classified as one moving
object, whereas the untextured area of the calendar is classified as belonging to the
background. The previously discussed approach of Weiss and Adelson suggests a likely
way of improving this situation by utilising intensity and colour information in
computing the prior probabilities. In chapter s, a new contextual EM-based motion
segmentation algorithm is developed along these lines. The new algorithm makes use of
the morphological watershed method for texture segmentation with the intention of
generating segmentation contours on common motion and texture edges. The

morphological watershed is introduced now.
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(a) (b)

Figure 5-10: Results of the EM-MDL framework for motion segmentation (Hall Monitor). The
only moving object is the man walking down the corridor. Affine motion models were used.

5.3 Morphological Image Segmentation

This chapter has concentrated on statistical approaches to segmentation and most of the
examples have emphasised motion segmentation. Motion analysis is a natural tool for
segmenting video sequences since very often the objects of interest have a distinct
motion within the scene. Sometimes, however, the object of interest is contained within
a still image or it is a still object within a video sequence. In cases like this, texture
analysis is more useful than motion analysis. Additionally, it has been noted that even in
motion segmentation approaches, an appreciation of the intensity structure within the
image is very important. That is, very often motion boundaries coincide with texture

edges. This idea is being used to improve motion segmentation methods [14], [94].

In the domain of texture analysis and segmentation, morphological tools [se] are
extremely simple and effective. The classical morphological segmentation approach

relies on three different tools:
 filters for image simplification,
» the morphological gradient, and

* the watershed.

The process of graylevel image segmentation is described below by way of illustration.

The discussion relies upon an understanding of the basic morphological concepts such
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as the structuring element, the operations of erosion and dilation and so on. See [79] for

basic tutorial style coverage of morphology and [ss] for theoretical aspects.

5.3.1 Filters and Image Simplification

The first step of the process is image simplification. There is a particular class of
morphological filter that significantly simplifies the image by removing unwanted
intensity structures, while exactly preserving the shape of the remaining intensity
structures. There are two basic classes of filter in morphology: the open filter and the
close filter. The basic open filter is used to remove peaks in the intensity function. The
basic close filter removes valleys in the intensity function. For the 1-D case, the effects
of these filters may be seen in Figure 5-11. The severity (the extent/width of the peaks
and valleys that are removed) of the filter is controlled by the size of the structuring
element. The open and close filters may be applied in cascade (open-close) to eliminate

both peaks and valleys of the intensity function.
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Figure 5-11: 1-D open/close filters. The open filter results in a signal which is always less than the
original. The close filter results in a signal which is always greater than the original filter. The
upper graph shows the original signal. The lower graph shows this same signal enveloped above
and below by the close filtered signal and the open filtered signal respectively.

When applied in 2 dimensions as in image processing, these basic filters cause
unwanted distortion. Figure 5-12b illustrates this point. For the basic open-close filter,
almost every important feature of the original image is completely obliterated. A

segmentation based on this ‘simplified image’ would not produce desireable results.
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(a) (b) (c)

Figure 5-12: 2-D morphological filters, (a) the original image, (b) the result of an open-close, (c) the
result of an open close by reconstruction. All filters used a 5x5 square structuring element.

By utilising what is termed morphological reconstruction [91], it is possible to develop a
more sensitive class of simplification filters. Figure 5-12c shows the result of an open-
close by reconstruction. Notice how much of the superfluous detail, e.g. the text on the
calendar, the spots on the ball, has been removed, while at the same time, the remaining
contours are positioned in the same locations and maintain their shape almost precisely.
Filtering by reconstruction is part of the class of connected operators [80], so-called
because they can discriminate between various connected components in the image. The
small connected components corresponding to the spots and text are filtered out whereas

the larger connected components, e.g. the calendar, are retained.

5.3.2 Morphological Gradient

The next step is to compute the morphological gradient. The morphological gradient is
used to highlight intensity transitions within an image. The gradient image is
constructed by eroding the input image, dilating the input image and then taking the
difference between the erosion and the dilation. In the morphological segmentation
approach, the watershed is usually applied to the gradient of the simplified image to
yield the final segmentation. Figure 5-13a shows an example of the gradient image

obtained from the simplified image.
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(@) (b) (c)

Figure 5-13: The steps involved in morphological segmentation: (a) shows the morphological
gradient of the simplified image for Calendar, (b) shows the marker image where each black
connected component represents the interior of a region to segmented, (c) shows the final
segmentation contours overlaid upon the original image.

5.3.3 Marker Extraction

The task of marker extraction is to mark the interiors of the regions that are to form the
final segmentation. This step can be done manually. For example, a user may merely
use a mouse to draw on the objects to be segmented. Alternatively, in a fully automatic
system, some analysis may be done to perform the marking. As an example, the marker
image shown in Figure 5-13b is derived by analysing the gradient image for flat regions
and then filtering the resulting flat regions to remove very small ones. The black regions
mark the interiors of the regions to be segmented, whereas the remaining (white) pixels
are part of the uncertainty region, i.e. it is assumed that somewhere in this uncertainty

region lie the contours of the segmented regions.

5.3.4 Watershed

The final step in the morphogical segmentation approach is to apply the watershed [18],
[92] to the gradient and the marker image. This step finds the segmentation contours
within the uncertainty region. In fact, a connected operator (reconstruction by erosion) is
first applied to remove small variations from the gradient image. The result of this is
that the modified gradient only contains the dominant peaks corresponding the largest
edges in the local sense, i.e. sub-peaks residing upon major peaks are removed or
flattened. The watershed can be imagined as a flooding process in a mountainous

terrain. The markers correspond to lakes in the valleys and the valleys are separated by
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ridges as defined by the bright areas of the gradient image. The water level begins to
rise. At a certain points, the water level will be such as to merge two adjoining lakes
into one. The points where this merging takes place are marked as the watershed lines
and these form the contours of the final segmentation. Figure 5-13c shows the watershed

lines overlaid upon the original image.

It is noted that morphological segmentations have a cleaner appearance than those
generated by statistical means. This is due to the fact that the idea of connectivity in
inherent in most morphological tools, and hence connectivity is dealt with more
elegantly than by means of adjacency graphs as sometimes used with statistical
approaches. On the other hand, the exact segmentation obtained by the morphological
approach is highly dependent on the nature of the simplification filter. Larger filters will
eliminate more of the detail and hence the segmentation will have fewer regions.
Automatic choice of the filter size for the task at hand is not easy. For instance, it can be
seen that the calendar in the image Calendar is covered by approximately 12 regions. It
would have been better if it was covered by only one. The problem is to choose a filter
which eliminates all the other image detail and maintains the main structure of the
calendar. This is far from trivial. Additionally, even on merging these 12 regions, the
resulting contours are not in agreement with the human perception of the calendar
shape. This is again due to the unavoidable inadequacies in the simplification process.
In particular situations such as medical or biological imaging, morphology has proven
effective. For general segmentation purposes, it is envisaged that this approach will be
significantly improved by the use of user assistance. As a quick example, let’s say the
user is interested in segmenting the calendar from the scene of the example. The user
draws a line over the image roughly indicating the location and shape of the calendar.
This line is dilated by some amount such that the thin contour line becomes a thick one.
This thick contour line is then treated by the watershed as the region of uncertainty.
Given this and the modified gradient of the image, the contour is snapped by the
watershed onto the intensity edges as defined in the gradient. There are other ways of
achieving this snapping process, but it is believed that the use of the watershed is among

the most intuitive and simple.



5.4 Summary

This chapter has reviewed some of the recent literature on image segmentation. Both
texture and motion segmentations have been discussed. Both statistical and

morphological means have been described.

For the statistical approach, it has been shown how segmentation can be construed quite
conveniently as an optimisation problem. The high complexity of solving this problem
is emphasised and it is illustrated how iterative algorithms can be used to find an elegant
solution. In particular, the EM algorithm has been discussed at length. The difficulty of
initialising these iterative algorithms with reasonable initial models is discussed and
several approaches are outlined by way of example. The necessity for finding the
simplest set of models for image segmentation is also illustrated and MDL-based
approaches are described. Finally, the need for local contextual models to constrain the
segmentation is demonstrated. A promising EM-MDL iterative framework is described
and implemented. This provides a new improved MDL estimate by taking into account
local correlation in segmentation labels and uses MRF contextual constraints in the
computation of the EM. Based on this implementation, some results are given for the
problem of motion segmentation. These results are among the best motion segmentation
results presented to date. Importantly, it is emphasised that results for all sequences have
been generated without adjusting the algorithm’s parameters. This basic approach is
believed to be among the most powerful segmentation frameworks available today.
However, several problems have been noted from observations made on the basis of the
results. While it is clear that the moving objects are captured in the segmentations, the
contours are not sufficiently accurate for enabling high quality object-based editing, for
example. In the next chapter, this approach will be further extended to deal with spatio-
temporal segmentation based on motion, i.e. object tracking. Also, to tackle the hitherto

observed problems, some contextual improvements are proposed and tested.
For the morphological approach, the watershed provides a powerful tool for texture

analysis producing segmentations composed of connected components and with

excellent contour localisation. This can be used to segment images automatically or in
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some supervised manner. It can also be used to align rough segmentations with the

images intensity edges, which is very useful indeed.

In conclusion, based on the results given in this chapter, the accurate segmentation of
semantic objects cannot be attained by automatic means using today’s technologies.
Today’s technologies do provide us with promising tools for tackling texture and
motion segmentation. It is envisaged that a combination of motion and texture analysis
augmented with some clever use of user input will yield a very efficient means of
segmenting semantic objects from general image and video content. The next chapter
takes this idea one stage further for video segmentation by combining texture and
motion analysis within a system to be used for tracking identified objects through a

video sequence.



6. Tracking Moving Objects

With regard to requirement for high quality segmentation of semantic objects, it has
been argued in the previous chapter that a user assisted approach is necessary. Given a
video sequence, it is conceivable and even necessary that the user identifies the object of
interest in the first frame of the sequence. Given this initial semantic segmentation, it is
also conceivable that a computer-implemented algorithm could be employed to track the
semantic object as it moves through the subsequent frames of the sequence. It is
believed that effective tracking algorithms are among the most important means by
which the computer can shorten the laborious task of the segmenting semantic video
objects. This chapter describes a system developed by the author which allows the
tracking of moving objects in avideo sequence. The system is similar in structure to that
discussed in [14]. However, the presented tracking system is novel in the following
ways:

e Itis implemented using statistical motion estimation and segmentation tools based on
the same EM and MDL methods introduced in the previous chapter. This is first use
ofthe EM-MDL tools in a tracking application.

e For tracking purposes, the EM algorithm has been implemented using a new
contextual E-step encouraging both spatial and temporal coherence.

» The spatial aspect to this contextual step (described in sub-section 6.2) uses the
morphological watershed to create segmentations with contours aligned on motion
and texture edges. This idea is quite powerful and is not limited to the tracking
application. It can be used to improve on the motion segmentation results presented
in the previous chapter as demonstrated by the results in the following sub-sections.

» The temporal aspect takes the previous frame’s segmentation into account when
developing the probabilities used to classify each of the pixels in the current frame.
This is described in sub-section 6.1.1.

 The coding length estimate used for the MDL hypothesis testing takes temporal
correlation in the segmentation into account. Once again, this step is necessary to
preserve temporal coherence in the resultant segmentations and it is described in sub-

section 6.1.1.
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« Finally, the system provides a framework by which objects may be tracked even
when their motion complexity varies greatly over time. The tracking model
complexity is adjusted by means of a simple hypothesis generation and MDL-based

validation strategy. This strategy is discussed in sub-section 6.1.2.

6.1 Overview

In the system, each semantic object is regarded as a collection of moving regions. These
moving regions are identified, tracked and finally summed to reform the semantic object
again. This concept, which is very similar to that used in [45] and [46], is illustrated in
Figure 6-1 and provides the possibility of tracking objects that are not only moving with
arigid motion, but also those moving with flexible motion. This is very important, since
generic objects exhibit generic (flexible) motion. In the following, the term “motion
segmentation” is used to refer to the segmentation of an image or image region into
moving regions as depicted in Figure e-la. When referring to a segmentation
approximating the shape of a semantic object as in Figure e-lb, the term “object
segmentation” or “semantic segmentation” is used. The regions of an object
segmentation are formed by the union of one or more regions of the motion

segmentation.

(a) (b)

Figure 6-1: (a) Motion segmentation for the image, (b) Object segmentation by region
merging, the semantic object shape is given by R1+R2+R8+R7+R6+R9.

The proposed tracking system relies on the estimation of accurate scene motion. The
motion representation is a piece-wise polynomial model comprising a motion
segmentation and a distinct polynomial model representing the motion within each

motion region. At each frame, the shapes of the regions within the previous frame are
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projected forward into the current frame by using the previous frame’s motion
representation. This gives an initial estimate of the new shapes. The EM is applied to
refine the shapes and the motion estimates within each of the regions. The EM
algorithm in this case uses a robust GN estimator in the M-step and an E-step availing
of both spatial and temporal contextual information. The use of temporal information in
the EM imposes the necessary consistency in the temporal dimension to facilitate
tracking. The forward projection of the shape and the refinement of the projected shape
comprise what is termed the projection step. Because the accuracy of the motion
representation is of paramount importance, it is necessary to adapt the model complexity
on a frame-by-frame basis. This is intended to be of benefit for tracking objects whose
motion over time varies greatly from simple rigid motion to more flexible motion. To
allow for this, a number of additional steps are introduced into the system. For a given
frame, when the projection step has been completed, it is endeavoured to identify new
motions within the scene. This is done by the detection step, i.e. producing new moving
region hypotheses using an EM algorithm, and then by testing each of these hypotheses
using the MDL approach, i.e. the validation step. An additional feature of the system is
the use of texture analysis in the development of the contextual constraints placed on the
EM algorithm. This results in the contours of the tracked objects being well aligned with
the texture contours of the original images. The high level structure of the tracking
system is shown in Figure 6-2 and is very similar to that presented in [22] for coding

purposes.

segmentation segmentation

Figure 6-2: High level structure of the tracking algorithm as applied at frame t+1



6.1.1 The Projection Step

With reference to Figure 6-2, the inputs to the projection step are:

« the current image It+l,

» the previous image It,
» the previous frame’s motion models E, = {*.]t, and

» the previous motion segmentation Z/, denoting the supports for each of the motion

models.

The first sub-step is to produce a projected segmentation for time t+1 and a set of prior
probabilities for the segmentation at time H-I. This is accomplished by forward-
projecting the support of each model. That is, a binary mask is created for each support
i, whereby a pixel has a value of 1 if it belongs to support i and a value of o otherwise.
The pixels of this binary mask are then displaced according to the inverted motion
model parameters, i.e. 6i. The displaced binary mask is then subjected to an NxN mean
value filterl0 This has the effect of blurring the mask around the edges, while leaving
the interior values equal to 1 (see Figure 6-3). When this process has been applied for
every support, there is one blurred displaced mask for each motion model present in the
previous frame. From these masks, a prior probability on the tracked segmentation at
time H-1 is computed as follows. Let by be the value of the blurred displaced mask
associated with the support of motion model i at the pixelj. It is assumed that the
probability that pixel j supports model i at time t+1 is conditional upon the

segmentation/motion at time t and that this probability is given by:

tj ~ G-

IX:
=0

Equation 6-1

10 n =7 was used for the results presented in the latter part of this chapter.
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For pixels where the denominator of Equation 6-1 is 0, then the priors are set equal, i.e.
Sxj =S2J =....= SGJ. An initial motion segmentation of the image at time t+1 can be
obtained by setting zy to 1 if,

Sy>S,J, Vt*i
and to zero otherwise. In addition, the motion of each support within this initial
segmentation is initialised with the previous frame’s motion. This has the purpose of

providing better initial estimates to the subsequent EM-MDL estimation step which is

used to refine the initial shape and motion estimates.

(2) (b)

Figure 6-3: lllustration of how to develop the temporal priors, (a) a binary mask depicting a
forward projection of the region shape into the current frame, (b) based on this mask, a low pass
filter is applied to produce the blurred mask. The brightness of each pixel in this blurred mask is
related to the probability that the pixel is part of the moving region.

The EM estimation steps avail of the prior probabilities as derived in Equation 6-1 in
order to ensure that the final segmentation does not diverge far from the initial one.
Additionally, some local spatial contextual information is integrated in order to allow a
classification of the pixels which is spatially coherent and respecting the textural

contours of the original image. The exact use of spatio-temporal context is described in

sub-section 6 .2.
In order to allow for moving regions leaving the field of view or being occluded, an

MDL hypothesis test is carried out on certain motion models. This hypothesis test can

result in the elimination of models which have very small supports. The MDL estimate
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used is the same as that described in the previous chapter, with the exception that
temporal correlation is taken into account in the shape coding part. That is, the shape

code length is given by:

M G

In/z(z) =X E_ziIn™»
= A

where

Equation 6-2

and where uy denotes the number of neighbours of pixelj which support model i. A
causal 4-neighbourhood scheme is recommended. The use of the temporal prior
probabilities in this way averts any danger that a large tracked motion region can be

eliminated.

The result of the projection step is two-fold:
» atracked motion segmentation reflecting the new shapes and positions of the moving
regions,

« apolynomial motion representation associated with each region.

At this stage, a semantic segmentation of the image can be attained by merging the
regions of the motion segmentation. As shown later, the tracking system can be easily

configured such that this region merging becomes trivial.

6.1.2 The Detection and Validation Steps

The detection and validation steps are present in the algorithm because it is clear that the
motion complexity of an object will vary over time. At some times, the object will have
a very simple motion capable of being represented by a single affine model, for
example. At other times, the motion will be more complex and will consequently

require many different supported motion models for accurate representation. The
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tracking algorithm must be capable of staying in touch with the motion complexity,
since if it does not, then the projection step already described will not be effective and
the result will be a severe loss of tracking in situations of complex motion. This sub-
problem of adapting the model complexity is tackled as usual by a system of hypothesis
generation and testing. The detection step produces new moving region hypotheses and

the validation step tests their efficacy.

As stated already, the projection step produces a number of distinct motion models and
the tracked segmentation represents the support of each model. For each model/support,
there exist what are termed outlier pixels. An outlier pixel is one whose intensity value
is not well represented by the motion model that it supports. In the present system, a

pixel j supporting a model i is an outlier if the residual error at the pixel has a

sufficiently large magnitude. In particular, if ry > 2.5cr; , then the pixelj is deemed to

be an outlier of the model i, given that the residual errors of this model are normally
distributed with a standard deviation of cr,. Outliers are quite common and may be
caused by image noise and other unpredictable events. However, outliers can also betray
the presence of a motion which is presently not accounted for. Therefore, the detection
step uses these outlier pixels to seed the estimation of new motion models. These new
motion models are then allowed to compete for support with the existing motions within

an EM algorithm.

For the purposes of reducing complexity in the system, the detection step has been kept
quite simple. For each model present in the tracked motion segmentation, a single new
model is set up to compete with each one. That is, if there are 2 models, i.e. A and B in
the tracked segmentation, then 2 new models, i.e. C and D are set up, with C competing
of support with A and D competing for support with B. Competition between A and C
is restricted to the zones already supporting A and similarly for the competition between
B and D. This effectively means that this detection step is a region splitting process. As
mentioned, competition is enabled by the EM algorithm with fixed prior probabilities in
order to delineate the desired regions of competition. Additionally, a new contextual
constraint is utilised based on the morphological watershed. The exact details of the EM

algorithm given here are presented in sub-section 6.2. At this point, it is enough to
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describe the manner in which the initial estimates of the supports for the new motion

models are arrived at.

The first step is the detection of the outlier pixels. This yields an outlier mask. The
outlier pixels are first eroded using a 3x3 structuring element and then dilated using a
5x5 stucturing element. This has the effect of removing isolated outlier pixels and then
enlarging any remaining outlier clusters. Each pixel of this modified outlier mask is then
allocated to one of the new motion models. As an example, outlier pixels occupying the
support of model A would be allocated to model C, whereas those occupying the
support of model B would be allocated to model D. These allocations determine the
initial supports for the new models and a first M-step is applied on that basis to arrive at
a first estimate of the parameters for the new motion models. The reason for the
morphological filtering described above, is so that a reasonable initial estimate of

motion is possible, based on some consistent set of pixels.

Based on the initial motion estimates and supports for the new models, a number of EM
iterations are performed to allow the new models to compete for support and to refme
their parameter estimates. When the EM algorithm has stabilised, a segmentation is
produced representing the supports of the existing motions and the new motions. This
segmentation is termed the proposed motion segmentation. Hypothesis validation is
carried out by firstly measuring the MDL based on the proposed segmentation and all its
associated models. One by one, the new motions are removed. When a new motion is
removed, the pixels of its support revert to being allocated to the original existing
motion and the parameters of this existing motion are restored to the values they
originally had in the tracked segmentation. The MDL is, once again, measured in the
absense of the new motion. Ifthe MDL is not reduced, then this new motion is accepted
as avalid hypothesis. Otherwise, the new motion and its support are discarded. The final
segmentation is the same as the tracked segmentation except when any new motion
hypothesis is deemed valid. In that case, the final motion segmentation contains the
support for the valid new motion(s). This segmentation and the associated motions are

then used to perform the projection step for the next frame.
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6.2 New Contextual Methods

In chapter 5, there has already been some discussion on local MRF fields used for the
purposes of producing clean coherent segmentations. However, it is observed that
results are seldom ideal. It can be noted that MRF fields will produce nice smooth
contours in the segmentation, but these contours are often somewhat inaccurate with
respect to the human perception of where the contours should be. When motion does not
sufficiently constrain the segmentation field, then the MRF constraint will simply opt
for the smoothest contour. Additionally and more to the point, MRFs can also be
responsible for propagating more dominant labels into under-constrained images
regions. To avoid these kind of problems, two new spatial constraints are introduced
based on texture segmentations derived by the application of the morphological
watershed. Both encourage the segmentation to align the motion contours to intensity

edges as defined in the watershed.

The constraints presented here are motivated by the need for segmentations to be clean
and coherent, while not suffering from the negative effects of local MRF constraints.
Furthermore, they are motivated by the assumption that texture contours and motion
contours should be aligned. That is, in general, it is assumed that each independently
moving object in a scene has an occluding boundary which separates it from the other
objects and that this occluding boundary is characterised by a transition in the motion
field of the scene and the intensity map of the image. In chapter 5, the morphological
approach to segmentation is highlighted due to the fact that very clean texture
segmentations can be produced. Additionally, each class of pixels in the segmentation
forms a connected component termed a watershed region. Finally, contours are
generally very accurate due to the connected operators used in the simplification
process. All these features make the morphological watershed very attractive in the
domain of texture analysis and it is chosen here to form the basis of two related spatial

constraints for application to the motion segmentation problem.

The first constraint may be summarised by contrasting it with the MRF-based

constraints. The MRF constraint is characterised by a neighbourhood scheme where:
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« the neighbourhood scheme is regular, i.e. the same neighbourhood scheme is used at
each pixel and
» the neighbourhood scheme is overlapping, i.e. the neighbourhoods of adjacent pixels

overlap.

Now, consider that each pixelj has aneighbourhood scheme which:

* may be unique to that pixel, i.e. the neighbourhood scheme is not regular,

* may not necessarily overlap with the neighbourhoods of neighbouring pixels, i.e. the
neighbourhood scheme is not overlapping at all pixels, and

» is defined by those pixels which fall into the same watershed region as the pixelj.

Based on the usual mathematical form of the MRF constraint, the watershed-based

constraint can be summarised as follows:

where

Equation 6-3

In Equation 6-3, Sj denotes the watershed region of the pixel j. It is a
region/neighbourhood about pixelj defined by a spatial (watershed) segmentation of the
current image. The parameter ft is a positive number specifying the strength of the
spatial constraint within each neighbourhood. For simulations, it has been set to 1.5 for

every neighbourhood, but results do not exhibit a large dépendance on its value.

The use of the watershed in this way was first presented in [14]. Results show that it can
be extremely effective under certain conditions. Figure 6-4 demonstrates the strengths
and weaknesses of the approach as applied within a motion-based EM-MDL

segmentation framework. Note that these hard segmentations are attained by labelling
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the pixels according to the maximum value of . It can be noted from the results that

the use of this constraint and hard decision is equivalent to classifying watershed
regions, instead of individual pixels, i.e. all pixels of a given watershed region are
classified to the same model. This can be effective when, as happens in Foreman, the
contours of the moving object are captured by the watershed segmentation. However, if
the watershed does not accurately capture these contours, then the ‘inaccurate’ contours
will also be reflected in the final motion segmentation. Some displeasing results of this
nature can be observed in the Calendar results and to a lesser extent in the case of Hall
Monitor. A worst case of this negative behaviour occurs when the moving object is
small and the watershed has been produced using large filters. In such cases, the object
is eliminated by the simplification filter used when deriving the watershed regions. Its
contours are not, therefore, reflected in the watershed and hence the moving object can
never be detected. An instance of this worse case effect is presented in [14]. In order to
avoid this kind of effect, the results of Figure 6-4 are generated on the basis of a very
fine watershed, i.e. a small simplification filter was used. While the worst case effect is
not so much in evidence, it is clear that certain important contours are not captured, i.e.
those of the spotted ball are not captured, while those of the calendar itself are quite
inaccurate in certain areas. On the positive side, these segmentations are indeed very
clean and coherently presented. More importantly and in contrast to the results given in
the previous chapter for MRF constraints, the segmentation contours are extremely

accurate in many cases.

The coherency exhibited by these segmentations is a feature which is used in the
tracking algorithm by the detection/validation step. The detection step has the task of
proposing new models and ascertaining the support of the new models. The validation
step eliminates any model which is not useful in reducing the MDL. For a new model to
pass the validation test, it is extremely important that the support is coherent, i.e. the
shape part of the coding length is small. The constraint just described meets this need
very well. On the other hand, it has been found that it is not suitable for use in the
projection step due to the fact that incorrect contours ordained by the detection step are,

more often than not, carried through into the subsequent frames. Additionally, it has
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also been noted that the contours of a tracked moving region which at some point in
time coincide with a watershed line, generally tend to cling to that watershed line.
Hence, for the projection step, it is desirable to use the watershed in a weaker capacity.
Additionally, for the projection step, it is required to integrate the spatial constraint with

the temporal probabilities as derived by Equation 6-1.

A weaker version of the watershed-based constraint is obtained by modifying the basic
MRF neighbourhood scheme at the pixelj such that the influence of the neighbourhood

pixels not in the same watershed region as the pixelj is down-weighted. For example,

where

Equation 6-4

Note thatNj is the normal s-neighbourhood and Sj is the watershed region of the pixelj.
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Figure 6-4: These are the results of EM-MDL motion segmentation using a watershed-based
contextual constraint as implemented on Foreman (Frame 224, 25Hz), Mobile (Frame 25,10Hz) and
Hall Monitor( Frame 52, 10Hz). The left column shows the locations of the watershed lines. The
middle column shows the motion segmentation map and the right column shows the motion contours
overlaid upon the input images.

The constraint of Equation 6-4 is the same as the local MRF-based constraint, except
that its ability to propagate dominant labels across the watershed lines is diminished.
This constraint produces slightly noisier results than the full-blown watershed
constraint. On the other hand, it avoids the negative behaviour of the straightforward
MRF constraint, while having a tendancy to align motion contours to the watershed
contours. The weakened watershed constraint is used effectively in the projection step

where it is augmented by the temporal prior probabilities as follows:

168



Xy = 5y exp[pu~ X sSuexp(”.)
H

Equation 6-5

This spatio-temporal constraint allows a classification of the pixels in the uncertainty
regions surrounding the contours of the motion projected segmentation within the
projection step. The classification is biased, encouraging results to be similar to the
segmentation of motion-projected segmentation, while also encouraging smooth

contours which are aligned to a watershed lines where appropriate.

To summarise on the use of contextual constraints, the detection step of the tracking
algorithm requires spatial coherency and hence it uses an EM algorithm based on
Equation 6-3. In the projection step, a spatio-temporal constraint with a weaker reliance

on the watershed is used, based on Equation 6-5.

6.3 Simulation Results of Tracking Algorithm

The algorithm described above is designed for tracking moving regions within a video
sequence. The algorithm relies on having a segmentation of the first frame. This can be
provided by automatic means, for example, by a motion segmentation algorithm.
Alternatively, a more accurate initial segmentation may be provided by a supervised
approach. This sub-section presents results for both types of initialisation. It is
demonstrated that in the case where the initial segmentation corresponds well with the
semantic object, the tracking algorithm is capable of generating good semantic

segmentations for subsequent frames under conditions of moderate motion.

6.3.1 Tracking with Automatic Initialisation

Figure 6-5, Figure s-s and Figure 6-7 show the results of the tracking system as
initialised by an automatic motion segmentation. With this initialisation, the algorithm
produces a temporally coherent motion segmentation sequence, but it is necessary to
manually allocate each sub-region of the motion segmentation between the object of

interest and the background. While this is not the ideal initialisation procedure, the
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results still demonstrate the performance of the tracking capability. The top row of each
figure shows the partition of the images into the moving regions and the bottom row
shows examples of how these regions, when merged, form semantic objects. In the
results shown, this merging of the regions is achieved manually. That is, for each frame
shown, the user chooses the motion regions which best cover the semantic object. This
is a non-ideal method for merging. As shall be seen with supervised initialisation, this

manual work can be eliminated.

While tracking is good in general, some small problems are evident from the results.

* For small objects, e.g. the men in Hall Monitor, accurate contours are difficult to
obtain.

« The initialisation procedure based on motion means that the first frame segmentation
is non-ideal and often these problems are not eliminated by the tracking procedure.
This can be seen when considering that the contours of the calendar in the Calendar
sequence. The boundary of the calendar is not well captured in the first frame and
although improvements are evident as tracking ensues, the exact boundary is never
obtained.

* From the segmentations for Calendar, it would not be possible to extract only the
moving ball from the scene without also taking the train. See the results for frame
150 in Figure s-6. This is due to the fact that, at some point, the tracking algorithm
no longer detects that the ball’s motion is different from that of the train. This is
mainly due to the fact that under an affine motion model, the rotating round surface
of the ball cannot be well synthesised.

» Since the tracking and classification is highly reliant on motion criteria, it can happen
that objects with a similar intensity to the background are not discriminated very
well. The man’s hat in Foreman is one example of this.

e Another problem evident in the Foreman sequence is that beginning from the
imperfect initialisation, it takes some time for the whole moving semantic object to

be identified.
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It is expected that some of these problems can be eliminated by a better initialisation

provided by a user controlled segmentation algorithm.

Figure 6-5: Hall Monitor tracking results: frames 52,130,220 (10Hz sequence was analysed). Frame
52 was the first frame analysed. Affine motion models were used. Top-row: the motion
segmentations. Bottom row: the object segmentations.

Figure 6-6: Calendar tracking results: frames 3, 90, 150 (10 Hz sequence was analysed) Frame 3
was the first frame analysed. Affine models were used. Top-row: the motion segmentations. Bottom
row: the object segmentations.
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Figure 6-7: Foreman result: frames 200, 225, 250. (25Hz sequence was analysed). Frame 200 was
the first frame analysed. Quadratic models were used. Top-row: the motion segmentations.
Bottom row: the object segmentations.

6.3.2 Tracking with Supervised Initialisation

For supervised initialisation, the initial segmentation of the first frame is provided by a
supervised EM algorithm based on the work of O’Connor et al [67]. This is the only use
of human intervention to aid the video segmentation algorithm. The segmentation of the
first frame typically labels the object of interest with one value and the remainder of the
image with another value. The remainder of the image is termed the background and the
label value is termed the background label value. Provided with this segmentation, the
overall function of the algorithm is to track the object of interest thoughout the

subsequent frames ofthe sequence.

The first step in fulfilling this task is to estimate the motion within the object of interest
and within the background region. There are a number of options in computing this
motion. In the presented results, the initial motion over the whole object of interest is

estimated as a single polynomial function, i.e. affine or quadratic. Alternatively, the
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initial motion within the object of interest could be attained by generating a set of
motion hypotheses and allowing them to compete. The former approach was chosen due
to the fact that it is simpler and works well in cases where the initial motion of the
object is rigid. The next step is to perform a modified detection step, whereby a new
motion may be proposed only within the object of interest. That is, the detection step
does not attempt to find new motions within the background area. The new motion is
validated as usual by MDL-based criteria. At this point, the following information is

available:

« the shape of the object of interest, i.e. the semantic segmentation for the first frame
(as is provided by the methods presented in [67]),

* a motion segmentation of the object of interest (identifying at most two motion
regions within the object), and

» the motion parameters associated with the motion segmentation.

These three pieces of information are used in the projection step to find the new shape
of the object in the next frame. This is achieved by forward motion compensating the
regions of the motion segmentation and running an EM algorithm to refine the so-given
initial estimates of the projected segmentation and associated motion parameters. The
union of all the projected sub-segmentation regions forms the new shape of the object as
per Figure 6-1. Following this, the detection/validation step is again applied in order to
detect and estimate any new motions. The implementation of the
projection/detection/validation step is identical to that of the unsupervised algorithm and

these steps are applied at every frame.

The only differences between the supervised and unsupervised algorithm are:

* The initial shape of the object of interest is given at the start of the algorithm.

e The detection step only sub-segments within the object of interest. In this way, the
motion complexity of the object of interest is adapted, whereas the motion
complexity of the background is not adapted. This detection approach is also such
that pixels of background area are labelled with a single known value at the

beginning and pixels labelled with any other value are deemed to be part of the object

173



of interest. Indeed, this allows a simple automatic process to be applied for making
the union of regions and producing the final shape of the object of interest in each

frame ofthe sequence.

Figure 6-8: Initial supervised segmentations for the two test sequences

Figure 6-9: Foreman tracking results: Frames shown are numbered 25, 50,75,100,125,150,175,
and 200.

Figure 6-10: Effect of occlusion on tracking : Frames shown are numbered 252,254,256 and 258.
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The results of the tracking algorithm with the supervised initialisation are shown for the
Foreman sequence and Mother and Daughter sequence. The initialised semantic objects
are shown in Figure 6-s. A summary of the tracking results for Foreman over an s
second duration is shown in Figure 6-9. The Foreman results are impressive when one
considers that there are approximately five million pixels in this s second moving video
sequence and that the tracking algorithm has rightfully classified the vast majority of
them. However, the small percentage of mis-classified pixels are very noticeable in
some cases. Some flaws are evident in the region of the man’s hat. This is due to the fact
that the pixel classification is based on luminance information only (i.e. the watershed is
based on the luminance component; the suitability of a given motion model is quantified
in terms of its ability to synthesise the luminance information). That is, no chominance
information is used. Since the luminance content of the hat is very similar to the
background, this makes discrimination very difficult. Figure 6-10 shows the case when
the man’s hand is swept across his face and away again. This kind of occlusion and
unocclusion causes the tracking performance to rapidly deteriorate without the

possibility ofunassisted recovery.

Figure 6-11: Mother-Daughter (30 Hz) results: Frames shown are numbered 60,120,180, and
240.

The Mother-Daughter sequence possesses much simpler motion than the Foreman
sequence and hence results would be expected to be very good. However, this
expectation is not fulfilled. Firstly, when using the weakened contextual constraint of
Equation 6-4, the segmentations become very noisy around the object edges and
eventually, after several tracked frames the whole consistency of the object is eroded.
The root of this problem is the almost total emphasis on motion criteria for allocating
pixels. The motion of the semantic object is well estimated and it does the task of
forward projection very well. However, when it comes to refining the shape of the

projected object, it happens that the object motion can be equally applicable to the
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background regions. That is, many background pixels get allocated to the foreground
object due to the fact that the foreground motion is quite suitable for them also. This
discrimination problem occurs because this sequence possesses a combination of
untextured background and very small motion magnitudes in the foreground object.
Hence, for many pixels, the motion-based discrimination criteria applied in the EM
steps do not work well. This observation leads to the conclusion that the exact
placement of the object contours at each tracking step should not be heavily reliant on
motion. The projection step should rely on motion information to get a first estimate of
the object shape, but in refining this first estimate texture-related criteria should be

emphasised more.

Given that the weakened constraint did not operate well on this sequence, the full
watershed constraint of Equation 6-3 is used for the presentation of results. The
drawbacks with this constraint are evident from Figure 6-11. The problems are, as
outlined previously, that the watershed is attracted to the dominant contours within the
image. As the object moves, the tracked object contours may come close to a more
dominant contour, i.e. a contour with a more contrasted intensity edge. At this point, the
watershed has the effect of locking the tracked object contour onto the dominant contour
and due to the temporal constraint inherent in the tracking algorithm, this dominant
contour remains for the duration of the tracking process. This is the reason why the

tracked object shape appears to grow in size over time.

6.4 Summary

A novel approach to semantic object tracking is presented in this chapter. This approach
relies on piecewise motion models for an accurate estimate of the object’s motion. The
object’s motion is used to forward project the object’s shape and a new spatially and
temporally constrained EM algorithm is formulated to refine the projected shape and the
motion estimates. The reliance on accurate motion representation calls for the use of a
hypothesis generation/validation process for adapting the motion model complexity to

the varying degrees of motion being exhibited by the actual object.
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The refinement of the object’s shape is an aspect to which much attention has been paid.
Various new constraints based on the watershed have been experimented with. The
particular emphasis is on obtaining very accurate contour placement by aligning them to
texture edges. The results of this approach show an improvement over the traditional

MRF-based approaches for basic motion segmentation.

More generally, the results of the proposed tracking system are promising. It is believed
that the overall approach is sound, but that much improvement is possible in the area of
actually making the final decisions on where to place the contours of the tracked object.
The contextual constraints presented here for this purpose are far from perfect and could
undoubtedly be improved upon. Alternative approaches to contour localisation might

also prove useful.

As is usual, complexity is always an important issue when processing video data. The

complexity of the approach may be attributed to:

» the iterative nature of the EM algorithm,
« the motion estimation by the Gauss-Newton method (also an iterative estimator), and

* the brute-force MDL-based hypothesis validation procedures.

For a more practical deployment of the proposed algorithm, it would be advisable to
look at methods which can maintain the necessary performance, but which might be less
complex. The software implementing the algorithm is totally unoptimised but it should
be said that it can require 10-20 hours run to process 10 seconds of video at full frame-

rate on a Sparc-20 workstation.

In general terms, it can be concluded that the segmentation of semantic video objects
might be efficiently performed by supervised approaches. One simple approach has
been illustrated whereby a good initial supervised segmentation of the object is provided
in the first frame and tracked throughout the remainder of the sequence. From results, it
is clear that further supervision will need to be employed at certain locations in the

sequence. This is due to inadequacies in the automatic tracking algorithm and due to
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events which cannot be well coped with, e.g. occlusion/un-occlusion. When such flaws
appear in the tracked segmentation, the user will be required to correct it. Supervised
video segmentation is still very much a problem area and much work will be required to
make it practical over a wide range of video source material. Future research should

concentrate on the following aspects:

» supervised segmentation of semantic objects from single images as in [67],

» improved tracking algorithms as presented here, with particular emphasis on suitable
methods for maintaing accurate contour localisation throughout time, and

« methods and image representations to ease the correction of segmentations at any

point in a sequence.

The overall goal of this research should be to minimise the intervention of the user so

that accurate and useful semantic objects can be obtained with aminimum of effort.
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7. Conclusions

Object-based video compression was proposed in the mid-eighties and aimed at
providing higher quality compressed video. For a variety of reasons, this aim has not
been achieved. Early efforts such as SIMOC suffered because of the immaturity of the
topic. MPEG-4 has since adopted object-based methods and developed very efficient
compression techniques. MPEG-4 is selling object-based technology to industry based
on a belief that many new and useful functionalities can be provided. In particular, it
eases the process of content provision and allows much needed interactivity in
multimedia programmes. Several new technical challenges are presented by this focus
on object-based technology. Two problems in particular are addressed this thesis, i.e.
shape compression and video segmentation. In each area, this thesis has reviewed
previous solutions and then presented new solutions which exhibit varying degrees of

Success.

The design of compression methods for object shape has been tackled very successfully.
An algorithm utilising context-based arithmetic encoding has been developed by the
author. The new aspect of this algorithm lies in the fact that a block-based paradigm is
chosen and in the fact that context-based arithmetic encoding is used for inter-frame
coding. The algorithm is capable of providing very efficient lossless and lossy codes for
object shape, while also meeting ancillary requirements such as feasible implementation
complexity. Indeed, the algorithm performed so well in competitive tests, that the
MPEG-4 working group has adopted it as part of the new MPEG-4 international
standard. In addition, the author has filed a patent application based on elements of this
block-based CAE. Finally, it should be noted that some minor adaptations to the main
algorithm are necessary to provide error resilient representations and compression of

interlaced alpha channels. The author describes these adaptations in [16].

The second problem addressed is video segmentation, i.e. the acquisition of the object
shape (alpha maps) from the video sequence in which the object resides. The approach

taken in this thesis is highly reliant on motion estimation and segmentation. In the area
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of motion estimation, polynomial motion models have been used since these are
effective in synthesising the effects of real 3-D object motion. Several well-known
Newton-based methods, notably Quasi-Newton and Gauss-Newton methods, have been
compared for estimating these models. This work has added to the volume of
knowledge on the estimation of polynomial motion models and resulted in showing that,
as in previous literature, the Gauss-Newton method is a superior estimator. The thesis
has highlighted that the complexity of Newton-based estimators is sufficiently high that
their use in real-time systems is difficult. To address this problem, a fast Gauss-Newton
algorithm has been developed. This fast algorithm benefits by minimising the size of the
observation set, i.e. the number of image pixels which are considered by the estimator,
and by using look up tables for the implementation of the image interpolation filters.
Computational analysis reveals that the fast algorithm can work 2-3 times faster while

maintaining excellent estimation performance.

Chapter 5 discusses several automatic segmentation approaches. In particular, a motion
segmentation approach was implemented using the Expectation-Maximisation (EM)
algorithm and the Minimum Description Length (MDL) principle. The method treats
segmentation as a complex model fitting optimisation problem. The optimisation
criterion seeks to minimise the inter-frame coding cost of the video frame as represented
by the segmentation and the motion parameters associated with each segment. To
facilitate this goal, some effective coding model for the shape information is required in
both the E-step (responsible for classifying pixels) and in the coding cost itself (used in
the MDL-based hypothesis validation). The author has chosen to use local Markov
random field (MRF) models for this purpose because these are quite similar in principle
to the coding models used in the CAE shape compression method. Specifically, the
description length (used for MDL hypothesis testing) uses an MRF model to estimate
the coding length for representing the segmentation map and a similar MRF model has
been incorporated into the E-step in order to produce spatially coherent segmentation
maps. The results of this approach are judged (subjectively) to be at least as good as
those presented by Ayer and Sawhney and better than those presented by Wang and
Adelson. However, with respect to the goal of aiding in the task of high quality semantic

segmentation, some deficiencies are very evident. While the general shape of the
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moving objects can be recovered and the segmentations are very clean and coherent, the
location of the contours is not sufficiently accurate to be used in real applications such
as video editing and so on. The overall concept of minimising coding cost is intuitively
attractive. However, the results suggest that a segmentation minimising inter-frame
coding cost does not necessarily correspond with a segmentation which accurately
captures the contours of the semantic objects. Based on this observation, the author has
developed new methods for improving upon the placement of the segmentation

contours, as summarised in the following paragraph.

As discussed in chapter s, the observation that motion boundaries generally coincide
with texture edges has led the author to develop a new and powerful contextual E-step
based on the morphological watershed. When computing the ownership probabilities for
a given pixel, the probabilities of other pixels in the same watershed region are
considered. In effect, the watershed constraint results in an E-step which classifies
watershed regions rather than pixels. When, as is very often the case, the watershed
accurately captures the contours of the moving semantic object, then the resulting
segmentations show significant improvement over the MRF-based E-step. However,
when the watershed occasionally overlooks an important contour, then this contour will

not appear in the final segmentation.

Since the overall aim of the segmentation work presented in this thesis relates to the
segmentation of video sequences and not merely to the segmentation of single images,
the development of tracking mechanisms is very apt. The EM-MDL scheme (augmented
with the watershed-based E-step and improved description length) has been
encorporated for the first time within a framework designed to track moving objects
throughout a sequence The algorithm relies on the maintenance of a piecewise
polynomial motion model for the moving object. This model is used to project the
segmentation from frame to frame and this provides a good initial guess of the location
and shape of the object in the future frame. Given the initial guess, contextual
expectation-maximisation is used to refine the estimated shape. For this refinement step,
the author has devised novel methods which allow the projected segmentation of the

object to have influence within the segmentation process for the current frame. It
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involves deriving conditional probabilities for the current segmentation based on the
previous segmentation and then integrating these probabilities into the E-step which
refines the initial guess given by the motion projected object shape. Thus, the E-step of
the tracking algorithm combines these temporally-derived probabilities with the
aforementioned spatial watershed-based constraint. The segmentations produced in this
way are therefore clean and coherent in both space and time. Also significant is the fact
the framework uses a piecewise motion model which is adapted at each frame to the
complexity of the underlying object motion. This is achieved by mechanism for
generating new hypotheses and an MDL-based hypothesis tester which can eliminate
both old and new hypotheses. By this mechanism, the number of motion models and
corresponding motion regions used to project the object shape varies in accordance with

the varying nature of the object motion.

The performance of the proposed tracking algorithm is good in some cases and bad in
others. The EM-MDL tools can produce motion representations which are consistent
with the real object motion and these motion representations can be relied upon to
accurately project the object shape from frame to frame. However, the criteria used in
classifying pixels are not robust. These criteria suffer from the common difficulty in
accurately placing a contour, especially when the associated intensity edge is afflicted
by either of two extreme characteristics, i.e. when the edge has little or no intensity
gradient or when the edge is located in a ‘busy’ part of scene amidst other possibly more
dominant and sharper edges. In either case, the watershed can fail to help choose a
suitable contour location. In addition to this common problem, the pixel classification
criterion is founded on motion model suitability. That is, in the absence of any other
constraint, a pixel is classified to the model which most accurately represents the pixel.
In cases where the object motion is slight, this can cause some unexpected problems as
has been demonstrated by applying the method to the seemingly simple Mother-

Daughter sequence.

The results of the tracking algorithm have been obtained using a supervised
segmentation of the first frame of the sequence and despite the aforementioned

shortcomings, it must still be observed that, in each image, a significant proportion of



the object’s contour is captured with an accuracy which could suffice in high quality
applications. It is only is cases of highly complex motion and/or occlusion that the
algorithm fails drastically. Hence, it is believed that some or all of the innovations
presented in this thesis can prove useful in future supervised video segmentation
systems. Due to the accurate tracking and the use of the texture oriented watershed

constaint, it appears that the algorithm can relieve the user of a significant work-load.

An increasing number of researchers, including the author, firmly believe that the shape
of semantic video objects in 2-D images can only be accurately recovered by a
supervised approach. The supervised approach allows the human user to complete the
tasks that a computer is incapable of. Future segmentation work should initially
concentrate on building an integrated application around the presented image analysis
engine or some similarly functioning engine. The major components of such a
supervised segmentation tool can be envisaged. The tool should comprise an advanced
graphical user interface for capturing the wishes and knowledge of the human user, and
this information should be fed to a powerful automatic image analysis engine to perform
the necessary remaining tasks of placing the exact object contours. The human
interaction has the function of performing the semantic interpretation, i.e. selecting the
object to be segmented, correcting the segmentation results: all tasks which the
computer is incapable of. The graphical interface is the link between what the user
intends, i.e. the segmentation of a particular semantic object, and the language that the
image analysis engine understands, i.e. texture and motion primitives. It is believed that,
currently, the graphical interface is a much under-estimated component of the system
which will have a significant result on the eventual system performance and ease of use.
This belief is motivated by the prediction (based on experience) that no matter how
powerful the image analysis engine is, the time consumed in any given segmentation
task will be dominated by the interaction of the user. The tools provided for this
interaction should be thought over very carefully, as should their link with the
underlying image primitives. The final part of the system, the image analysis engine,
comprises all the automatic algorithmic elements for placing contours, classifying pixels

and tracking moving objects.



Examples of similar commercial image editing systems, e.g. Corel, Adobe Photoshop
and Automedia’s Automasker, should be studied to glean valuable experience in the
way graphical user interfaces can be designed effectively. When a first system prototype
exists, it will provide a good platform for effective evaluation of new or improved
versions of the image analysis engine. Ultimately, this approach, based on evaluation of
the integrated system, may lead to high quality supervised segmentation systems and
hopefully, this will arrive in time to enable the new multimedia applications which

MPEG-4 promises.
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Appendix A

Al. Quadratic Motion Model: An Example

The quadratic motion model is expanded below but first some generalised definitions.

X=X /)Ix=Kx J)
For amodel of order n,
ini \
'Z'ZafjxHyJd
X'= X+ inj:OG g =x+ B0,
\iizcl)]\:/O v y

f ctc 3y'V

<%00 0O
where B = $EL and
36)
chc' 3y’
cbnn.
6={60 6X ... omj) =(<20 a0

and m= (n+2)(n +21);

For a quadratic model (N=2) we get,

X' :X+(ﬂ(D+v +«y +v  2+ax\xy+anyz)
y' =y + (*00 +%0* +bny +b2x 2 + b2lxy +b2y 2)
aD «a a» A &2 M Kk Kk *D
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A2. A QN Estimation Example

For QN, it is necessary only to calculate the error gradient vector at each iteration according

mat-rx (2)}
39 3 i
& & J g
For a quadratic model,
1 x vy X2Xy y2 0 0 0 0 0o o>r
- =Rr=
39 0 0 0 00 01 X Yy X2 Xy Y2
(3K’
3 3x 3k 'l +a”+la*x +any bl0 + 2b20x +b2ly N
3. 3k' 3y ~an+a2ix +2/20  1+bu +b2x +2b2y;
3y 3y)

. J0

| 3y )

A3. A GN Estimation Example

For GN, the Hessian and gradient are evaluated according to:

0=ek

and

3a’ A (X')Y dal

h j)=E
€ 39 3a V39 3a

at each iteration.
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For a quadratic model,

1
— =Rr= X y X Xy
do vii 0 0 o o
*,(»0 dtx
da 3,(X)

A4. Gradient derivation for QN

The error function is given by:

The gradient o f the error function with respectto 6 is:

>0

By the chain rule,

() _dl 8A?) _dHrfa'Vv

do ee da’

and substituting this into Equation A -1 yields

oY
y J

Equation A-I



da' *,(*.)!

da
A5. Gradient and Hessian derivation for GN
The error function is given by:
Ae)=y2Ei(/,,,W-/,(x")i}
Equation A-2

At iteration fc+1, we can approximate with a first order Taylor series as discussed in
Chapter 4.

gi . @

BAff.
da i ¢ )

and then substituting this into Equation A-2, we get an approximated error function which

is quadratic in the the variable AOk.

e{AOk)=/2E B.AOK
da

<3T,(xi)

For convenience, we will write VI= 2" " and e=IM(x)-1,(xi). The error function now

is written as,
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e[AOk) =y 2E {(s-V I -B.Aety}

Equation A-3

To find the minimum, we differentiate Equation A-3 with respect to A0k and set the result

to zero.

& km=e{btVI(*-VITB.AOK)} =e{btVIE- BTVIVITB.AOK} = 0

Solving for AOk, we get

AOK=E{(BrVI(BrVIr}y"E{BrVIE) or Afl, = H(*)".g(*)
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