359 research outputs found

    The Effects of Signal and Image Compression of SAR Data on Change Detection Algorithms

    Get PDF
    With massive amounts of SAR imagery and data being collected, the need for effective compression techniques is growing. One of the most popular applications for remote sensing is change detection, which compares two geo-registered images for changes in the scene. While lossless compression is needed for signal compression, the same is not often required for image compression. In almost every case the compression ratios are much higher in lossy compression making them more appealing when bandwidth and storage becomes an issue. This research analyzes different types of compression techniques that are adapted for SAR imagery, and tests these techniques with three different change detection algorithms. Many algorithms exist that allow large compression ratios, however, the usefulness of the data is always the final concern. It is necessary to identify compression methods that will not degrade the performance of change detection analysis

    Selection of compressible signals from telemetry data

    Get PDF
    Sensors are deployed in all aspects of modern city infrastructure and generate vast amounts of data. Only subsets of this data, however, are relevant to individual organisations. For example, a local council may collect suspension movement from vehicles to detect pot-holes, but this data is not relevant when assessing traffic flow. Supervised feature selection aims to find the set of signals that best predict a target variable. Typical approaches use either measures of correlation or similarity, as in filter methods, or predictive power in a learned model, as in wrapper methods. In both approaches selected features often have high entropies and are not suitable for compression. This is of particular issue in the automotive domain where fast communication and archival of vehicle telemetry data is likely to be prevalent in the near future, especially with technologies such as V2V and V2X. In this paper, we adapt a popular feature selection filter method to consider the compressibility of signals being selected for use in a predictive model. In particular, we add a compression term to the Minimal Redundancy Maximal Relevance (MRMR) filter and introduce Minimal Redundancy Maximal Relevance And Compression (MRMRAC). Using MRMRAC, we then select features from the Controller Area Network (CAN) and predict each of current instantaneous fuel consumption, engine torque, vehicle speed, and gear position, using a Support Vector Machine (SVM). We show that while performance is slightly lower when compression is considered, the compressibility of the selected features is significantly improved

    1994 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on September 26-27, 1994, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival and retrieval of large quantities of data in future Earth and space science missions. It consisted of eleven presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center

    SENATUS: An Approach to Joint Traffic Anomaly Detection and Root Cause Analysis

    Full text link
    In this paper, we propose a novel approach, called SENATUS, for joint traffic anomaly detection and root-cause analysis. Inspired from the concept of a senate, the key idea of the proposed approach is divided into three stages: election, voting and decision. At the election stage, a small number of \nop{traffic flow sets (termed as senator flows)}senator flows are chosen\nop{, which are used} to represent approximately the total (usually huge) set of traffic flows. In the voting stage, anomaly detection is applied on the senator flows and the detected anomalies are correlated to identify the most possible anomalous time bins. Finally in the decision stage, a machine learning technique is applied to the senator flows of each anomalous time bin to find the root cause of the anomalies. We evaluate SENATUS using traffic traces collected from the Pan European network, GEANT, and compare against another approach which detects anomalies using lossless compression of traffic histograms. We show the effectiveness of SENATUS in diagnosing anomaly types: network scans and DoS/DDoS attacks

    Remote Sensing Data Compression

    Get PDF
    A huge amount of data is acquired nowadays by different remote sensing systems installed on satellites, aircrafts, and UAV. The acquired data then have to be transferred to image processing centres, stored and/or delivered to customers. In restricted scenarios, data compression is strongly desired or necessary. A wide diversity of coding methods can be used, depending on the requirements and their priority. In addition, the types and properties of images differ a lot, thus, practical implementation aspects have to be taken into account. The Special Issue paper collection taken as basis of this book touches on all of the aforementioned items to some degree, giving the reader an opportunity to learn about recent developments and research directions in the field of image compression. In particular, lossless and near-lossless compression of multi- and hyperspectral images still remains current, since such images constitute data arrays that are of extremely large size with rich information that can be retrieved from them for various applications. Another important aspect is the impact of lossless compression on image classification and segmentation, where a reasonable compromise between the characteristics of compression and the final tasks of data processing has to be achieved. The problems of data transition from UAV-based acquisition platforms, as well as the use of FPGA and neural networks, have become very important. Finally, attempts to apply compressive sensing approaches in remote sensing image processing with positive outcomes are observed. We hope that readers will find our book useful and interestin

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu
    corecore