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Abstract

In the current digital century, there are plenty of radio stations to choose from. However, the choice

usually is only based on the music genre, and the listener has to recognize if the program, schedule,

and amount of talking suits their demands. In order to compare the amount of music/talking on

a radio station, it could either be compared manually by listening, although, in modern times,

this could also be automated by the usage of machine learning. This study concentrates on the

recognition of speech and non-speech on their patterns by using radio productions as input and

optimizing the extraction of numerical values, algorithms, and methods to combine and precise the

accuracy over distinguishing the di�erent categories and labels. The distinguishing is achieved by

using knowledge from earlier research and combining modern newly introduced technologies and

ideas, the paper experiments with a multi-layer classical machine learning setup. The numerical

extraction from the audio input is executed with the usage of existing research and technolo-

gies from the digital signal processing and audio processing �elds in combination with optimized

parameters.

Based on the literature review, the experimental setup extracts a set of features from the audio

tracks, which are manually labeled to create ground truth label data. The experiments are covering

three algorithms and will compare not only the algorithms but also the methods of extracting

by tuning the hop and window sizes. Furthermore, two algorithms in the multi-layer setup are

being parameter tuned using grid-search methods to result in an optimal setup specialized on the

numerical data.

The results indicate that the numerical extraction and the decision between the hop and window

size is one of the most critical parameters. Furthermore, the results indicate that both MLP and

XGBoost are very good in performance and show both similar results with negligible di�erences.

Further research and experiments are demanded to optimize and increase the performance of the

models by, for example, focusing on silence periods and reducing the impact of background noise

on the performance.
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1 Introduction

In nearly every populated areas, the FM-bands are well �lled with radio stations of every kind.

This makes it challenging for users to make a preferred choice. It could be possible that one

individual does not prefer a speci�c station because of the music genre or, more particularly, the

shows or number of advertisements that are present at the station.

For the audience, it is tough to �nd the correct and perfect station that �ts well at speci�c times

of the day. Perhaps the listener desires to listen to calm down and does not fancy to be listening to

the talk-shows one particular station puts on at a speci�c time. Making decisions based on these

reasons requires to know the programs, shows, and events that are occurring on the stations.

The dissertation presents the work of distinguishing given radio streams between speech and non-

speech based on recognizing patterns within the obtained numerical values.

1.1 Problem de�nition

In modern times, we have plenty of choices concerning radio stations and our music tastes. Nev-

ertheless, the aforementioned extensive number of options causes making a single selection more

challenging, and for one music taste, there might be several radio stations that suit the wants of a

particular person. Although it might be simple just to put on a radio station, there are still di�er-

ences among some stations concerning advertisements and how much talking is going on besides

playing music. There is not a way to di�erentiate radio stations with a simple metric of how much

the ratio of music/speech is.

In order to compare with the metric mentioned earlier, one could attempt to identify and denote

the speech and non-speech on a radio station by human work, but, in modern times, this could

also be achieved automatically.

Earlier research provided some insights regarding radio production pattern recognition based on

older techniques. However, in modern times, the techniques used for this have been improved,

and the �eld of machine learning is more complete and more accessible to apply comparing to the

earlier days.

Because it is an audio problem, and audio does not directly have numerical values that could

be applied in a machine learning algorithm, it is not merely a problem with given numerical

data. The problem of identifying, deriving numerical data, and coping with the fact that the

initial audio is compressed audio is a substantial challenge. Mainly the challenge is to extract the

appropriate numerical data, with the suitable intervals, and therefor use the appropriate machine

learning algorithm with the best parameters according to the given numerical values and extraction

methods.

The global problem is to discriminate speech and non-speech based on patterns in radio productions

with various experiments in a manner for further research and building applications to produce

and apply a metric for comparing radio stations based on the speech and non-speech ratio.
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2 Related work

Earlier research was done by the Department of Computer Science and Engineering of the National

Institute of Technology Karnataka (NITK) in India. The research from 2015 was done with the

goal of identifying advertisements in real-time radio productions. The paper describes the usage

of di�erent kinds of models like the Hidden Markov Models, Arti�cial Neural Networks, and En-

semble Method for the classi�cation of the audio on advertisement patterns. In the end, the paper

concludes, for the speci�c situation, the usage of an ensemble model is the best according to the

performance metric. Furthermore, the paper shows a visualization of the distribution of advertise-

ments per hour of the day generated with the data obtained from the output of the model. One of

the primary observations in the paper is that recognizing patterns to distinguish advertisements on

radio productions can be performed on a real-time basis in a particularly e�cient and e�ective way

by using MFCCs for extracting numerical values. The paper also analyses the behavior of advertise-

ment speech and concludes that the pitch and speaking rate of a speaker is higher in advertisements

due to the fact the air-time is expensive, and the advertisers attempt to bring as much information

as possible with talking faster. Furthermore, the paper describes the usage of prosodic features

in order to distinguish between the two types of speech. The research also shows the importance

of an algorithm that can handle a high noise tolerance due to the nature of the input audio data [1].

Another study is executed at the Computing Department of the University of Colombo in Sri Lanka

with the purpose of audio monitoring of radio broadcasts across the country of Sri Lanka. The

aforementioned research intended to produce a list with songs per radio station and to recognize

the played songs from the audio streams to make sure the rights of the intellectual property and

their proceedings are being paid to the artists of the music. In the preprocessing steps described

in the paper, the researchers �rst strip-o� the speech and advertisements in order to only focus

on the music. The rest of the experiment is a content-based audio identi�cation algorithm that

recognizes songs from parts of audio given. The paper describes a way to store �ngerprints of songs

in a database with an e�cient searching algorithm. This algorithm will provide an approximate

matching, which is enough for the experiment. Songs that are not yet known can be registered in

the database, and existing songs will get matched from the input audio. The extraction process is

executed with creating and processing similarity hashes from speci�c window ranges on the audio

[2].
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Another research executed by Rao from the Department of Electrical Engineering at the Indian

Institute of Technology in India has shown some insights in extracting numerical values from audio

signals and processing the signals. The chapter of the book describes the characteristics of audible

sound and human hearing. Furthermore, the chapter describes the representation of audio sig-

nals and the di�erence between time-domain and frequency-domain representations. Part of this

includes the description of the spectrogram and how the Fourier transform is part of the trans-

formation from time to frequency representation. Furthermore, the chapter describes methods to

extract numerical values from the audio signal and from the di�erent representations described

earlier. The paragraphs about the numerical extraction have detailed descriptions about the two

categories as well as the short and long term, also called static and dynamic methods of extracting.

This is executed with the feature temporal analysis, where the features are summarized based

on a more extensive length. The chapter of the book describes features like the Zero-Crossing

Rate, Short-Time Energy, Band-Level Energy, Spectral Centroid, Spectral Roll-O�, Spectral Flux,

Fundamental Frequency, and the Mel-Frequency Cepstral Coe�cients which are well-known in the

�eld. Furthermore, the chapter also researches speech-music discrimination, where the literature

review concludes that the usage of some features is essential. For example, speech itself will result

in a high energy and have mostly low-frequency contents. This behavior leads to a higher variation

in the Zero-Crossing Rate output, as well as in some spectral features due to the shape of the

spectral representation [3].

Research done by Scherer, Schwenker and Palm from the Institute for Neural Information Pro-

cessing at the University of Ulm in Germany about emotion recognition from speech shows some

insights into the usage of speci�c features for only speech. The chapter in the book describes the

usage of Linear Predictive Coding and Mel-Frequency Ceptstal Coe�cients in the progress of rec-

ognizing emotions in speech audio fragments. Besides those two features, the chapter also describes

the usage of energy and pitch features. It is not straightforward to just obtain the pitch period

from an audio fragment because a lot of di�erent methods and de�nitions have been proposed

over the years. The proposed multi-classi�er system works, as expected, with multiple classi�ers

to increase the total accuracy of the system. The proposed system consists of K-Means, Learning

Vector Quantization (LVQ), and Radial Basis Function (RBF), all assembled in the multi-classi�er

system with fusion. The fusion progress is done by the Decision Templates (DT) method. In the

end, the chapter describes how the results are showing that the later added MFCC features yielded

the best results for the emotion discrimination [4].
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Another research focused on voice recognition has been done by Muda, Begam and Elamvazuthi

from the Department of Electrical and Electronic Engineering at the Universiti Teknologi PETRONAS

in Malaysia. The research paper shows insights into feature extraction and the optimization for

voice recognition usage. The paper explains the usage of MFCCs in the extraction process with

the steps and detailed text about the framing, windowing, and mel-�ltering. Furthermore, the

Dynamic Time Warping (DTW) algorithm has been used and is well described in the paper. The

algorithm is for measuring the similarity between two given time series, which may di�er in time

or speed. The technology is used to determinate the optimal alignment between two time-series

when one of the two might be "warped". The algorithm uses this and measures the warping in

order to compute the similarity. Furthermore, the paper describes di�erences in male and female

voices with displayed �gures with visualized extracted MFCC features [5].

The paper published by McFee et al. describes the open-source library librosa version 0.4.0. The

author of the paper is the main contributor of the open-sourced library and works for the New York

University in New York, United States of America. The paper describes the goal of the library, the

background, and the technical design goals when developing the library. The goal of the library

is to provide an alternative for the Music Information Retrieval (MIR) �eld beside the usage of

MATLAB. The language, and in speci�c, some packages for MATLAB, are popular in the rela-

tively young �eld of MIR. However, the downside is that the performance of the implementations

to process and retrieve information from audio is quite bad in the MATLAB and MIRToolbox

implementation. Recently there is more interest in moving the MIR �eld towards Python, and

because of a lack of similar libraries or tools, the author of the paper started a project himself

which can be called librosa now. The goal is to make a �exible, high-level, and fast library in

which basic and advanced audio processing and information retrieval could be done. The imple-

mentation is mainly done with the background of the libraries scipy and numpy, which e�ciently

provide mathematical and statistical implementations by using C implementations, which are very

low-level and without the overhead. The paper describes the initial architecture of the library in

which the team decided to use a �at package layout in order to allow the low-barrier entry from

former MATLAB users. The paper describes the implementation of loading audio �les in Python

with librosa and the resampling that is done with this task, but optional. Furthermore, the pa-

per describes the idea behind the data structures and the implementations of some core functions

such as load, resample, and to_mono. Also, the paper describes the libraries' implementation for

the conversion of the time-domain towards the frequency-domain by using the Short-Time Fourier

Transform with the stft function. Later in the paper, the methods of extracting numerical features

are described by mentioning some features such as the MFCCs and some other spectral features.

Furthermore, the paper describes methods to visualize audio fragments in di�erent representations

such as the melspectrogram with the usage of MFCCs as well as some other visualizations with,

for example, the waveform [6, 7].
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Another paper on an implementation has been published by from the University of Jyväskylä in

Finland describing the library MIRtoolbox for MATLAB. The toolbox is being used by a broad

community consisting mainly of users from the MIR �eld. The paper describes in detail the musical

features to be able to extract with provided functions. Furthermore, the paper also covers some

speci�c methods on loading, but especially on how to retrieve features from the loaded audio �le.

Some features described include the well-known MFCCs and estimating the tempo. The paper

describes in detail how reusable components are used in order to make almost every feature ex-

traction possible with doing intermediate tasks only a single time [8].

The paper published by Eyben et al. from the Machine Intelligence & Signal Processing Group

of the Technische Universität München in Germany describes the multimedia feature extraction

toolkit called openSMILE. The paper describes some ideas behind the toolkit and some of its

notable facts, such as the programming language in which openSMILE is implemented, C++.

Furthermore, the paper describes the availability of popular audio feature extraction methods

for MFCCs, chroma, CENS, loudness, voice quality, local binary pattern, color, and optical �ow

histogram. The implementation is available for Unix and Windows platforms and has a modular

architecture [9].
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2.1 Earlier research

This subsection describes earlier research on the topic of distinguishing speech and non-speech and

is speci�cally related to the current dissertation.

The chapter written by Alexandre et al. from the Department of Signal Theory and Communi-

cations of the University of Alcalá in Spain in the book Speech, Audio, Image and Biomedical

Signal Processing using Neural Networks describes the usage of speech and non-speech classi�ca-

tion in hearing aids by using tailored neural networks. The chapter explores the ability to improve

hearing aids by using tailored neural networks in order to distinguish and classify audio signals

into either speech or non-speech categories. In the speci�c situation of searching for a possible

solution for hearing aids, the chapter makes use of the tailored neural network in order to meet the

requirements of low battery consumption by lowering the computational complexity but keeping

the bene�ts of using neural networks. In order to achieve this, the chapter describes the usage

of a tailored neural network in which the model is optimized for both performance and a lower

computational complexity. According to the chapter, only 20% of the hearing impaired people

who could bene�t from buying a hearing aid actually purchased it. Furthermore, 25% of them

do not wear them because of irritating and unpleasant problems related to the background noise

appearing elsewhere in their everyday life. The problem is not only related to economic reasons.

Unfortunately, modern hearing aids still lack an automatic adaptation to change the acoustic en-

vironment. The chapter describes in detail the hardware limitations of hearing aids such as the

complexity which is required when adding machine learning algorithms in them and how to handle

the extra battery requirements. Furthermore, the chapter describes the usage of the two-class

system instead of a multi-class system. The reason behind this is that it is more troublesome when

di�erent classes apply at the same time, such as speech in a noisy background. The usage of a

two-class system results theoretically in less wrongly classi�cations, and the chapter contains a vi-

sualization of this problem in �gure 4 on page 151. Additionally, the chapter of the book describes

the selection and extraction of features where it explains beside the usage of the spectral centroid

also the usage of voice2white, a feature which measures the energy within the human speaking

band of 300-4000 Hz respect to the total energy of the signal in the frame. Besides those also the

spectral �ux and the short time energy is used. The short time energy is de�ned as the mean

energy of the signal within each analysis frame consisting of a number of samples. Furthermore,

the chapter describes the used machine learning implementation by using the neural network clas-

si�er Multi-Layer Perceptron (MLP). In conclusion, the chapter describes the result of an error

rate of 9,5% when using a small neural network with only two hidden neurons, which is within the

maximum sustainable computational resources of the hardware capabilities on the hearing aid [10].
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Another research has been executed in the same �eld of the current dissertation by Kotsakis,

Kalliris and Dimoulas from the Laboratory of Electronic Media at the Aristotle University of

Thessaloniki in Greece. The paper shows a similar interest in distinguishing between speech and

non-speech with a more speci�c interest in the actual person behind a speci�c voice and the actual

music genres. The paper describes the challenge to distinguish audio in radio productions because

of the nature of the audio, the existence of background noise, and the non-stop and continuous �ow

of audio without easily distinguished pauses. The paper describes an experiment with the usage

of a radio production podcast from a Greek radio station recorded in only a speci�c time range

of a day to only cover a speci�c program. Furthermore, the experiment is described to consist

of the following implementation steps: audio signal preprocessing, pattern de�nition rules and

ground truth acquisition, feature extraction, feature selection, arti�cial neural system training, and

�nally, the performance evaluation. The preprocessing step consisted of uncompressing the earlier

compressed audio and converting from stereo to mono based on the original source online. The

window used to extract features has a constant length of 1 second. Furthermore, the ground truth

consisted of di�erent voices, telephone voices, and di�erent music genres, and the annotation has

been done manually. The step of feature extraction consists of the following features: Mean Signal

Envelope, RMS Energy, Audio Low Energy, Average Attack Time & Slope, Number of Signal Peaks,

Entropy, Zero-Crossing Rate, Audio Signal Autocorrelation, Roll-o� Frequency, Average Event

Spectral Density, Fundamental Frequency, Inharmonicity, Spectral Centroid & Spread & Skewness

& Kurtosis & Flatness & Roughness & Irregularity & Brightness, Audio Spectrum Fluctuation,

13 Mel-frequency Cepstral Coe�cients. From all the features, only a selection of 23 features was

made after applying dimension reduction techniques. The experiment consisted out of di�erent

model designs with di�erent kind of multi-classi�er systems [11].
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3 Literature Review

The literature review contains information about the background of the problem and explains

speci�c technologies used in the experiments.

3.1 Digital audio

When we talk about audio and our human hearing capabilities, we can conclude that the aspects

of audio are analog at the moment we hear things by the human body. However, to store and

process audio signals digitally, there is a need to process the analog signal into a digital signal and

eventually having methods to store and contain the signals so that it can be processed further and

reproduced in an analog way.

The analog audio signals the human beings can hear are situated in the range from 20 Hz (0,02

kHz) to 20.000 Hz (20 kHz) [12, 13]. However, most microphones and digitization methods capture

and process a more extensive range of audio frequencies. When processed by a microphone, the

signal is converted into a digital signal.

3.1.1 Pulse-Code Modulation

The Pulse-Code Modulation technology was introduced by Alec Harley Reeves in 1937, and the

technology was granted a patent in various countries in the years following the introduction [14].

Nowadays, PCM has several variations. However, in general, the standard will use the considerably

same steps and methodology.

Sampling

Sampling of the audio signal is one of the steps in the process of digitalization of audio in the

PCM standard. During this step, the captured signal is divided into a given number of samples

per second [15]. The optimal value for the parameter of the number of samples per second can be

obtained using the Nyquist rate theorem. The Nyquist rate is named after the Nyquist criteria by

the engineer Harry Nyquist and is sometimes also described as the Nyquist sample rate [16]. The

theorem of the Nyquist rate states that the sampling rate should be at least double the highest

frequency in the original audio signal to be able to reproduce the original signal [17].

sr ≥ 2 · fmax (1)

Where sr represents the minimum sample rate

The most commonly used sampling rate is 44,1 kHz, which will capture and store the most common

frequency ranges. Based on the given sample rate and the method of sampling, let's say 41,1 kHz,

the signal is being split up by 41.100 data points per second.
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Table 1: Computer Audio Sampling Rates [15]

Sampling rate Description

8 kHz The G.711 telephony standard

16 kHz Used by the G.722 compression standard

18,9 kHz CD-ROM standard

22,05 kHz Half the CD sampling rate

24 kHz One-half 48 kHz rate

32 kHz Used in digital radio

44,1 kHz The CD sampling rate

48 kHz The standard professional audio rate. Used for DVD and DAT and some

digital video streaming.

Quantization

Sampling the audio is just one step in the process. Following this step, the process of quantization

starts. In the quantization step, the sound waves, and therefore the sample data points, will get

a speci�c range based on the bit-depth given as a parameter. For less demanding and typical

applications, this would be 16-bits, while professional users and applications would demand a

higher resolution of 20 or 24-bits [15]. When using 16-bits, there will be 65.536 possible levels to

divide frequencies per sample and to represent the level of one single data point.

Encoding

The encoding process of PCM is di�erent for the �avor and implementation of PCM used. However,

the basics are nearly the same and consist of saving the processed samples with the resolution

given in sequence to a �le containing metadata on how to process and decode the given sample

stream.
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3.1.2 Short-Time Fourier Transform

The Short-Time Fourier Transform uses the Discrete Fourier Transform (DFT) over short periods

with overlapping windows to represent a time-frequency domain signal [18]. The mathematical

de�nition of the STFT is as follow [19]:

Xm(ω) =

∞∑
n=−∞

x(n)w(n−mR)e−jωn

=

where

x(n) = input signal at time n

w(n) = length M window function (e.g., Hamming)

Xm(ω) = DTFT of windowed data centered about time mR

R = hop size, in samples, between succcessive DTFTs.

Figure 1: Overview of the audio signal in time and frequency domain [20]
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3.2 Audio compression

Uncompressed audio is large in size, and therefore, compression is used to transfer and store audio

in an e�cient way to reduce disk and bandwidth usage.

There are two major categories of audio compression, �rst of all, there is the category of lossless

compressions where there will be no loss in the signal after decompression an compressed signal.

The signal which will be produced by the algorithm when decoding will be exactly the same as

before compressing. This method is excellent for e�ciently storing original signals without losing

any information.

Secondly, there is the category of lossy compressions which will not produce the same signal after

decompression. However, most compression algorithms try to prevent any hearable di�erence in

the signal after decompressing. Some algorithms do this by reducing the frequencies stored or

apply a speci�c technology such as the masking e�ect.

3.2.1 Lossless compression

Lossless compression is used in situations where the loss of data is not desired. For example, in

storing raw audio before processing or when storing recorded music from a live performance before

further distribution. The decompressed audio will be the audio that is originally input to compress

the data without any change or loss of signals.

Linear predictors

One of the popular and open formats used for lossless compression is FLAC, which stands for Free

Lossless Audio Codec, and it might be the �rst entirely free audio codec [21]. The FLAC format

uses linear prediction for compressing. In fact, FLAC uses four methods for predictions and can

produce a signi�cant decrease in �le size of an audio �le [22].

Combinations of predictors

The introduction of MPEG-4 Audio Lossless Coding did introduce the combination of short-term

predictor, just like in FLAC, and the long-term predictor [23]. The long-term predictor improves

the compression for sounds with rich amounts of harmonics present in musical instruments and in

the human voice.

3.2.2 Lossy compression

On the other hand, there is lossy compression, which will result in a loss of data when compressing.

This does not necessarily mean that the audio will be in poor quality or to lose audio data that

is important for the hearing. For instance, MP3 (formally MPEG-1 Audio Layer III or MPEG-2

Audio Layer III) format uses the masking e�ect to eliminate frequencies that a human will not be

able to hear because of a previous louder signal [24]. This results in the same result when listening

to the audio but reduces the data size signi�cantly.
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Masking e�ect

The American physicist Alfred M. Mayer introduced new facts about humans not being able to

hear a tone that is signi�cantly lower than the previous tone [25]. Later in 1959, Richard Ehmer

introduced a complete set of auditory curves of the theory presented by Alfred M. Mayer [26]. The

two discoveries were the foundation for the technology used nowadays, called the masking e�ect,

which ended up in the MP3 compression.

Figure 2 presents the masking e�ect when a loud tone of 500 Hz is produced. The area in gray is

masked by the tone, and humans will not be able to hear any tones inside of the area due to the

masking e�ect.

Unheard frequencies

Another trendy technology used in lossy compression algorithms for audio data is the removal of

unheard frequencies. As written earlier, a human being is only capable of hearing between the

range from 20 Hz (0,02 kHz) to 20.000 Hz (20 kHz) [12, 13]. By removing all frequencies above

and below this threshold, the algorithm can, therefore, use a lower sample rate according to the

Nyquist theorem [16]. However, this is only applicable when the original audio contains maximum

frequencies above the human threshold of 20 kHz.

Figure 2: Audio masking e�ect on a loud tone of 500 Hz, the gray area is masked by the tone [15].

12



3.3 Audio features

Audio on itself could not just be used in a machine learning algorithm because the data is not

numerical or not in any form to be able to be processed and used in an algorithm. Therefore there

is a necessity to extract numerical values based on the audio data using di�erent statistical and

mathematical methods and equations.

It is possible to retrieve numerical values from two perspectives of the audio content. The �rst

perspective is the time-domain and is how the audio is represented when captured and shows

the signal waves. On the other hand, there is the time-frequency representation that contains

information about the frequencies used.

Table 2: Audio features grouped by their category [27]

Group Features

Temporal features RMS Energy, Entropy

Spectral features Zero-crossing rate, Centroid, Polynomial, Roll-o�, Bandwidth, Contrast,

Flatness measure, MFCC

3.3.1 Time-domain features

Time-domain features are directly extracted from the audio samples of the digital audio sig-

nal.

RMS energy

The Root Mean Square Energy is easily retrieved by processing and applying statistical methods

on the waveform of the audio given [4]. The output energy is a simplistic but yet e�ective numerical

feature thinking about the distinguishment between speech and non-speech audio due to the energy

used in wider frequencies giving di�erent values for the two classes.

xrms =
1

n
·

n∑
i=1

x2
i (2)
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3.3.2 Time-frequency features

More advanced features can be retrieved from the spectral perspective of the audio signal, also

called the time-frequency representation. The time-domain signal is transformed into a spectrogram

with the Short-Time Fourier Transform described earlier in the subsection 3.1.2.

Zero-crossing rate

The Zero-Crossing Rate provides important spectral information and is performance-wise very

low-cost when computing for a given audio stream. The aforementioned feature is strongly related

to the average frequency since the Zero-Crossing Rate will provide a numeric value, which is nearly

directly related to the time between waves [3].

ZCRr =
1

2

N∑
n=1

|sign(xr(n))− sign(xr−1(n))| (3)

Where

sign(x) =

1, if x ≥ 0

−1, if x < 0

(4)

Spectral centroid

The Spectral Centroid provides the center of gravity of the spectrum over the audio fragment given

[3].

Cr =

∑N
2

k=1 f [k]|Xr[k]|∑N
2

k=1 |Xr[k]|
(5)

Polynomial features

The polynomial feature is based on a principle called polynomial curve �tting, and in speci�c,

the curve �tting with the least-squares method. The outputs of the polynomial features are the

coe�cients found of �tting an nth-order polynomial to the columns of a spectrogram [28].

Spectral roll-o�

The Spectral Roll-O� feature computes the maximum frequency situated within the percentage of

power given out of the total power over the given spectral data. This feature uses RMS Energy with

�lters to calculate the percentage of energy out of the total energy in the spectral representation

[29].

RF = f [K] = k · df :

K∑
k=1

|X(k)| ≤
N/1∑
k=1

|X(k)| (6)
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Spectral bandwidth

The spectral bandwidth feature is the calculated bandwidth on the spectrogram frame given. The

calculation is done with the following equation [30]:

BW =

√√√√∑N/2
k=1(f − fc)

2 · |X(k)|2∑N/2
k=1 |X(k)|2

=

√√√√∑N/2
k=1(k · df − SPc)

2 · |X(k)|2∑N/2
k=1 |X(k)|2

(7)

Spectral contrast

This feature computes the contrast of the spectral data provided. The numerical value retrieved

from this feature represents how narrow-band or wide-band the signals are. A higher contrast value

may be a result of a broader and more clear signal, while a low contrast might be coming from a

signal with more noise and more extensive usage of frequencies [31].

Spectral �atness measurement

The spectral �atness measures the constancy, width, and noisiness of a given spectrogram. The

lower the �atness measurement is, the less uniform the power spectrum is in frequency structure.

When the measurement is of a higher value, it states that the power over the frequency bands is

less uniform, and this could, for example, be occurring when the audio is speech [32]. In computing

the spectral �atness, the measurement is de�ned as the geometrical mean of the values divided by

the arithmetic mean.

SFM =

N

√∏N−1
n=0 x(n)(∑N−1

n=0 x(n)

N

) (8)

Mel-frequency cepstral coe�cients

MFCC is a feature consisting of multiple numerical outputs depending on the input parameter

of the number of envelopes to return. The feature is a compact representation of the short-time

spectrum envelope and has long been applied in speech recognition but, more recently, also in

recognizing music and their genres [33, 34, 35]. The process of computing the MFCC feature

begins with transforming the windowed audio data frame by DFT (Discrete Fourier Transform),

followed by taking the logarithm of the amplitude spectrum. The logarithm transformation serves

to deconvolve multiplicative components of the spectrum, such as the source and �lter transfer

function [3]. At the end of the process of computing the feature, Mel-scaling and smoothing are

applied and followed by the �nal process, which consists of applying a reverse process of the Fourier

Transform, the inverse Discrete Fourier transform [33]. The complete process of computing the

MFCC feature is also visualized in �gure 3.

The input parameter is the number of �lters used and will represent the number of output values

per window. According to research about the e�ectiveness and the di�erent implementations of

MFCC, it concludes that for every problem and data, a di�erent number of �lters could result in

a completely di�erent performance in prediction problems [36, 37].
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Figure 3: The pipeline of MFCC [33]

3.4 Machine learning algorithms

3.4.1 XGBoost classi�er

The XGBoost Classi�er is a gradient boosting classi�er build by the open-source community for

various platforms such as C++, Java, Python, R, and Julia and works on di�erent operating

systems. The classi�er is also integrated within several di�erent distributed processing frameworks

such as Apache Hadoop and Apache Spark. The classi�er uses the technology of tree boosting,

which is used in large-scale applications and produces state-of-the-art results [38].

3.4.2 Multilayer perceptron

Multilayer Perceptron (MLP) is a neural network classi�er that consists of at least three layers of

nodes, where the �rst layer is the input layer, the middle layer(s) consist of the hidden layer(s),

and the �nal layer is the output layer. The neural network utilizes a supervised learning method

called backpropagation for training [39].

3.4.3 Random forest

The random forest classi�er consists of multiple layers of decision trees that are constructed during

the training process of the classi�er by the algorithm [40]. One of the best features of this classi�er,

and also the XGBoost classi�er, is that the risk of over�tting, which is very high in standard decision

trees, is not or nearly corrected by the fact that it uses multiple trees [41].
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4 Data & Methodology

The executed experiments did require a speci�c methodology to retrieve, record, and process the

radio signal into audio fragments, and eventually into numerical data. This section describes in

detail how the data is retrieved, stored, and processed.

4.1 Data

Having enough data is often a challenge, especially when working with data that requires manual

work by a human person to process and create ground truth. In this case of the described problem

and the recordings of the audio, the data is not yet numerical data when captured. Hence, we have

to process the audio signals from the radio production and store it on disk to be able to process

and execute computations. The progress of extracting and computing numerical values is achieved

with several feature extraction methods described in the literature review.

In total, the data consist of 241 hours of radio recordings, which result in 15,1 GB in total size of

the compressed audio.

4.2 Methodology

Figure 4: Overview of the experiment methodology

17



4.2.1 Recording radio productions

In the experimental setup, FFmpeg is used to record internet radio. Unfortunately, the live-

stream consists of compressed audio with a compression encoding, which results in some loss of

sound.

Audio of two radio stations was captured for both a minimum of four days of stream non-stop.

The two radio stations consist of:

� WNYC: Local news radio station situated in New York, United States;

� Heart London: Local radio station with contemporary music situated in London, United

Kingdom.

Both radio stations have di�erent speci�cations of programs and content. The choice of two stations

that are entirely contrary is made to experiment with the e�ectiveness of the experiment and the

used technologies on totally di�erent kind of radio stations available. While both radio stations

have a high-quality stream we still have to cope with the fact that we lose speci�c frequencies

due to the compression of the codec used, for example as a result of the masking e�ect in the

MP3 codec used in the streaming as described in the paragraph situated in the section 3.2.2 of the

literature review.

Storage Encoding

Since the audio streams are already compressed, there is no need to store the stream with a lossless

codec, so for the experiments, MP3 is used. However, before using it in any processing, it needs

to be converted back to PCM (WAV), this can be done in memory or as a preparation step on the

disk. Unfortunately, we already lost speci�c frequencies due to the codec used in streaming, and

converting back to WAV is only to correctly load the �le into the used tools and scripts used in

the experiment.

Data Stored

In total, the stored and retrieved data consist of:

� WNYC: 97 hours, 97 �les and 4,2 GB of compressed audio;

� Heart London: 144 hours, 144 �les and 10,9 GB of compressed audio.

4.2.2 Labeling recordings/ground truth

To use any metrics or to learn any supervised machine learning algorithm, there is a demand in

having ground-truth data. When handling audio problems, most of the time, this ground-truth

does not exist and needs to be manually created by a human being, which is very time consuming

for this speci�c problem.

For both radio stations, there have been six hours of radio production annotated, resulting in a

total of 12 hours of annotated ground-truth data.
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Method of labeling

In this problem, especially when handling raw audio data, it is more favorable to precisely annotate

every part of speech and non-speech (and potentially other labels) directly from an editor. The

ground truth is created by using the software called Audacity by adding a label-track to the �le

loaded. Figure 5 shows a screenshot of the Audacity editor with labeled audio, and table 3 contains

the audio categories and labels used in annotating the audio tracks.

Figure 5: Labeling audio in Audacity

Table 3: Audio categories and labels used in annotating

Category Label Description

S - Speech

S (Normal) Speech

P Telephone Speech

AS Advertisement with mainly speech

N - Non-Speech

M Music

A Advertisement

J Jingle
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Exporting labels

From the software used, the label data is exported to a text �le containing three columns: the start

time, the end time, and the label text. All the times are in seconds in decimal format to guarantee

a high precision.

The �le can later be read and used by any data manipulation tools to create and combine the

ground truth with the obtained features of the audio depending on the individual con�gurations.

An example output can be found in the listing 1.

start end label

0.000000 172.880447 S

172.880447 180.984218 P

180.984218 190.492643 S

190.492643 201.081570 P

201.081570 225.933135 S

225.933135 240.087721 M

240.087721 306.862794 S

306.862794 313.778012 M

313.778012 343.275738 M

343.275738 368.235353 M

368.235353 590.170627 S

590.170627 602.812510 M

Listing 1: Exported Labels File
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4.2.3 Extracting features

One of the most critical steps in the experiment implies �nding the best split and window time

and extracting the correct features from the radio recordings. The feature extraction is executed

in Python with the audio library librosa. The library is focused on users migrating from MATLAB

or with MATLAB experience and was introduced by Brian McFee [6]. Furthermore, the library

contains all signi�cant features for signal processing and extracting several numerical values from

audio streams.

Library details

In general, the library covers a broad spectrum of signal processing. However, the library is mainly

focused on audio problems and processing. Furthermore, the library contains methods to load

and resample audio from a �le on the disk. While the resampling is optional, it will be turned

on by default. The library mainly uses the libraries numpy and scipy for e�ciently calculating,

computing, and processing the data according to the functions.

Loading an audio �le from disk will result in two outputs, the audio signal represented in a one-

dimensional numpy array mainly denoted as y. Secondly, the sample rate in hertz mainly denoted

as sr. Together you could calculate the total duration of the audio signal with [6]:

duration = float(len(y)) / sr

The library furthermore contains methods to convert the signal to a spectrogram with the Short-

Time Fourier Transform with the method (stft) and also contains the inverse method for the STFT

with istft.

Besides the methods for extracting features from the audio signal with several options and param-

eters, it also contains methods to represent spectral and temporal plots with the use of matplotlib.

Later on, some examples will show the results based on the di�erent categories of annotated

data.

The library is currently maintained mainly by McFee himself and the community on GitHub,

where the project's source code is hosted under the ISC (Internet Software Consortium) open

source license.

Splitting audio

When extracting features, it is possible to adjust the walking frame and hop for each feature

when supported. Every problem and every data has its own best hop and window size. In the

experiment, there will be a few combinations tried, and the best outcome will be used to optimize

further. All possible combinations can be found in the table 4
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Table 4: Combinations of hop and window sizes to use in the experiment

Hop size Window size

250 ms
None

500 ms

500 ms

None

750 ms

1000 ms

750 ms
None

1000 ms

1000 ms
None

1250 ms

Used features

In the experiment, the numerical represented data will consist of a total of 43 numerical columns

extracted from the following features. The used features are also summed in table 5

Roll-o� percentages A total of 11 roll-o� features with the following percentages: 10%, 25%,

50%, 60%, 70%, 75%, 80%, 85%, 90%, 93% and 96% to represent a wide variety of the frequency

spread of the signal.

MFCCs The computed MFCCs with an input parameter of 24 �lters resulting in 24 extracted

numerical values.

Zero-crossing The computed zero-crossing rate, a single numerical value.

RMS Energy The single numerical value based on the time-domain feature extracting the RMS

energy.

Spectral centroid, bandwidth and contrast The numerical values of the three spectral fea-

tures: centroid, bandwidth and contrast.

Spectral �atness measurement The single numerical value of the computed �atness measure-

ment on the spectral representation of the audio segment.

Polynomial orders The extracted numerical values of the polynomial �tting in the two orders

resulting in two numerical values.
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Table 5: Extracted audio features in the experiment

Category Feature

Temporal features 1 × RMS Energy

Spectral features

11 × Roll-o� percentage

24 × MFCCs

1 × Zero-crossing

1 × Spectral centroid

1 × Spectral bandwidth

1 × Spectral contrast

1 × Spectral �atness measurement

2 × Polynomial orders

Process of extracting

The process of extracting is quite an extended process because, for a single audio �le of one hour,

the matrix of the possible window and hop sizes will require to perform the extraction process nine

times, according to the table 4. Below are some code snippets of the process with an explanation

about the function of the code. The exact and full source-code for the extraction is separately

available.

Loading audio �le In the code listing 2, the �le will be loaded and resampled to mono audio,

of which the data will be stored in the two variables y and sr representing the audio signals.

After this, the hop and window sizes will be converted from milliseconds to the number of samples

according to the formula samples = seconds ·sr. This is done with a helper method provided with

the librosa library. The variable split_times is very important for the exact positional reference

of the splits in seconds. The times are generated by using numpy and an inline for-loop. This

variable will be used later when combining the features into a data frame.

1 y, sr = librosa.core.load(file , mono=True , sr =44100)

2

3 hop_split_seconds = 500

4 hop_length = librosa.core.time_to_samples(hop_split_seconds , sr=sr)

5 win_split_seconds = None

6 win_length = None

7 if win_split_seconds is not None:

8 win_length = librosa.core.time_to_samples(win_split_seconds , sr=sr)

9

10 total_splits = len(y) / hop_length

11

12 split_times = np.array([ hop_split_seconds * i for i in range(0, int(total_splits)

+1)])

Listing 2: Loading audio �le in librosa and prepare variables
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Extracting features The code listing 3 the process of extracting is done by using the librosa

extraction methods. Furthermore, the extracted features are of di�erent shapes. Some features

contain a multi-dimensional value that is returned based on their implementation and parameters,

for example, the MFCC features, which will return several dimensions based on the number of

�lters used.

1 mfcc = librosa.feature.mfcc(y=y, sr=sr , n_mfcc =24, hop_length=hop_length)

2 zero_crossing = librosa.feature.zero_crossing_rate(y=y, hop_length=hop_length ,

frame_length=win_length or 2048)

3 rms_energy = librosa.feature.rms(y=y, hop_length=hop_length , frame_length=

win_length or 2048)

4 centroid = librosa.feature.spectral_centroid(y=y, sr=sr, hop_length=hop_length)

5 bandwidth = librosa.feature.spectral_bandwidth(y=y, hop_length=hop_length)

6 contrast = librosa.feature.spectral_contrast(y=y, hop_length=hop_length)

7 flatness = librosa.feature.spectral_flatness(y=y, hop_length=hop_length)

8 rolloff = dict(

9 percentage_10=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.10) ,

10 percentage_25=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.25) ,

11 percentage_50=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.50) ,

12 percentage_60=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.60) ,

13 percentage_70=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.70) ,

14 percentage_75=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.75) ,

15 percentage_80=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.80) ,

16 percentage_85=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.85) ,

17 percentage_90=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.90) ,

18 percentage_93=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.93) ,

19 percentage_96=librosa.feature.spectral_rolloff(y=y, sr=sr, hop_length=hop_length ,

roll_percent =0.96) ,

20 )

21 poly_features = librosa.feature.poly_features(y=y, sr=sr, hop_length=hop_length)

Listing 3: Extracting features in librosa

24



Combining and storing numerical features The �nal part is done by the code in listing 4

where the extracted numerical values will be combined together in a numpy array with the numpy

method column_stack and annotated based on their split timestamps with the earlier generated

split_times variable. After the process of combining, the �le will be saved to the �le given by

the variable out_file in CSV format. The code for the header is only executed on the �rst line,

denoting the headers in the CSV �le format.

1 if len(header) == 0:

2 header.append('split_times ')

3 for perc in rolloff.keys():

4 header.append('rolloff_ {}'.format(perc))

5 for idx , _ in enumerate(mfcc):

6 header.append('mfcc_{}'.format(idx))

7 header.append('zero_crossing ')

8 header.append('rms_energy ')

9 header.append('centroid ')

10 header.append('bandwidth ')

11 header.append('contrast ')

12 header.append('flatness ')

13 for idx , _ in enumerate(poly_features):

14 header.append('poly_features_ {}'.format(idx))

15 print('HEADER: {}'.format(', '.join(header)))

16

17 f = np.column_stack ((

18 split_times ,

19 *[rv[0] for rv in rolloff.values ()],

20 *[m for m in mfcc],

21 zero_crossing [0],

22 rms_energy [0],

23 centroid [0],

24 bandwidth [0],

25 contrast [0],

26 flatness [0],

27 *[m for m in poly_features],

28 ))

29

30 # Write output

31 with open(out_file , 'wb') as out_handle:

32 out_handle.write('{}\n'.format(','.join(header)).encode ())

33 np.savetxt(out_file , f, delimiter=',')

Listing 4: Manipulating and storing features in librosa with numpy
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4.2.4 Combining ground truth

After the process of extracting numerical features based on the process described in section 4.2.3

the next step is to enrich the feature �le with the ground truth, but only for the cases where we

have the ground truth.

Reading input �les

In order to combine the features �le with the annotations, we have to de�ne methods for reading

both �les. The code listing 5 contains two functions for reading both types of �les.

1 structure = {

2 'S': [

3 'S', # General Speech

4 'P', # Phone Speech

5 'AS', # Advertisement , mainly speech

6 ],

7 'N': [

8 'M', # Music

9 'J', # Jingle

10 'A', # Advertisement

11 ]

12 }

13

14 def read_feature_file(file , audio_file):

15 df = pd.read_csv(file , header =0)

16

17 # Detect feature configuration.

18 hop , win = re.findall(r'\. wav_hop_ ([0 -9]+) __win_ ([0 -9]+| none)', os.path.basename(

file))[0]

19

20 # Drop the first row as it always contains invalid data.

21 df = df[df.split_times != 0.00]

22

23 # Insert the filename and configuration to the dataframe.

24 df['file'] = os.path.basename(audio_file)

25 df['station '] = os.path.basename(os.path.dirname(audio_file))

26 df['hop_size '] = hop

27 df['win_size '] = win

28 return df

29

30 def read_label_file(file):

31 df = pd.read_csv(file , sep='\t', names =['label_start ', 'label_end ', 'label '])

32

33 # Replace add new columns , cat and subcat , denoting the head category and

subcategory of the label.

34 df['category '] = df['label']. replace(structure['S'], 'S').replace(structure['N'], '

N')

35 df['subcategory '] = df['label ']

36 return df

Listing 5: Reading input �les with Pandas
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Combining features with labels

After the loading has been �nished, we have to enrich the feature data frame with the labels.

Both datasets are not ready to be merged directly because of the format of the label �les. In

order to combine, we have to merge based on statements. Fortunately, pandas comes with a very

advanced merging functionality, which is used in the code listing 6. This code is obtained from the

original for-loop, which will execute this for all �les. The input parameters are feature_file for the

features CSV-�le and file for the labels �le. The output �le will contain extra columns based on

the merging properties.

1 # Read the labels file.

2 label_df = read_label_file(labels_file)

3 label_df = label_df.assign(key=1)

4

5 out_file = '{} __annotated.csv'.format(feature_file [: -4])

6

7 # Read the feature file.

8 feature_df = read_feature_file(feature_file , file)

9 feature_df = feature_df.assign(key =1)

10

11 # Merge process , first make a intermediate merge.

12 merge_df = pd.merge(feature_df , label_df , on='key').drop('key', axis =1)

13 merge_df = merge_df.query('split_times >= label_start and split_times < label_end ')

14

15 # Convert to the output dataframe , prepare for the output format.

16 output_df = feature_df.merge(

17 merge_df [[

18 'split_times ', 'label_start ', 'label_end ', 'label', 'category ', 'subcategory '

19 ]], on='split_times ', how='left'

20 )

21 output_df = output_df[output_df.label != None]

22 output_df = output_df.drop('key', axis =1)

23

24 # Output to csv.

25 output_df.to_csv(out_file , index=False)

Listing 6: Merging feature dataframe and labels with Pandas

In the end, the output �le will have the following columns extra besides the feature columns: file,

station, hop_size, win_size, label_start, label_end, label, category, subcategory. The �le columns

represent the original WAV �le, the station is the radio station code which could be either 'WNYC'

or 'HeartLondon', the hop and window size contains the required hop size and optional window

size in milliseconds, the label start and end columns contains the start and the end timestamp

of the labeled entry, the label and subcategory are the original label while the category column

consists of the speech or non-speech binary speci�cation and could either be 'S' (Speech) or 'N'

(Non-Speech).
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4.2.5 Machine learning models

Algorithms

For both two experimental setups, there has been defaulted parameter tests at �rst with the

following three machine learning algorithms:

� Multilayer Perceptron;

� Random Forest;

� XGBoost.

Splits and cross-validation

Initially, with the �rst observation tests, the split consisted out of four hours of train data and two

hours of testing, which is a split percentage of 66,6% train and 33,3% test data. The splitting is

done with loading only the four out of six available feature �les for the train data and the other two

for testing purposes. Everything is done per radio station, so the measurements and performance

output is di�erent per radio station.

Furthermore, to optimize and obtain a fair observation, cross-validation is applied over the complete

six hours of extracted features, again per radio station. In the progress of cross-validation, the

number of K-folds has been set to 10-folds.

Parameter tuning

Based on the results of the cross-validation performance of the multi-layer models, two algorithms

will be tested with optimized parameters, tuned with grid searching, and the cross-validation

methods with �ve folds.
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Single-model experiment

The �rst of the two main experiments with machine learning has been executed with only a single

layer model based on all the annotated labels of the audio �le seen as one single problem. The

model is also graphically explained in �gure 6. In this setup, the following Machine Learning

algorithms are being tested: Multilayer Perceptron (MLP), XGBoost, and Random Forest.

Figure 6: The single-model experiment setup
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Multi-layer model experiment

Another experiment will be executed by having two layers of models with a total of three models

where the �rst layer consists of one model that decides if the input given is either speech or

non-speech and two underlying models that decide the exact label under the categories of speech

and non-speech. The model is illustrated in �gure 7. Because the �rst model, the categorical

model, is using binary classi�cation, it could potentially lead to an increase of performance on

the performance of distinguishing speech and non-speech. In this setup, the following Machine

Learning algorithms are being tested in both the main and sub models: Multilayer Perceptron

(MLP), XGBoost, and Random Forest.

Figure 7: The multi-layer model experiment setup
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5 Results

This section contains the results of the executed experiments described earlier.

5.1 Annotation Tool

Earlier in the process of the experiment, a tool has been created to annotate and display predictions

on an audio player interactively. This project has been developed during the early phase of the

dissertation and is still experimental. In the end, the tool has not completely been used but may

be interesting for further development and sharing with other researchers in the �eld. The two

�gures 8 & 9 display screenshots of the tool in usage. The technologies behind the developed tool

are Python with Tornado as a back-end server and Angular on the front-end.

The tool will be expanded and may be useful to expand to an online service that could be used

to provide the service to a broader public in the web browser and could be expanded to meet the

demands for overall content annotation and management for creating and managing ground-truth

data.
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Figure 8: Audio stamper tool, annotating the audio track.

Figure 9: Audio stamper tool, the possible export methods
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5.2 Annotated Audio

Based on the human-annotated audio, we gained a few insights into our data. In the pie-charts

shown in �gure 10, it is clear that both radio stations together make a quite good share in both

categories of speech and non-speech.

(a) Category balance (b) Label balance

Figure 10: Label and category balance over the complete annotated data set

Unbalanced data

However, if we look closely and split the two radio stations and redraw the plot, it shows us that for

both radio stations, the data is quite unbalanced. This is not a strange phenomenon according to

the chosen radio stations where one is a news station, and the other station is playing signi�cantly

more music. This di�erence is shown in �gure 11. The fact that there is unbalanced data could lead

to incorrect measurements of the performance. However, the �nal problem could still be solved by

applying a model to the audio with the pre-trained data.

(a) WNYC (News) (b) Heart London (Contemporary)

Figure 11: Category balance per radio station
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5.3 Feature Extraction

The feature extraction is done in the programming language Python with the audio library librosa.

The library is focused on people migrating from or having a background in MATLAB and is

introduced by Brian McFee [6]. Furthermore, the library contains all signi�cant features for signal

processing and extracting several numerical values from audio streams.

5.4 Machine Learning Algorithms Results

5.4.1 Single-model experiment

In the Single-Model experiment, we ran all the prede�ned combinations of possible con�gurations

among the three algorithms and with two validation methods. The results are summarized in

table 6, where the best results and con�guration combinations are shown based on the accuracy

score.

Optimal Con�guration Results

Algorithm Validation Method Station Hop Size Window Size Accuracy F1

MLP Split, 33% WNYC 500 750 0.945954657784463 0.944773985976810

MLP Split, 33% HeartLondon 250 500 0.817028698271762 0.805407091867788

MLP CV, 10 folds WNYC 250 - 0.945745595186936 0.943646119825491

MLP CV, 10 folds HeartLondon 250 - 0.815865969029121 0.796161956534341

RF Split, 33% WNYC 250 500 0.936882251826386 0.929231514995747

RF Split, 33% HeartLondon 250 500 0.799323502986100 0.751769117219394

RF CV, 10 folds WNYC 250 500 0.937043403523850 0.929279848894466

RF CV, 10 folds HeartLondon 250 500 0.800274826911897 0.752953352455008

XGBoost Split, 33% WNYC 500 750 0.933598366820673 0.926918875870289

XGBoost Split, 33% HeartLondon 500 1000 0.794102103371737 0.749654185602018

XGBoost CV, 10 folds WNYC 500 750 0.945954657784463 0.942316869777580

XGBoost CV, 10 folds HeartLondon 250 500 0.813487659214629 0.783358914663545

Table 6: Results of the best con�guration for the Single-Layer Models
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5.4.2 Multi-layer model experiment

The performance in the Multi-Layer Model experiment is more di�cult to interpret. Because of

the issue of the multiple performance indicators due to the multiple algorithms used, the complete

model accuracy is utilized as a performance metric. This metric is computed with the formula

perf =
(main · speech+main · nonspeech)

2
, where the parameters are the accuracy metrics of

the individual and main model. The results are presented in the table 7.

Optimal Con�guration

Algorithm Validation Method Station Hop Size Window Size Accuracy

MLP Split, 33% WNYC 250 - 0.957464249382319

MLP Split, 33% HeartLondon 250 500 0.770827877563129

MLP CV, 10 folds WNYC 500 1000 0.961432071043146

MLP CV, 10 folds HeartLondon 500 1000 0.774364573502094

RF Split, 33% WNYC 750 1000 0.951539269479086

RF Split, 33% HeartLondon 500 1000 0.758797187730085

RF CV, 10 folds WNYC 750 1000 0.951140062305160

RF CV, 10 folds HeartLondon 500 750 0.757104084658736

XGBoost Split, 33% WNYC 750 1000 0.953073495882124

XGBoost Split, 33% HeartLondon 500 1000 0.761184711076996

XGBoost CV, 10 folds WNYC 250 500 0.957134219515392

XGBoost CV, 10 folds HeartLondon 500 1000 0.776487036919862

Table 7: Results of the best con�guration for the Multi-Layer Models
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Parameter Tuning

Based on the outcomes in the Multi-Layer Model experiment, the parameter tuning experiment is

being executed on two algorithms with their con�gurations listed bellow in table 8.

Algorithm Station Hop Size Window Size Parameters to tune

MLP WNYC 500 1000 hidden_layer_sizes, activation,
solver, alpha, learning_rate

MLP HeartLondon 500 1000

XGBoost WNYC 250 500 max_depth, min_child_weight,
subsample, colsample_bytree,
gammaXGBoost HeartLondon 500 1000

Table 8: Parameter-tuning overview of parameters and algorithms

Table 9 below shows the used values per algorithm. Per layer, the best values are being determined

with the usage of the full grid-search method with a total of �ve K-folds.

Algorithm Parameter Values tested

MLP hidden_layer_sizes (200, 100), (150, 75), (100, 50)

MLP activation relu, tanh

MLP solver adam, sgd

MLP alpha 0, 0.0001, 0.001, 0.01, 0.05, 0.1

MLP learning_rate adaptive, constant

Algorithm Parameter Values tested

XGBoost max_depth 3, 4, 5, 6, 7, 8

XGBoost min_child_weight 1, 5, 10

XGBoost gamma 0.5, 1, 1.5, 2, 5

XGBoost subsample 0.6, 0.8, 1.0

XGBoost colsample_bytree 0.6, 0.8, 1.0

Table 9: Parameter-tuning overview with parameter values tuned
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Best parameter values The outcome of all the grid-search experiments based on the parameters

and values described earlier can be observed in table 10. In the table, some grid-search entries

have the same values in their tuned parameters, and this is shown as one cell.

Algo Station Model Accuracy Parameter Values

MLP

WNYC

0.959823229

Main ∼ 0.9739981 hidden_layer_sizes: (200, 100);

activation: relu; solver: adam;

alpha: 0.001; learning_rate: adaptive

Speech ∼ 0.9708935

Non-Speech 1.0

HeartLondon

0.778477557

Main ∼ 0.9021245 hidden_layer_sizes: (200, 100);

activation: relu; solver: adam;

alpha: 0.001; learning_rate: adaptive

Speech ∼ 0.8364094

Non-Speech ∼ 0.8894666

XGBoost

WNYC

0.958035027

Main ∼ 0.9712075
max_depth: 8; min_child_weight: 5;

subsample: 0.6; colsample_bytree: 1.0; gamma: 1.0

Speech ∼ 0.9728739 max_depth: 8; min_child_weight: 1;

subsample: 0.6; colsample_bytree: 1.0; gamma: 0.5Non-Speech 1.0

HeartLondon

0.778795077

Main ∼ 0.9036042 max_depth: 8; min_child_weight: 5;

subsample: 0.6; colsample_bytree: 1.0;

gamma: 1.0

Speech ∼ 0.8305369

Non-Speech ∼ 0.8932156

Table 10: Parameter-tuning results with best parameter values. The value below the station is the

accuracy of the total model.

According to the results shown in the table, the accuracy of both algorithms is very close when

comparing it per radio station. Actually, for one of the radio stations, MLP is preferred above

the XGBoost algorithm and vice versa. However, the di�erence is so low that there is not a single

algorithm that could be seen as best in this case.
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6 Conclusion

6.1 Summary

Based on the literature review, the earlier research and the �ndings, it is a big challenge to distin-

guish speech from non-speech when handling generically. For each radio station, each numerical

extraction and each algorithm need to be tuned individually to achieve the best performance.

The experiments show precisely this fact, and while the di�erence in the performance is not al-

ways extensive, it is signi�cantly notable when optimizing the frame and hop sizes for a speci�c

radio station. Furthermore, the tuning of the algorithms and the use of multiple layers of classi-

�ers increased the complexity but gave a more stable result in the end, especially the �rst-layer

classi�cation of the speech and non-speech.

According to the executed research, it is shown that the usage of MLP or the XGBoost classi�er

algorithms are the best in the extracted numerical data. With stable accuracy, MLP shows an

accuracy of up to 97,45% on the WNYC speech/non-speech model based on a hop size of 500ms

and a window size of 750ms with tuned parameters and two hidden layers.

The usage of the Two-Layer Model is especially performing well on the top layer. This is also

because of unbalanced data, which is a di�culty in the described problem of the audio as one

always has more music or talking, based on the provided radio station. However, with the Two-

Layer model, the accuracy of the category (speech and non-speech) is very high, while the exact

label (music, regular talk, telephone talk, et cetera) can be low according to the radio station and

the background noise. For example, the radio station Heart London uses a lot of background jingles

and music when talking, which leads to inaccurate results and a lower accuracy, especially the non-

speech part, which is entirely understandable according to the nature of the input audio.

Furthermore, the di�erence in accuracy between the parameter tuned algorithms MLP and XG-

Boost is negligible. Choosing between the two algorithms can instead be made based on their

performance in terms of speed to train and predict for further development or implementation in

an application.
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6.2 Limitations

The current implementation of the Two-Layered Model is quite expensive and resource-intensive.

It might not work well for real-time situations, although the �rst-layer could only be used if the

goal is to distinguish speech and non-speech. Furthermore, the results and performance metrics

are entirely depending on how much noise exists in the input audio. For example, the station Heart

London has an enormous amount of background music and e�ects while talking to the listeners.

This is, unfortunately, a challenging problem to solve.

Furthermore, the current implementation does not work in real-time and could not be directly

implemented in an application. However, the currently trained models are saved and could be

used for further research and implementation.

Another limitation is the silence periods existing in the input audio. Sometimes in the audio

fragments, there are more extended silence periods in which the classi�er can not determinate the

correct category and label. By using another method when recognizing silence periods, this could

potentially be solved.
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6.3 Further Research

At the time of writing, there is a broad interest in the relatively new Convolutional Neural Networks

(also known as CNN). CNN is a deep neural learning class that has images as input. The ability

to recognize patterns based on the complete data and earlier seen data could be bene�cial in the

problem given and for example, to reduce the amount of misclassi�ed labels and categories in the

middle of a song.

Another interesting topic would be the implementation of a di�erent model to recognize the class

of the silence periods. Once a silence period is detected, a di�erent algorithm model could be used,

which uses lower amounts of hop and window sizes to recognize the background noise in the silence

periods. This di�erent model could be very straightforward with just a few features which only

apply to the silence periods.

Furthermore, an implementation could be made based on the researched topic to make a comparison

inside a speci�c application in order to provide users the metric to compare between radio stations

based on the speech and non-speech ratio. An example could be seen in �gure 12.

Figure 12: An experimental implementation of the technologies for end-users.
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