8,969 research outputs found

    The Effects of Parental Behavior on Infants' Neural Processing of Emotion Expressions

    Get PDF
    Infants become sensitive to emotion expressions early in the 1st year and such sensitivity is likely crucial for social development and adaptation. Social interactions with primary caregivers may play a key role in the development of this complex ability. This study aimed to investigate how variations in parenting behavior affect infants' neural responses to emotional faces. Event-related potentials (ERPs) to emotional faces were recorded from 40 healthy 7-month-old infants (24 males). Parental behavior was assessed and coded using the Emotional Availability Scales during free-play interaction. Sensitive parenting was associated with increased amplitudes to positive facial expressions on the face-sensitive ERP component, the negative central. Findings are discussed in relation to the interactive mechanisms influencing how infants neurally encode positive emotions

    Neurophysiological Assessment of Affective Experience

    Get PDF
    In the field of Affective Computing the affective experience (AX) of the user during the interaction with computers is of great interest. The automatic recognition of the affective state, or emotion, of the user is one of the big challenges. In this proposal I focus on the affect recognition via physiological and neurophysiological signals. Long‐standing evidence from psychophysiological research and more recently from research in affective neuroscience suggests that both, body and brain physiology, are able to indicate the current affective state of a subject. However, regarding the classification of AX several questions are still unanswered. The principal possibility of AX classification was repeatedly shown, but its generalisation over different task contexts, elicitating stimuli modalities, subjects or time is seldom addressed. In this proposal I will discuss a possible agenda for the further exploration of physiological and neurophysiological correlates of AX over different elicitation modalities and task contexts

    Emotion classification in Parkinson's disease by higher-order spectra and power spectrum features using EEG signals: A comparative study

    Get PDF
    Deficits in the ability to process emotions characterize several neuropsychiatric disorders and are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion, which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being an activity of central nervous system (CNS), can reflect the underlying true emotional state of a person. This study applied machine-learning algorithms to categorize EEG emotional states in PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order spectra (HOS) has been reported to be a promising approach to classify the emotional states. In this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and support vector machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based features were statistically significant among the six emotional states (p < 0.0001). Classification results shows that using the selected HOS based features instead of power spectrum based features provided comparatively better accuracy for all the six classes with an overall accuracy of 70.10% ± 2.83% and 77.29% ± 1.73% for PD patients and HC in beta (13-30 Hz) band using SVM classifier. Besides, PD patients achieved less accuracy in the processing of negative emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness, surprise) compared with HC. These results demonstrate the effectiveness of applying machine learning techniques to the classification of emotional states in PD patients in a user independent manner using EEG signals. The accuracy of the system can be improved by investigating the other HOS based features. This study might lead to a practical system for noninvasive assessment of the emotional impairments associated with neurological disorders

    The effects of mindfulness meditation on rumination in depressed people

    Get PDF
    Mindfulness meditation is a practice of focus, awareness, and non-judgmental acceptance of one\u27s thoughts (Deyo et al., 2009; Kenny et al., 2007). Rumination is a maladaptive pattern of thought that is common in people with depression and other mood disorders. It can lead to further episodes of depression, and can be very destructive in that way (Nolen-Hoeksema, 2008). This paper reviews several studies on mindfulness meditation, depression, and rumination, with a focus on certain areas and phenomena such as alpha asymmetry (Keune et al 2013) and gamma band activity (Berkovich-Ohana et al., 2012). Modalities such as fMRI and EEG are both used in these studies. Finally, directions for further research are considered, while accepting the challenges unique to this and inherent in any neuroscientific research
    corecore