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De¯cits in the ability to process emotions characterize several neuropsychiatric disorders and
are traits of Parkinson's disease (PD), and there is need for a method of quantifying emotion,
which is currently performed by clinical diagnosis. Electroencephalogram (EEG) signals, being
an activity of central nervous system (CNS), can re°ect the underlying true emotional state of a
person. This study applied machine-learning algorithms to categorize EEG emotional states in
PD patients that would classify six basic emotions (happiness and sadness, fear, anger, surprise
and disgust) in comparison with healthy controls (HC). Emotional EEG data were recorded
from 20 PD patients and 20 healthy age-, education level- and sex-matched controls using
multimodal (audio-visual) stimuli. The use of nonlinear features motivated by the higher-order
spectra (HOS) has been reported to be a promising approach to classify the emotional states. In
this work, we made the comparative study of the performance of k-nearest neighbor (kNN) and
support vector machine (SVM) classi¯ers using the features derived from HOS and from the
power spectrum. Analysis of variance (ANOVA) showed that power spectrum and HOS based
features were statistically signi¯cant among the six emotional states (p < 0:0001). Classi¯ca-
tion results shows that using the selected HOS based features instead of power spectrum based
features provided comparatively better accuracy for all the six classes with an overall accuracy
of 70:10%� 2:83% and 77:29%� 1:73% for PD patients and HC in beta (13–30Hz) band using
SVM classi¯er. Besides, PD patients achieved less accuracy in the processing of negative
emotions (sadness, fear, anger and disgust) than in processing of positive emotions (happiness,
surprise) compared with HC. These results demonstrate the e®ectiveness of applying machine
learning techniques to the classi¯cation of emotional states in PD patients in a user independent
manner using EEG signals. The accuracy of the system can be improved by investigating the
other HOS based features. This study might lead to a practical system for noninvasive as-
sessment of the emotional impairments associated with neurological disorders.

Keywords: EEG; emotion; Parkinson's disease; bispectrum; power spectrum; pattern
classi¯cation.
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1. Introduction

An increasing body of evidence demonstrates the importance of e®ective social

relationships for the health and well-being of older adults (Cohen & Janicki-Deverts,

2009; Gow et al., 2007). Accurately recognizing the emotional states of others is a

crucial component of successful social interaction, with comprehension (as well as

production) of emotional voice and facial expressions essential for e®ective commu-

nication in social and interpersonal relationships (Blair, 2003). Cumulating evidence

indicates that individuals with Parkinson's disease (PD) have de¯cits in recognizing

emotions from prosody (Dara et al., 2008; Paulmann & Pell, 2010; Pell & Leonard,

2003; Yip et al., 2003), facial expressions (Clark et al., 2008; Dujardin et al., 2004;

Sprengelmeyer et al., 2003) and show reduced startle reactivity to highly arousing

unpleasant pictures (Bowers et al., 2006; Miller et al., 2009). There is sparse event

related potential (ERP) evidence that early processing of emotional prosody (mis-

match negativity; Schr€oder et al., 2006) and faces (early posterior negativity; Wieser

et al., 2012) may be a®ected in PD. A number of studies have failed to ¯nd de¯cits

in emotion recognition (Adolphs et al., 1998; Madeley et al., 1995; Pell & Leonard,

2005); others have documented speci¯c de¯cits in recognizing at least some basic

emotions (Lawrence et al., 2007; Suzuki et al., 2006). Finally, although some studies

have documented de¯cits in recognizing emotion both facial displays and prosody

(Ariatti et al., 2008), others have documented de¯cits in recognizing emotion only in

one stimulus modality (Clark et al., 2008; Kan et al., 2004). Altogether, experimental

evidence so far supports the view of de¯cits in emotion processing in PD patients.

Much of the research in this area focused on the patients behavioral responses (i.e.,

participants asked to match, to identify or to rate the emotional stimuli) and

physiological measures of emotional experience (e.g., startle eye blink and ERPs).

The existing literature mentioned above used traditional statistical analysis tools for

the investigation of emotion processing in PD. There is no quantitative objective

measurement that correlates with the a®ective impairment in neurological disorder

patients compared to healthy controls (HC). This underlines the need for an objec-

tive quantitative measure of emotional processing that can identify and quantify

subtle changes in a®ect and hence help in a group based comparative analysis be-

tween patients and HC, thereby enabling the assessment of emotional impairment

treatment e±cacy and progression of the disease.

Lately, numerous studies on computational approaches to automatic emotion

recognition have been published, although research in that ¯eld is relatively new

compared to the long history of emotion research in psychology and psychophysi-

ology. The approaches used for the automatic emotion recognition in HC, mainly

focusing on the audio–visual channels of emotional expression such as facial ex-

pression (Cohen et al., 2000), speech signals (Kim, 2007) and gestures (Kessous et al.,

2010). Though these modalities are researched widely and have produced better

results, they are all susceptible to social masking. Emotions that are not expressed,

emotions expressed di®erently (an angry person may smile) or minor emotional
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changes that are invisible to the natural eye, cannot be tracked by using these

modalities (Bailenson et al., 2008). These limitations direct the way to recognizing

emotion through physiological signals (often called \biosignals"). Physiological sig-

nals re°ects the inherent activity of the autonomous nervous system (ANS) or central

nervous system (CNS), inhibiting any conscious or intentional control by the person

(Kim & Andre, 2008). It is noninvasive, subjective, complex and di±cult to uniquely

map physiological signals to di®erent emotions. However, it is reliable as it can

identify the emotional state of the person. It also provides an opportunity to track

minute emotional changes that may not be perceived visually (Kim et al., 2004; Rani

& Sarkar, 2006).

Biosignals used in most of the studies were recorded from ANS in the periphery,

such as electrocardiogram (ECG), skin conductance (SC), electromyogram (EMG),

respiration rate (RR), pulse, etc. (Haag et al., 2004; Rani & Sarkar, 2006). In addition

to these periphery biosignals, signals captured from the CNS, such as electroen-

cephalogram (EEG), magnetoencephalogram (MEG), positron emission tomography

(PET) and functional magnetic resonance imaging (fMRI) have been proved to

provide informative characteristics in response to emotional states. Toward such a

more reliable emotion recognition procedure, EEG (Murugappan et al., 2010; Pet-

rantonakis & Hadjileontiadis, 2010, 2011) appears to be less invasive and the one

with best time resolution than the other three (MEG, PET and fMRI). EEG has been

used in cognitive neuroscience to investigate the regulation and processing of emotion

for the past decades. Power spectra of the EEG were often assessed in several dis-

tinctive frequency bands, such as delta (�: 1–4Hz), theta (�: 4–8Hz), alpha (�: 8–

13Hz), beta (�: 13–30Hz) and gamma (�: 30–49Hz), to examine their relationship

with the emotional states (Aftanas et al., 2004; Davidson, 2004). Frontal midline

theta power modulation is suggested to re°ect a®ective processing during audio

stimuli (Sammler et al., 2007). The alpha-power asymmetry on the prefrontal cortex

has been proposed as an index for the discrimination between positively and nega-

tively valenced emotions (Davidson, 2004). Beta activity has been associated with

emotional arousal modulation (Aftanas et al., 2006). Finally, gamma band is mainly

related to arousal e®ects (Balconi & Lucchiari, 2008).

In the recent years, researchers have been using non-linear approaches in various

areas of biosignal processing for estimating heart rate, nerve activity, renal blood

°ow, arterial pressure and stress using signals such as EEG, ECG, HRV, EMG and

RR (Kannathal et al., 2004; Melillo et al., 2011). Non-linear analysis based on chaos

theory helps in identifying the apparently irregular behaviors that are present in the

system (Gao et al., 2011). Several nonlinear features such as correlation dimension

(CD), approximate entropy (APEN), largest lyapunov exponent (LLE), higher-order

spectra (HOS) and Hurst exponent (H) has been used widely (Balli & Palaniappan,

2010; Chua et al., 2011; Kannathal et al., 2005) to characterize the EEG signal. In

general, any analysis technique that can detect and compute some aspect of non-

linear mechanisms, may better re°ect the dynamics and the characteristics of the

EEG signal, and provide more realistic information about the physiological and
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pathological state of the CNS, the phenomenon of non-linearity and deviations of the

signal from Guassianity (Shen et al., 2000). HOS are known to have the ability to

detect non-linearity and deviations from Guassianity. Motivated by these, a set of

HOS based parameters were proposed as features to study six emotional state

(happiness, sadness, fear, anger, surprise and disgust) changes in PD patients com-

pared with HC using EEG signals. Recently, Hosseini (2012) achieved 82.32% ac-

curacy in recognizing emotions (neutral and negative) from EEG signals using HOS

and this clearly indicates that HOS can be used to seek emotional information from

biosignals. In this work, we made a comparative study of the performance of

k-nearest neighbor (kNN) and support vector machine (SVM) classi¯ers using the

emotional features derived from HOS and from the power spectrum. Our results

indicate the presence of more emotional information in HOS based features compared

to the power spectrum based features in PD patients and HC. The classi¯er-based

framework that we propose for determining subtle emotional changes in general and

applicable to group-wise analysis of all a®ect-related disorder, against HC.

The rest of the paper is structured as follows: In Sec. 2, we provide a brief de-

scription of the participant's characteristics, experimental protocol and EEG-signal

recording. In Sec. 3, we discussed the methodology which includes preprocessing,

feature extraction (power spectrum based features and HOS based features) and

classi¯cation algorithms used in this work. In Sec. 4, experimental results of the work

are presented and discussed in Sec. 5. Finally, Sec. 6 presents the limitations of the

present study and concludes in Sec. 7. To our knowledge, no study has yet been

conducted to explore the correspondence between emotional states and EEG fre-

quency bands in PD patients.

2. Materials

2.1. Ethics statement

This studywas approvedby the ethics committee of theHospitalUniversityKebangsaan

Malaysia (HUKM) and written informed consent was obtained according to the

Declaration of Helsinki. Participants were ¯nancially compensated (50 Malaysian

Ringgits) for their time.

2.2. Participants

Twenty PD patients (10 men and 10 women) and 20 HC (9 men and 11 women)

matched for age (range from 40–65 years), education level and sex participated in the

study. The PD patients were recruited through the Neurology Unit outpatient ser-

vice at the Department of Medicine of the HUKM medical center in Kuala Lumpur,

Malaysia. All of them had been diagnosed with Idiopathic PD by a neurologist.

Patients who had coexisting neurological disturbances (e.g., epilepsy) or who had

undergone deep brain stimulation were not included in the study. The control par-

ticipants were recruited through the hospital community and/or from relatives of PD
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patients. Exclusion criteria for controls included any current psychiatric or neuro-

logical disorder. Exclusion criteria for both groups were dementia or depression as

indicated by a score of 24 or lower on the mini-mental state examination (MMSE)

(Folstein et al., 1975; Wieser et al., 2012) or 18 or higher on the Beck Depression

Inventory (BDI) (Beck et al., 1961; Schr€oder et al., 2006). All participants were right-

handed as determined by self-report and con¯rmed by Edinburgh Handedness In-

ventory (EHI) (Old¯eld, 1971). This test consisted of 10 questions asking for the

preferred hand for a series of activities (e.g., writing, throwing, using scissors, etc).

All participants reported normal or corrected-to-normal vision.

2.3. Participants characteristics

Demographic and clinical characteristic of patients with PD and HC are presented in

Table 1. Patients and controls were comparable in demographic variables such as age

(PD: mean age ¼ 59:05� 5:64 years; HC: mean age ¼ 58:10� 2:95 years), tð38Þ ¼
0:667, p ¼ 0:509, gender distribution (PD: 10 men, HC: 9 men), x 2ð1;N ¼ 40Þ
¼ 0:100, p ¼ 0:752 and education level (PD: 10:45� 4:8 years; HC: 11:05� 3:34

years), tð38Þ ¼ �0:455, p ¼ 0:652. Furthermore, PD patients and HC did not di®er

in mean MMSE scores, mean BDI scores as well as mean EHI scores.

The severity of motor symptoms corresponded to the Stages 1 to 3 (mild unilateral

to moderate bilateral disability) of the Hoehn and Yahr scale (Hoehn & Yahr, 1967)

and to an average score of 17:05� 3:15 in the motor scale of the uni¯ed Parkinson's

disease rating scale (UPDRS) (Fahn et al., 1987). Motor symptoms were charac-

terized as left dominant (n¼11) and right dominant (n ¼ 9). Duration of the disease

varied between 1–12 years, with a mean of 5:75� 3:52 years. All of the patients

were undergoing dopamine replacement therapy and were tested while being ad-

ministered their anti-parkinsonian medication (i.e., during their \on" state), dis-

tributed as follows: d2-agonist (n ¼ 18); carbidopa/L-dopa (n ¼ 13), monoamine

Table 1. Demographic and clinical characteristics of patients with PD and HC participants.

Variable PD (n ¼ 20) HC (n ¼ 20) Test's Value Statistical Result

Age (years) 59.05 � 5.64 58.10 � 2.95 t ¼ 0:667 p ¼ 0:509
Gender 10F/10M 11F/9M x 2 ¼ 0:100 p ¼ 0:752

Education (years) 10.45 � 4.86 11.05 � 3.34 t ¼ �0:455 p ¼ 0:652
MMSE (0–30) 26.90 � 1.51 27.15 � 1.63 t ¼ �0:502 p ¼ 0:619
Hoehn and Yahr scale (I/II/III) 2.25 � 0.63 ��� ��� ���
Motor UPDRS 17.05 � 3.15 ��� ��� ���
Disease duration (years) 5.75 � 3.52 ��� ��� ���
BDI (0–21) 5.80 � 2.87 5.45 � 2.18 t ¼ 0:433 p ¼ 0:667
EHS (1–10) 9.55 � 0.76 9.84 � 0.72 t ¼ �0:818 p ¼ 0:403

Note: n ¼ number of participants, PD ¼ Parkinson's disease, HC ¼ healthy controls, M ¼ male,
F ¼ female, MMSE ¼ mini mental state examination, UPDRS ¼ unified Parkinson's disease rating
scale, BDI ¼ Beck depression inventory, EHS ¼ Edinburg handedness inventory. Data presented as
mean � SD.
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oxidase B (MAO-B) inhibitor (n ¼ 7), catechol-O-methyltransferase (COMT)

inhibitor (n ¼ 5), amantadine (n ¼ 5) or anticholinergics (n ¼ 3).

2.4. The modeling and classi¯cations of emotions

In addition to the cognitive theory, several theories of emotions have developed over

the past century (Cornelius, 1996). These di®erent views gave rise to di®erent models

of emotions. The most commonly used are the dimensional and discrete models of

emotions. The discrete model includes six basic emotions (happiness, sadness, fear,

anger, surprise and disgust) that are universally accepted. All other emotions are

considered to be a part of these basic emotions (Ekman & Friesen, 1987). The di-

mensional model, as in Fig. 1, speci¯es emotions on the basis of two main dimensions

i.e., arousal and valence. Valence stands for one's judgment about a situation as

positive or negative and arousal spans from calmness to excitement, expressing

degrees of one's excitation. All emotions can be plotted on the valence-arousal plot

(Lang, 1995). In addition to the two-dimensional model, researchers are also pro-

posed a three-dimensional model of emotions which takes into account the attention-

rejection property (Kim & Andre, 2008). In this work, six basic emotions (happiness,

sadness, fear, anger, surprise and disgust) based on discrete emotional modal were

considered.

2.5. Stimulus material

Until now, most studies on emotion recognition in PD have used only facial stimuli,

prosodic stimuli or music stimuli (Gray & Tickle-Degnen, 2010; Lima et al., 2013;

P�eron et al., 2012). In addition, a wide range of elicitation methods have been applied

in HC: images (e.g., IAPS described below) (Petrantonakis & Hadjileontiadis, 2010,

Fig. 1. Two-dimensional emotional model by valence and arousal (Kim & Andre, 2008).
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2011), sounds (e.g., music and IADS described below) (Hadjidimitriou & Hadji-

leontiadis, 2012; Kim & Andre, 2008; Lin et al., 2010), movies (Davidson et al., 1990;

Gross & Levenson, 1995), multimodal approach (i.e., combination of audio and vi-

sual) (Baumgartner et al., 2006; Jerritta et al., 2013; Kim et al., 2004; Murugappan

et al., 2009; Yuvaraj et al., 2013) and so on. Among all these stimuli modalities

researchers have identi¯ed that multimodal stimuli induce target emotions better

(Gross & Levenson, 1995; Kim et al., 2004; Murugappan et al., 2009; Wang & Guan,

2008) compared to other modalities. Hence, in this work emotions were induced by

multimodal approach.

The emotional stimuli we used were taken from di®erent sources such as the

International A®ective Picture System (IAPS) database (Lang et al., 1993), Inter-

national A®ective Digitized Sounds (IADS) (Bradley & Lang, 2007) database and

video clips (e.g., funny animals, wonder activities by humans etc) collected from

various resources on the internet (e.g., YouTube, Facebook and others) (Jerritta et

al., 2013). The elicitation of emotions such as sadness, fear and disgust was attained

by using a®ective pictures from IAPS and sounds from IADS databases. Various

psychological and psychophysiological experiments have revealed that these stimuli

sets have great potential in the investigation of sad, fear and disgust emotions

(Baumgartner et al., 2006; Brown et al., 2011). Additionally, Mikels (Mikels et al.,

2005) & Redondo et al., (Redondo et al., 2008) provided a more complete charac-

terization of the categorical structure of the IAPS and IADS stimulus set, with the

objective of identifying images and sounds that elicit one discrete emotion more than

other emotions. The IAPS picturesa [disgust: valence- mean ðSDÞ ¼ 2:43 (1.51),

arousal mean ðSDÞ ¼ 5:90 (2.25); fear: valence mean ðSDÞ ¼ 3:80 (1.89), arousal

mean ðSDÞ ¼ 5:85 (2.12); sad: valence- mean ðSDÞ ¼ 2:74 (1.57), arousal mean ðSD
Þ ¼ 5:00 (2.08)] and IADS soundb [disgust: valence mean ðSDÞ ¼ 4:00 (1.72), arousal

mean ðSDÞ ¼ 5:82 (1.93); fear: valence mean ðSDÞ ¼ 4:00 (1.72), arousal mean ðSD
Þ ¼ 5:82 (1.93); sad: valence mean ðSDÞ ¼ 3:28 (1.65), arousal mean ðSDÞ ¼ 6:61

(1.89)] were selected and combined together according to their arousal and valence

values provided in the databases. For example, a negative/high aroused sound was

matched with a negative/high aroused image.

On the other hand, the emotions happiness, surprise and anger were elicited using

video clips. In order to select e±cient video clips, that would elicit the target emo-

tions better, a pilot was conducted. For this, around 30 video clips per emotional

aThe following pictures in the database were used for emotion induction: Disgust: 1945, 2352.2, 3000, 3010, 3015,

3030, 3051, 3060, 3061, 3071, 3080, 3110, 3120, 3130, 3140, 3150,3160, 3250, 3400, 7360, 7361, 7380, 8230, 9040, 9042,
9181, 9290, 9300, 9320, 9330, 9373, 9390, 9405, 9490, 9570, 9830; Fear: 1019, 1022, 1030, 1040, 1050, 1051, 1052, 1070,

1080, 1090, 1110, 1111, 1113, 1120, 1200, 1201, 1220, 1230, 1240, 1280, 1274, 1300, 1301, 1302, 1321, 1390, 1930, 1931,

3280, 5970, 5971, 5972, 6370, 9584, 9594, 9592; Sad: 2205, 2271, 2276, 2490, 2520, 2590, 2700, 2800, 2900, 3220, 3230,

3300, 3301, 3350, 6570, 6838, 8010, 9000, 9041, 9050, 9120, 9190, 9210, 9220, 9331, 9410, 9415, 9470, 9520, 9530, 9561,
9611, 9910, 9911, 9920, 9921.
bThe following sounds in the database were used for emotion induction: Disgust: 134, 115, 251, 262, 284, 698, 702,

711, 712, 713, 714, 720, 728, 729, 730, 732, 812, 813; Fear: 106, 133, 170, 171, 275, 276, 277, 279, 291, 312, 378, 380,

424, 425, 500, 626, 627, 699, 817; Sad: 115, 150, 260, 261, 278, 280, 285, 286,290, 293, 295, 310, 311, 368, 403, 420, 422,
501, 600, 625.
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state were collected. Thirty volunteers in the mean age of 26.4 years (ranging from 24

to 45 years) participated in the pilot study to rate the emotions they experienced

when watching the video clips. All of them were psychology teachers or students of

the UKM medical center, Kuala Lumpur. Thirty video clips (ten for each emotion)

with the highest rating were chosen for data collection experiment.

2.6. Experimental protocol

The protocol used in this experiment is shown in Fig. 2. The protocol had two

sessions with break of 10–15min between the sessions. Each session had three trials

with neutral images displayed for 10 s between the trials. The break between sessions

and trials would help the participant to relax during the experiment and to avoid any

feedback from the previous emotional stimuli. The multimodal stimulus pertaining to

all the six emotional states (happiness, sadness, fear, anger, surprise and disgust)

were played in each trail in predetermined random fashion. Each combination of

picture and sound was presented for six seconds (Kim, 2007). To maximize the

participants' emotional response, each clip block consisted of six combinations of the

same emotional category and lasted for 36 s. In addition, each of the video clips varied

from 36–45 s in duration, depending on the length of the clip. Besides, a 15 s rating

interval (Hamdi et al., 2012) was provided between the clips in which participants

answered a ¯ve point self-assessment scale. Each session of the protocol lasted for

30min approximately.

2.7. Procedure

The set-up of the experiment is shown in Fig. 3. The experiment procedure took

place in a laboratory environment, under dim lighting conditions, to avoid visual

Fig. 2. Experimental protocol.
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disturbance. In order to obtain a good physiological data, the participants were

requested to relax before the start of the experiment and concentrate on the emo-

tional stimuli. At the end of each clip, the participants ¯lled a self-assessment

questionnaire where they identi¯ed/experienced the emotional state when watching

the clips. They also rated the intensity of the emotional state on a ¯ve point scale

(1 ¼ very low, 2 ¼ low, 3 ¼ medium, 4 ¼ high and 5 ¼ very high). These ratings

were then used to understand the intensity of the emotional state they experienced.

An example of the self-assessment questionnaire is as shown in Fig. 4. However,

despite the intensity levels, all the emotional data was taken into considerations.

2.8. EEG-signal recordings

EEG recordings were conducted using the Emotive EPOC 14 channel EEG wireless

recording headset (Emotive Systems, Inc., San Francisco, CA) (Hadjidimitriou &

Hadjileontiadis, 2012). The electrode scheme was arranged according to the inter-

national 10–20 system and included active electrodes at AF3, F7, F3, FC5, T7, P7,

O1, O2, P8, T8, FC6, F4, F8 and AF4 positions, referenced to the common mode

sense (CMS-left mastoid)/driven right leg (DRL-right mastoid) ground as shown in

Fig. 5. The acquired data were digitized using the embedded 16-bit ADC with 128Hz

Fig. 3. Experiment setup.

Fig. 4. Self-assessment questionnaire.
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sampling frequency per channel and sent to the computer via wireless technology,

which utilizes a proprietary USB dongle to communicate using the 2.4GHz band.

Sample EEG recordings of PD patient and HC corresponding for six emotional states

are given in Figs. 6(a) and 6(b), respectively.

Fig. 5. Emotiv EPOCs electrode positioning, according to the 10–20 system, used for EEG-signal
recordings.

(a) (b)

Fig. 6. Sample recordings of EEG signals corresponding to six emotional states (a) PD patients (b) HC.
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3. Methodology

A block diagram of the proposed emotion recognition system is illustrated in Fig. 7.

After the data recording, all signals were preprocessed i.e., ¯ltered and segmented.

Then, the most signi¯cant features were extracted. Finally, features were classi¯ed

using machine learning methods. A brief description on each block is given below.

3.1. Preprocessing

The raw EEG data was split as per the emotional states according to the partici-

pant's self-assessment. Then, the EEG signals were band-passed ¯ltered in the fre-

quency range of 1–49Hz (IIR Butterworth 6th order ¯lter with zero-phase shift). The

focus was to obtain the ¯ve traditional EEG frequency bands: delta (1–4Hz), theta

(4–8Hz), alpha (8–13Hz), beta (13–30Hz) and gamma (30–49Hz), thus, features

were estimated for each of these bands. A study published by Kim (2007) proposed

the use of di®erent epoch size that depends on modality, e.g., 2–6 s for speech, and 3–

15 s for biosignals (Kim, 2007). In this study, the EEG signals were segmented into 6 s

epoch corresponding to the duration of each multimodal stimuli projection.

3.2. Feature extraction

3.2.1. Power spectrum-based features

Power spectral analysis is typically performed with EEG epochs by computing the

discrete Fourier transform (DFT). DFT of the given signal EEG signal xðnÞ is given

Fig. 7. Block diagram representing the proposed recognition system.
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by

XðkÞ ¼
XN�1

n¼0

xðnÞ exp �j
2�

N
kn

� �
; k ¼ 0; 1; 2; . . . ;N � 1; ð1Þ

where N is the number of EEG samples taken for analysis. The DFT is typically

computed using the Fast Fourier Transform (FFT) algorithm which computes the

Fourier transform coe±cients XðkÞ quickly. Power values are calculated using FFT

which are then used for further analysis. These features are explained below.

(i) Mean of spectral magnitude:

Mavg ¼
1

N

XN�1

k¼0

jXk j; ð2Þ

where Xk is the FFT of input signal.

(ii) Spectral entropy 1:

P1 ¼ �
X
k

pk log pk ; ð3Þ

where pk ¼ jXk jPN

k¼1
jXk j

.

(iii) Spectral entropy 2:

P2 ¼ �
X
k

qk log qk ; ð4Þ

where qk ¼ jXk j 2PN

k¼1
jXk j2

.

In this work, epochs of 768 samples of EEG signals, corresponding to 6 s are used for

computing the averaged Fourier spectrum and its magnitude–squared, the power

spectrum. From the power spectrum above three features are extracted for our

analysis.

3.2.2. HOS-based features

HOS (also known as polyspectra) are the spectral representations of higher-order

moments or cumulants of a signal. In particular, this paper studies feature related to

the third-order statistics of a signal, and the corresponding HOS, namely the bis-

pectrum. The bispectrum Bðf1; f2Þ of a signal is the Fourier transform of the third-

order correlation of the signal. It is given by

Bðf1; f2Þ ¼ E½Xðf1ÞXðf2ÞX �ðf1 þ f2Þ�; ð5Þ
where Xðf Þ is the DFT of the EEG signal xðnTÞ, X �ðf1 þ f2Þ denotes complex con-

jugate and E½�� stands for expectation operator.

The frequency f may be normalized by the Nyquist frequency to be between 0

and 1. The bispectrum, given by Eq. (5), is a complex-valued function of two fre-

quencies. The bispectrum which is the product of three Fourier coe±cients, exhibits
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symmetry and was computed in non-redundant region. This termed as �, the prin-

ciple domain or the non-redundant region (i.e., the triangle region in Fig. 8) (Nikias &

Petropulu, 1993). The extracted bispectral based features are:

(i) Mean of bispectral magnitude:

Mavg ¼
1

L

X
�

jBðf1; f2Þj; ð6Þ

where L is the number of points within the region.

(ii) Bispectral entropy (BE1):

P1 ¼ �
X
k

pk logðpkÞ; ð7Þ

where pk ¼ jBðf1;f2ÞjP
�
jBðf1;f2Þj

, � ¼ the region as in Fig. 8.

(iii) Bispectral entropy (BE2):

P2 ¼ �
X
n

qn logðqnÞ; ð8Þ

where qn ¼ jBðf1;f2Þj2P
�
jBðf1;f2Þj2

, � ¼ the region as in Fig. 8.

In order to calculate bispectral features, we used epochs of 768 samples with an

overlap of 384 point (i.e., 50%) and Hanning window, corresponding to six seconds at

the given sampling rate. These epochs were taken from each record of 1024 point.

3.3. Machine learning-based emotion classi¯cation methodology

and algorithms

We have constructed classi¯ers for PD patients and HC group under six basic

emotions (i.e., PDðhappy vs: sad vs: fear vs: anger vs: surprise vs: disgustÞ and HCðhappy vs: sad vs: fear

vs: anger vs: surprise vs: disgustÞ) across delta, theta, alpha, beta, gamma and ALL (refers

to combination of ¯ve EEG frequency bands) frequency bands. The classi¯cation

Fig. 8. Non-redundant region (�) of computation of the bispectrum for real-valued signals. Features
are calculated from this region.
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approach adopted in this study was user independent i.e., classi¯cation was per-

formed on the complete dataset of six emotions, created from PD patients and HC

group EEG responses. Two classi¯ers are employed namely kNN, and SVM for the

classi¯cation of emotional states and their brief description of these are given below.

We also tested other classi¯cation techniques such as LDA, PNN and Naive Bayes.

However, these results are not superior to those obtained with other methods and

hence are not reported.

3.3.1. k-nearest neighbor

The kNN classi¯cation is one of the simplest classi¯cation methods. In this algo-

rithm, k nearest training samples for a test sample is found. Then, test sample is

assigned to particular class which is most frequent class among k nearest training

data. This algorithm only requires an integer value for k and a metric to measure

closeness (Han & Kamber, 2006). One of the most common and popular choices to

measure the distance for this algorithm is Euclidean measure (Eq. (9)); as such, we

have used the Euclidean distance as a metric for measuring the adjacency of neigh-

boring input. In this work, di®erent values of \k" between 1 and 10 are tested and we

have obtained better classi¯cation accuracy when k ¼ 5.

Euclidean measure:

diðxi; xjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp
k¼1

ðxip � xjpÞ2
s

; ð9Þ

where, xi is an input sample with p features ðxi1; xi2; . . . ; xipÞ, xj is a sample in the

training data set with p features ðxj1; xj2; . . . ; xjpÞ and djðxi; xjÞ is the Euclidean dis-

tance between sample xi and xj ðj ¼ 1; 2; 3; . . . ; nÞ with n is the total number of

samples in the training data set.

3.3.2. Support vector machine

In recent years, SVM classi¯ers have demonstrated excellent performance in a variety

of pattern recognition problems (Burgees, 1998). SVM maps samples to points in a

space in such a way that samples belonging to separate category (i.e., classes) are

divided or separated by a very clear gap that is as wide as possible. When the new test

data are applied, they will be mapped to the same space. The decision on the class

of test data is made based on which side of the gap the data maps. Hyperplane is

used to classify two classes and a set of hyperplanes are used to classify multiclass

problem. The best hyperplane yields the largest separation or margin between

the two classes. SVM classi¯er transforms nonlinear data to a separable form with

help of various kernel functions (Muller et al., 2001). The radial basis function (RBF)

and polynomial kernels are commonly used (Christianini & Taylor, 2000). With the

use of kernels, an explicit transformation of the data to the feature space is not

required. In this experiment, we used the RBF kernel function with a one-against-all

algorithm to classify six emotional states. The performance parameters of SVM-RBF
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(regularization constant [C ] and width [�] of the kernel) are found out by using the

grid search approach as suggested by (Hsu et al., 2003). In this work, we achieved

improved classi¯cation accuracy using C ¼ 108 and � ¼ 2:434.

3.3.3. Classi¯cation evaluation procedure

In this work, 10-fold cross validation schemes are used to prove the reliability of the

classi¯cation results, where the extracted feature vectors are divided randomly into

10 sets and training is repeated for 10 times. A total of 4320� 42 [20 participant's�
6 emotions� 6 trails� 6 segments per channel��3 features� 14 channels] datasets

were used training and testing with 720 datasets from each of the six emotional states

under each group for delta, theta, alpha, beta and gamma frequency band. These

4320 datasets were subdivided into 10 equal parts (roughly). During each fold, 432

datasets were used for testing. This process is repeated for 9 more times. The overall

performance of the classi¯er is evaluated by taking the average and standard devi-

ation of 10 folds. The standard deviation of the classi¯cation clearly demonstrates the

consistency of the classi¯er results.

4. Experimental Results

4.1. Self-assessment report

Table 2 shows the results of self-assessment classi¯cation accuracy (in percentage) of

the six basic emotions for PD patients and HC obtained from confusion matrix. The

results of analysis of variance (ANOVA) on the self-assessment report did not show

any signi¯cant di®erences (p > 0:05) on PD patients and HC among the six emo-

tional states. Overall, the happiness emotion was recognized better on both parti-

cipants with a maximum accuracy (PD ¼ 93:42%, HC ¼ 92:50%) and disgust

emotion was recognized poorest with a least accuracy (PD ¼ 72:67%, HC ¼ 66:50%).

Table 2. Self-assessment classi¯cation accuracy (in percentage) of the six basic emotions for PD
patients and HC.

Emotions Happiness (%) Sadness (%) Fear (%) Anger (%) Surprise (%) Disgust (%)

(a) PD patients
Happy 94.33 0 0 0 5.67 0
Sad 0 75.00 1.83 4.45 0 18.72
Fear 0 2.56 80.33 7.92 3.48 5.71
Anger 0 4.79 11.56 78.00 0 5.65
Surprise 12.00 0 0 0 88.00 0
Disgust 0 24.89 0 2.44 0 72.67

(b) Healthy controls
Happy 92.50 0 0 0 7.60 0
Sad 0 84.67 0 2.77 0 12.56
Fear 0 1.49 77.50 12.56 0 8.45
Anger 0 0 15.32 82.67 0 2.01
Surprise 3.33 0 0 0 96.67 0
Disgust 0 18.42 8.12 6.96 0 66.50
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4.2. Emotional EEG data

The statistical signi¯cance of the extracted features from PD patients and HC across

delta, theta, alpha, beta, gamma and ALL frequency bands on both the feature

extraction methods was studied using ANOVA with a threshold of p < 0:05.

Table 3 shows the range of spectral based features used for emotion classi¯cation

across di®erent EEG frequency bands for PD patients and HC. These features show

very low p-value (p < 0:0001) indicating that they are statistically signi¯cant among

six emotional states feature values. HOS based features are reported in Table 4.

Again, these features show very low \p-value" (p < 0:0001) indicating that they are

statistically signi¯cant. These results also ensure the probability of achieving better

classi¯cation accuracy. Furthermore, we also obtained signi¯cant di®erence from the

condition ALL frequency bands among six emotional states (p < 0:05). In general,

emotional feature values decrease from HC participants to PD patients during

emotion information processing in both spectral and HOS based features.

Tables 5(a) and 5(b) shows the classi¯cation results of SVM and kNN classi¯er

with power spectral based features. We can observe that the classi¯cation perfor-

mance of beta frequency band features evidently performs better than other fre-

quency bands. The SVM classi¯er classi¯es six emotional states with maximum

average accuracies of 66:70%� 1:29% and 70:51%� 1:30% for PD patients and HC,

respectively. The kNN classi¯er gives a maximum average classi¯cation rate of

64:26%� 1:59% and 67:84%� 2:34% for PD patients and HC on classifying six

emotional states, respectively. Similarly, the results of the classi¯ers with HOS based

features are given in Tables 6(a) and 6(b). Again, the HOS based features on beta

frequency band gives a maximum average emotion classi¯cation rate on PD and HC

compared to other frequency bands. For the case of SVM classi¯er with HOS based

features, the maximum average classi¯cation accuracies of 70:10%� 2:83% and 77:

29%� 1:73% for PD patients and HC emotional EEGs, respectively. Therefore, there

is an average of 3.40% and 6.78% improvement over the case of spectral based

classi¯er in PD patients and HC emotional state classi¯cation. For the case of kNN

classi¯er with HOS based features, the maximum average classi¯cation accuracies of

68:54%� 1:90% and 73:40%� 1:72% for PD patients and HC emotional EEGs,

respectively. In this case, there is an average of 4.28% and 5.56% improvement over

the case of spectral based emotional classi¯cation in PD patients and HC. Figure 9

shows the beta band classi¯cation accuracy of PD patients and HC across six emo-

tional states for HOS based features applied to SVM classi¯er (maximum classi¯-

cation rate achieved for six emotional states).

In all combination of features set, the emotional classi¯cation accuracy of

PD patients is lower than HC, suggesting that emotional impairments associated

with PD patients. Notably, this experimental result indicates that PD patients

achieved less pattern classi¯cation accuracy in the processing of negative emotions

(sadness, fear, anger and disgust) than in processing of positive emotions (happiness,

surprise).
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Tables 7(a) and 7(b) show average confusion matrices of the PD patients and HC

obtained for the power spectrum-based features and HOS-based features for all the

six emotional states applied to SVM classi¯er using beta band. The confusion matrix

from the tables in both groups indicates that the features were classi¯ed as surprise or

sadness instead of happiness; disgust, fear or anger instead of sadness. Also, a sig-

ni¯cant number of disgust features were wrongly classi¯ed as sadness. The emotion

misclassi¯cation is mainly due to the subjective nature of emotions where the in-

tensity and valence of emotion induced vary from person to person. It also infers the

Fig. 9. Emotion classi¯cation accuracy (beta band) of PD patients and HC across six emotional states
for HOS based features applied to SVM classi¯er. The bars on the top of each emotion represent the
standard deviation.

Table 7(a). Average confusion matrix for power spectrum-based process
obtained by SVM using beta band (that achieved highest average accuracy
for six emotional states in PD group and HC).

Output

Input Happiness Sadness Fear Anger Surprise Disgust

(a) PD patients
Happiness 52 3 1 1 8 0
Sadness 0 50 3 1 1 9
Fear 3 6 45 11 3 8
Anger 2 6 5 46 6 7
Surprise 12 1 2 3 51 0
Disgust 2 14 10 11 3 45

(b) Healthy controls
Happiness 55 7 4 1 14 2
Sadness 1 53 5 2 0 7
Fear 0 2 49 4 0 4
Anger 2 12 5 50 2 6
Surprise 16 1 3 2 51 0
Disgust 0 12 5 5 0 50
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presence of multiple emotions in the participants which has to be dealt with

appropriately.

5. Discussions

We have presented a framework for classifying six basic emotions in PD patients

based on computerized pattern analysis, against HC. In the self-assessment data, no

signi¯cant di®erences were found for PD patients and HC among the six emotional

states. It is noteworthy that these ¯ndings are not due to small data set size in

statistical testing since PD patients were descriptively even better in recognizing

stimuli happiness, fear and disgust compared to HC (see Table 2).

Di®erent researchers made use of the fact that HOS is capable of analyzing hidden

characteristics of EEG which standard spectral estimation cannot for di®erent EEG

processing applications. A HOS based BIS index (i.e., bispectral index) monitoring

method is probably one of the most popular commercially available anesthesia

monitoring methods (Myles et al., 2004). Huang et al. (2004) used a method called

third-order recursive (TOR) to estimate the bispectrum of scalp EEG from rats

obtained during ischemia (Huang et al., 2007). They were able to achieve 91.67%

accuracy in performing injury assessment with the derived features namely weighted

center of bispectrum (WCOB) and bicoherence index. In other work, the moments of

HOS analysis were used to classify EEG signals corresponding to left/right-hand

motor imagery (Zhou et al., 2008). The feature set included parameters derived from

moments of the power spectrum and moments based on the bispectrum of the EEG

signals. Experimental results have shown that based on the proposed features, the

LDA classi¯er, SVM classi¯er and NN classi¯er achieved better classi¯cation results

Table 7(b). Average confusion matrix for HOS-based process obtained by
SVM using beta band (that achieved highest average accuracy for six
emotional states in PD group and HC),

Output

Input Happiness Sadness Fear Anger Surprise Disgust

(a) PD patients
Happiness 58 2 0 1 6 0
Sadness 0 47 2 3 0 11
Fear 0 6 48 8 1 5
Anger 0 10 10 47 0 6
Surprise 15 5 5 5 55 0
Disgust 0 13 6 7 1 49

(b) Healthy controls
Happiness 62 3 1 0 11 1
Sadness 1 52 4 6 0 10
Fear 0 6 53 8 1 5
Anger 2 10 1 54 0 1
Surprise 7 0 2 0 60 0
Disgust 2 7 3 3 1 55
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than those of the BCI-competition 2003 winner (Blankertz et al., 2004; Schlogl,

2003).

In this study, we made use of HOS as features (Mavg, P1 and P2) for emotional

state classi¯cation in PD patients in comparison with HC. Furthermore, EEGs are

very complex signals with possible non-linearity interaction among its frequency

components and perhaps some form of phase coupling. These \random" signals

cannot be fully described by second-order measures (i.e., power spectrum). Our ex-

perimental result shows that the classi¯ers with the HOS based features perform

better than the classi¯er with second-order measures (see Tables 5(a), 5(b), 6(a) and

6(b)). Higher-order spectra information is able to reveal some information about non-

linearity and deviation of Guassianity which could likely be present in emotional

EEGs. Hence, HOS based features become more discriminative than those of second-

order measures from power spectrum.

A number of research works have been done to classify emotional states using EEG

signals in user independent way. For HC, the highest accuracy for six emotional

states were: 85:83%� 7:14% for happiness, 71:31%� 5:07% for sadness, 73:72%�
5:32% for fear, 74:06%� 4:49% for anger, 82:47%� 5:09% for surprise and 76:36%�
7:19% for disgust (see Table 6(a)). It is di±cult to compare the obtained accuracy of

emotional states with previous research works in HC, since number of targeted

emotional states varied from study to study. Therefore, the overall classi¯cation

accuracy of the emotional states is compared. So far, a maximum average classi¯-

cation accuracy of 85.17% has been achieved on recognizing six emotions (happiness,

surprise, anger, fear, disgust and sadness) in user independent approach (Petranto-

nakis & Hadjileontiadis, 2010). Similarly, 82.29% and 93.5% has been obtained for

detecting four emotions (joy, anger, sadness and pleasure) and two emotions (hap-

piness and sadness), respectively in user independent approach (Li & Lu, 2009; Lin

et al., 2010). Recently, Hosseini (2012) achieved an average accuracy of 82.32% for

only two emotional states (neutral and negative) on image-induced EEG emotional

dataset using HOS. In contrast to previous report in emotion recognition with young

adults, this present study achieved 77:29%� 1:73% in older adult HC participants on

classifying six emotions in a user independent way by using nonlinear feature HOS.

Since we examined considerably older adult participants (mean age of 58:10� 2:95

years) than all previous studies, this lower average accuracy is most likely due to the

participants' age. Age is known to be associated with a decline in cognitive functions

(Friedman, 2003; Orgeta, 2009; Ru®man et al., 2008). In a comparable way, age may

be associated with a decline in emotional processing.

For PD patients, the better classi¯cation accuracy for six emotional states were:

80:14%� 5:40% for happiness, 64:04� 7:14% for sadness, 66:50%� 5:49% for fear,

65:28%� 5:99% for anger, 76:50%� 5:90% for surprise and 68:19%� 7:72% for

disgust (see Table 6(a)). This provided a di®erent viewpoint and new insights into

emotional responses to PD patients. So far, no related work that speci¯cally

attempted the EEG frequency bands based emotion recognition in PD patients using

machine learning techniques has been reported in the literature and therefore, it was
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di±cult for the acquired results to be discussed. In addition, the better results were

achieved through the activity of beta band, which have been suggested to re°ect

emotional phenomenon (Aftanas et al., 2006). In general, a direct comparison between

the classi¯cation accuracy and self-assessment evaluation for emotions reveals that

happiness followed by surprise (with highest accuracy) was the easiest to identify and

disgust followed by sadness (with lowest accuracy) was the most di±cult, with anger

and fear being of intermediate di±culty to identify from the PD patients results.

In the group of HC, the highest average accuracy of classi¯ed six emotional states

in the frequency band was: 56:59%� 3:87% for delta, 70:47%� 2:14% for theta,

73:90%� 1:88% for alpha, 77:29%� 1:73% for beta, 56:20%� 1:87% for gamma and

74:90%� 2:92% for all condition (see Table 6(a)). Notably, in the PD patient's only

highest accuracy of 50:34%� 2:33% for delta, 65:44%� 1:46% for theta, 68:36%�
1:73% for alpha, 70:10%� 2:83% for beta, 49:73%� 3:38% for gamma and 69:48%�
1:42% for all condition was obtained (see Table 6(a)). The values across the fre-

quency bands clearly indicate that the classi¯cation accuracy of PD patient's emo-

tional state EEG is lower than HC during emotion processing, suggesting that

emotional impairments associated with PD patients. This ¯nding indicates the

neuropathological evidence that PD could be associated with the slowing of oscil-

latory brain activity (Neufeld et al., 1988; Yeager et al., 1966). This slowing of brain

activity exhibits a signi¯cant correlation with progression of Hoehn & Yahr stages in

PD (Morita et al., 2009). Although our PD participants were tested on dopaminergic

medication, they still revealed signs of dopamine de¯ciency as indicated by a mean

value of 17.05 in the motor part of the UPDRS. In addition, we also observed that PD

patients achieved less pattern classi¯cation accuracy in the processing of negative

emotions (sadness, fear, anger and disgust) than in processing of positive emotions

(happiness, surprise). As many researchers have suggested, individuals with PD may

be particularly impaired in recognizing negative emotions because of dysfunction in

speci¯c neural circuits (Adolphs et al., 1996; Bouchard et al., 2008; Lawrence et al.,

2007; Sprengelmeyer et al., 2003; Suzuki et al., 2006; Tessitore et al., 2002). Recent

evidence points to neuropathological changes in PD in many brain areas which are

assumed to play key roles in emotion processing (Kober et al., 2008). These include

limbic structures such as the amygdala, and the ventral striatum, which is centrally

located within the basal ganglia's limbic loop.

6. Limitations of this Study

Several limitations of the present study have to be considered. First, our ¯ndings are

limited by the fact that patients with severe PD were not included in the study (H &

Y 4–5), which might be a possible explanation for the impairments of emotion rec-

ognition in PD patients. Second, all PD patients were under dopamine replacement

therapy (i.e., medication), which might also a®ect the performance in the emotion

processing (Tessitore et al., 2002) and future research is required with unmedicated

patients to reveal the actual e®ects on PD (Sprengelmeyer et al., 2003). Finally,
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human emotions are dependent on number of variables such as: room temperature,

time of the day, mental activity level of the participant before recording, hormone

levels, circadian rhythms, verbalization and breathing conditions (Jerritta et al.,

2013). Though much care was to exclude these issues by allowing the participant to

choose their own free time for participating in the experiment and relax by means of

breathing exercise before start of the experiment, more care should be taken to

consider these di®erences. The impact of these di®erences on the emotional state of

the person also needs to be studied.

7. Conclusion

This study indicates that machine learning methods can aid the detection of

emotional impairment in PD patients based on EEG signals. The design of emo-

tion elicitation protocol for inducing six basic emotional states (happiness, sadness,

fear, anger, surprise and disgust) and the data acquisition methodology were

explained in detail. EEG signals are very noise-like and complex in nature and the

required information is di±cult to extract. HOS techniques are advantageous in

gaining information about the nonlinear dynamics of the system. In this work, we

made a comparative study to classify six emotional states EEG signal (PD patients

and HC) with features derived from higher-order statistics and features derived

from second-order power spectrum. The performances of the derived features were

analyzed using two classi¯ers namely kNN and SVM. The HOS based features

yields better results of 70:10%� 2:83% for PD patients and 77:29%� 1:73% for

HC through beta band activity using SVM classi¯er. Besides, PD patients

achieved less accuracy in the processing of negative emotions (sadness, fear, anger

and disgust) than in processing of positive emotions (happiness, surprise) com-

pared with HC.

Future research has to be performed to investigate other HOS features to improve

the performance of the system with respect to HC. Additional investigation per-

taining to feature selection could also improve the classi¯cation performance, while

reducing computational time.
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