4,934 research outputs found

    Longest Motifs with a Functionally Equivalent Central Block

    Get PDF
    International audienceThis paper presents a generalization of the notion of longest repeats with a block of k don't care symbols introduced by [Crochemore et al., LATIN 2004] (for k fixed) to longest motifs composed of three parts: a first and last that parameterize match (that is, match via some symbol renaming, initially unknown), and a functionally equivalent central block. Such three-part motifs are called longest block motifs. Different types of functional equivalence, and thus of matching criteria for the central block are considered, which include as a subcase the one treated in [Crochemore et al., LATIN 2004] and extend to the case of regular expressions with no Kleene closure or complement operation. We show that a single general algorithmic tool that is a non-trivial extension of the ideas introduced in [Crochemore et al., LATIN 2004] can handle all the various kinds of longest block motifs defined in this paper. The algorithm complexity is, in all cases, in O(n log n)

    Imperfect DNA mirror repeats in the gag gene of HIV-1 (HXB2) identify key functional domains and coincide with protein structural elements in each of the mature proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A DNA mirror repeat is a sequence segment delimited on the basis of its containing a center of symmetry on a single strand, e.g. 5'-GCATGGTACG-3'. It is most frequently described in association with a functionally significant site in a genomic sequence, and its occurrence is regarded as noteworthy, if not unusual. However, imperfect mirror repeats (IMRs) having ≥ 50% symmetry are common in the protein coding DNA of monomeric proteins and their distribution has been found to coincide with protein structural elements – helices, β sheets and turns. In this study, the distribution of IMRs is evaluated in a polyprotein – to determine whether IMRs may be related to the position or order of protein cleavage or other hierarchal aspects of protein function. The gag gene of HIV-1 [GenBank:<ext-link ext-link-type="gen" ext-link-id="K03455">K03455</ext-link>] was selected for the study because its protein motifs and structural components are well documented.</p> <p>Results</p> <p>There is a highly specific relationship between IMRs and structural and functional aspects of the Gag polyprotein. The five longest IMRs in the polyprotein translate a key functional segment in each of the five cleavage products. Throughout the protein, IMRs coincide with functionally significant segments of the protein. A detailed annotation of the protein, which combines structural, functional and IMR data illustrates these associations. There is a significant statistical correlation between the ends of IMRs and the ends of PSEs in each of the mature proteins. Weakly symmetric IMRs (≥ 33%) are related to cleavage positions and processes.</p> <p>Conclusion</p> <p>The frequency and distribution of IMRs in HIV-1 Gag indicates that DNA symmetry is a fundamental property of protein coding DNA and that different levels of symmetry are associated with different functional aspects of the gene and its protein. The interaction between IMRs and protein structure and function is precise and interwoven over the entire length of the polyprotein. The distribution of IMRs and their relationship to structural and functional motifs in the protein that they translate, suggest that DNA-driven processes, including the selection of mirror repeats, may be a constraining factor in molecular evolution.</p

    The Evolution and Mechanics of Translational Control in Plants

    Get PDF
    The expression of numerous plant mRNAs is attenuated by RNA sequence elements located in the 5\u27 and 3\u27 untranslated regions (UTRs). For example, in plants and many higher eukaryotes, roughly 35% of genes encode mRNAs that contain one or more upstream open reading frames (uORFs) in the 5\u27 UTR. For this dissertation I have analyzed the pattern of conservation of such mRNA sequence elements. In the first set of studies, I have taken a comparative transcriptomics approach to address which RNA sequence elements are conserved between various families of angiosperm plants. Such conservation indicates an element\u27s fundamental importance to plant biology, points to pathways for which it is most vital, and suggests the mechanism by which it acts. Conserved motifs were detected in 3% of genes. These include di-purine repeat motifs, uORF-associated motifs, putative binding sites for PUMILIO-like RNA binding proteins, small RNA targets, and a wide range of other sequence motifs. Due to the scanning process that precedes translation initiation, uORFs are often translated, thereby repressing initiation at the an mRNA\u27s main ORF. As one might predict, I found a clear bias against the AUG start codon within the 5\u27 untranslated region (5\u27 UTR) among all plants examined. Further supporting this finding, comparative analysis indicates that, for ~42% of genes, AUGs and their resultant uORFs reduce carrier fitness. Interestingly, for at least 5% of genes, uORFs are not only tolerated, but enriched. The remaining uORFs appear to be neutral. Because of their tangible impact on plant biology, it is critical to differentiate how uORFs affect translation and how, in many cases, their inhibitory effects are neutralized. In pursuit of this aim, I developed a computational model of the initiation process that uses five parameters to account for uORF presence. In vivo translation efficiency data from uORF-containing reporter constructs were used to estimate the model\u27s parameters in wild type Arabidopsis. In addition, the model was applied to identify salient defects associated with a mutation in the subunit h of eukaryotic initiation factor 3 (eIF3h). The model indicates that eIF3h, by supporting re-initation during uORF elongation, facilitates uORF tolerance

    Knockdown of Amyloid Precursor Protein in Zebrafish Causes Defects in Motor Axon Outgrowth

    Get PDF
    Amyloid precursor protein (APP) plays a pivotal role in Alzheimer’s disease (AD) pathogenesis, but its normal physiological functions are less clear. Combined deletion of the APP and APP-like protein 2 (APLP2) genes in mice results in post-natal lethality, suggesting that APP performs an essential, if redundant, function during embryogenesis. We previously showed that injection of antisense morpholino to reduce APP levels in zebrafish embryos caused convergent-extension defects. Here we report that a reduction in APP levels causes defective axonal outgrowth of facial branchiomotor and spinal motor neurons, which involves disorganized axonal cytoskeletal elements. The defective outgrowth is caused in a cell-autonomous manner and both extracellular and intracellular domains of human APP are required to rescue the defective phenotype. Interestingly, wild-type human APP rescues the defective phenotype but APPswe mutation, which causes familial AD, does not. Our results show that the zebrafish model provides a powerful system to delineate APP functions in vivo and to study the biological effects of APP mutations

    Huntingtin gene evolution in Chordata and its peculiar features in the ascidian Ciona genus

    Get PDF
    BACKGROUND: To gain insight into the evolutionary features of the huntingtin (htt) gene in Chordata, we have sequenced and characterized the full-length htt mRNA in the ascidian Ciona intestinalis, a basal chordate emerging as new invertebrate model organism. Moreover, taking advantage of the availability of genomic and EST sequences, the htt gene structure of a number of chordate species, including the cogeneric ascidian Ciona savignyi, and the vertebrates Xenopus and Gallus was reconstructed. RESULTS: The C. intestinalis htt transcript exhibits some peculiar features, such as spliced leader trans-splicing in the 98 nt-long 5' untranslated region (UTR), an alternative splicing in the coding region, eight alternative polyadenylation sites, and no similarities of both 5' and 3'UTRs compared to homologs of the cogeneric C. savignyi. The predicted protein is 2946 amino acids long, shorter than its vertebrate homologs, and lacks the polyQ and the polyP stretches found in the the N-terminal regions of mammalian homologs. The exon-intron organization of the htt gene is almost identical among vertebrates, and significantly conserved between Ciona and vertebrates, allowing us to hypothesize an ancestral chordate gene consisting of at least 40 coding exons. CONCLUSION: During chordate diversification, events of gain/loss, sliding, phase changes, and expansion of introns occurred in both vertebrate and ascidian lineages predominantly in the 5'-half of the htt gene, where there is also evidence of lineage-specific evolutionary dynamics in vertebrates. On the contrary, the 3'-half of the gene is highly conserved in all chordates at the level of both gene structure and protein sequence. Between the two Ciona species, a fast evolutionary rate and/or an early divergence time is suggested by the absence of significant similarity between UTRs, protein divergence comparable to that observed between mammals and fishes, and different distribution of repetitive elements

    Integrative Computational Genomics Based Approaches to Uncover the Tissue-Specific Regulatory Networks in Development and Disease

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)Regulatory protein families such as transcription factors (TFs) and RNA Binding Proteins (RBPs) are increasingly being appreciated for their role in regulating the respective targeted genomic/transcriptomic elements resulting in dynamic transcriptional (TRNs) and post-transcriptional regulatory networks (PTRNs) in higher eukaryotes. The mechanistic understanding of these two regulatory network types require a high resolution tissue-specific functional annotation of both the proteins as well as their target sites. This dissertation addresses the need to uncover the tissue-specific regulatory networks in development and disease. This work establishes multiple computational genomics based approaches to further enhance our understanding of regulatory circuits and decipher the associated mechanisms at several layers of biological processes. This study potentially contributes to the research community by providing valuable resources including novel methods, web interfaces and software which transforms our ability to build high-quality regulatory binding maps of RBPs and TFs in a tissue specific manner using multi-omics datasets. The study deciphered the broad spectrum of temporal and evolutionary dynamics of the transcriptome and their regulation at transcriptional and post transcriptional levels. It also advances our ability to functionally annotate hundreds of RBPs and their RNA binding sites across tissues in the human genome which help in decoding the role of RBPs in the context of disease phenotype, networks, and pathways. The approaches developed in this dissertation is scalable and adaptable to further investigate the tissue specific regulators in any biological systems. Overall, this study contributes towards accelerating the progress in molecular diagnostics and drug target identification using regulatory network analysis method in disease and pathophysiology
    • …
    corecore