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Abstract. This paper presents a generalization of the notion of langg®ats with a block ot don'’t care symbols,
introduced by [8] fork fixed, to longest motifs composed of three parts: a first astthat parameterize match (that
is, match via some renaming, initially unknown), and a fiorally equivalent central (sub)block. Such three-part
motifs are calledongest (one) (sub)blocPifferent types of functional equivalence, and thus ofehatg criteria for

the central block are considered, which include as a sultbasene treated in [8] and extend to the case of regular
expressions with no Kleene closure nor complement operafie show that a single general algorithmic tool that is
a non-trivial extension of the ideas introduced in [8] candia all the various kinds of longest block motifs defined in
this paper. The algorithm complexity is, in all casesQifn log ).

1 Introduction

Crochemore et al. [8] have recently introduced and studiednbtion of longest repeat with a block kfdon't care
symbols, wheré is fixed. These are factors of the fofimo” W that appear repeated in a striffg whereo” is a region
whose content can be arbitrarg., we do not care about its content. In a sense, those repestiseasimplest type of
structured motifs that can appear in a string. In fact, thwirk is motivated by the study of this important special case
of motifs and has some relation with previous work on repeatis bounded gaps [5, 12]. More in general, the term
motif [9] is often used in biology to describe similar functionahgponents that several biological sequences may have
in common. It can also be used to describe any collectiomoifai factors of a longer sequence. In nature, many motifs
arecompositei.e., they are composed of conserved parts separated by randamsef variable lengths. By now, the
literature on motif discovery is very rich [4], although angpletely satisfactory algorithmic solution has not beethed

yet.

Even richer (see [16,17,15]) is the literature on the cheraation and detection of regularities in strings, where
the object of study ranges from identification of periodictpao identification of parts that simply appear more than
once. Baker [2, 3] has contributed the notion of paramegdritrings and has given several algorithms that find maximal
repeated factors in a string that p-maitiod, they are identical up to a renaming of the symbols. Paraimetkstrings are
a successful tool for the identification of duplicated paftsode in large software systems. These are pieces of catle th
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are identical, except for a consistent renaming of varmtMotivated by practical as well as theoretical considenst
Amir et al. [1] have investigated the notion of function ntat that incorporates parameterized strings as a spexsal ¢

Such investigations of factors that are “similar” accoggio a well defined correspondence hint at the existence of
meaningful regularities in strings, such as motifs, thay mat be captured by standard notions of equality. In padicu
the presence of large duplications in software systems dshgeexperimental results in Structural Biology [13, 12] 2
indicating that, to some extent, there are equivalent aratids, both provide examples where a motif may be more
subtle than identical pieces interspersed with don’t cane®ls.

In this paper, we make a first substantial step in studyingranaion of motifs, where equality of strings is replaced
by more general “equivalence” rules. We consider the sistgisuch structured motifse., the ones of the forrir oF 1/,
with k fixed, which we refer to alslock motifs One important point in this study is that the notatiénusually indicating
adon't care part, assumes here an entirely new meaningedneleis a place holder stating that, for two strings described
by the moatif, the portion of each string going from positiéfi + 1 to |V| + k — 1, referred to as theentral part must
match according to a specified set of rules. To illustrate tiaition, consideab o ab and the rule stating that any two
strings described by the motif must have their central gihiical, except for a renaming of symbols. For instance,
abxyab andababab are both described b o ab and the given rule, since there is a one-to-one correspaedaiween
xy andab. Notions associated with the example and the intuitiongivgn are formalized in Section 3, where the central
parto” is specified by a set of matching criteria, all related to petsized strings and function matching. Moreover,
in Section 6, we extend our approach to a central part of af ineithg a fixed regular expression, containing no Kleene
closure or complement operation. Our main contributioretigia formal treatment of this new type of motifs, resulting
in conditions under which their definition is sound.

At the algorithmic level, our main contribution is to proei@ne general algorithm that extracts all longest block
motifs, present in a string of length in O(nlogn) time. Indeed, for each of the matching criteria for the carpart
presented in Sections 3 and 6, the general algorithm spesgab find that type of motif by simply definining a new
lexicographic order relation on strings. Even more remilgkave show that the techniques in [8], in conjunction with
some additional ideas presented here, can be naturallydedeo yield a general algorithmic tool to discover moretlgub
repeated patterns in a string.

2 Parameterized Strings and Matching Via Functions

We start by recalling some basic definitions from the semimmak by Brenda Baker on Parameterized Strings [2, 3]. Let
X’ andII be two alphabets, referred to esnstantandparametersrespectively. Ap-string X is a string over the union

of these two alphabets. A p-string is therefore just like atming, except that some symbols are parameters. In what
follows, for illustrative purposes, lef' = {a, b} andIl = {u, v, z, y}. Baker gave a definition of matching for p-strings,
which reduces to the following:

Definition 1. Two p-stringsX andY” p-matchif and only if X can be transformed inf6 by applying a bijectiorG from
the symbols ofX to the symbols ot”, such thatz is the identity on the constants.

Example 2.X = abuvabuvu andY = abzyabzyx are a p-match, withG as the bijection, wheré/(v) = x and
Gv) =y.

For ease of reference, I8y, = XU II. From now on, we refer to p-strings simply as strings oveeipbabet”; and,
except otherwise stated, we assume that the notion of matshides with that of p-match. We refer to the usual notion
of match for strings as exact match. In that casgjs treated as a set of constants. Moreover, we refer to lajecover
Xy as renaming functions. We also use the term prefix, suffix antbf in the usual way,e., thei-th suffix of X is
xiTiy1 - - Tn, Wheren is the length of the string. In what follows, [&f denote its reverség., z,, - - - 1.

We also need to recall the definition of parameterized sufi® tdenoted p-suffix tree, also due to Baker [2, 3]. Its
definition is based, among other things, on a suitable teamsdtion of suffixes and prefixes of a string so that, when they
match, they can share a path in a Patricia Tree. Indeed,dmrtbie stringt” = uwuuvvv, made only of the parameters
u andv. Notice thatuuu andvvv are a match, and therefore they should share a path, whenfthes of the string
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are “stored” in a Compacted Trie. That would not be possibtheé Compacted Trie were over the alphabgt We
now briefly discuss the ideas behind this transformatioms@ter a new alphabéi, = X' J N, whereN is the set of
nonnegative integers.

Definition 3. Let prev be a transformation function on a stritg, operating as follows. For each parameter, its first
occurrence is replaced by 0 and each successive occurremepresented by its distance, along the string, to the previ
occurrence. Constants are left unchanged. Moreover, givstning X, we define its prev representation to be the string
preV X ), over the alphabek,.

Example 4.The prev function basically substitutes parameters with intege@ying the constants unchanged, i.e, it
transforms strings oveY; into strings overs. For examplepreV(abzyzzaaya) = ab0020aaba.

The notion of match on strings corresponds to equality iir {hvevrepresentation [2, 3]:

Fact 1 Two stringsX andY are a match if and only if préhX’) =preu(Y’). Moreover, these two strings are a match if
and only ifX andY are.

Notice that theprevrepresentation of two strings tells us nothing about whaddidrs, in each string, are a p-match.
For instance, considetbxyrzaaya and zzzztzwaata. Factorscyrzaaya and ztzwaaaata match, but that cannot be
directly inferred from therevrepresentation of the two full strings.

Definition 5. Let X be a string that ends with a unique endmarker symbol. A patarized suffix tree foX (p-suffix
tree for short) is a compacted trie storing all suffixes\dfvia their prev representation.

Definition 5 is sound in the sense that all factorsXofire represented in the p-suffix tree (that follows becausk ea
factor is prefix of some suffix). Even more importantly, manghfactors share a path in the tree. Indeed, consider two
factors that match. Assume that they are of lengttCertainly they are prefixes of two suffixes &f When represented
via theprevfunction, these two suffixes must have equal prefixes of leagleastn (by Fact 1). Therefore, the two
factors must share a path in the p-suffix tree. Consider agatnuuuvvv. Notice thatpreuuuvvv) = 012012 and that
prev(vvv) = 012, souuu andvvw can share a path in the p-suffix tree.

For later use, we also need to define a lexicographic ordatioalon strings, via theprevrepresentation. It reduces
to the usual definition when the string has no parameterssi@enthe alphabek’; and let<, denote the standard
lexicographic order relation for strings over a fixed alpétathe subscript indicates to which alphabet the relatbers
to.

Definition 6. LetX andY be two strings. We say thaf is lexicographically smaller thal” if and only if pre¥.X) <o
preY’). We indicate such a relation vigs.

In what follows, we need also another type of function thatewhat improperly, we define as a table:

Definition 7. A TableT has domain¥; and range the power set af;. Fix two tablesl” and7” and two stringsX and
Y. X table matche¥’, for short t-matches, via the two tabl&sand 7", if and only ify; € T(x;) andz; € T'(y;),
1 <1 < n. For later referenceX —7 Y indicates thatX can be transformed int® via T'.

Example 8.Let T(a) = {a,u}, T(b) = {z,v,y}, T"(a) = T'(u) = {a} andT’(z) = T'(v) = T'(y) = {b}. Then
X = aaabbb andY = auaxvy t-match.

A substantial difference between tables and p-stringsa tor tables, all symbols itY; are treated as parameters
and the correspondence is fixed once and for all by the table.

For arbitrary tables, t-matching is not an equivalencdimaln fact, although symmetry is implied by the definitjon
neither reflexivity nor transitivity are. This depends vemych on the type of tables for which the match holds. Notise al
that t-matching incorporates the notion of match with dealte, when both tables correspond to the one that assigns the
entire alphabet to any symbol of the alphabet. We refer wlétier table as théon't caretable. However, for particular
families of tables, the notion of t-match is that of a match:
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Fact2 X andY matchand t-match if and only if both tables are many-to-one functidngarticular, the two tables
can be transformed into renaming functions.

Proof. The only non-trivial part is the one about many-to-one fior. LetT andT” be the two many-to-one functions
by means of which the t-match is verified.

Assume that for no pair of distinct symbaisand b, appearing inX, we have thafl'(a) = T'(b). Then, we can
transformT into a renaming function and” andY would match. Indeed, for each symhohppearing inX, T'(a) is
assigned to it. That causes no conflict. Now, since all symbbthe alphabet appearing X are assigned one-to-one,
we can arbitrarily assign the symbols notihalso one-to-one. The result is a renaming function implyireg X andY’
match.

Now, assume that there exist at least two symbaadb in X such thafl’(a) = T'(b). Sincea andb both occur inX
andT (a) occurs at the corresponding positionggfwe have thaf” cannot be a function. Indeed;(7’(a)) must have
both valuea andb. Therefore, botil” and7T” must be renaming functions, implying th&tandY” match. O

3 Functions and Block Motifs

We now investigate the notion of block motif, which was tedmepeat with a block of don’t cares in [8], in conjunction
with that of renaming functions and tables. The basic ideas a block motif is a concise way of expressing a set
of factors which appear iX and which are all related by the fact that they are “identjaicept for a well specified
“central part”. For ordinary strings, it is possible to defisuch a notion because “identity” is obviously an equiveden
relation and therefore a block motif can be seen as a repgegs@nitem from its equivalence class, with the centrat par
excluded. We follow this intuition and the construction@sated to it, which is immediate for ordinary strings. Tésth
end, we need to define the notion of repetition and motif. Tdreygeneralizations of the corresponding ones given in [8]
for ordinary strings.

Fix a family of tables7” and an integek, 0 < k < n, and consider also a family of renaming functions.

Definition 9. LetY be a factor ofX. Y is ageneralk-repeatif and only if the following conditions hold: (&) can be
written asV QW, V andW both non-empty antly| = & (b) there exists another factd@rof X, two renaming functions
F andG and two tables ir?, for whichZ = F(V)Q'G(W) and@ and@’ t-match, via the two tables.

Definition 10. Let R(k, i, 7) be the following binary relation on strings of length, with j < m andk = j — i + 1:
ZR(k,i, 7)Y ifand only if (z122 - - - zi—1), (2j41 - 2zm) @Nd (Y122 - - - yi—1), (Y;+1 - - - Ym) Match, respectively, while
(z;---z;) and(y; - - - y;) t-match via two possibly distinct tablesT 1 < i < j < m.

Definition 11. Given a stringX, consider a facto®y’, of lengthm, and assume that it is &-repeat. Fixi andj as in
Definition 10 and consider all factor8 of X such thaty' R(k, 4, j)Z. Assume thak(k, i, j) is an equivalence relation.
Then, for each class with at least two elements, a block rsadifiy arbitrarily chosen factor in that class, s&y As for
standard strings, the block motif can be writteniags - - - y;_1 o* Yj+1 - Ym, ONCE it is understood that® is a place
holder specifying a central part of the motif and that the chatg criterion for that part is given by the family of tables

We point out that, in generak(k, i, j) need not be an equivalence relation. Later we consider gongiunder which
it is indeed an equivalence relation, therefore allowingoudefine block motifs.

Example 12.Restrict the family of tables to be only the don’t care tabk.” = abvvva andY = abxxya, and consider
ZR(2,3,4)Y with the identity function for the prefiab andG(v) = y andG(a) = a for the suffix of length 2. Moreover,
considerX = Y Z. Then,ab ¢2 va is a block motif. Alsoab <2 ya is a block motif, but it is equivalent to the other one,
given the choices made about the family of tables and theHative are using a notion of match via renaming.

We now investigate the types of table families that allow aptoperly define block motifs. As it is clear from
Example 12, the notion of block motifs, as defined in [8], ipadal case of the ones defined here: it satisfies Definition
11, when (A) we restrict the family of tables in Definition X0donsist only of the don't care table; and (B) the renaming
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functions are restricted to be the identity function. Itlisoaclear that the family of all tables yields the same notén
block motif as the one with only the don’t care table. Howeesclusion of only the don’t care table is not enough to
obtain a proper definition of block motifs:

Lemma 13. Restrict the family of tables to consist of all tables, exd¢bp don't care one. For any alphabet of size at
least two, there exists an infinite set of values of ko, ky depending on the alphabet size, such tRé&k;, i, j) is not an
equivalence relation.

Proof. All we have to do is to produce three strings such thatind Z, t-match,Z, and Z3 t-match, with tables other
than the don't care table, but; and Z3 will t-match only with the don't care table. These strings d& used as “the
middle” part of three other strings, for which transitiviigils in R. Consider a binary alphabet first. L& = aabb,
Zy = abaa andZs = abab. It is straightforward to verify tha¥; andZ, t-match,Z, andZ3 t-match, with tables other
than the don't care table. Buf; and Z3 t-matchonly with the don’t care table. Obviously the same statementshwit
for any three strings which are powerssf, Z, andZ3, respectively.

Assume that the alphabet has three symbols. We add an afgeopumber of symbols t&@;, Z, and Z3, so that
we can draw conclusions identical to the binary case. Zget= aabblaacc|bbee, Zo = abaalacaalbebb and Zs3 =
abablacac|bcbe. We have divided the strings in pieces for ease of referéfteefirst piece in each string is as the binary
case. The remaining pieces have the function to constrambat two symbols to match the entire alphabet, while the
third one will be so constrained only when we consideandZs. The construction generalizes to arbitrary alphabets.

O

Fortunately, there are easily checkable sufficient comalitiensuring that the family of tables guarantBas be an
equivalence relation, as we show next.

Definition 14. Consider two table§’ and7". Let their composition, denotedbeT o 7"(a) = J.c7/(,) T'(c), for each
symbola in the alphabet7 is closed under composition if and only if, for any two tabtethe family, their composition
is a table in the family.

Definition 15. A tableT contains a tablg” if and only if77(a) C T'(a), for each symbatk in the alphabet.

Lemma 16. Assume thaf is closed under composition and that there exists a tabfg gontaining the identity table.
ThenR is an equivalence relation.

Proof. Since there exists a tablefcontaining the identity table, theR is certainly reflexive. Notice thak is symmet-
ric: (a) it is explicitly required by the definition of t-mating and (b) it obviously holds for renaming functions. Wede
to show thatR is transitive. Consider three strings, Z> and Zs, such thatZ, R(k, i, j) Z2 and Z2 R(k, 4, j) Z3. Notice
that the match relation is transitive, by definition of a naiag function. When restricted to the family of tablesZn
also the table match relation is transitive, since by assiamghe family is closed under composition. O

In order to obtain a partial inverse of the previous Lemmaneed some definitions.

Definition 17. Assume thaR is an equivalence relation for strings if™. For each equivalence clags containing at
least three strings, we define its matching gra&ph as follows. Assign a vertex to each string and connect eathwe
to any other vertex via a directed edge. Label the edge) with a tableT’, denotedr’, ,,, by means of which the string
X associated ta: and the stringY” associated ta are such that —1 Y.

Lemma 18. Assume thak is an equivalence relation. Then, there is a tabl&igontaining the identity table. Moreover,
for each equivalence clags with at least three strings the following holds. For any #hneerticesu, v andw in G¢,
Tyw(a) N (Tyaw o Tyuw(a)) # 0, for each symbol in the string associatedito

Proof. There must be a table (i containing the identity table, el could not be reflexive.
For the second part of the lemma, I§t Y and Z be the three strings associatedutov andw. Considerx; = a.
Then,y; =b € T, »(a). Butz; = c € T, ,(b). Thatis,c € T, , 0 Ty, »(a). Butc € Ty, o (a). O
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We now consider some interesting special classes of tablgifuns, in particular four of them, for which we can
define block motifs. Lef, consist only of the don’t care table. L&t and7Z,, consist of renaming functions and many-
to-one functions, respectively. In order to define the fotaimily, we need some remarks.

The use of tables for the middle part of a block motif allowsaispecify simple substitution rules a bit more relaxed
than renaming functions. We discuss one of them. Partitieratphabet into classes and2tenote the corresponding
partition. Define gatrtition table7, that assigns to each symbol the class it belongs to. Fomiostdix two characters
in the alphabet, say andb. Consider the table, denoted for shijt;, that assignga, b} to botha andb and the symbol
itself to the remaining characters. In a serige formalizes the notion of groups of characters being intengjeable, or
equivalent. Those situations arise in practice (see fdante [6,11, 13,14, 19, 21, 22]). Indeed, in order to singphie
study of protein folding, there have been many efforts tdifian the set of amino acids into classes of interchangeabl
ones. The partition to choose is situation dependent arfabpip no unique or optimal partition exists. However, a few
experimental studies have shown that protein sequencgsisand even folding, is reliable when, in the original ami
acid sequence, one substitutes each character with its. ¢fagnany cases, experiments show that the new sequence
so obtained reliably represents properties of the origsegluence (see for instance [14]). Of course, in the best of al
possible worlds, one would like to use a relation among araicids that is realistic, rather than mathematically and
computationally pleasing. In a sense, the experimentalteementioned earlier for equivalent classes of aminosacid
show however that those classes are a good first approximtatimore realistic relations.

We need the following:

Fact 3 Let X andY be two strings of equal length. We have that 75 (y;) if and only ify; € Tp(z;).

Proof. Assume that:; € 7p(y;), but the converse is not true. SB; (y;) # Tp(x;), but sincer; is in both, we have that
P is not a partition. O

Let the fourth family of tables consist of onf§j>, for some given partitiofP of the alphabet’;. Notice that Fact 3
ensures that the definition of t-matching is well posed ia taise.

Lemma 19. Pick any one of,, 7, 7,, or 7p and consider the relatiof in Definition 10 for the chosen familR is an
equivalence relation. In particular, when the chosen farislZ,,, R is the same relation as that fdr..

Proof. Notice that, all four families contain the identity tablen, 9y Lemma 16, all that remains to show is that those
four families are closed under composition. That is wellwndor the first three. As fof», simply notice that it is its
own composition.

For the second part of the lemma, with reference to Definitidnconsidee; - - - z; andy; - - - y; and apply Fact 2 to
them. -

Example 20.Fix the family of tables to be one-to-one functions. Consile= Y Z, whereY and Z are again the
strings in Example 12. Thenb 2 va andab <2 ya are block motifs representing the same class, the one timigsid Y
andZ. We can pick any one of the two, since they are equivalentcHdhat the rule for the central part states that the
corresponding region for two strings described by the raatifist be each a renaming of the other.

Example 21.Fix the family of tables to bé&7, . Let Z = cdccdacde andY = cdecdbede. Let X = ZY. Thencde oF cde
is a block motif, representing boti andZ. Again, the rule for the central part states that the comnedmg region for
two strings described by the motif must be identical, extegtic andb can be treated as the same character.

4 Longest Block Motifs with a Fixed Partition Table

We now give an algorithm that finds all longest block motifaistring, when we use a partition table, known and fixed
once and for all. The algorithm is a non-trivial generalizatof the corresponding one in [8]. In fact, we show that the
main techniques used there, and that we nicknantbeasvo-tree trickis a very powerful tool to extract longest block
motifs in various settings, when used in conjunction with éitgorithmic ideas presented in this Section.
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Indeed, a verbatim application of the two-tree trick wouldrkvon the p-suffix trees for the string and its reverse.
Unfortunately, that turns out to be not enough in our settikig need to construct a tree somewhat different than a pesuffi
tree, which we refer to as a p-suffix tree on a mixed alphab&ndxhis latter tree, the techniques in [8] can be extended.
Moreover, due to the generality of the algorithm constngethis novel version of the p-suffix tree, all the techniqwes
discuss in this Section extend to the other three types akibitmtifs defined in Section 3, as it is discussed in Sections 5
and 6.

For each class ifP, select a representative. The representatives give aeddlphabet’s. For any stringY’, let
Y be its corresponding string on the new alphabet, obtainepiacing each symbol itr with its representative. In
what follows, for our examples, we choo®g;, with a as representative. Consider a strifgand assume that it has
block motif V' o* T/, with respect to tabl@r. We recall that” o* 1 is a shorthand notation for the fact that strings in
the class (a) t-match in the positions corresponding to éméral part and, (b) they (parametric) match in the posdtion
corresponding t&” andW. We are interested in finding all longest block motifs.

Consider a Patricia TreB, storing a set of strings. L&f be a string. The locus of Y in T, if it exists, is the node
such thaty” matches the string corresponding to the path from the ro®t wf«. Notice that wheri is a p-suffix tree,
thenpre\Y') must be the string on the path from the rootitd-or standard strings, the definition of locus reduces to the
usual one. With those differences in mind, one can also défitiee usual way the notion of contracted and extended
locus of a string. Moreover, given a nodelet d(u) be the length of the string of whichis locus.

4.1 A p-suffix Tree on a Mixed Alphabet

Definition 22. The modified prev representation of a striig denoted as mpr¢V'), is defined as follows. [t'| < ,
thenitisY'. Else, itisWpre\Z), whereY = WZ and|W| = k. For instance, let” = abauuzz, andk = 3. Then, its
modified prev representation is mp(&\) = aaa0101.

Definition 23. Let X be a string with a unique endmarker. L84 be a Patricia Tree storing each suffix &f, via their
mprev representation. That i$) is like a p-suffix tree, but the initial part of each suffix ipresented on the reduced
alphabet. For instance, leX = abbabbb andk = 2, the first suffix ofX is stored asiababbb.

Notice thatTy, hasO(n) nodes, since it has leaves and each node has outdegree at least two. Moreosieeége
can be labelled with pointers to factors &f, as it is custumary for suffix trees [18]. That would allow osuse it for
pattern matching, by resorting to some additional techescfuom Baker [3]. So the total size of the treelign). We
leave the details to the interested reader. In fact, aslib@dome clear later, we only need to build and use the togolog
of T, since we do not use it for pattern matching.

We now show how to build@, in O(nlogn) time. LetBuildTree be a procedure that takes as input thsuffixes
of X and returns as outpdty. The only primitive that the procedure needs to use is thelchie constant time, for the
lexicographic order of two suffixes, according to a new omgdation that we define. The check should also return the
longest prefix the two suffixes have in common and which suffsmaller than the other.

Definition 24. LetY and Z be two strings. We define a new order relatibn<,, Z as follows. WhenY| < k, it
must beY’ <3 U, where|U| = |V is a prefix ofZ. Assume thalY'| > &, and letZ = US andY = RP, with
|R| = |U| = k. Then, it must bk <3 U or R = U but prev(P) <5 prev(S). With a little abuse of notation, we can
write mprev(Y') <,, mprev(Z), whenY <, Z.

Given the suffix tree$’;; [18] and the p-suffix tre@’y, assume that they have been processed to ans@drqueries
in constant time [10, 20]. Then, it is easy to check, in camistime, the<,, order of two suffixes ofX, via two LC'A
gueries in those trees. Moreover, that also gives us theHeighe matching prefix. The details are omitted. We refer to
such an operation asmpare(i, j), wherei and; are the suffix numbers. It returns which one is smaller andethgth
of their common prefix.

Now, BuildTree works as follows. It simply builds the tree, without any IHing of the edges, as it is usual in
Patricia Tries.
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ALGORI THM Bui | dTr ee

1. Usingcompare and the<,, relation, sort the suffixes of with, say, Heapsort [7].
2. Process the sorted ligt, - - - , i,, of suffixes in increasing order as follows:

2.1 When the first suffix is processed, create a root and apeah them in a stack in the order they are created.
Label the leaf withi;.

2.2 Assume that we have processed the list up tod that we are now processiig . Assume that on the stack we
have the path from the root to leaf labelgdn the tree built so far, from bottom to top. Let it be, us, - - -, us.

2.2.1 Usingcompare and the<,,, relation, find the longest prefix that andi,; have in common. LeZ denote
that prefix and! be its length.

2.2.2 Pop elements from the stack until one finds two suchitha} < d < d(u;4+1). Popu;+1 from the stack. If
d(u;) = d, thenu, is the locus o7 in the tree built so far. Elses; andu;; are its contracted and extended
locus, respectively. If; is the locus ofZ, add a new leaf labeleq.; as offspring ofu; and push it on the
stack. Else, create a new internal nag@s locus o7, add it as offspring of;; and makey;,; an offspring
of u. Moreover, add a new leaf labelég, ; as offspring ofu and push the new created nodes on the stack,
in the order in which they were created. We now have on thé $tecpath from the root to the leaf labeled

lg+1-
Lemma 25. TreeT% can be correctly built irO(n log n) time.

Proof. Proof of correctness is by induction, using the fact thasthiags are processed in sorted order. When a new suffix
is inserted, the only new internal node that needs to beenteatist be on the path from the root to the leaf representing
the last inserted suffix. That path is on the stack and it iseotlly updated. As for the time complexity, the construttio
of the suffix treeT’y takesO(n) time [18], while that of the p-sulffix tre&’x takesO(n logn) time [2, 3]. The time to
preprocess those trees so that A queries can be answered in constant time is a@éir) [10, 20]. Wheril'}, is actually
built, it takesO(n) time, since step (2.) processes each internal node onlystasdmumber of times and there are a total
of O(n) nodes. So, the sorting step is the most expensive, buiodipare, that can be done i@ (n logn) time. O

4.2 The Algorithm

Consider the tree%’y, and T+, where the latter one is a p-suffix tree. For each leaf labgledls, change its label

to ben + 2 — 4, so that whenever the left part of a block motif starts at X, we have the position itk where the
right part starts, including the central part. We refer tosth positions aswins. Visit T in preorder. Consider the two
leaves/; € T% and{; € T, corresponding to a pair of twins. Assignépthe same preorder number as thatofLet

V oF W be a block motif and let be one of its occurrences i, i.e., where it starts. In order to simplify our notation,
we refer to such an occurrence via the preorder number ofetifealssigned to + |V'| + 1 in T%. From now on, we
will simply be working with those preorder numbers. Indegiden the tree we are in, we can recover the positions in
or X corresponding to the label at a leaf in constant time, byablytkeeping a set of tables. The details are as in [8].
Moreover, we can also recover the position where a blockfrnotiurs, given the block motif and the preorder number
assigned to the position. Given a trEelet L(v) be the list of labels assigned to the leaves in the subtréedatv. For

the trees we are working with, those would be preorder nusaber

Definition 26. We say thal” o* 1V is maximal if and only if extending any factor in the clasghido the left and to the
right, results in the loss of at least one element in the cl@ibat is, by extending the strings in the class, we can plyssib
get a new block motif, but its class does not contain thaf of 7.

Example 27.Let X = aabbazxbrababyyayabbbuu. Block motif ab % xz is maximal. Indeed, it represents the class of
factors{abbazx, ababyy, abbbuu}. However, extending any of those factors both to the righttarthe left results in a
smaller class.
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Lemma 28. Consider a stringX, its reverse, the treef andT'y.. Assume that’ ok W is maximal. Pick any repre-
sentative in the class, s&yQW. ThenV and mpreyQW) have a locus: in T andwv in T, respectively. Moreover,
all the occurrences of’ o W are in L(u) (| L(v). Conversely, pick two nodes and’, in T and T, respectively.
Assume that there are at least two labetndj in L(u') () L(v") such thatLC A(i, j) = v" and LCA(i, j) = v, in T
andT%, respectively. Assume also thit’) > k. Then, they are occurrences of a maximal block motif.

Proof. Assume that” o* IV is maximal and that’ has an extended locus iR, but not a locus. Pick a factor of in
the class and, for ease of notation, let itl6@1V. SinceV appears inX and such a string has no proper locuglig,
we have that all factors oX matching’ will also match if they are extended to the right by one chiardo X . But, by
Fact 1, we have that all factors &f matchingl” can be extended to the left by one character and still matehthn,
we can take all factors in the claBso” W and extend them to the left without losing any element in taesc The same
conclusion can be derived fépI¥/, with an analogous reasoning. This contradicts the maxiynaf the block motif.
To complete this part of the lemma, notice thamust match the prefix of any other factor &fin the class/” oF W.
Analogous considerations hold f@W. Therefore, all occurrences bfo* W must be both in.(v) and L (v).
Conversely, pick two nodes andv’, in T andT'y, respectively. Letl(v') > k. Assume that there are at least two
labelsi andj in L(u") () L(v") such thatLC'A(i, j) = v andLCA(i,j) = o', in T5 and T, respectively. LeZ be
the string, the reverse of which has loausn T+, and letP, | P| = k, andM be two strings such thatpre PM) has
locusv’ in T% . Notice that sincel(v’) > k, a string of the claimed form must exist. Assume also &tV occurs at
in X. Then,Z ¥ M must be a maximal block motif. Indeed, it also occurg and, if extended both to the left and to
the right,: andj cannot be both occurrences of that extension. O

We also need the following:

Lemma 29. Consider an internal node in 7% and two of its offsprings, say; andv. Letji, jo, - - -, j, be the sorted
list of labels assigned to the leaves in the subtree rooted and let; be a label assigned to any leafin. Letg be the
firstindex such thaf, < i. Similarly, letc be the firstindex such that< j.. The maximal block motif of maximum length
thati forms withjy, jo, - - -, jm IS either withj,, if it exists, or withy,, if it exists, provided that eithet( LC A(z, j4)) > k

or d(LCA(i,j.)) > k and theLC A is computed off’'% .

Proof. Notice that, by definition of preorder visit of a tree, the sece given by the depths of tlie”' A, in T%, of ¢
with j., - -, jm, respectively, is non-increasing. Now let= LC A(3, j.) in T% and assume thalu) > k. We know
that LC'A(i, j1) = v in T. So, applying Lemma 28 to these two nodes, we have a maximek bhotif. The length of
the block motif is at least as long as that of any other pogsgjlvien byj.11,- - -, jm.

An analogous reasoning holds with - - - , j,, except that now the sequence of depths offthed’s, in T, of ¢ with
Ji,- -, jg is non-decreasing.

Therefore, the longest block motif must be with eithigor j, 1. O

We now present the algorithm.
ALGORI THM LM

1. Build 75 andT. Visit T in preorder and establish a correspondence between thedpremmbers of the leaves
in T and the leaves ifi-. TransformZ%- into a binary suffix treé3 (see [8]);

2. Visit B bottom up and, at each node, merge the sorted lists of thislgiveorder numbers ifis,) associated to the
leaves in the subtrees rooted at the children. Let thesedestl; and.A; and assume théa#;| < |.Az|. Merge A;
into A,. Any time an elementof the first list is inserted in the proper place in the oteey, j, andj. in Lemma 29
are identified, we only need to check for two possibly new &stgnaximal block motifs thatcan generate. While
processing the nodes in the tree, we keep track of the longgestmal block motifs found.

Theorem 30. ALGORI THM LMcorrectly identifies all longest block motifs in a stridg, when the matching rule for
the central part is given by a partition table. It can be implented to run irO(n log n) time.
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Proof. The proof of correctness comes from Lemma 29. Indeed, psoweS bottom up means searching for longest
block motifs of the forml/ oF T/, with the length ofi” decreasing along a path. At an internal node, we must check fo
new maximal block motifs, but by Lemma 29, the number of nemdadates is limited. Indeed, for each elemeniaf

we need to check only two elements4, via LC A queries.

In turn, such a selection of candidates can be efficientifémented by a careful use of data structures for merging
and a processing of “merging” operations according to theglter half trick”. Indeed, at the beginning of the algonith
each label at a leaf is in a list by itself. At each internal@atie list of its children is merged, being careful to mefge t
smaller into the bigger one. Finally, the lists are représgas balanced search trees, and an optimal merging prededu
used. The details of the analysis are as in [8]. Finally, westirte build bottl; andT, which can be done i@ (n log n)
time ([3, 18] and Lemma 25). O

5 Longest Block Motifs with Either the Don’t Care Table or wit h Renaming Functions

In this Section we show how to specialize the algorithm inti®act when the central part is specified eitherRQyor 7...

All we need to do is to define two lexicographic order relasioamnalogous to the one in Definition 24. In turn, that will
enable us to define two new versions of variants of thefigeEach of the two can still be built i@ (n log n) time with

Al gorithm Bui | dTr ee and used ifAl gor i t hm LMto identify each type of motifs. We limit ourselves to defigin
these new trees. For the new objects we define, we keep themsdat®n as for their analogous in Section 4.

5.1 The Don't Care Table

Let x be a symbol not belonging to the alphabet and not matchingtrgr symbol of the alphabet. Consider Definition
22 and change it as follows:

Definition 31. The modified prev representation of a striigdenoted as mpré¥), is defined as follows. |V'| = m <
k, then it isx™. Else, it isx*pre\Z), whereY = W Z and|W| = k. For instance, let’ = abauuzz, andk = 3. Then,
its modified prev representation is mp&) = x* x x0101.

We now define another Patricia Tree, still denoted’ly Consider Definition 23 and change it as follows:

Definition 32. Let X be a string with a unique endmarker. LE{ be a Patricia Tree storing each suffix &f, via their
mprev representation according to Definition 31. Thatlig, is like a p-suffix tree, but the initial part of each suffix is
represented with's. For instance, letX = abbabbb andk = 2, the first suffix ofX is stored as« x babbb.

Finally, consider Definition 24 and change it as follows:

Definition 33. Let Y and Z be two strings. We define a new order relatibn<,,, Z as follows. WhenY| < k, it
must be|Y| < |Z]. Assume thatY| > k,and letZ = US andY = RP, with |R| = |U| = k. Then, it must be
prev(P) <5 prev(S). With a little abuse of notation, we can writeprev(Y) <,,, mprev(Z).

Observe thafl gorit hm Bui | dTr ee will work correctly with this new definition of lexicograptorder, except
that now, in order to compare suffixes, we need only the pxsuéeT’;. Finally, the results in Section 4.2 hold verbatim:

Theorem 34. ALGORI THM LMcorrectly identifies all longest block motifs in a stridg, when the matching rule for
the central part is given by the don't care table. It can belenpented to run i (n logn) time.
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5.2 Renaming Functions
Consider Definition 22 and change it as follows:

Definition 35. The modified prev representation of a striFig denoted by mpré¥"), is defined as follows. || < k,
then it is prevY). Else, it is preyW )prev Z), whereY = WZ and|W| = k. For instance, lefy” = zuzuuaz, and
k = 3. Then, its modified prev representation is mgkéy= 0020101. Notice that its prev representation(i§22131.

We now define another Patricia Tree, still denoted’ljy Consider Definition 23 and change it as follows:

Definition 36. Let X be a string with a unique endmarker symbol. [t be a Patricia Tree storing each suffix &f,
via their mprev representation according to Definition 35.

Finally, consider Definition 24 and change it as follows:

Definition 37. LetY and Z be two strings. We define a new order relatibn<,,, Z as follows. WhenY'| < k, it must
be preyY) <, pre\Z). Assume thay’| > k, and letZ = US andY = RP, with |R| = |U| = k. Then, it must be
prev(R) <q prev(U) or prev(R) = prev(U) and prev(P) <5 prev(S). With a little abuse of notation, we can write
mprev(Y') <., mprev(Z).

Observe thafl gorit hm Bui | dTr ee will work correctly with this new definition of lexicograptibrder, except
that now we again need only the p-suffix ti€g in order to compare two suffixes i. Finally, the results in Section
4.2 hold verbatim:

Theorem 38. ALGORI THM LMcorrectly identifies all longest block motifs in a stridg, when the matching rule for
the central part is given by renaming functions. It can belengented to run irD(n log n) time.

6 Further Extensions

In the previous Sections, we have considered the notiornoakiyhotif with respect to tables and functions. In particula
the central part is constrained by a notion of match givenrhies” described by “functions”. However, as it should be
clear from the presentation in Section 4, the entire apprpacposed here will work as long as we can define a linear
order relation on strings analogous to Definition 24. Weinathere a case in which that can be done and that cannot be
expressed by “functions”. We limit ourselves to considansiard strings.

Definition 39. Letiy, j1,---,is, js be a given sequence of integers such that their sum is equal@ven two strings
C and D we say that they match if and only if there exists a regularesgions Z; %2 Z, - - - % Z,, generating both
strings, where: denotes a don’t care character atf} is a string of lengthj;. That is, apart from the don’t care regions,
the two strings are the same

For convenience of the reader, we now state the definitiongefreeral repeat, and of a corresponding motif when
the matching rule is given by the regular expression in Didimi39. They are the analogous to Definitions 9 and 11.

Definition 40. LetY be a factor ofX. Y is ageneralk-repeat with respect to the regular expression in Definition 39,
if and only if the following conditions hold: (&) can be written a¥ QW, V andW both non-empty antl)| = & (b)
there exists another factaf = V'Q'W’ of X, such tha’ = V/, W = W’ and@Q andQ’ are both generated by the
regular expression in Definition 39.

Definition 41. Let R(k, i, 7) be the following binary relation on strings of length, with j < m andk = j — i + 1:
ZR(k,i,5)Y ifand only if (z122 - - - zi—1), (zj41 - -~ 2m) @Nd (Y122 - - - ¥i—1), (Yj+1 - - - Ym) €XACt Match, respectively,
while (z; - - - z;) and (y; - - - y;) are generated by the regular expression in Definition3g, i < j < m.

SinceR is an equivalence relation, we can define the correspondatigsn
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Definition 42. Given a stringX, consider a facto®y’, of lengthm, and assume that it is &-repeat. Fixi andj as in
Definition 41 and consider all factor8 of X such thatY' R(k, 7, j)Z.Then, for each class with at least two elements, a
block matif is any arbitrarily chosen factor in that classysy”. As for standard strings, the block motif can be written
asy1y2 - Yi—1 °F yj+1 - Ym, ONCe it is understood that is a place holder specifying a central part of the motif and
that the matching criterion for that part is given by the régpuexpression in Definition 39.

Consider Definition 22 and change it as follows:

Definition 43. Let Y be a string of lengthn. Let f be the maximum index such thﬁﬁzl(ih + jn) < m. Then
pre\Y) = «1Y; x%2 Yy - - %% Y, whereY), is the factor oft” following the don’t care part .

Again, we can define another Patricia Tree, still denote@pyConsider Definition 23 and change it as follows:

Definition 44. Let X be a string with a unique endmarker symbol. [t be a Patricia Tree storing each suffix &f,
via their mprev representation according to Definition 43.

Now define a lexicographic order relation on strings induggtheir prevrepresentation. That i is lexicograph-
ically smaller thant” if and only if pre X') <pre\Y’). Observe tha#\l gorit hm Bui | dTr ee will work correctly
with this new definition of lexicographic order, except thatv we need only the suffix tré€; in order to compare two
suffixes inX. Moreover, such a comparison can be mad@(r) time, yielding a total oD (snlog n) time. Sinces < k
is fixed and independent af we have once again that the results in Section 4.2 hold tierba

Theorem 45. ALGORI THM LMcorrectly identifies all longest block motifs in a stridg, when the matching rule for
the central part is given by the regular expression in Deifini39. It can be implemented to rund(n log n) time.

7 Conclusions

We have considered a new notion of motif. It is of the fdrin* 1/, wherek is fixed. The central part of the motif can

be more constrained than what is usually allowed by the damé regular expression. We have also investigated several

matching criteria for the central part, all related to paggenized strings and functions. Standard strings are aapec

case. Moreover, we have also shown that our framework cartbaded to “central parts” given by regular expressions.
We have also presented a single algorithm that can be sigedab deal with all of the cases discussed here, showing

that thethe two tree trickdevised by Crochemore et al. [8] can be extended to yield argétechnique to identify the

loongest motifs of the kind presented in this paper.
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