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Abstract. This paper presents a generalization of the notion of longest repeats with a block ofk don’t care symbols,
introduced by [8] fork fixed, to longest motifs composed of three parts: a first and last that parameterize match (that
is, match via some renaming, initially unknown), and a functionally equivalent central (sub)block. Such three-part
motifs are calledlongest (one) (sub)block. Different types of functional equivalence, and thus of matching criteria for
the central block are considered, which include as a subcasethe one treated in [8] and extend to the case of regular
expressions with no Kleene closure nor complement operation. We show that a single general algorithmic tool that is
a non-trivial extension of the ideas introduced in [8] can handle all the various kinds of longest block motifs defined in
this paper. The algorithm complexity is, in all cases, inO(n log n).

1 Introduction

Crochemore et al. [8] have recently introduced and studied the notion of longest repeat with a block ofk don’t care
symbols, wherek is fixed. These are factors of the formV ⋄k W that appear repeated in a stringX , where⋄k is a region
whose content can be arbitrary,i.e., we do not care about its content. In a sense, those repeats are the simplest type of
structured motifs that can appear in a string. In fact, theirwork is motivated by the study of this important special case
of motifs and has some relation with previous work on repeatswith bounded gaps [5, 12]. More in general, the term
motif [9] is often used in biology to describe similar functional components that several biological sequences may have
in common. It can also be used to describe any collection of similar factors of a longer sequence. In nature, many motifs
arecomposite, i.e., they are composed of conserved parts separated by random regions of variable lengths. By now, the
literature on motif discovery is very rich [4], although a completely satisfactory algorithmic solution has not been reached
yet.

Even richer (see [16, 17, 15]) is the literature on the characterization and detection of regularities in strings, where
the object of study ranges from identification of periodic parts to identification of parts that simply appear more than
once. Baker [2, 3] has contributed the notion of parameterized strings and has given several algorithms that find maximal
repeated factors in a string that p-match,i.e., they are identical up to a renaming of the symbols. Parameterized strings are
a successful tool for the identification of duplicated partsof code in large software systems. These are pieces of code that
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are identical, except for a consistent renaming of variables. Motivated by practical as well as theoretical considerations,
Amir et al. [1] have investigated the notion of function matching that incorporates parameterized strings as a special case.

Such investigations of factors that are “similar” according to a well defined correspondence hint at the existence of
meaningful regularities in strings, such as motifs, that may not be captured by standard notions of equality. In particular,
the presence of large duplications in software systems as well the experimental results in Structural Biology [13, 14, 22]
indicating that, to some extent, there are equivalent aminoacids, both provide examples where a motif may be more
subtle than identical pieces interspersed with don’t care symbols.

In this paper, we make a first substantial step in studying a new notion of motifs, where equality of strings is replaced
by more general “equivalence” rules. We consider the simplest of such structured motifs,i.e., the ones of the formV ⋄kW ,
with k fixed, which we refer to asblock motifs. One important point in this study is that the notation⋄k, usually indicating
a don’t care part, assumes here an entirely new meaning. Indeed,⋄k is a place holder stating that, for two strings described
by the motif, the portion of each string going from position|V | + 1 to |V | + k − 1, referred to as thecentral part, must
match according to a specified set of rules. To illustrate this notion, considerab ⋄2 ab and the rule stating that any two
strings described by the motif must have their central part identical, except for a renaming of symbols. For instance,
abxyab andababab are both described byab⋄k ab and the given rule, since there is a one-to-one correspondence between
xy andab. Notions associated with the example and the intuition justgiven are formalized in Section 3, where the central
part⋄k is specified by a set of matching criteria, all related to parametrized strings and function matching. Moreover,
in Section 6, we extend our approach to a central part of a motif being a fixed regular expression, containing no Kleene
closure or complement operation. Our main contribution here is a formal treatment of this new type of motifs, resulting
in conditions under which their definition is sound.

At the algorithmic level, our main contribution is to provide one general algorithm that extracts all longest block
motifs, present in a string of lengthn, in O(n log n) time. Indeed, for each of the matching criteria for the central part
presented in Sections 3 and 6, the general algorithm specializes to find that type of motif by simply definining a new
lexicographic order relation on strings. Even more remarkably, we show that the techniques in [8], in conjunction with
some additional ideas presented here, can be naturally extended to yield a general algorithmic tool to discover more subtle
repeated patterns in a string.

2 Parameterized Strings and Matching Via Functions

We start by recalling some basic definitions from the seminalwork by Brenda Baker on Parameterized Strings [2, 3]. Let
Σ andΠ be two alphabets, referred to asconstantsandparameters, respectively. Ap-stringX is a string over the union
of these two alphabets. A p-string is therefore just like anystring, except that some symbols are parameters. In what
follows, for illustrative purposes, letΣ = {a, b} andΠ = {u, v, x, y}. Baker gave a definition of matching for p-strings,
which reduces to the following:

Definition 1. Two p-stringsX andY p-matchif and only if X can be transformed intoY by applying a bijectionG from
the symbols ofX to the symbols ofY , such thatG is the identity on the constants.

Example 2.X = abuvabuvu and Y = abxyabxyx are a p-match, withG as the bijection, whereG(u) = x and
G(v) = y.

For ease of reference, letΣ1 = Σ∪Π . From now on, we refer to p-strings simply as strings over thealphabetΣ1 and,
except otherwise stated, we assume that the notion of match coincides with that of p-match. We refer to the usual notion
of match for strings as exact match. In that case,Σ1 is treated as a set of constants. Moreover, we refer to bijections over
Σ1 as renaming functions. We also use the term prefix, suffix and factor in the usual way,i.e., the i-th suffix of X is
xixi+1 · · ·xn, wheren is the length of the string. In what follows, letX denote its reverse,i.e., xn · · ·x1.

We also need to recall the definition of parameterized suffix tree, denoted p-suffix tree, also due to Baker [2, 3]. Its
definition is based, among other things, on a suitable transformation of suffixes and prefixes of a string so that, when they
match, they can share a path in a Patricia Tree. Indeed, consider the stringY = uuuvvv, made only of the parameters
u andv. Notice thatuuu andvvv are a match, and therefore they should share a path, when the suffixes of the string
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are “stored” in a Compacted Trie. That would not be possible if the Compacted Trie were over the alphabetΣ1. We
now briefly discuss the ideas behind this transformation. Consider a new alphabetΣ2 = Σ

⋃
N , whereN is the set of

nonnegative integers.

Definition 3. Let prev be a transformation function on a stringX , operating as follows. For each parameter, its first
occurrence is replaced by 0 and each successive occurrence is represented by its distance, along the string, to the previous
occurrence. Constants are left unchanged. Moreover, givena stringX , we define its prev representation to be the string
prev(X), over the alphabetΣ2.

Example 4.The prev function basically substitutes parameters with integers,leaving the constants unchanged, i.e, it
transforms strings overΣ1 into strings overΣ2. For example,prev(abxyxzaaya) = ab0020aa5a.

The notion of match on strings corresponds to equality in their prevrepresentation [2, 3]:

Fact 1 Two stringsX andY are a match if and only if prev(X) =prev(Y ). Moreover, these two strings are a match if
and only ifX andY are.

Notice that theprevrepresentation of two strings tells us nothing about which factors, in each string, are a p-match.
For instance, considerabxyxzaaya andzzzztzwaata. Factorsxyxzaaya andztzwaaaata match, but that cannot be
directly inferred from theprevrepresentation of the two full strings.

Definition 5. Let X be a string that ends with a unique endmarker symbol. A parameterized suffix tree forX (p-suffix
tree for short) is a compacted trie storing all suffixes ofX , via their prev representation.

Definition 5 is sound in the sense that all factors ofX are represented in the p-suffix tree (that follows because each
factor is prefix of some suffix). Even more importantly, matching factors share a path in the tree. Indeed, consider two
factors that match. Assume that they are of lengthm. Certainly they are prefixes of two suffixes ofX . When represented
via theprev function, these two suffixes must have equal prefixes of length at leastm (by Fact 1). Therefore, the two
factors must share a path in the p-suffix tree. Consider againY = uuuvvv. Notice thatprev(uuuvvv) = 012012 and that
prev(vvv) = 012, souuu andvvv can share a path in the p-suffix tree.

For later use, we also need to define a lexicographic order relation on strings, via theirprevrepresentation. It reduces
to the usual definition when the string has no parameters. Consider the alphabetΣ2 and let≤2 denote the standard
lexicographic order relation for strings over a fixed alphabet: the subscript indicates to which alphabet the relation refers
to.

Definition 6. LetX andY be two strings. We say thatX is lexicographically smaller thanY if and only if prev(X) ≤2

prev(Y ). We indicate such a relation via≤2.

In what follows, we need also another type of function that, somewhat improperly, we define as a table:

Definition 7. A TableT has domainΣ1 and range the power set ofΣ1. Fix two tablesT andT ′ and two stringsX and
Y . X table matchesY , for short t-matches, via the two tablesT andT ′, if and only ifyi ∈ T (xi) andxi ∈ T ′(yi),
1 ≤ i ≤ n. For later reference,X →T Y indicates thatX can be transformed intoY via T .

Example 8.Let T (a) = {a, u}, T (b) = {x, v, y}, T ′(a) = T ′(u) = {a} andT ′(x) = T ′(v) = T ′(y) = {b}. Then
X = aaabbb andY = auaxvy t-match.

A substantial difference between tables and p-strings is that, for tables, all symbols inΣ1 are treated as parameters
and the correspondence is fixed once and for all by the table.

For arbitrary tables, t-matching is not an equivalence relation. In fact, although symmetry is implied by the definition,
neither reflexivity nor transitivity are. This depends verymuch on the type of tables for which the match holds. Notice also
that t-matching incorporates the notion of match with don’tcare, when both tables correspond to the one that assigns the
entire alphabet to any symbol of the alphabet. We refer to this latter table as thedon’t caretable. However, for particular
families of tables, the notion of t-match is that of a match:
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Fact 2 X andY matchand t-match if and only if both tables are many-to-one functions. In particular, the two tables
can be transformed into renaming functions.

Proof. The only non-trivial part is the one about many-to-one functions. LetT andT ′ be the two many-to-one functions
by means of which the t-match is verified.

Assume that for no pair of distinct symbolsa and b, appearing inX , we have thatT (a) = T (b). Then, we can
transformT into a renaming function andX andY would match. Indeed, for each symbola appearing inX , T (a) is
assigned to it. That causes no conflict. Now, since all symbols of the alphabet appearing inX are assigned one-to-one,
we can arbitrarily assign the symbols not inX also one-to-one. The result is a renaming function implyingthatX andY

match.
Now, assume that there exist at least two symbolsa andb in X such thatT (a) = T (b). Sincea andb both occur inX

andT (a) occurs at the corresponding positions ofY , we have thatT ′ cannot be a function. Indeed,T ′(T (a)) must have
both valuea andb. Therefore, bothT andT ′ must be renaming functions, implying thatX andY match. ⊓⊔

3 Functions and Block Motifs

We now investigate the notion of block motif, which was termed repeat with a block of don’t cares in [8], in conjunction
with that of renaming functions and tables. The basic idea isthat a block motif is a concise way of expressing a set
of factors which appear inX and which are all related by the fact that they are “identical”, except for a well specified
“central part”. For ordinary strings, it is possible to define such a notion because “identity” is obviously an equivalence
relation and therefore a block motif can be seen as a representative item from its equivalence class, with the central part
excluded. We follow this intuition and the construction associated to it, which is immediate for ordinary strings. To this
end, we need to define the notion of repetition and motif. Theyare generalizations of the corresponding ones given in [8]
for ordinary strings.

Fix a family of tablesT and an integerk, 0 ≤ k ≤ n, and consider also a family of renaming functions.

Definition 9. Let Y be a factor ofX . Y is ageneralk-repeatif and only if the following conditions hold: (a)Y can be
written asV QW , V andW both non-empty and|Q| = k (b) there exists another factorZ of X , two renaming functions
F andG and two tables inT , for whichZ = F (V )Q′G(W ) andQ andQ′ t-match, via the two tables.

Definition 10. Let R(k, i, j) be the following binary relation on strings of lengthm, with j < m andk = j − i + 1:
ZR(k, i, j)Y if and only if (z1z2 · · · zi−1), (zj+1 · · · zm) and (y1x2 · · · yi−1), (yj+1 · · · ym) match, respectively, while
(zi · · · zj) and(yi · · · yj) t-match via two possibly distinct tables inT , 1 < i ≤ j < m.

Definition 11. Given a stringX , consider a factorY , of lengthm, and assume that it is ak-repeat. Fixi and j as in
Definition 10 and consider all factorsZ of X such thatY R(k, i, j)Z. Assume thatR(k, i, j) is an equivalence relation.
Then, for each class with at least two elements, a block motifis any arbitrarily chosen factor in that class, sayY . As for
standard strings, the block motif can be written asy1y2 · · · yi−1 ⋄k yj+1 · · · ym, once it is understood that⋄k is a place
holder specifying a central part of the motif and that the matching criterion for that part is given by the family of tables.

We point out that, in general,R(k, i, j) need not be an equivalence relation. Later we consider conditions under which
it is indeed an equivalence relation, therefore allowing usto define block motifs.

Example 12.Restrict the family of tables to be only the don’t care table.LetZ = abvvva andY = abxxya, and consider
ZR(2, 3, 4)Y with the identity function for the prefixab andG(v) = y andG(a) = a for the suffix of length 2. Moreover,
considerX = Y Z. Then,ab ⋄2 va is a block motif. Alsoab ⋄2 ya is a block motif, but it is equivalent to the other one,
given the choices made about the family of tables and the factthat we are using a notion of match via renaming.

We now investigate the types of table families that allow us to properly define block motifs. As it is clear from
Example 12, the notion of block motifs, as defined in [8], is a special case of the ones defined here: it satisfies Definition
11, when (A) we restrict the family of tables in Definition 10 to consist only of the don’t care table; and (B) the renaming
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functions are restricted to be the identity function. It is also clear that the family of all tables yields the same notionof
block motif as the one with only the don’t care table. However, exclusion of only the don’t care table is not enough to
obtain a proper definition of block motifs:

Lemma 13. Restrict the family of tables to consist of all tables, except the don’t care one. For any alphabet of size at
least two, there exists an infinite set of values ofk ≥ k0, k0 depending on the alphabet size, such thatR(k, i, j) is not an
equivalence relation.

Proof. All we have to do is to produce three strings such thatZ1 andZ2 t-match,Z2 andZ3 t-match, with tables other
than the don’t care table, butZ1 andZ3 will t-match only with the don’t care table. These strings can be used as “the
middle” part of three other strings, for which transitivityfails in R. Consider a binary alphabet first. LetZ1 = aabb,
Z2 = abaa andZ3 = abab. It is straightforward to verify thatZ1 andZ2 t-match,Z2 andZ3 t-match, with tables other
than the don’t care table. ButZ1 andZ3 t-matchonlywith the don’t care table. Obviously the same statements will hold
for any three strings which are powers ofZ1, Z2 andZ3, respectively.

Assume that the alphabet has three symbols. We add an appropriate number of symbols toZ1, Z2 andZ3, so that
we can draw conclusions identical to the binary case. LetZ1 = aabb|aacc|bbcc, Z2 = abaa|acaa|bcbb and Z3 =
abab|acac|bcbc. We have divided the strings in pieces for ease of reference.The first piece in each string is as the binary
case. The remaining pieces have the function to constraint at most two symbols to match the entire alphabet, while the
third one will be so constrained only when we considerZ1 andZ3. The construction generalizes to arbitrary alphabets.

⊓⊔

Fortunately, there are easily checkable sufficient conditions ensuring that the family of tables guaranteesR to be an
equivalence relation, as we show next.

Definition 14. Consider two tablesT andT ′. Let their composition, denoted◦, beT ◦ T ′(a) =
⋃

c∈T ′(a) T (c), for each
symbola in the alphabet.T is closed under composition if and only if, for any two tablesin the family, their composition
is a table in the family.

Definition 15. A tableT contains a tableT ′ if and only ifT ′(a) ⊆ T (a), for each symbola in the alphabet.

Lemma 16. Assume thatT is closed under composition and that there exists a table inT containing the identity table.
ThenR is an equivalence relation.

Proof. Since there exists a table inT containing the identity table, thenR is certainly reflexive. Notice thatR is symmet-
ric: (a) it is explicitly required by the definition of t-matching and (b) it obviously holds for renaming functions. We need
to show thatR is transitive. Consider three stringsZ1, Z2 andZ3, such thatZ1R(k, i, j)Z2 andZ2R(k, i, j)Z3. Notice
that the match relation is transitive, by definition of a renaming function. When restricted to the family of tables inT ,
also the table match relation is transitive, since by assumption the family is closed under composition. ⊓⊔

In order to obtain a partial inverse of the previous Lemma, weneed some definitions.

Definition 17. Assume thatR is an equivalence relation for strings inΣm. For each equivalence classC containing at
least three strings, we define its matching graphGC as follows. Assign a vertex to each string and connect each vertex
to any other vertex via a directed edge. Label the edge(u, v) with a tableT , denotedTu,v, by means of which the string
X associated tou and the stringY associated tov are such thatX →T Y .

Lemma 18. Assume thatR is an equivalence relation. Then, there is a table inT containing the identity table. Moreover,
for each equivalence classC with at least three strings the following holds. For any three vertices,u, v andw in GC ,
Tu,w(a) ∩ (Tv,w ◦ Tu,v(a)) 6= ∅, for each symbol in the string associated tou.

Proof. There must be a table inT containing the identity table, elseR could not be reflexive.
For the second part of the lemma, letX , Y andZ be the three strings associated tou, v andw. Considerxi = a.

Then,yi = b ∈ Tu,v(a). But zi = c ∈ Tv,w(b). That is,c ∈ Tv,w ◦ Tu,v(a). But c ∈ Tu,w(a). ⊓⊔
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We now consider some interesting special classes of table functions, in particular four of them, for which we can
define block motifs. LetT⋄ consist only of the don’t care table. LetTr andTm consist of renaming functions and many-
to-one functions, respectively. In order to define the fourth family, we need some remarks.

The use of tables for the middle part of a block motif allows usto specify simple substitution rules a bit more relaxed
than renaming functions. We discuss one of them. Partition the alphabet into classes and letP denote the corresponding
partition. Define apartition tableTP that assigns to each symbol the class it belongs to. For instance, fix two characters
in the alphabet, saya andb. Consider the table, denoted for shortTa,b, that assigns{a, b} to botha andb and the symbol
itself to the remaining characters. In a sense,TP formalizes the notion of groups of characters being interchangeable, or
equivalent. Those situations arise in practice (see for instance [6, 11, 13, 14, 19, 21, 22]). Indeed, in order to simplify the
study of protein folding, there have been many efforts to partition the set of amino acids into classes of interchangeable
ones. The partition to choose is situation dependent and probably no unique or optimal partition exists. However, a few
experimental studies have shown that protein sequence analysis, and even folding, is reliable when, in the original amino
acid sequence, one substitutes each character with its class. In many cases, experiments show that the new sequence
so obtained reliably represents properties of the originalsequence (see for instance [14]). Of course, in the best of all
possible worlds, one would like to use a relation among aminoacids that is realistic, rather than mathematically and
computationally pleasing. In a sense, the experimental results mentioned earlier for equivalent classes of amino acids,
show however that those classes are a good first approximation to more realistic relations.

We need the following:

Fact 3 LetX andY be two strings of equal length. We have thatxi ∈ TP (yi) if and only ifyi ∈ TP(xi).

Proof. Assume thatxi ∈ TP(yi), but the converse is not true. So,TP(yi) 6= TP(xi), but sincexi is in both, we have that
P is not a partition. ⊓⊔

Let the fourth family of tables consist of onlyTP , for some given partitionP of the alphabetΣ1. Notice that Fact 3
ensures that the definition of t-matching is well posed in this case.

Lemma 19. Pick any one ofT⋄, Tr, Tm or TP and consider the relationR in Definition 10 for the chosen family.R is an
equivalence relation. In particular, when the chosen family isTm, R is the same relation as that forTr.

Proof. Notice that, all four families contain the identity table. So, by Lemma 16, all that remains to show is that those
four families are closed under composition. That is well known for the first three. As forTP , simply notice that it is its
own composition.

For the second part of the lemma, with reference to Definition10, considerzi · · · zj andyi · · · yj and apply Fact 2 to
them. ⊓⊔

Example 20.Fix the family of tables to be one-to-one functions. Consider X = Y Z, whereY andZ are again the
strings in Example 12. Then,ab ⋄2 va andab ⋄2 ya are block motifs representing the same class, the one consisting of Y
andZ. We can pick any one of the two, since they are equivalent. Notice that the rule for the central part states that the
corresponding region for two strings described by the motifs must be each a renaming of the other.

Example 21.Fix the family of tables to beTa,b. LetZ = cdccdacdc andY = cdccdbcdc. LetX = ZY . Thencdc ⋄k cdc

is a block motif, representing bothY andZ. Again, the rule for the central part states that the corresponding region for
two strings described by the motif must be identical, exceptthata andb can be treated as the same character.

4 Longest Block Motifs with a Fixed Partition Table

We now give an algorithm that finds all longest block motifs ina string, when we use a partition table, known and fixed
once and for all. The algorithm is a non-trivial generalization of the corresponding one in [8]. In fact, we show that the
main techniques used there, and that we nickname asthe two-tree trick, is a very powerful tool to extract longest block
motifs in various settings, when used in conjunction with the algorithmic ideas presented in this Section.
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Indeed, a verbatim application of the two-tree trick would work on the p-suffix trees for the string and its reverse.
Unfortunately, that turns out to be not enough in our setting. We need to construct a tree somewhat different than a p-suffix
tree, which we refer to as a p-suffix tree on a mixed alphabet. Using this latter tree, the techniques in [8] can be extended.
Moreover, due to the generality of the algorithm constructing this novel version of the p-suffix tree, all the techniqueswe
discuss in this Section extend to the other three types of block motifs defined in Section 3, as it is discussed in Sections 5
and 6.

For each class inP , select a representative. The representatives give a reduced alphabetΣ3. For any stringY , let
Ŷ be its corresponding string on the new alphabet, obtained byreplacing each symbol inY with its representative. In
what follows, for our examples, we chooseTa,b, with a as representative. Consider a stringX and assume that it has
block motif V ⋄k W , with respect to tableTP . We recall thatV ⋄k W is a shorthand notation for the fact that strings in
the class (a) t-match in the positions corresponding to the central part and, (b) they (parametric) match in the positions
corresponding toV andW . We are interested in finding all longest block motifs.

Consider a Patricia TreeT , storing a set of strings. LetY be a string. The locusu of Y in T , if it exists, is the node
such thatY matches the string corresponding to the path from the root ofT to u. Notice that whenT is a p-suffix tree,
thenprev(Y ) must be the string on the path from the root tou. For standard strings, the definition of locus reduces to the
usual one. With those differences in mind, one can also definein the usual way the notion of contracted and extended
locus of a string. Moreover, given a nodeu, let d(u) be the length of the string of whichu is locus.

4.1 A p-suffix Tree on a Mixed Alphabet

Definition 22. The modified prev representation of a stringY , denoted as mprev(Y ), is defined as follows. If|Y | ≤ k,
then it isŶ . Else, it isŴprev(Z), whereY = WZ and|W | = k. For instance, letY = abauuxx, andk = 3. Then, its
modified prev representation is mprev(Y ) = aaa0101.

Definition 23. LetX be a string with a unique endmarker. LetT ′
X be a Patricia Tree storing each suffix ofX , via their

mprev representation. That is,T ′
X is like a p-suffix tree, but the initial part of each suffix is represented on the reduced

alphabet. For instance, letX = abbabbb andk = 2, the first suffix ofX is stored asaababbb.

Notice thatT ′
X hasO(n) nodes, since it hasn leaves and each node has outdegree at least two. Moreover, each edge

can be labelled with pointers to factors ofX , as it is custumary for suffix trees [18]. That would allow us to use it for
pattern matching, by resorting to some additional techniques from Baker [3]. So the total size of the tree isO(n). We
leave the details to the interested reader. In fact, as it will become clear later, we only need to build and use the topology
of T ′

X , since we do not use it for pattern matching.
We now show how to buildT ′

X in O(n log n) time. LetBuildTree be a procedure that takes as input then suffixes
of X and returns as outputT ′

X . The only primitive that the procedure needs to use is the check, in constant time, for the
lexicographic order of two suffixes, according to a new orderrelation that we define. The check should also return the
longest prefix the two suffixes have in common and which suffix is smaller than the other.

Definition 24. Let Y and Z be two strings. We define a new order relationY ≤m Z as follows. When|Y | ≤ k, it
must beŶ ≤3 Û , where|U | = |Y | is a prefix ofZ. Assume that|Y | > k, and letZ = US and Y = RP , with
|R| = |U | = k. Then, it must bêR <3 Û or R̂ = Û but prev (P ) ≤2 prev(S). With a little abuse of notation, we can
write mprev (Y ) ≤m mprev(Z), whenY ≤m Z.

Given the suffix treesT
X̂

[18] and the p-suffix treeTX , assume that they have been processed to answerLCA queries
in constant time [10, 20]. Then, it is easy to check, in constant time, the≤m order of two suffixes ofX , via two LCA

queries in those trees. Moreover, that also gives us the length of the matching prefix. The details are omitted. We refer to
such an operation ascompare(i, j), wherei andj are the suffix numbers. It returns which one is smaller and thelength
of their common prefix.

Now, BuildTree works as follows. It simply builds the tree, without any labelling of the edges, as it is usual in
Patricia Tries.
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ALGORITHM BuildTree

1. Usingcompare and the≤m relation, sort the suffixes ofX with, say, Heapsort [7].
2. Process the sorted listi1, · · · , in of suffixes in increasing order as follows:

2.1 When the first suffix is processed, create a root and a leaf,push them in a stack in the order they are created.
Label the leaf withi1.

2.2 Assume that we have processed the list up toig and that we are now processingig+1. Assume that on the stack we
have the path from the root to leaf labeledig in the tree built so far, from bottom to top. Let it beu1, u2, · · · , us.

2.2.1 Usingcompare and the≤m relation, find the longest prefix thatig andig+1 have in common. LetZ denote
that prefix andd be its length.

2.2.2 Pop elements from the stack until one finds two such thatd(ui) ≤ d < d(ui+1). Popui+1 from the stack. If
d(ui) = d, thenui is the locus ofZ in the tree built so far. Else,ui andui+1 are its contracted and extended
locus, respectively. Ifui is the locus ofZ, add a new leaf labeledig+1 as offspring ofui and push it on the
stack. Else, create a new internal nodeu, as locus ofZ, add it as offspring ofui and makeui+1 an offspring
of u. Moreover, add a new leaf labeledig+1 as offspring ofu and push the new created nodes on the stack,
in the order in which they were created. We now have on the stack the path from the root to the leaf labeled
ig+1.

Lemma 25. TreeT ′
X can be correctly built inO(n log n) time.

Proof. Proof of correctness is by induction, using the fact that thestrings are processed in sorted order. When a new suffix
is inserted, the only new internal node that needs to be created must be on the path from the root to the leaf representing
the last inserted suffix. That path is on the stack and it is correctly updated. As for the time complexity, the construction
of the suffix treeT

X̂
takesO(n) time [18], while that of the p-suffix treeTX takesO(n log n) time [2, 3]. The time to

preprocess those trees so thatLCA queries can be answered in constant time is againO(n) [10, 20]. WhenT ′
X is actually

built, it takesO(n) time, since step (2.) processes each internal node only a constant number of times and there are a total
of O(n) nodes. So, the sorting step is the most expensive, but viacompare, that can be done inO(n log n) time. ⊓⊔

4.2 The Algorithm

Consider the treesT ′
X andT

X
, where the latter one is a p-suffix tree. For each leaf labeledi in T

X
, change its label

to ben + 2 − i, so that whenever the left part of a block motif starts ati in X, we have the position inX where the
right part starts, including the central part. We refer to those positions astwins. Visit T ′

X in preorder. Consider the two
leavesℓ1 ∈ T ′

X andℓ2 ∈ T
X

, corresponding to a pair of twins. Assign toℓ2 the same preorder number as that ofℓ1. Let
V ⋄k W be a block motif and leti be one of its occurrences inX , i.e., where it starts. In order to simplify our notation,
we refer to such an occurrence via the preorder number of the leaf assigned toi + |V | + 1 in T ′

X . From now on, we
will simply be working with those preorder numbers. Indeed,given the tree we are in, we can recover the positions inX

or X corresponding to the label at a leaf in constant time, by suitably keeping a set of tables. The details are as in [8].
Moreover, we can also recover the position where a block motif occurs, given the block motif and the preorder number
assigned to the position. Given a treeT , let L(v) be the list of labels assigned to the leaves in the subtree rooted atv. For
the trees we are working with, those would be preorder numbers.

Definition 26. We say thatV ⋄k W is maximal if and only if extending any factor in the class, both to the left and to the
right, results in the loss of at least one element in the class. That is, by extending the strings in the class, we can possibly
get a new block motif, but its class does not contain that ofV ⋄k W .

Example 27.Let X = aabbaxxbxababyyayabbbuu. Block motif ab ⋄2 xx is maximal. Indeed, it represents the class of
factors{abbaxx, ababyy, abbbuu}. However, extending any of those factors both to the right and to the left results in a
smaller class.
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Lemma 28. Consider a stringX , its reverse, the treesT
X

andT ′
X . Assume thatV ⋄k W is maximal. Pick any repre-

sentative in the class, sayV QW . ThenV and mprev(QW ) have a locusu in T
X

andv in T ′
X , respectively. Moreover,

all the occurrences ofV ⋄k W are in L(u)
⋂

L(v). Conversely, pick two nodesu′ andv′, in T
X

andT ′
X , respectively.

Assume that there are at least two labelsi andj in L(u′)
⋂

L(v′) such thatLCA(i, j) = u′ andLCA(i, j) = v′, in T
X

andT ′
X , respectively. Assume also thatd(v′) > k. Then, they are occurrences of a maximal block motif.

Proof. Assume thatV ⋄k W is maximal and thatV has an extended locus inT
X

, but not a locus. Pick a factor ofX in
the class and, for ease of notation, let it beV QW . SinceV appears inX and such a string has no proper locus inT

X
,

we have that all factors ofX matchingV will also match if they are extended to the right by one character inX. But, by
Fact 1, we have that all factors ofX matchingV can be extended to the left by one character and still match. But then,
we can take all factors in the classV ⋄k W and extend them to the left without losing any element in the class. The same
conclusion can be derived forQW , with an analogous reasoning. This contradicts the maximality of the block motif.
To complete this part of the lemma, notice thatV must match the prefix of any other factor ofX in the classV ⋄k W .
Analogous considerations hold forQW. Therefore, all occurrences ofV ⋄k W must be both inL(u) andL(v).

Conversely, pick two nodesu′ andv′, in T
X

andT ′
X , respectively. Letd(v′) > k. Assume that there are at least two

labelsi andj in L(u′)
⋂

L(v′) such thatLCA(i, j) = u′ andLCA(i, j) = v′, in T
X

andT ′
X , respectively. LetZ be

the string, the reverse of which has locusu′ in T
X

, and letP , |P | = k, andM be two strings such thatmprev(PM) has
locusv′ in T ′

X . Notice that sinced(v′) > k, a string of the claimed form must exist. Assume also thatZPM occurs ati
in X . Then,Z ⋄k M must be a maximal block motif. Indeed, it also occurs atj and, if extended both to the left and to
the right,i andj cannot be both occurrences of that extension. ⊓⊔

We also need the following:

Lemma 29. Consider an internal nodev in T
X

and two of its offsprings, say,v1 andv2. Letj1, j2, · · · , jm be the sorted
list of labels assigned to the leaves in the subtree rooted atv1 and leti be a label assigned to any leaf inv2. Letg be the
first index such thatjg ≤ i. Similarly, letc be the first index such thati ≤ jc. The maximal block motif of maximum length
that i forms withj1, j2, · · · , jm is either withjg, if it exists, or withjc, if it exists, provided that eitherd(LCA(i, jg)) > k

or d(LCA(i, jc)) > k and theLCA is computed onT ′
X .

Proof. Notice that, by definition of preorder visit of a tree, the sequence given by the depths of theLCA, in T ′
X , of i

with jc, · · · , jm, respectively, is non-increasing. Now letu = LCA(i, jc) in T ′
X and assume thatd(u) > k. We know

thatLCA(i, j1) = v in T
X

. So, applying Lemma 28 to these two nodes, we have a maximal block motif. The length of
the block motif is at least as long as that of any other possibly given byjc+1, · · · , jm.

An analogous reasoning holds withj1, · · · , jg, except that now the sequence of depths of theLCA’s, in T ′
X , of i with

j1, · · · , jg is non-decreasing.
Therefore, the longest block motif must be with eitherjg or jg+1. ⊓⊔

We now present the algorithm.

ALGORITHM LM

1. Build T
X

andT ′
X . Visit T ′

X in preorder and establish a correspondence between the preorder numbers of the leaves
in T ′

X and the leaves inT
X

. TransformT
X

into a binary suffix treeB (see [8]);
2. Visit B bottom up and, at each node, merge the sorted lists of the labels (preorder numbers inT ′

X ) associated to the
leaves in the subtrees rooted at the children. Let these lists beA1 andA2 and assume that|A1| ≤ |A2|. MergeA1

intoA2. Any time an elementi of the first list is inserted in the proper place in the other,e.g., jg andjc in Lemma 29
are identified, we only need to check for two possibly new longest maximal block motifs thati can generate. While
processing the nodes in the tree, we keep track of the longestmaximal block motifs found.

Theorem 30. ALGORITHM LM correctly identifies all longest block motifs in a stringX , when the matching rule for
the central part is given by a partition table. It can be implemented to run inO(n log n) time.
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Proof. The proof of correctness comes from Lemma 29. Indeed, processingB bottom up means searching for longest
block motifs of the formV ⋄k W , with the length ofV decreasing along a path. At an internal node, we must check for
new maximal block motifs, but by Lemma 29, the number of new candidates is limited. Indeed, for each element ofA1,
we need to check only two elements ofA2, via LCA queries.

In turn, such a selection of candidates can be efficiently implemented by a careful use of data structures for merging
and a processing of “merging” operations according to the “smaller half trick”. Indeed, at the beginning of the algorithm,
each label at a leaf is in a list by itself. At each internal node, the list of its children is merged, being careful to merge the
smaller into the bigger one. Finally, the lists are represented as balanced search trees, and an optimal merging procedure is
used. The details of the analysis are as in [8]. Finally, we need to build bothT

X
andT ′

X , which can be done inO(n log n)
time ([3, 18] and Lemma 25). ⊓⊔

5 Longest Block Motifs with Either the Don’t Care Table or wit h Renaming Functions

In this Section we show how to specialize the algorithm in Section 4 when the central part is specified either byT⋄ or Tr.
All we need to do is to define two lexicographic order relations, analogous to the one in Definition 24. In turn, that will
enable us to define two new versions of variants of the treeT ′

X . Each of the two can still be built inO(n log n) time with
Algorithm BuildTree and used inAlgorithm LM to identify each type of motifs. We limit ourselves to defining
these new trees. For the new objects we define, we keep the samenotation as for their analogous in Section 4.

5.1 The Don’t Care Table

Let ∗ be a symbol not belonging to the alphabet and not matching anyother symbol of the alphabet. Consider Definition
22 and change it as follows:

Definition 31. The modified prev representation of a stringY , denoted as mprev(Y ), is defined as follows. If|Y | = m ≤
k, then it is∗m. Else, it is∗kprev(Z), whereY = WZ and|W | = k. For instance, letY = abauuxx, andk = 3. Then,
its modified prev representation is mprev(Y ) = ∗ ∗ ∗0101.

We now define another Patricia Tree, still denoted byT ′
X . Consider Definition 23 and change it as follows:

Definition 32. LetX be a string with a unique endmarker. LetT ′
X be a Patricia Tree storing each suffix ofX , via their

mprev representation according to Definition 31. That is,T ′
X is like a p-suffix tree, but the initial part of each suffix is

represented with∗’s. For instance, letX = abbabbb andk = 2, the first suffix ofX is stored as∗ ∗ babbb.

Finally, consider Definition 24 and change it as follows:

Definition 33. Let Y and Z be two strings. We define a new order relationY ≤m Z as follows. When|Y | ≤ k, it
must be|Y | ≤ |Z|. Assume that|Y | > k, and letZ = US and Y = RP , with |R| = |U | = k. Then, it must be
prev (P ) ≤2 prev(S). With a little abuse of notation, we can writemprev(Y ) ≤m mprev (Z).

Observe thatAlgorithm BuildTree will work correctly with this new definition of lexicographic order, except
that now, in order to compare suffixes, we need only the p-suffix treeT

X̂
. Finally, the results in Section 4.2 hold verbatim:

Theorem 34. ALGORITHM LM correctly identifies all longest block motifs in a stringX , when the matching rule for
the central part is given by the don’t care table. It can be implemented to run inO(n log n) time.
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5.2 Renaming Functions

Consider Definition 22 and change it as follows:

Definition 35. The modified prev representation of a stringY , denoted by mprev(Y ), is defined as follows. If|Y | ≤ k,
then it is prev(Y ). Else, it is prev(W )prev(Z), whereY = WZ and |W | = k. For instance, letY = xuxuuxx, and
k = 3. Then, its modified prev representation is mprev(Y ) = 0020101. Notice that its prev representation is0022131.

We now define another Patricia Tree, still denoted byT ′
X . Consider Definition 23 and change it as follows:

Definition 36. Let X be a string with a unique endmarker symbol. LetT ′
X be a Patricia Tree storing each suffix ofX ,

via their mprev representation according to Definition 35.

Finally, consider Definition 24 and change it as follows:

Definition 37. LetY andZ be two strings. We define a new order relationY ≤m Z as follows. When|Y | ≤ k, it must
be prev(Y ) ≤2 prev(Z). Assume that|Y | > k, and letZ = US andY = RP , with |R| = |U | = k. Then, it must be
prev (R) <2 prev (U) or prev (R) = prev(U) andprev (P ) ≤2 prev (S). With a little abuse of notation, we can write
mprev(Y ) ≤m mprev (Z).

Observe thatAlgorithm BuildTree will work correctly with this new definition of lexicographic order, except
that now we again need only the p-suffix treeT

X̂
in order to compare two suffixes inX . Finally, the results in Section

4.2 hold verbatim:

Theorem 38. ALGORITHM LM correctly identifies all longest block motifs in a stringX , when the matching rule for
the central part is given by renaming functions. It can be implemented to run inO(n log n) time.

6 Further Extensions

In the previous Sections, we have considered the notion of block motif with respect to tables and functions. In particular,
the central part is constrained by a notion of match given by “rules” described by “functions”. However, as it should be
clear from the presentation in Section 4, the entire approach proposed here will work as long as we can define a linear
order relation on strings analogous to Definition 24. We outline here a case in which that can be done and that cannot be
expressed by “functions”. We limit ourselves to consider standard strings.

Definition 39. Let i1, j1, · · · , is, js be a given sequence of integers such that their sum is equal tok. Given two strings
C andD we say that they match if and only if there exists a regular expression∗i1Z1 ∗i2 Z2 · · · ∗is Zs, generating both
strings, where∗ denotes a don’t care character andZf is a string of lengthjf . That is, apart from the don’t care regions,
the two strings are the same

For convenience of the reader, we now state the definition of ageneralk repeat, and of a corresponding motif when
the matching rule is given by the regular expression in Definition 39. They are the analogous to Definitions 9 and 11.

Definition 40. Let Y be a factor ofX . Y is ageneralk-repeat, with respect to the regular expression in Definition 39,
if and only if the following conditions hold: (a)Y can be written asV QW , V andW both non-empty and|Q| = k (b)
there exists another factorZ = V ′Q′W ′ of X , such thatV = V ′, W = W ′ andQ andQ′ are both generated by the
regular expression in Definition 39.

Definition 41. Let R(k, i, j) be the following binary relation on strings of lengthm, with j < m andk = j − i + 1:
ZR(k, i, j)Y if and only if (z1z2 · · · zi−1), (zj+1 · · · zm) and (y1x2 · · · yi−1), (yj+1 · · · ym) exact match, respectively,
while (zi · · · zj) and(yi · · · yj) are generated by the regular expression in Definition 39,1 < i ≤ j < m.

SinceR is an equivalence relation, we can define the corresponding motifs:
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Definition 42. Given a stringX , consider a factorY , of lengthm, and assume that it is ak-repeat. Fixi and j as in
Definition 41 and consider all factorsZ of X such thatY R(k, i, j)Z.Then, for each class with at least two elements, a
block motif is any arbitrarily chosen factor in that class, say Y . As for standard strings, the block motif can be written
asy1y2 · · · yi−1 ⋄k yj+1 · · · ym, once it is understood that⋄k is a place holder specifying a central part of the motif and
that the matching criterion for that part is given by the regular expression in Definition 39.

Consider Definition 22 and change it as follows:

Definition 43. Let Y be a string of lengthm. Let f be the maximum index such thatΣ
f
h=1(ih + jh) ≤ m. Then

prev(Y ) = ∗i1Y1 ∗i2 Y2 · · · ∗if Yf , whereYh is the factor ofY following the don’t care part∗ih .

Again, we can define another Patricia Tree, still denoted byT ′
X . Consider Definition 23 and change it as follows:

Definition 44. Let X be a string with a unique endmarker symbol. LetT ′
X be a Patricia Tree storing each suffix ofX ,

via their mprev representation according to Definition 43.

Now define a lexicographic order relation on strings inducedby theirprevrepresentation. That is,X is lexicograph-
ically smaller thanY if and only if prev(X) ≤prev(Y ). Observe thatAlgorithm BuildTree will work correctly
with this new definition of lexicographic order, except thatnow we need only the suffix treeT

X̂
in order to compare two

suffixes inX . Moreover, such a comparison can be made inO(s) time, yielding a total ofO(sn log n) time. Sinces ≤ k

is fixed and independent ofn, we have once again that the results in Section 4.2 hold verbatim:

Theorem 45. ALGORITHM LM correctly identifies all longest block motifs in a stringX , when the matching rule for
the central part is given by the regular expression in Definition 39. It can be implemented to run inO(n log n) time.

7 Conclusions

We have considered a new notion of motif. It is of the formV ⋄k W , wherek is fixed. The central part of the motif can
be more constrained than what is usually allowed by the don’tcare regular expression. We have also investigated several
matching criteria for the central part, all related to parameterized strings and functions. Standard strings are a special
case. Moreover, we have also shown that our framework can be extended to “central parts” given by regular expressions.

We have also presented a single algorithm that can be specialized to deal with all of the cases discussed here, showing
that thethe two tree trickdevised by Crochemore et al. [8] can be extended to yield a general technique to identify the
loongest motifs of the kind presented in this paper.
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