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Abstract

The expression of numerous plant mRNAs is attenuated by RNA sequence elements located in 

the 5' and 3' untranslated regions (UTRs).  For example, in plants and many higher eukaryotes, 

roughly 35% of genes encode mRNAs that contain one or more upstream open reading frames 

(uORFs) in the 5' UTR.  For this dissertation I have analyzed the pattern of conservation of such 

mRNA sequence elements. In the first set of studies, I have taken a comparative transcriptomics 

approach to address which RNA sequence elements are conserved between various families of 

angiosperm plants.  Such conservation indicates an element's fundamental importance to plant 

biology, points to pathways for which it is most vital, and suggests the mechanism by which it 

acts.  Conserved motifs were detected in 3% of genes.  These include di-purine repeat motifs, 

uORF-associated motifs, putative binding sites for PUMILIO-like RNA binding proteins, small 

RNA targets, and a wide range of other sequence motifs.  Due to the scanning process that 

precedes translation initiation, uORFs are often translated, thereby repressing initiation at the an 

mRNA's main ORF.  As one might predict, I found a clear bias against the AUG start codon 

within the 5' untranslated region (5' UTR) among all plants examined.  Further supporting this 

finding, comparative analysis indicates that, for ~42% of genes, AUGs and their resultant uORFs 

reduce carrier fitness. Interestingly, for at least 5% of genes, uORFs are not only tolerated, but 

enriched.  The remaining uORFs appear to be neutral.  Because of their tangible impact on plant 

biology, it is critical to differentiate how uORFs affect translation and how, in many cases, their 

inhibitory effects are neutralized.  In pursuit of this aim, I developed a computational model of 

the initiation process that uses five parameters to account for uORF presence.  In vivo translation 

efficiency data from uORF-containing reporter constructs were used to estimate the model's 

parameters in wild type Arabidopsis.  In addition, the model was applied to identify salient 

defects associated with a mutation in the subunit h of eukaryotic initiation factor 3 (eIF3h).  The 

model indicates that eIF3h, by supporting re-initation during uORF elongation, facilitates uORF 

tolerance.
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Chapter 1: Introduction
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Proteins are encoded by DNA.  An intermediate transcript molecule, mRNA, is used to 

relay this coding information from the genome to the ribosomes.  At ribosomes, amino acid 

polymerization and, hence, protein production takes place.  Under this simple model, one would 

expect a large positive correlation between mRNA and protein concentrations, but for many 

genes in plants, this is not the case [1].  Roughly 50% of this decoupling is the result of processes 

that affect translation, primarily through initiation [2].  Moreover, the translation of an mRNA is 

intimately related to its degradation and cellular localization [3].  Thus, translation control is 

central to many developmental, metabolic, and pathological processes [4].  Additionally, a 

critical step in the life cycle of all viruses is to co-opt the host ribosome for the production of 

their requisite proteins.  Viruses do this through a seemingly unending variety of mechanisms, 

and these are typically understood only to the degree that we understand the translation apparatus 

being hijacked [5].  Finally, understanding the mechanics and distribution of both global and 

mRNA-specific regulatory mechanisms will help to complete our understanding of gene 

expression and to broaden the palette of tools for engineering specific expression levels [6].

With this dissertation, I have attempted to identify which modes of translation control are 

most common in plants and which plant genes are specifically regulated.  Of all candiate modes 

of regulation, my main focus has been on small upstream open reading frames (uORFs) found in 

many mature mRNAs.  Additionally, I have developed a series of computational models of 

translation initiation in the presense of uORFs, both with regard to wild-type plants and initiation 

factor mutants.  These biological questions have led to the development of software that may 

have general utility in mutliple fields, from comparative sequence analysis in plants to the 

computational modeling of molecular processes.          
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Section 1: The life and death of an eukaryotic mRNA

From its initial transcription to its final degradation, an mRNA is continuously partnered 

with proteins [3].  Unbound, 'naked' mRNA is rapidly degraded.  The composition of interacting 

proteins dictates an mRNA's stage in life - transcription, splicing, export, transport, translation, 

or degradation.  Whether the protein encoded by a gene is expressed at continuous levels or 

whether expression varies over time and space depends not only on the transcription rate but on 

the relative kinetics of these downstream events.  In turn, these kinetics can be dramatically 

influenced by cis and trans-acting factors.  Some of these pathways have global effects, such as 

the phosphorylation state of a translation initiation factor [7], while other act in mRNA-specific 

ways, such the interaction between a short mRNA sequence and a Pumilio-like RNA-binding 

protein [8].

Transcription of mRNA is followed by immediate and continual interaction with a diverse 

set of proteins 

Short sequences in the genome attract the transcriptional machinery to a position 

upstream of the DNA encoding a protein.  mRNA is copied from the DNA antisense strand in the 

3' to 5' direction, creating a letter for letter transcript (Figure 1.1).  In mRNA, a uridine (U) 

supplants thymine (T).  In eukaryotes, proteins are encoded in fragments, called 'exons', that are 

stitched together in the nucleus by the splicesome.  Exon junction complexes (EJCs) interact 

with the splicing machinery and cooperatively bind mRNA, in a sequence-independent manner, 

20-25 nucleotides (nts) upstream of the splice site.  The position of an EJC relative to the stop-

codon of the protein coding frame can have dramatic effects on the stability of a transcript. 

While still in the nucleus the spliced mRNA is matured by adding a 5'-methylguanosine cap and 

a poly-Adenine (poly-A) tail.  Bound nuclear export factors allow the mRNA passage through 

3



the nuclear pore and into the cytoplasm.  These factors are removed in transit, leaving exposed 

landing sites for the translation pre-initation complex.

Figure 1.1: Metabolic cycle of mRNA.  
mRNAs are transcribed by RNA polymerase II.  Introns are removed via splicing and an exon  
junction complex (EJC) remains bound at the site of ligation.  Capped and polyadenylated  
mRNAs are exported.  Poly-A binding proteins interact with the cap to facilitate initiation.  After  
multiple rounds of translation mRNAs are degraded.  From [9]. 

The pre-initiation complex binds near the mRNA 5' cap and begins scanning

Although the exact sequence of binding events is unclear, the charged methionyl-tRNA, 

the small-ribosomal subunit, and a suite of eukaryotic initation factors (eIFs) - 2, 3, 4, 5 - 

converge at the 5' cap of the mRNA (Figure 1.2A).  Additionally, eIF4G interacts with poly-A 

binding proteins to circularize the mRNA.  This closed-loop form is thought to facilitate 
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ribosome recycling and/or to stabilize the interactions between the mRNA and initiation factors 

that would otherwise be lost to the cytosol after translation initation [7].     

Once established, the pre-initation complex moves in the 5' direction via a hypothetical 

Brownian ratchet [10].  The first AUG encountered by the pre-intiation complex should stimulate 

initation, although the effectiveness of an AUG is never 100% and can vary by 3-fold based on 

the surrounding sequence [11,12].    

A pioneering round of translation occurs during which residual proteins are displaced by 

the processing ribosome. A degradation pathway, called 'nonsense-mediated decay' (NMD), can 

be triggered when a ribosome encounters a stop-codon  upstream of an EJC (Figure 1.2D).  The 

'nonsense' in NMD refers to polymerase errors that introduce inappropriate stop codons; hence, 

this pathway is thought to be an error-control check-point for transcripts.  Once the pioneering 

round is finished, the mRNA forms a relatively stable circular polyribosome and conventional 

protein production proceeds.

5
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Figure 1.2 (next page): General models of initiation, active mRNA translation, and mRNA 
degradation.  
A) Cap-binding, scanning, initiation, elongation, and termination occur in sequential order.  5'  
and 3' ends of mRNA are indirectly associated via the Poly-A binding protein (orange), eIF4G 
(crimson), and eIF4E (brown).  eIF4E attracts a complex containing the small-ribosomal  
subunit (blue), eIF3 (green), eIF2 (light pink), and the Met-tRNA (gray with anticodon),  
referred to as the 43S complex.  Upon AUG recognition eIF2 leaves and the large ribosomal  
subunit (blue, larger) binds.  Polypeptide (dark pink) is polymerized.  Deadenylation eventually  
results in mRNA degradation.  B) XYZ model of mRNA specific protein interaction and  
translation repression.  While maintaining mRNA stability, the XYZ complex inhibits  
translation because the XY proteins outcompete the eFI4g for eIF4e and prevent the 43S-
complex from binding to the 5' end.  C) Small-RNA (21-24nts) interact with the mRNA and  
target it for degradation.  D) When an exon junction occurs downstream of an  
elongation/termination reaction, the mRNA is directed into the NMD pathway.  E) Degradation  
occurs after the poly-A tail has been removed.  Decapping follows (not shown), and the 3'-to-5'  
and 5'-to-3' exoribonuclease activity of the Exosome and XRN4, respectively, catabolizes the  
mRNA.  F) 'Re-scanning' and, thus, re-initiation can occur after elongation and termination,  
but the eIF2-Met-tRNA must be reaquired in order to decode 3' AUGs.   
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Initiation is the rate-limiting step of translation

During translation, mRNAs typically form a polyribosome ('polysome', for short).  As the 

name implies, multiple ribosomes simultaneously translate the mRNA.  Interestingly, during log-

phase growth in yeast, the ribosome density across an mRNA is far lower  than the maximum 

expected by the spatial dimensions of the ribosome [13] (Figure 1.3A).  This may be explained, 

in part, by conformational demands on the polysome [14], but most research indicates that 

initiation is rate-limiting relative to elongation and termination [7].  ORF length is also thought 

to have a non-linear effect on  translation rates (Figure 1.3B) [15,16], although there is currently 

conflicting data as to the nature of this relationship - some data indicates that shorter transcripts 

have more efficient initiation [17], while other data suggest that the relationship relates to the 

elongation phase [16]. 

Figure 1.3: Genome-wide ribosome density in yeast 
A) Ribosome density is, on average, ~5-fold lower than theoretical maximum.  Plot shows the  
number of genes that fall within a particular range of ribosome-density (ribosomes per 100 nts).  
B) As ORF length increases, ribosome-density declines.  Density is plotted against ORF length.  
Multiple curves in the data result from the division of total ribosome number (integer) by ORF  
length to get ribosome-density.  Red line is moving average (50 nt window) Modified from [13].  

mRNA half-life is highly variable and is loosely coupled to translation 

By stopping transcription and monitoring mRNA content over time with microarrays, 

researchers can observe the degradation rates of nearly all constitutively expressed mRNAs in 
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Arabidopsis [18].  Based on those studies, the median half-life of an mRNA in Arabidopsis is ~4 

hrs.  The absence of an intron and the presence of an small-RNA binding site positively correlate 

with the speed of decay.  In plants, the lack of an intron reduces transcript half-life to ~2hrs. 

Energy metabolism and protein synthesis genes produce very stable mRNAs with a median half-

life of ~8hrs.  By comparing unstable and stable transcripts, the authors attempted to define 6-

letter sequences that mediate decay rate.  Unstable transcripts tended to have uridine-rich 

elements in their 3' UTRs and, to a lesser extent, 5' UTRs.  Otherwise, there were no obvious 

trends.

Translation and mRNA decay rates are almost certainly related, yet molecular explanations 

linking these processes are still speculative.  As discussed below, the poly-A tail is a critical 

point for integrating these two processes, making it hard to untangle the exact causal chain.  At 

the very least, stalled elongating ribosomes are thought to trigger mRNA decay, or 'no-go' decay 

[19], a process that directly links abnormal translation with decay.  Two cellular structures - P-

bodies and stress granules - are thought to be sites of translational senescence and mRNA 

degradation.  Because these structures appear to be devoid of large ribosomal subunits, the 

contained mRNAs are not in an elongating phase of translation [19].  Interestingly, mRNAs can 

be resurrected from these structures, particularly stress granules, and returned to the general pool 

of translating mRNA.  

5' and 3' untranslated regions (UTRs) are operationally distinct

An open reading frame (ORF) is a sequence of codons that starts with a start codon (AUG) 

and ends with an in-frame stop codon (UAA, UAG, or UGA).  Conventionally, a coding 

sequence (CDS) is an ORF with some evidence of actually encoding a protein - experimental 

confirmation, mutation bias, presence in an mRNA, or homology to another known CDS.  Some 

authors use 'ORF' to more generally describe a sequence of codons that is devoid of stop codons, 

regardless of whether or not it possesses a start codon.  Instead, the term 'continuous reading 
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frame' should be used for such situations.  ('Unidentified reading frame' has also been used 

synonymously but is less clear.)

Based on the previous subsections, we can divide a mRNA into regions in which distinct 

events are occuring.  The 5' UTR, defined as the region of the mRNA from the 5' cap  (or 

transcriptional start site) to the translational start site of the mORF, is continually scanned by 

the pre-initation complex.  Such a process should in theory displace bound proteins and disrupt 

low-energy secondary structures [12].  Alternatively, the region of the mRNA from the stop of 

the longest open-reading frame to start of the poly-A tail, the 3' UTR, is relatively free of such 

ribosomal traffic.  In mammalian systems, as predicted, the 3' UTR appears to house the bulk of 

small-RNA targets and other cis-acting elements.

General decoupling of mRNA and protein concentrations

Proteins are usually the operational manifestation of a gene.  mRNAs are an intermediate 

in gene expression.  Thus, many microarray experiments operate under the assumption that 

transcriptional change inevitably leads to a change in protein concentration.  More narrowly 

defined, the assumption is often that the concentration of mRNA is linearly proportional to the 

concentration of protein.  Based on proteomic quantification techniques using mammalian cell 

lines, it appears that this is not the case, and that mRNA concentration only accounts for one-

third of the variation observed in protein concentration [2].  Moreover, of this third, it is still 

unclear whether transcription or mRNA stability (either related to translation or direct 

degradation) is more important in predicting mRNA concentration.  Comparable results have 

emerged from assessing translation rates in yeast wherein differential translation rates account 

for 25% of variation in protein abundance, while mRNA abundance accounts for only 17% [16]. 

A revised model of gene expression may be emerging in which promoter modules are 

responsible for whether a gene is expressed or not, but precise dosage of a gene product is 

mediated by translation, mRNA degradation, and protein degradation.
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Section 2: Mechanisms of translational control

Measuring translation efficiency

In order to assess translational control, we must be able to identify cases where translation 

efficiency is reduced or enhanced in response to a signal or mutation.  This, in turn, requires a 

valid way to assess the translation state of an mRNA, while controlling for possible changes in 

other steps of gene expression, such as transcription, mRNA degradation, and protein 

degradation.

 Ideally, one could watch a single mRNA in vivo and count the number of initiation events 

that occur per second.  Though single molecule studies are approaching this goal [6,20], such 

resolution is still intractable, particularly for large-scale characterization of translation.  As an 

alternative approach, mRNAs can be isolated from cell extracts based on the number of 

ribosomes with which they are associated.  A shift in this number suggests some change in the 

translation rate of an mRNA [17].  Moreover, by counting the number of mRNAs in each 

ribosomal fraction and assuming that elongation and termination rates are fairly constant, one 

can estimate the initiation rate for that mRNA based on the ribosomal density across the mRNA - 

the lower the density, the lower the initiation rate.

Alternatively, the concentration of a mRNA that encodes a protein, typically a light-

emitting reporter, and the concentration of that protein can be quantitated and divided by one 

another [20].  This then gives a protein per mRNA value.  Assuming protein degradation is not 

affected, this value can be used to calculate a relative change in translation rates across 

conditions. 

Another recently developed approach to estimating translation efficiency involves 

sequencing fragments of mRNA that are protected by ribosomes [16].  Of the techniques 

described, nucleotide-specific ribosome mapping is the only one to allow researchers to 
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interrogate the in vivo kinetics of translation [21], although this requires numerous assumptions 

including a priori prediction of elongation times based on tRNA abundance.

Initiation factor availability and activity has a global impact on mRNA translation

eIF2 delivers the initiation tRNA (Met-tRNA) to small-ribosomal subunit prior to 

scanning.  Phosphorylation of eIF2 reduces the activity of eIF2B, which is responsible for 

exchanging guanosine di-phosphate (GDP) for a GTP in order to create an active eIF2.  In the 

absense of the eIF2-Met-tRNA complex, nearly all genes are repressed.  This pathway appears to 

be present in all eukaryotic kingdoms.  Interestingly, as discussed below, some genes in fungi 

and mammals that are already repressed through other mechanisms are de-repressed when eIF2 

is phosphorylated.  It is not clear, how common such de-repression is in plants.

Any change in expression involving key translation factors will have an impact on global 

translation efficency.  During plant stress such as drought and oxygen-deprivation, the translation 

state of most mRNAs is reduced [22,23].  Whether this response is mediated solely by the eIF2-

kinase pathway is unknown.  Many eIFs are phosphorylated but the functional significance of 

such modification has not been determined.  Nearly all related mutational analysis in mammals 

suggest that, excluding eIF2, phosphorylation state is not a major factor in the global translation 

response [7].

Generic sequence features of eukaryotic mRNAs affect both translation and mRNA 

degradation

Nearly all eukaryotic mRNAs have a methylated cap and a poly-A tail, both of which are 

critical for mRNA stability.  Additionally, the poly-A tail is the recognition site for poly-A 

binding proteins (PABPs) that interact with initiation factors to enhance translation.  In this 

regard, the poly-A/PABP interaction is one of the few RNA-protein interactions thought to 

enhance translation.  As the poly-A tail gets degraded in the cystosol, the mRNA becomes more 
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susceptible to degradation.  This shortening typically coincides with reduced translation 

efficiency, but not always [19]. 

Upstream open-reading-frames allow for mRNA specific de-repression 

As mentioned above, some mRNAs avoid the repressive effects of phosphorylated-eIF2. 

More exactly, they increase in concentration during stress conditions relative to their non-

stressed concentrations.  This de-repression is mediated by upstream open reading frames 

(uORFs).  These elements and their molecular effects will be discussed in detail at many points 

throughout this thesis.  In short, the 5' UTR can contain short ORFs that, because of  5' to 3' 

scanning, get translated as short peptides.  Surprisingly, after termination the small ribosomal 

subunit continues scanning, but, because the eIF2-Met-tRNA is lost at initiation, this translation 

event temporarily reduces the small ribosome's ability to recognize downstream start sites 

(Figure 1.2F and 1.3).  If post-termination scanning continues long enough, eIF2-Met-tRNA can 

be regained.  In terms of de-repression, mRNAs can have multiple uORFs that are positioned in 

such a way that, at typical levels of active eIF2 , one uORF is highly suppressive, but, when eIF2 

has low activity (phosphorylated state), the repressive uORF is skipped.  Two of the best known 

examples are GCN4 in yeast and ATF4 and ATF5 in mammals (Figure 1.4), all of which are 

transcription factors that reside at the head of key metabolic pathways.

De-repression mechanisms aside, most uORFs simply repress translation [24].  Moreover, 

this repression (or de-repression) is rarely dependent on the encoded peptide, although there are 

very interesting cases where uORF peptide sequences are functionally constrained [25,26].  In 

plants, two functional uORF peptides have received  experimental attention.  bZip11 is a short 

transcription factor.  The bZip11 mRNA harbors a uORF that encodes a sucrose-responsive 

peptide [27].  The nascent peptide possibly interacts with sucrose and stalls the translating 

ribosome, thus repressing the translation of the downstream transcription factor.  uORFs in 

AdoMetDC are thought to respond to polyamines in an analogous way [28,29].
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small-RNAs target mRNA for translation repression and degradation

Small-RNA-dependent (smRNA) repression ("silencing") involves the processing of a 

double-stranded RNA precursor into a short, single-stranded RNA molecule that then targets 

complementary RNAs for degradation (Figure 1.2C).  The pathway is likely to have evolved as 

an immune response to viruses and transposable elements, not for the regulation of endogenous 

transcripts [30,31], and the number of such transcripts thought to be under smRNA control in 

plants is actually quite small [32].  Still, smRNA target sites of particular mRNAs appear to be 

conserved and, by inference, important to the carrier's survival and reproduction in its native 

environment [33].
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Figure 1.4: The mechanism of regulation of ATF4 and ATF5 mRNA translation. 
A) Diagram showing the sizes and spacing disposition of the two uORFs in activating  
transcription factor 4 (ATF4) mRNAs and ATF5 mRNAs. B) The pattern of translation in  
unstressed conditions, when eIF2–GTP–Met- tRNA ternary complexes (eIF2-TCs) are  
abundant. Small (40S) ribosomal subunits, with associated eIF2-TCs (blue), scan the mRNA in  
the direction shown.  If eIF2-TCs are abundant, most of the 40S subunits that resume scanning  
after uORF1 translation will acquire a new eIF2-TC in time to initiate translation of uORF2,  
and ribosomes that translate this second uORF will be unable to initiate at the ATF4 or ATF5  
AUG because uORF2 is too long to allow rescanning, and because it would require backwards  
scanning, which doesn’t seem to occur over long distances. C) Pattern of translation in stressed  
conditions, when eIF2-TC availability is low owing to eIF2 phosphorylation. Consequently,  
most of the 40S subunits that resume scanning after translating uORF1 acquire a new eIF2-TC 
only after they have migrated past the uORF2 initiation codon, but in time to initiate at the next  
AUG, which is at the start of the ATF ORF in both cases.  From [7].  

A

B
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The structural basis for RNA recogniton 

While the mechanism of direct interaction between an smRNA-target and the mature 

smRNA is fairly intuitive, RNA-protein interactions are much more various.  In terms of RNA-

specific protein interactions known to affect translation in eukaryotes, structural studies indicate 

that nearly all such interactions require some primary sequence element, although these are often 

supplemented by local secondary structure [34].  The primary sequence element can be as short 

as four nucleotides and, even at this length, can contain degenerate sites.  Though we are focused 

on mRNA-specific interactions, there are many other RNA-protein interactions that do not 

require sequence or structural specificity.  Moreover, RNA and protein, because of their often 

opposing charges and their conformational variability, form interactions of moderate affinity by 

default [35].  It is doubtful that many of these interactions have any functional significance. 

With regard to large-scale interaction studies, this complication highlights the need for assessing 

sequence constraint through evolutionary analysis in order to differentiate functionally 

significant interactions from those that are effectively inert.

Other cis-acting elements affect the stability, translation, and localization of specific plant 

mRNAs 

Deriving most of their inspiration from research in Drosophila, Jackson, et. al [7] have 

proposed the XYZ paradigm for mRNA-specific translation repression by trans-acting proteins 

(Figure 1.2B).  Under this paradigm, protein X interacts with a mRNA's 3' UTR, via structures 

described above.  Another region of Protein X interacts with an adapter, Protein Y, that in turn 

interacts with a cap-binding Protein Z.  This series of interaction creates an inhibitory, closed-

loop structure.  It is somewhat paradoxical that the closed-loop structure formed by the poly-A 

tail binding is excitatory while the XYZ structure is inhibitory, but poly-A binding itself can be 

thought of as an XYZ process, where PABP is the X protein and Y is the pre-initiation complex. 

The critical difference is that Y in the case of poly-A binding goes on to initiate translation while 
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Y in the inhibitory case remains locked to the cap.  Based on this generic model, stoichiometric 

competition for the 5' UTR cap should have a substantial impact on translation rate.

In the animal kingdom, translation repression and mRNA localization are often 

coordinated processes.  XYZ complexes, which regulate Nanos, Caudal, Oskar, and Hunchback 

proteins, are vital for establishing morphogen gradients in the zygote.  Precise regulation and 

localization of these proteins at this stage is required because the specific sectors of a single cell 

must be partitioned into smaller, more differentiated cells. Because they have fewer body axises, 

plants may not need such a precise combinatorial pattern of morphogens.  That said, the first 

division of a plant zygote is asymetrical and can be modified via mutations in the kinase, 

SHORT SUSPENSOR [36].  Like the Drosophila proteins discussed above, this protein has a 

parent-of-origin effect and is translationally repressed.

Many mRNAs in somatic cells also need specific localization and translation.  Perhaps, 

best known of these is the β-Actin transcript that is targeted to the leading edge of motile cells 

[37].  This transport is coupled with inhibition of initiation [38].  In fact, localization  appears to 

be dependent on translation repression in all transcripts known to be actively localized [39].  In 

plants, examples of mRNA localization that have had this degree of experimental attention are 

rare.  mRNAs associated with seed-storage storage proteins are targeted to particular subdomains 

of the ER.  Importantly, mis-targeting of the mRNA disrupts resultant protein localization [40]; 

in the absence of such evidence, unknown nascent peptide signals could explain mRNA 

targeting.  In turn, many transcripts whose encoded proteins function in the chloroplast are 

known to be enriched around the chloroplast - subunits of the Mg chelatase, protochlorophyllide 

oxidoreductase, and chlorophyll a/b binding protein - but the molecular mechanism has yet to be 

specified [41].

Translational control has been mapped to specific regions of the mRNA for a handful of 

plant genes (Figure 1.5).  These elements are typically located within the untranslated region of 

the mRNA, although the 5' terminus of the protein coding region (CDS) is often involved in 5' 

UTR-mediated control.  Coding constraints and codon usage bias within the protein coding 
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region of the mRNA clearly limit its ability to harbor cis-elements, but there are exceptions. 

Surprisingly, plant smRNA-binding sites appear to have no bias toward any particular mRNA 

region (see Chapter 2).    

Figure 1.5: The mRNA cis-acting elements involved in translation of representative plant  
mRNAs. 
The 5'-7mGpppN-cap structure is indicated with a filled circle. Regions of mRNAs with cis-
acting sequences that regulate translation are indicated as black boxes. Abbreviations: Adh1,  
alcohol dehydrogenase-1; Hsp70, heat shock protein 70; Fed-1, ferredoxin-1; Lat52, tomato  
pollen specific mRNA; CaMV, cauliflower mosaic virus; ATB2, bZip mRNA with four uORFs; R-
Lc, myc-like transcription factor with one uORF; 5' TOP mRNAs, 5' terminal polypyrimidine  
tract mRNAs of animals.  Regions of mRNAs with cis-acting sequences that regulate translation  
are indicated as black boxes.  Modified from [42]     

Section 3: Aims of the dissertation

It should be clear from the introduction that most of our knowledge of translational control 

is derived from mammalian and fungal systems.  While the biochemistry of these processes is 
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homologous and mechanically similar, the genes under such control appear to be very different 

in plants.  Thus the first aim of this dissertation was to use comparative sequence analysis in 

order to determine which translational control elements  are conserved across plants, and to 

identify the pathways in which they are most important.  This aim is addressed in Chapter 2.  

uORFs appear to be surprisingly common across plant transcriptomes.  Prior work in 

mammals and fungi indicates that the associated uAUGs are conserved more often than any other 

triplet in the 5'UTR, and this thesis bears out that conclusion in plants.  Such conservation has 

lead the community to propose many functional explanations, which may or may not be mutually 

exclusive.  These explanations make predictions that can be tested using comparative sequence 

analysis.  In Chapter 3, the uORF content of plants and its functional implications are explored 

in more detail.

 The elements described in Chapters 2 and 3 are likely to have some bearing on the actual 

translation state of the genes identified.  In Chapter 4, I describe work in which both single-gene 

experiments and whole-transcriptome translation profiling were used to assess that prediction. 

Additionally, specialized models of uORF-mediated repression was developed that makes 

quantitative estimates of critical initiation parameters and of the effect of initiation factor 

mutation on those estimates. 

Many pre-existing computational tools were used to derive the biological insights 

emerging from this work, but, over the course of this research, it was necessary to develop 

software that was either missing from the set of available tools or simply lacked the extensibility 

to perform the tasks required.  The major libraries of computer code developed to stem these 

gaps are described in the applicable sections as well as appendices following those sections.

In Chapter 5, we discuss general conclusions and future directions.

19



Chapter 2: The evolutionary conservation of sequences that 
mediate post-transcriptional control
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This chapter has been submitted for publication as:

Vaughn JN, Ellingson SR, Mignone F, and von Arnim AG.  Known and novel post-

transcriptional elements are conserved across plant families.

  

Abstract

The expression of numerous plant mRNAs is attenuated by upstream open reading frames 

(uORFs), RNA-binding proteins, and small RNAs (smRNA).  Many of these regulatory regimes 

are mediated by primary sequence elements.  Conservation of such elements across multiple 

plant lineages would indicate their fundamental importance to plant biology, point to pathways 

for which they are most vital, and suggest the mechanism by which they act.  To assess the 

degree of element conservation, we identified orthologous groups of mRNAs using all available 

EST/cDNA data from six different families of dicotyledonous plants.  We then used an 

alignment-free technique to search for conserved motifs within associated untranslated regions 

(UTRs) and developed a pipeline for categorizing these motifs.  Conserved motifs were detected 

in 3% of orthologous groups. In the 3' UTR, motifs resembling Pumilio binding elements are the 

most prominent group of putative recognition elements. Additionally, Expansins, one of the few 

plant gene families with actively localized mRNAs, possess a conserved RCCCGC motif with a 

more variable yet conserved upstream region.  In the 5' UTR, we discovered four novel 

conserved-peptide upstream open reading frames (CPuORFs), three of which have monocot 

homologs.  uORFs also appear to be conserved for their peptide-independent functions.  We also 

found seven cases of conserved non-canonical translation initiation sites.  In addition, purine-rich 

elements are highly enriched in the 5' UTR, as previously reported, but have a strand bias as 

well, suggesting that they participate in common and fundamental post-transcriptional processes 

in dicots.  Several major forms of post-transcriptional regulation are deeply conserved in plants. 

Many protein families also appear to rely on a variety of these forms of regulation.  Though we 

find some evidence for conserved co-regulation of mRNAs in a single pathway, or "RNA 

regulons", it remains to be seen how applicable this model is to plants.

21



Introduction

For many genes in plants, transcript concentration is not correlated with protein concentration 

[1].  This decoupling is the result of translation regulation as well as protein degradation [43]. 

Variation in translational efficiency, subcellular localization, and degradation rate must be 

encoded in the mRNA sequence.  Although not all of these processes are solely mediated by 

primary sequence elements, the identification of conserved mRNA elements could help to assess 

their biological significance and to understand the pathways in which they act.  We employed 

phylogenetic footprinting (see Addendum) to determine the prevalence and relative proportions 

of these post-transcriptional regulatory elements in plants, where, relative to mammals and fungi, 

such features have received less attention.

Recognition elements for RNA-binding proteins typically occur in the 3' untranslated 

region (UTR) assumably because ribosomes that scan the 5' UTR - the portion of an mRNA 

between its 5' cap and its major protein-coding region - displace any bound protein [7].  In 

addition, mRNAs are known to possess other sequence-specific features that change expression. 

One of the more ubiquitous of these features, upstream start codons (uATGs), are found in the 5' 

UTR.  (Note that, to maintain consistency with figures, we use 'T' for 'thymine' as opposed to 'U' 

for 'uracil' throughout this chapter.)  Because ribosomes scan the mRNA in a 5' to 3' direction in 

search of a start codon, these uATGs will, with variable frequency, become initiation sites for 

protein synthesis [16].  Their associated open-reading-frame (uORF) may either overlap the 

major ORF (mORF) or terminate upstream of the mORF start codon.  In either case, uATGs can 

drastically and often detrimentally reduce protein expression [24,44].  In some cases, the uORFs 

resulting from uATGs are known to be conserved at the peptide-level [25,27,28] - referred to as 

'conserved peptide uORFs' (CPuORFs).  Additionally, cells express uORFs in quantity [45] and 

some of these uORF-peptides mediate responses to small molecules [27].  CPuORFs shared by 

A. thaliana and rice fall into 19 homologous groups [25].  It is still unclear how the prevalence of 
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uORFs changes with regard to phylogenetic scope or the degree to which the 5' UTR harbors 

other forms of protein-coding potential.

Many researchers have proposed that groups of specific genes are co-regulated at the 

mRNA level by interactions between a common RNA binding factor and its cognate RNA 

sequence elements  [46,47].   This proposition is supported by experiments on the PUF family of 

RNA binding proteins within complex eukaryotes [48,49]  and on 40 RNA-binding proteins in 

yeast [35].  A striking example is the PUMILIO protein in Drosophila, which interacts with 

mRNAs for a majority of subunits of the vacuolar ATPase [48].  An extension of the regulon 

model predicts that, similar to elaborate transcriptional modules, some mRNAs will be under 

combinatorial control.  Like many inferences of regulatory function, it is unclear which 

interactions are significant for organismal fitness and which are true positives that are 

operationally inert and, hence, evolutionarily neutral [50].    It is clear from work on PUF-family 

proteins that, while binding elements appear to stay constant, the function of their target genes 

can vary drastically across major taxonomic divisions [48].  Such variation appears to carry over 

into plants [49], but its full extent has yet to be determined.

The regulatory sequences described above reside in either the 5' or 3' UTR.   Because of 

assorted codon usage constraints, it is difficult to assess peptide-independent nucleotide 

conservation within individual mORFs, particularly with regard to short motifs [51].  Therefore, 

we have focused on the UTRs.  Respectively, small-RNA-induced repression is another major 

regulatory process known to act post-transcriptionally on specific mRNAs, and, as opposed to 

metazoans, most putative small-RNA (smRNA) target sites in A. thaliana are located in the 

mORF of mRNAs [32].  Still, smRNA target sites do appear in UTRs and these can be used to 

assess trends in target-site conservation without the confounding effects of conservation related 

to protein encoding.     

With regard to comparative sequence analysis, it has been argued that highly-diverged 

sequences fall outside the 'window of useful divergence' (~20 to ~50 million years since 

speciation, for plants) [52].  This appears to be true with regard to alignment-dependent 
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identification of transcription-factor binding sites because of site turnover or high insertion-

deletion activity around orthologous sites [53].  Regardless of positional constraint or lack 

thereof, distant evolutionary relationships between intergenic or untranslated regions typically 

preclude alignment.  Instead, we assessed the statistical enrichment of motifs across highly 

diverged UTRs that are linked to orthologous coding sequences - a technique that is alignment-

free and somewhat robust to site turnover or displacement [54].  Our approach, based on the 

MEME algorithm [55], requires effectively randomizing divergence between all sequences 

compared.  Since we are looking for deep conservation, this prerequisite is satisfied by default 

[56].  Yet, when creating orthologous groups from distantly related plant species, in-paralogs, 

either resulting from local duplication or polyploidy, may result in false positives caused by 

small divergence times [54].  As described below, we addressed this problem by reducing groups 

of orthologous coding sequences to combinatorial subgroups.

The identification of sequence conservation across orthologous intergenic or promoter 

regions is typically interpreted as functional constraint on transcription-factor binding sites; 

similarly, conservation of amino-acids in a protein is interpreted as constraint relating to protein 

function.  Because, as described above, variable forms of regulation can act via the UTR, it is 

easy to misinterpret conservation within the UTR.  For example, smRNA binding sites can pose 

as CPuORFs if synonymous to non-synonymous mutation bias is not assessed [57].  Hence, we 

have attempted to categorize conserved motifs into plausible functional groups based on whether 

or not they 1) overlap microsatellites, 2) are target sites of known/predicted microRNAs, 3) code 

for a peptide that is constrained at the amino-acid level, 4) can be considered recognition 

elements based on pockets of dense conservation longer than four nucleotides, and 5) are likely 

transcription factor binding sites or unknown smRNA targets (Figure 2.1).

By applying our motif identification approach to six eudicot lineages with substantial 

transcript data, we found that at least 3% of orthologous groups have one or more conserved 

UTR motifs.  The majority of these motifs appear to be acting at the post-transcriptional level. 

In spite of a similar nucleotide composition, the 5' and 3' UTRs have distinct complements of 
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conserved motifs, as predicted by canonical models of eukaryotic translation.  With regard to the 

RNA regulon model, we find few examples where conserved post-transcriptional co-regulation is 

occuring.  Our data suggest that, in plants, it is more appropriate to consider post-transcriptional 

regulation as acting on individual, perhaps 'keystone', genes and gene families, which are under 

multiple forms of  UTR-mediated control.

25



26

Figure 2.1: Schematic of the computational pipeline used for conserved sequence identification  
and categorization. 
 Tasks are described in the bottom section of each box.  The program(s) that performed each  
task are given in the top section of each box. 



Results

EST/cDNA sequence coverage of the eudicot proteome approaches the theoretical 

maximum predicted by the fully sequenced Ricinus communis genome

UTRs are difficult to predict computationally from genomic DNA [58]; 

hence,experimentally confirmed mRNA sequences are required for valid UTR comparisons.  A.  

thaliana transcripts were acquired from TAIR (version 9).  Putative transcript data for five 

informant species with >60,000 putative transcript entries were downloaded from PlantGDB 

(Table 2.1 and Figure 2.2D).  The PlantGDB transcripts were assembled from all available 

expressed sequence tag (EST) and cDNA sequence data in GenBank.  The species were chosen 

because of their degree of divergence from one another and the extent of their sequence 

coverage.  The longest continuous reading frame containing an in-frame ATG for each transcript 

was considered the major ORF (mORF).  mORFs were translated and clustered into orthologous 

groups using reciprocal blastp and OrthoMCL.  The sequence upstream of an mORF was 

considered its 5' UTR.  Likewise, the sequence downstream was considered its 3' UTR.

Table 2.1: A numerical account of the clustering of dicot mRNA sequence data into orthologous  
groups.

Species
Putative 

transcripts

Number of 
sequences 

after 
clustering

Number of 
orthologous groups 

with the species 
present 

Number of orthologous groups containing the 
given species and an A. thaliana sequence

Total 698,941 158,613 31,909 10,122

Arabidopsis thalianaa 39,640 29,823 11,887 10,122

Gossypium hirsutum 98,420 28,385 14,541 8,016

Citrus sinensis 105,294 34,063 15,168 7,187

Glycine max 258,849 26,192 14,124 8,216

Vitis vinifera 64,796 14,091 9,763 6,380

Nicotiana tabacum 131,942 26,059 13,995 8,060
aFrom TAIR9 release, as opposed to the informant species from PlantGDB.

Of the 11,887 groups containing an A. thaliana sequence, 10,122 (85.1%) contained at 
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least one informant species as well (Table 2.1).  (The remaining 14.9% of A. thaliana-groups 

consist solely of in-paralogs, were no orthology across lineages could be inferred.)  10,122 is 

comparable to the number of orthologs, 10,381, shared by A. thaliana and Ricinus communis, 

both of which have sequenced genomes  [59].  As expected, a bulk of putative transcripts 

represented fragmentary and unspliced mRNAs and were eliminated by orthologous clustering 

(Table 2.1, Columns 2 and 3).  Many of these fragments persist as groups with a single taxa; 

hence, though there are only 10,122 groups with an A. thaliana and an informant species 

representative, there are 31,909 groups total.  Some of these groups represent lineage-specific 

genes, but many groups are likely to result from the clustering of multiple versions of a sequence 

fragment that were too short to cluster with their appropriate full-length transcripts (not shown). 

In terms of sequence coverage, there is a clear bias toward coverage across the 5' UTR 

(Figure 2.2).  While both 5' and 3' UTRs show a median length that is comparable to A. thaliana  

(Figure 2.2A and B), informant species have fewer 3' UTRs present, and these 3' UTRs, when 

present, are often longer or shorter than A. thaliana.  Whether this length variation is a result of 

less thorough sequencing or a genuine trend among the dicots sampled is unclear.  For both 

regions, the majority of comparisons have good representation, i. e. four to six species (Figure

2.2C).  As expected [60], the 3' UTR median length in all species is longer than the 5' UTR 

(Figure 2.2A-B).  The distinction between length distributions of 5' and 3' UTRs is thought to 

result from countervailing effects in the 5' UTR involving the migration of transcriptional start 

site and acquisition of potentially lethal pre-mature start codons - processes that do not come to 

bear on the 3' UTR [61].
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Figure 2.2 (next page): Both 5' and 3' UTRs have multiple informant species per comparison,  
but the 3' UTRs in informant species are more variable in length than A. thaliana.
A) and B)  5' UTR and 3' UTR length distributions, respectively, per species for all putative  
transcripts that could be clustered into orthologous groups.  The width of each x-axis bin is 10  
nucleotides.  C)  Distributions for the number of species per orthologous group in 5' and 3' UTR 
comparisons.  Total counts for each region will be slightly lower than the number of orthologous  
groups containing an A. thaliana representative and at least one other species (Table 2.1)  
because some orthologous groups lack UTR data.  D) Tree representing descent and relative  
divergence of the species in this analysis.  Modified from - and based on chloroplast genomes.  
The family name is given above its representative species.  
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3% of orthologous groups contain a conserved motif in the UTR

5' and 3' UTRs generally evolve faster than the CDS.  Given the divergence between the 

species in this study, we assumed that neutrally-evolving portions of the UTR will have a 

nominal number of consecutive bases conserved as a result of relatedness alone (see Results 

below).  We therefore used the MEME algorithm to search for enriched elements within these 

UTRs.  MEME assumes a random background model and calculates the number of times a given 

motif is expected to be present by chance alone in a given set of sequences (E-value). 

Importantly, in-paralogs, resulting from post-speciation duplication events, could potentially 

have undergone very short divergence times, undermining our assumption of effective 

randomization and disrupting conserved motif identification.  Also, our dataset contains many 

unknown alternative transcripts of the same gene, which are operationally indistinguishable from 

in-paralogs.  To address these issues, all orthologous groups were subdivided combinatorially 

such that each comparison involved only one sequence from each species in the orthologous 

group (see Methods). This approach has two additional benefits.  One, in-paralogs, which may 

have undergone neo/subfunctionalization at the regulatory level by losing an element, do not add 

noise to the identification process [62].  Two, our false discovery rate can be estimated by simply 

randomizing orthologous groups, as opposed to simulating mutations.

Our statistical criteria, defined in Methods, resulted in 194 and 96 conserved motifs for 

the 5' and 3' UTRs, respectively (see Figure 2.5B below).  Only one orthologous group was 

found to contain both a 5' and 3' UTR motif; hence,  ~3% [(194 + 96 - 1) / 10,122] of genes in 

our study have a conserved UTR motif.  Based on randomization of orthologous groups, our 

false discovery rate was 6.1% (12/194) for the 5' UTR and 3.1% (3/96) for the 3' UTR (i.e. for 

the 3' UTR, we expect ~2 false positives per 100 positive results).  We further characterized 

motifs based on their composition and their patterns of conservation.

[AG]|[CT] repeats are enriched in the 5' UTR and have a strand bias

Microsatellites (mono/dinucleotide repeats) are common in plants, have a regional bias in 
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the genome [63], and are conserved between orthologs and across paralogs [64].  The consensus 

sequence associated with each motif was checked for >5 consecutive mononucleotide repeats or 

>3 consecutive dinucleotide repeats.   As seen previously [63], we found a dramatic enrichment 

in dinucleotide repeats in the 5' UTR relative to the 3' UTR (Table 2.2).  Mononucleotide repeats 

show no such 5'/3' bias suggesting that differential sequence coverage between 5' and 3' UTRs 

(Figure 2.2) is not a major factor, particularly to the extent that it would explain such an extreme 

difference: 51-fold enrichment for [AG]n and 15-fold for [CT]n (Table 2.2).  When orthologous 

groups were randomized and significant motifs reassessed (see Methods), the few recovered 

motifs were primarily [AG]|[CT] repeats ('random' datasets in Table 2.2).  This indicates that, in 

terms of repeats, a proportion of our positive results are caused by general enrichment of [AG]|

[CT] repeats within the 5' UTR, although the actual dataset still has significantly and 

substantially more conserved [AG] and [CT] repeats: p-value <10-33 and  <10-13, respectively, 

based on a binomial distribution where p is calculated from [random_dataset_repeats / 

number_of_orthologous_groups_with_Arabidopsis] (Table 2.1 and 2.2).

Table 2.2:  Number of repeat motifs in 5' and 3' UTRs.  

Dataseta Repeatb

[AC]n [AG]n [AT]n [CG]n [CT]n [GT]n An Cn Tn Gn

5' UTR 0 51 0 0 15 0 7 0 1 1

5' UTR-random 0 5 0 0 1 0 1 0 0 0

3' UTR 0 1 0 0 1 0 3 5 3 1

3' UTR-random 0 0 0 0 0 0 0 0 0 1
a'random' refers to the control analysis involving randomization of orthologous groups (see Methods).  bAll 

overlapping dinucleotide repeats, such as [AC]n and [CA]n, are pooled. 

Interestingly, we found that [AG] repeats appear to have a strand bias in the 5' UTR (p-

value <10-5; binomial distribution, p = 0.5).  While [AG] repeats are known to act at the 

transcriptional level [65,66], the responsible transcription factors appear to be orientation 

insensitive [67].  Our identification of strand bias indicates that [AG]-repeats are acting at the 

mRNA level as well.  Based on a 1st-order Markov model, none of these findings could be 
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explained by differences in background nucleotide composition, which are comparable across 5' 

UTR and 3' UTR as well as the forward and reverse strand (data not shown). 

One-fourth of known A. thaliana smRNA target sites in the UTR are conserved, and their 

conservation profiles support the 'seed' hypothesis

Numerous whole-transcriptome sequencing experiments have been used to generate the 

ASRP database of smRNAs and their mRNA targets [32,68-70].  In striking contrast to 

metazoans, there are only 238 smRNA targets in the ASRP database and, of these, only 15 target 

sites appear to be located in the 3' UTR.  Of the balance, 8 occur in the 5' UTR while the 

remainder lie in the CDS of targeted mRNAs.

After removal of repeats motifs, we checked the A. thaliana representative of each of our 

motifs (with  +/- 10 flanking nucleotides) against all putative target sites.   Of these, we 

identified two in the 5' UTR and three in the 3' UTR (Table 2.3).  Motifs were also checked 

against more liberal predictions of smRNA targets [71], with the same result.   All miRNA 

families listed in Table 2.3 are known to be conserved in at least 2 dicots.  Interestingly, G. max 

is represented in the conserved miR403 target site, but, while both miR398 and miR169 genes 

were identified in prior studies of G. max [72,73], the miR403 gene was not.  

The 'seed' hypothesis predicts that complementarity to the 5' end of the mature smRNA is 

critical for mediating silencing [74].  To varying degrees, all five motifs support this hypothesis, 

although it appears that certain genes, AT1G08830 (with respect to AT3G15640) and 

AT1G72830 (with respect to AT5G12840), also have substantial complementarity to the 3' end 

of the mature smRNA across dicots.  In turn, these appear to be more conserved across their 

entire length.  Though it still is biased toward the 'seed' end, AT1G31280 has more sporadic 

conservation and appears to require a short pocket of 3' complementarity as well. 
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At least 18 uORFs function at the peptide level 

If any region in the UTR codes for a conserved protein, either as a result of inaccurate 

sequence data or a legitimate biological process, then that region will appear as a highly 

significant motif in our analysis. We therefore checked all motifs for their coding potential.  The 

longest continuous reading frame (CRF) among each of the three possible reading frames from 

each species associated with a motif was aligned as protein.  Each alignment was tested for 

coding potential based on a likelihood ratio test between a model in which non-synonymous and 

synonymous mutations rates are equivalent (null hypothesis) and a model in which this ratio is 

allowed to vary (alternative hypothesis).  A similar analysis was done for the longest uORF 

overlapping a motif.  Motifs were annotated as protein coding if the p-value result from this test 

was <0.01 (see Methods).  By then searching sequences with significant coding potential against 

all known Viridiplantae proteins, we could determine whether a conserved motif is an artifact of 

alternative splicing events.  Such motifs were removed from further consideration.  uORFs were 

considered conserved peptide uORFs, or CPuORFs, if they passed the above criteria.
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Table 2.3:  Motifs implicated in experimentally confirmed smRNA-mediated degradation  
pathways.  

mRNA 
region

A. thaliana 
accession

A. thaliana annotation
miRNA 
family

reduced IUPAC consensus sequencea

5' UTR AT3G15640 cytochrome c oxidase family protein miR398 nCnnnnnGGnGnGACCTGAGA(21)

5' UTR AT1G08830b Cu/Zn superoxide dismutase (CSD1) miR398 AAGGGGTnYYCTGAGATCACAnAn(24)

3' UTR AT1G72830 CCAAT-binding transcription factor miR169 GGnAnnTCATCCTTGGCTn(19)

3' UTR AT5G12840 CCAAT-binding transcription factor miR169 nGCnAATCATTCTTGGCT(18)

3' UTR AT1G31280 PAZ/piwi domain-containing protein miR403 AAGnnnnTnnnGCGTnnAnCT(21)
aTotal length is in parentheses.  A motif letter is written as: 1) the actual letter if present at >84% in a motif position, 
2) 'R' or 'Y' if position composition is G+A > 84% AND C+T >84%, respectively, 3) 'n' if otherwise.  bNot in ASRP 
database but from [75]. 
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Figure 2.3(next page): Novel uORFs show positional sequence conservation patterns similar to  
known uORFs, but have little phylogenetic bias.  
(A-C) Transcript alignments are shown in miniature followed by all possible ORFs, where the  
darkness of red indicates the context strength of the ATG.  CPuORFs are bordered in blue; the  
beginning of each associated mORF is bordered in green.  Orange vertical lines in 'Nucleotide  
conservation' lane indicate that all residues are identical in that column.  The orange  
horizontal line below each accession indicates sequence coverage or indels relative to the  
alignment.  Sequences are ordered, top to bottom, relative to their phylogenetic distance from  
A. thaliana.  (A) Previously confirmed CPuORF-14. (B) CPuORF-24n. (C) CPuORF-26n.  D)  
Protein alignments of novel CPuORFs.  Color scheme is ClustalX default.  Within alignments,  
sequences are ordered relative to their distance from A. thaliana.  E) Y-axis indicates the  
number of representatives for a given species among all CPuORF alignments.  The maximal  
number of CPuORF alignments possible is equal to the A. thaliana value.  X-axis is ordered left  
to right based on the phylogenetic distance of a given species from A. thaliana (not to scale).  
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Table 2.4: All motifs associated with protein coding potential.

A. thaliana gene 
accession A. thaliana mORF annotation

alternative 

splicinga
CRF p-
value

uORF p-
valueb

Predicted cause of 

coding potentialc

AT2G11890 adenylate cyclase none 1.64E−19 1.19E−15 uORF(24n)

AT4G36990 heat shock transcription factor 4 (HSTF4) none 1.28E−17 7.33E−15 uORF(18)

AT3G12012 Mic-1 homolog XP_002882761.1 1.67E−17 2.07E−15 uORF(8)

AT3G62420 bZIP transcription factor family protein none 5.25E−16 1.42E−24 uORF(1)d,e

AT3G01472 HD-ZIP 1 transcription factor none 9.45E−16 6.19E−18 uORF(14)

AT1G29950 bHLH transcription factor none 5.57E−15 4.99E−11 uORF(15)

AT3G25570 adenosylmethionine decarboxylase family protein XP_002272179.1 3.36E−14 1.47E−15 uORF(3)

AT4G25690 expressed protein XP_002513657.1 7.01E−12 2.86E−15 uORF(4)

AT5G07840 ankyrin repeat family protein none 4.85E−11 5.18E−11 uORF(5)

AT1G23150 expressed protein none 3.86E−10 2.94E−08 uORF(12)

AT2G43020 amine oxidase family protein none 1.11E−08 6.48E−11 uORF(6)

AT2G22500 mitochondrial substrate carrier family protein none 4.79E−08 3.16E−08 uORF(25n)

AT5G01710 expressed protein none 2.55E−07 7.77E−05 uORF(17)

AT1G67480 kelch repeat-containing F-box family protein none 3.54E−07 1.12E−07 uORF(26n)

AT4G30960 CBL-interacting protein kinase 6 (CIPK6) none 3.77E−07 8.98E−07 uORF(27n)e

AT1G48600 methyltransferase none 4.42E−07 1.39E−07 uORF(13)

AT4G34590 bZIP transcription factor family protein none 5.56E−07 8.10E−08 uORF(1)d

AT4G30960 CBL-interacting protein kinase 6 (CIPK6) none 1.88E−04 8.98E−07 uORF(27n)e

AT3G62420 bZIP transcription factor family protein none 7.80E−04 1.42E−24 uORF(1)e

AT1G36730 eukaryotic translation initiation factor 5, putative none 1.24E−03 4.05E−05 uORF(7)

AT1G03260 expressed protein none 5.19E−11 #N/A non-AUG start (CTG)f

AT1G32700 zinc-binding family protein none 5.19E−09 #N/A non-AUG start (CTG)f

AT2G25110 MIR domain-containing protein none 1.86E−07 #N/A non-AUG start (GTG)

AT3G16630 kinesin motor family protein none 7.26E−05 #N/A non-AUG start (TTG)

AT4G16280 flowering time control protein (FCA) none 1.37E-03 #N/A non-AUG start (CTG)f

AT5G14500 aldose 1-epimerase family protein none 5.06E−03 #N/A non-AUG start (CTG)f

AT1G55760 BTB/POZ domain-containing protein none 5.21E−03 #N/A non-AUG start (CTG)f

AT4G26850 expressed protein none 2.48E−11 #N/A unknown

AT2G18040 peptidyl-prolyl cis-trans isomerase (PIN1) none 9.79E−07 #N/A unknown

AT1G01060 myb family transcription factor none 1.31E−05 #N/A unknown

AT4G26850 expressed protein none 6.94E−05 #N/A unknowne

AT1G57680 expressed protein none 3.94E−03 #N/A unknow
aEntries in 'alternative splicing' column indicate the RefSeq Viridiplantae protein matches that were 50% longer than the translated uORF query 
from A. thaliana.  b 'uORF' is different from continuous reading frame (CRF) in that it contains an in-frame ATG codon; hence, not all CRFs will 
contain a uORF.  c Value next to 'uORF' indicates the homology group associated with prior A. thaliana and O. sativa comparisons [25] and 
parenthetical string next to 'non-AUG start' indicates the likely start codon based on alignments.  dAssociated mORF clusters into a separate group 
in spite of the uORF being in the same homology group. eCoding potential is found in two distinct frames.  fRecently identified in [76] as well.
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We identified 4 CPuORFs with little or no precedent in the literature - indicated by 'n' in 

Table 2.4.    These novel CPuORFs show similar conservation profiles and spatial patterns to 

known CPuORFs (Figure 2.3A-C), although CPuORF-24n is particularly unusual in that it 

begins near the cap and extends the length of the entire 5' UTR (Figure 2.3B).  The A. thaliana 

mORF associated with this CPuORF has deep EST support and there is no neighboring gene 

within 1kb upstream of the transcriptional start site (see http://gbrowse.arabidopsis.org). 

CPuORFs 24n and 25n exhibit extensive amino acid conservation across their entire length, 

while the others show a 3' bias in their degree of conservation (Figure 2.3D).  We also 

recapitulated 13 of the 19 CPuORFs found previously in an A. thaliana (dicot) and Oryza sativa 

(monocot) comparison (Table 2.4) [25].  Of the balance, 1 negative result was due to a lack of 

identifiable mORF orthologs, and 5 negative results either lacked sufficient 5' UTR sequence 

data (false negative) or are true negatives that have dicot-monocot homology but are not present 

in the other dicots under study.

 Based on prior analysis comparing A. thaliana paralogs resulting from a recent whole-

genome duplication, four CPuORFs - 20, 23, 25, 26 - have no monocot homologs [25].  Using 

Zea mays, Oryza sativa, and Sorghum bicolor, we find three of the four novel CPuORFs in one 

or more monocot lineages (Table 2.5).  Additionally, there was no clear phylogenetic bias among 

CPuORFs (Figure 2.3E), particularly when considering sequence coverage (Figure 2.2).  For 

example, while G. hirsutum has more sequence coverage and is more closely related to A.  

thaliana than V. vinifera, it is involved in fewer CPuORF alignments.  That being said, there is a 

reduction in CPuORF content between G. max and N. tabacum, the most distantly related 

species, in spite of comparable sequence coverage; CPuORF substitutions and truncations of 

CPuORF-25n in N. tabacum and, to a lesser extent, CPuORF-27n bears this out (Figure 2.3D). 

One CPuORF, 27n, could not be found in any of the three monocot lineages even though 

extensive sequence data exists for the 5' UTR of CIPK6 homologs.  Though this may be another 
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example of a dicot-specific CPuORF, taken together, it appears that most CPuORFs have 

monocot homologs.  These finding indicate that, generally, CPuORFs are not lineage-specific. 

                 

Conserved non-canonical start sites have a strong Kozak context and vary at the +1 

position

In addition to explicit uORFs, we identified regions of the 5' UTR that appear to code for 

sequences constrained at the peptide level but that have no apparent start codon.  The frame of 

coding potential for each such example was checked for whether or not it was consistently in-

frame with the mORF.  Where all sequences were in-frame, these were further checked for an in-

frame stop codon upstream of the coding potential.  As with uORFs, these regions were also 

searched against known full-length plant proteins to guard against alternative/incomplete splicing 

artifacts.  Seven cases satisfied these criteria and were categorized as a 'non-AUG start' (Table

2.4).

Strikingly, the beginning of each of these putative coding regions contains a variant of the 

pattern 'A[AC]N[GTC]TGG', where 'N' indicates any nucleic acid and brackets indicate possible 

residues (Figure 2.4A).  This pattern, excepting the variable adenine of the canonical site, 

matches the strongest Kozak context in plants [11].  Thus, it would appear that any nucleotide 

can effectively replace adenine at the first position.  In one case, AT1G32700.1, strong context 

can potentially overcome two substitutions in the canonical ATG triplet.  None of these putative 

start sites significantly approximates the splice site consensus.  Curiously, though the first 

position of the start codon appears mutable, the alternative nucleotide is almost always 

conserved.

In the 3'UTR, after comparable filtering criteria, we were left with five potential protein 

coding motifs.  None of the five were consistently frame-biased in terms of protein coding 

potential, and so these likely do not represent conserved read-through or programmed frame-shift 
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events.  They may represent exons from rare isoforms or, given their short length (<10 codons), 

may have coding potential by chance.  A comparable number of protein coding motifs, which we 

could not categorize, were found in the 5' UTR and are annotated as 'unknown' in Table 2.4.
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Table 2.5:  Novel CPuORF monocot homologs. 

CPuORF 
accession*

Protein sequence alignments

24n - 
implicit
Zea mays,  
Oryza  
sativa,  
Arabidopsis  
thaliana

NM_001143483.1_1      ­­TSNPTRIELTSSDRDELEDHLRAAAAATTTKDPSGYTTPSPVLGPQTSNPLLQFLHPK
NM_001068020.2_1      ­­­­­­­­IELRSSDRDELEDHLRAAAAAAAS­TPTASSTPTTTPPPSNSNPLLHLLHPP
AT2G11890.1_1         MLRRKPTKIQLKIEDREELEQSRKSQPSTTTTTAPSSSSAAS­­­­­­­­­SLHHLIDPK
                              *:*  .**:***:  :: .:::::  *:. ::.:         .* :::.* 

NM_001143483.1_1      PGAVPSKSQRIGIGLSTPPAPAPNPRPPHPPHGG
NM_001068020.2_1      PGAAPSKSHRIGL­­­­PTNPNPNPKP­­­­­­­
AT2G11890.1_1         HKNPSSKSDRIGLS­­­­­­­­­­­­­­­­­­­­
                          .***.***: 

25n - 
explicit
Saccharum 
officinarum,  
Zea mays,  
Sorghum 
bicolor,  
Arabidopsis  
thaliana

AY644463.1_1          MSQRASVPHSSCIGCALHSHLLVSSEMCPSSYWQQ
NM_001157169.1_1      MSQRASVPHSSCIAFALHSHLLVSSEMCPSSYWQQ
XM_002445603.1_1      MSQRASVPHSSCIAFALHSHLLVSSEMCPSSSWQQ
AT2G22500.1_1         MSQRSLIPHSSSIAFGLHSHLLISSEISSNSNWSL
                      ****: :****.*. .******:***:...* *. 

26n - 
explicit
Arabidopsis  
thaliana,  
Oryza  
sativa

AT1G67480.1_2         MTFIDTEMCMRRNNINLTTVIDSNEAIGMEHELDSARHQYSS­­­­­­VLTAIPFFSATL
NM_001053449.1_3      MAIDNCAMCVGGKGFYLNSKETSDPSRKNHSKVSQYRMAFDAPRITKTETSKLKNLISAS
                      *:: :  **:  :.: *.:   *: :   . ::.. *  :.:        : :  : :: 

AT1G67480.1_2         FIPLSL­­­­­­­­­­­­­­­­­­­
NM_001053449.1_3      FKPLSLTIPIGDGFHELFPVGHCHL
                      * **** 

*'Implicit' indicates that the monocot homolog's start codon is not covered by the current 5'UTR annotation. Species 
are listed in the order that they appear in the alignment.
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Figure 2.4:  Non-canonical start sites have strong context and a variable +1 residue.  
A) Each sub-panel is a sample from back-translated protein alignments of translated sequences from 
the conserved motif.  Conserved blocks are demarcated by boxes.  Red lines indicate the proposed  
start codon and green lines indicate the two most critical context sites.  The A. thaliana accession from  
each group appears above the respective alignment.  B)  The only group in which the non-canonical  
start has mutated back to the AUG (G. max sequence).  See Figure 2.3 legend for explanation of  
coloring and layout.   



A small but distinct fraction of genes with putative 3' UTR recognition elements support 

the RNA regulon model  

Short sequences exhibiting strong conservation in MEME alignments can have equivalent 

or, often, higher E-values than longer weakly-conserved sequences.  Though both may be 

important for plant function, our aim was to identify potential recognition elements, which 

experiments suggest are between 5 and 20 nucleotides long [35,77,78].  Motifs not belonging to 

any of the above categories were scanned for regions of dense conservation.  Within these 

motifs, the largest window of average consensus-letter frequency greater than 0.92 (see Methods) 

was defined as a putative recognition element (PRE).  See thesis supplemental File 1, 

5UTR_motif.pdf and File 2, 3UTR_motif.pdf for local alignments associated with all PREs.

We identified 92 PREs in the 5'UTR and 81 in the 3' UTR (Figure 2.5B).  29% of all 5' 

UTR PREs fall within our smallest length category (5-8 nts) (Figure 2.5A).  In the 3' UTR, PREs 

peak at ~20 nts in length.  Again, these conserved motifs have already been filtered to remove 

likely smRNA target sites; hence, though this is the size expected for smRNA target site 

conservation (as in Table 2.2), we consider these to represent non-smRNA binding elements.  In 

both regions, PREs make up the majority of conserved motifs (Figure 2.5B).  In a gene ontology 

(GO) term analysis, two subsets among the genes with a 3' UTR PRE are significantly 

overrepresented in two specific categories: proteins targeted to cell periphery (20 genes, 3.0-fold 

enrichment, p-value = 4.44x10-3) and signal transduction proteins (12, genes, 4.2-fold 

enrichment, p-value = 1.80x10-2) - based on GO term-enrichment web service with all A.  

thaliana genes as a null model [79].  Genes with 5' UTR PREs are not distinctly enriched in any 

category.    
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Figure 2.5:  Though their length profiles differ with regard to region, PREs account for the bulk of  
conserved motifs within the both 3' and 5' UTRs.  
A) Histograms, calculated independently, of PRE lengths in both UTRs. B) Treemap of conserved  
motif annotations.  Box size roughly indicates the proportion of annotations that we assigned to  
conserved motifs.  Exact values are given in parentheses next to the appropriate category.  A box with  
dashed lines indicates that the category is a subset of the larger, solid-lined box.  A red dot indicates a  
single orthologous group.  Only a small selection of orthologous groups are shown, and these are  
placed in the annotation box associated with their conserved motif.  Red labels describe the larger  
gene families or functional categories into which these specific orthologous groups can be grouped.  A  
dashed line between orthologous groups indicates that the motifs are similiar.  A dashed line added to  
a single orthologous group (such a one Calcineurin B group) represents multiple or overlapping  
annotations of that group's conserved motif.  TF - transcription factor; TFBS - TF binding site.



PUF-binding elements, possible Expansin localization signals, and other novel elements are 

conserved in the 3' UTR

Nearly all PUF-binding elements (see Introduction) known to metazoans, plants, and 

yeast contain a core TGTA sequence [46,48,49].  We assessed the degree to which this 4-mer 

word was enriched among PREs and if there were other 4-mers that were likewise enriched.  We 

created random expectation distributions (n=10,000) for each 4-mer such that the length 

distribution of the PREs dataset was recapitulated (see Methods).  We then assessed the p-value 

of the actual enrichment based on its position within this distribution.  3' UTR and 5' UTR 

regions were treated independently.

TGTA was one of the most significantly enriched 4-mers in the 3' UTR and, notably, not 

in the 5' UTR (Table 2.6).  Sixteen genes have TGTA-containing PRE in the 3' UTR.  The 

mRNA from CLAVATA1, which is critical for meristem maintenance, binds to APUM2 (a PUF-

domain-containing protein) with roughly half the affinity of a Nanos Responsive Element [49]. 

AT4G20270.1 is an in-paralog of CLAVATA1.  Based on our results, its TGTA-element is 

conserved (Table 2.7).  Our pipeline identified a TGTA-motif in the 3'UTR of the actual 

44

Table 2.6:  4-mer words significantly enriched in PREs from 5' and 3' UTRs.
5' UTR 3' UTR

4-mer p-value 4-mer p-value

AGAA <1E-05 TGTA <1E-05

AGAT <1E-05 TTTG <1E-05

TTCT <1E-05 AAGG 0.0051

AGGG 0.0006 AATA 0.0066

ATGG 0.0015 TGGT 0.0104

AGGA 0.0019 AAGC 0.0246

TTTT 0.0151 GAGG 0.0296

TCTT 0.0154 TGCA 0.0377

AGAG 0.0224 TTCT 0.0447

CCTC 0.0274

CGAT 0.0374



CLAVATA1 in-paralog assayed previously (AT1G75820) [49], but it had a substantially higher 

E-value than AT4G20270.  Interestingly, it did contain four TGTA tetramers (7% chance of four 

or more based on 3'UTR mononucleotide composition and length).  The remaining TGTA-

containing PREs appear to be dispersed among functionally unrelated genes, except for two 

subunits of the photosystem-I light-harvesting complex, AT3G47470.1 and AT3G61470.1.  It is 

noteworthy that their mRNAs are known to be enriched around the chloroplast [80].  

The TTTG 4-mer has an equivalent p-value to TGTA.  These two 4-mers are occasionally 

found together, but not in a consistent arrangement relative to one another (Table 2.7). 

Moreover, their co-occurrence does not deviate from what would be expected given their 

individual distributions among all PREs (p-value = 0.30, Chi-squared test; observed: 

TGTA/TTTG, 6; TGTA/-, 10; -/TTTG, 9; -/-, 57), suggesting that TTTG is generally unrelated 

to PUF-binding.   

Expansins are one of the few groups of mRNAs that have been shown to be localized to 

specific subcellular sites in plants [81].  An [AG]CCCGC-containing motif was found in four 

Expansin 3' UTRs (Figure 2.6A).  A region upstream of the [AG]CCCGC motif is also 

conserved but more specific to each Expansin.  As the alignment of AT2G03090.1's variable 

region indicates, this conservation may be a result of secondary structure or a gap-tolerant 

binding partner.  The Zinnia elegans Exp1 (gi|7025490|gb|AF230331.1) mRNA, which was 

shown to localize to a particular region of the cell periphery, also contains this pair of elements 

although they too appear to be position-independent relative to the mORF stop site and relative 

to one another (Figure 2.6B).  Though we identified 12 Expansin orthologous groups with 

substantial sequence coverage, only four contained conserved motifs.   None of these motifs are 

the result of mis-annotation or overlap with regions of extensive conservation as indicated by 

whole transcript alignments (not shown). 
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Figure 2.6:   Expansin 3' UTRs contain a combination of conserved sequences, which are also  
present in the 3' UTR of the localized Zinnia Elegans Exp1 mRNA.
 A) Sequence LOGO plots are generated by MEME; information content of a position is  
represented by stack height, which is multiplied by letter frequency at that position to give letter  
height.  Left motifs for each group represent the 3' variable region.  Right motifs contain the  
RCCCGC-core and are found downstream.  Motifs are so proximal in the AT2G40610.1 group  
that they are identified together.  The the entire MEME-derived alignment is given for  
AT2G03090.1 group's variable region.  B)  Alignment of the localizing Zinnia elegans  
ExpansinA1 mRNA (Ze) - gi|7025490|gb|AF230331.1 - with its A. thaliana ortholog (At) -  
AT2G40610.1.  mORF stop codons and conserved elements are colored red and blue,  
respectively.  Asterisks indicate that the column letters are identical.



Table 2.7:  Select PREs within the 3' UTR.  
Hypothetical 
function of PRE

A. thaliana 
accession Gene annotationa PRE sequenceb

PUF-element AT3G09980.1 expressed protein TATAAACAGGTTTGTAACTAA

AT4G01100.1 adenine nucleotide transporter 1 TGCTATTTTTGTAGGCAAGGG

AT5G16000.1 leucine-rich repeat family protein TGCTTGTATTCATCTGTAAA

AT3G47470.1 chlorophyll A-B binding protein 4 (LHCa4) CTTTAATGTACAGAGGAACT

AT4G20270.1
leucine-rich repeat transmembrane protein kinase, 
(CLAVATA1-like) TGTACAGTAGGATTGGTGGG

AT3G57200.1 hypothetical protein ATTACCCAAGCGCTGGTGTA

AT4G14900.1 hydroxyproline-rich glycoprotein family protein GTTTGTAATCACTAACCGTT

AT2G40110.1 yippee family protein AAATGTACATTCTTTAACC

AT1G07470.1 transcription factor IIA large subunit, putative TTGGCCTGTTGTACATA

AT1G53910.3 AP2 domain-containing protein RAP2.12 (RAP2.12) TGTAAATAAAGCTACAT

AT3G11660.1 harpin-induced family protein TGAATTGTACATTTTGC

AT3G18820.1 Ras-related GtP-binding protein, putative TTGTACATTAGTGTTTG

AT3G61470.1 chlorophyll A-B binding protein (LHCa2) TGTACAAATACCTTTGT

AT2G42670.2 expressed protein TGTACATATTAATATA

AT1G32400.1 senescence-associated family protein GAGTTTGTGTA

AT1G08420.1 kelch repeat-containing protein TGTAT

unknown AT2G07687.1 cytochrome c oxidase subunit 3 ATGAAAGCTCGAAGACAAAGAGAACCGGG

AT1G76160.1 multi-copper oxidase type I family protein GACCTCAACTCGAGGTCTCATTCTTT

AT2G07733.1 similar to NADH dehydrogenase subunit 2 CGGCGGCAGCGGCGCGAGGAGTTAACGAC

AT1G78080.1 AP2 domain-containing transcription factor RAP2.4 TGCAATGGAGTTTTTGGCAATTGCA

AT4G39780.1 AP2 domain-containing transcription factor, putative TCTGCAATGAAATTTTTGACATTTG
AT4G00730.1 anthocyaninless2 (ANL2) GAGTCAAGAACGAACCGCGCGTG

AT1G72230.1
plastocyanin-like domain-containing protein - 
miR408

GGCCAGGATAGAGGCAGTGC

AT3G54180.1 cell division control protein 2 homolog B (CDC2B) TGTCATCATCTTGGTGATTT

AT4G26210.1 mitochondrial AtP synthase g subunit family protein AAGCTGAG

AT1G33470.1 RNA recognition motif (RRM)-containing protein ACCATGGT
AT5G20160.1 ribosomal protein L7Ae GGGCCTC

AT1G59750.2 auxin-responsive factor (ARF1) ACATG
aIf the A. thaliana representative of the motif is a possible microRNA binding site as predicted by psRNATarget (see Methods), 
the microRNA family is given in bold italics next to the gene annotation.  b4-mers with a p-value of greater than or equal to 0.01 

are in large, bold font.  
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5'UTR PREs are enriched in purine-rich 4-mers, and uATGs are conserved in a non-

CPuORF capacity

Based on the AGRIS database of A. thaliana promoter motifs [82], only 13 out of 92 5' 

UTR PREs have evidence for being transcription factor binding sites (File 1, 5UTR_motifs.pdf 

and Figure 2.5B).  Additionally, no 4-mer and its reverse compliment had significant equivalent 

enrichment among PREs (Table 2.6), suggesting that PREs are either orientation specific 

transcriptional elements or that they act at the mRNA level.

The most significant 4-mers within the 5' UTR region appear to represent purine-rich 

motifs (Table 2.6).  Purine-rich repeats in the 5' UTR have been reported to enhance translation 

of the ntp303 gene in N. tabacum [83].  While this gene has a 3-species orthologous group in our 

analysis, we do not observe conservation of the respective motif in A. thaliana or V. vinifera. 

Yet, GAA was found in one of the most significantly enriched tetramers among 5'UTR PREs 

(AGAA in Table 2.6).  To a lesser extent pyrimidine-rich elements are also frequently enriched 

(TTCT, TTTT, TCTT).  The pyrimidine-rich Y-Patch is a common promoter element in plants. 

It peaks in frequency at the -13 nt position relative to the transcriptional start site but often 

extends deep into the 5' UTR [84]. While this may be the cause of CT-rich element conservation, 

these elements are thought to be orientation specific, and so this does not explain purine 

enrichment.  If CT-rich sequences are acting as core promoter elements, then they will be 

positionally biased toward the transcriptional start site.  We tested positional bias of CT-rich and 

AG-rich PREs - 80% pyrimidine or purine content, respectively - using all other PREs as a null 

model.  Though CT-rich tetramers are enriched among the PREs, entire elements that have 80% 

CT content were actually quite rare (8%).  When present, their median position relative to 

transcription start site (TSS) was 36 nts (12-48nts - 95% confidence intervals based on 

resampling with replacement; n = 7).  AG-elements were positioned farther from the TSS, 45 nts 

(39-89nts; n = 27), but still closer than the null model 109 nts (89-129nts; n = 58).  In summary, 

though some of these CT-rich 4-mers may be residual Y-Patch signals, most are found in motifs 

with a balanced nucleotide composition and without a 5' positional bias.  Alternatively, 29% of 
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all 5'UTR PREs are AG-rich.  As with the repetitive elements, this suggests that AG-rich 

elements are acting at the post-transcriptional level.   

Interestingly, the 4-mer associated with a strong-context start codon, ATGG, is 

significantly enriched among PREs in the 5' UTR.  Since sequences with conserved protein 

coding potential were already removed from this portion of the analysis, these 4-mers, if they do 

function as start codons, are  conserved for peptide-independent effects relating to uATG 

initiation/reinitiation.  This finding corroborates with low substitution rates of uATG triplets in 

mammals and fungi [85,86].  In fact, many ATGs appear within conserved motifs, in both weak 

and strong contexts (Table 2.8).   In most of the ATG-containing motifs conservation extends 

beyond the -3 and +4 positions.  For example, AT4G26570.1 and AT5G06510.1 show extensive 

downstream conservation.  While too short to be identified as 'protein-coding', these may be 

functionally constrained at the peptide-level.  Alternatively,  both of these as well as 

AT5G47100.1, show downstream conserved ATGs without a frame bias, suggesting that 

premature initation as opposed to protein-coding may be the more critical function of these 

uATGs.  Respectively, some mRNAs of CCAAT-binding proteins are regulated in a peptide-

independent manner by uORFs in metazoans [87]   Likewise, though not an ortholog, 

AT5G06510.1 has a lengthy, conserved motif that harbors multiple ATGs (Table 2.8).

Conspicuously absent from the 5' and 3' enrichment lists is the AGGT tetramer 

representing canonical splice sites.   For comparison, UTR exon boundaries are recognizably 

conserved in Cryptococcus  [88].  Because we do detect 4-5 nucleotide pockets of high 

conservation, particularly in the 5' UTR where coverage is more extensive, conservation of such 

sites appears to be weak across the more distantly related lineages in this study. 
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Discussion

Can putative transcript coverage reconstitute the eudicot proteome?

We used putative transcripts assembled from all relevant EST and cDNA entries in 

GenBank and made available through PlantGDB.  Of the ~30,000 A. thaliana genes, at least 

85.1% have one or more orthologs among plant species separated by more than 70 million years 

(Table 2.1, Column 5).  Like A. thaliana,  Ricinus communis has a sequenced genome, and it is 

represented in 10,381 groups containing an A. thaliana gene when clustered using OrthoMCL 

[59].  G. max is as distantly related to A. thaliana as R. communis but is only present in 8,216 
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Table 2.8:  uATG-containing PREs within the 5' UTR.

A. thaliana 
accessiona Gene annotation PRE sequenceb

AT5G06510.1c CCAAt-binding transcription factor GUACCGACAUGGCUCCUAACUAAUGGGGU

AT4G26570.1 calcineurin B-like protein 3 (CBL3) GAAAUGGUUAAAAGGUAUGGAGUGUUUUG

AT4G18020.1 pseudo-response regulator 2 (APRR2) (tOC2) GAGAAAGGAUGCCAAACCAG

AT3G48210.1 expressed protein AAGUAAAAAUGGCGGGCUAA

AT1G71980.1 protease-associated zinc finger (C3HC4-type RING finger) AUGGAAGCUGAUGUUUCCAU

AT1G19330.1 expressed protein UCAGCAAUGCAUGAUCUUCA

AT5G62000.2c transcriptional factor B3 family protein (Auxin Response Factor 1) CAGAUGAGAGAUCUGAGC

AT3G54020.1 phosphatidic acid phosphatase-related UGAAGUAAUAUGGAAGUG

AT3G63200.1c patatin-related CCAUUAAUGCCUCUCAGC

AT5G47100.1 calcineurin B-like protein 9 (CBL9) - miR847 AAGAUGGUUUUGAUGA

AT2G02710.3 PAC motif-containing protein CACAUGGGAUUGGG

AT1G18660.1c zinc finger (C3HC4-type RING finger) family protein UGGUCCGUGUAUG
AT1G72820.1 mitochondrial substrate carrier family protein CGACGAUGGUCG

AT3G14080.2c small nuclear ribonucleoprotein, putative - miR159 CCAAUGCCAUU

AT4G03415.1c protein phosphatase 2C family protein AUCAGAUGU

AT5G17640.1 expressed protein CAAUGGGG

AT2G22430.1 homeobox-leucine zipper protein 6 (HB-6) GAUGG

AT2G37630.1 myb family transcription factor (MYB91) AUGGG
aIf the A. thaliana representative of the motif is a possible microRNA binding site as predicted by psRNATarget 
(see Materials and Methods), the microRNA family is given in bold italics next to the gene annotation. b'AUG's are 
in bold font.  cAUG has been lost in the Arabidopsis lineage, but is present in all others. 



such groups in our analysis.  This suggests that transcript coverage is still incomplete for G. max, 

in spite of its many putative transcripts (Table 2.1, Column 2).

Do patterns of element enrichment in the 5' versus 3' UTR corroborate with canonical 

models of eukaryotic translation?

The 5' and 3' UTRs appear to mediate distinct forms of post-transcriptional regulation. 

This is expected given the distinct molecular events occurring within each region during 

translation [7].  Small ribosomal scanning through the 5' UTR is likely to displace transient 

interaction between RNA and trans-acting factors whereas no such restriction applies to the 3' 

UTR, which is thought to be free of ribosome traffic.  Based on this work, 5' UTRs across dicots 

retain uORF-related and purine-rich sequences, whereas the 3' UTR is more likely to retain 

probable PUF-binding sites and other elements with experimental precedent for mediating 

mRNA targeting (Figure 2.5B).  Though our sample size is small, the exception to this trend is 

smRNA binding, which has little conservation bias for either region of the mRNA.  As discussed 

above, this is in striking contrast to metazoans, where 3' UTR sites are much more common. 

Experiments on select genes in A. thaliana indicate that the position of a target site - 3' UTR vs. 

5' UTR vs. CDS - does not correlate with the degree to which an affected mRNA is degraded by 

Dicer1 and/or translationally silenced [89], so perhaps a lack of regional bias is to be expected.

Are CPuORF-containing mRNAs polycistronic?

The extensive length and conservation of the newly identified CPuORFs 26n and 24n 

(Figure 2.3B-D) begs the question of whether CPuORFs are in fact regulatory elements or, 

alternatively, whether their associated mRNAs should be considered multi-cistronic transcripts. 

The identification of  CPuORF-24n, linked to adenine cyclase, implicates CPuORF-mediated 

regulation in the cyclic-AMP pathway, although the physiological role of cyclic-AMPs in plants 

is still debated.  Strikingly, CPuORF-24n is identical to GenBank accession, AAN10198, an A.  
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thaliana gene annotated by the depositor as CDC26 - a small subunit of the anaphase promoting 

complex (APC).  The peptide aligns to all eukaryotic CDC26s [90], but the conservation is found 

mainly in the N-terminal region, where it is also most conserved in plants (Figure 2.3D). 

CPuORF-24n appears as a distinct transcript in much more distantly related eukaryotes. 

Moreover, though the conservation between CP-uORF-24n and the metazoan CDC26 is quite 

weak, this CPuORF appears to be a legitimate component of the APC [91].  Thus, as it stands, 

the associated mRNA is a good candidate for a multi-cistronic eukaryotic transcript.  Yet, the 

conserved synteny, proximity, and co-transcription of CPuORF-24n and the putative adenylate 

cyclase suggests that, in plants, these two proteins require co-translation.

 Of the remaining three loci identified in this study, little is known.  CPuORF-27n is 

linked to a protein kinase involved in salt stress tolerance.  The At1g67480 loci associated with 

CPuORF-26n codes for two major isoforms, the sole difference being an alternative 5' UTR, but 

this difference has no bearing on uORF-26n presence, its peptide sequence, or the introduction of 

other uORFs in the 5' UTR.  CPuORF-25n is associated with a dicarboxylic acid transporter in 

mitochondia.  The associated mORF of CPuORF-25n has a paralog that has the same 

biochemical activity and basal expression pattern, but lacks CPuORF-25n.   Interestingly, the 

mRNA expression levels of these two paralogs diverge only under various stress conditions [92].

At least two known plant CPuORFs - those linked to bZip transcription factors [27] and 

to adenosylmethionine decarboxylase [29] - are known to reduce translation of the linked mORF 

in response to small-molecules.  Thus, as opposed to being merely co-translated peptides, these 

CPuORFs appear to be actively regulating their downstream protein.  As seen in bacteria, there 

are many short evolutionary paths to small-molecule-induced translational repression via the 5' 

end of an elongating protein [93], a situation analogous to CPuORF-mediated repression. 

Interestingly, as indicated by our work and prior research, few CPuORFs are genetically linked 

outside of a specific protein family (Table 2.4).  For example, the sucrose responsive CPuORF-1 

[27] is found only in mRNAs that code for bZip transcription factors, not for sucrose 
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metabolizing enzymes.  As formulated previously [25], this suggests that initial signal 

transduction is mediated by translation repression and the response cascade is transcriptional.

Why would non-ATG start sites be conserved?

We have shown that translation initiation is likely to occur at certain non-ATG start sites, 

and, because these sites are deeply conserved, that the non-ATG nature of these sites appear to 

be important for plant fitness.  This non-ATG initiation requires a strong Kozak context.  A 

comparable conservation profile has been seen for the mammalian eIF4g2 gene [94]. 

Interestingly, translation can initiate at various non-ATG sites, such as, among others, ACG for 

AGAMOUS in A. thaliana and ATT for the AZI1 antizyme in mammals [95].  Although we 

were unable to identify AGAMOUS orthologs suitable for comparison in this study, we do not 

observe other ACG sites.  Thus, non-ATG sites that are conserved only appear to vary in the +1 

position.  An alternative explanation is simply that ATT/ACG start sites may be less dependent 

on context and the downstream coding region is under much less sequence constraint.

Strikingly, we only find evidence for mutation back to a canonical ATG in one case - the 

G. max ortholog of aldose 1-epimerase (Figure 2.4B).  Recent work identified a mutation of the 

non-canonical CTG-start of floral regulator FCA back to ATG in two out of six lineages, but, as 

with our data, this is rare for the other non-canonical CTG-starts identified [76].  One hypothesis 

for a conserved non-ATG start is that it is used to generate an N-terminal extension, which then 

targets the protein to a different subcellular location.  At least for CTGs, this does not appear to 

be the case [76].  TargetP [96] does not consistently predict the N-terminal additions in this 

analysis to re-target the protein.  If the AZI1 gene discussed above is any guide, it may be that 

non-ATG start sites serve as inducible translation initiation sites, producing N-terminal 

extensions that are themselves responsive to the same inducing signal - in the case of AZI1, 

polyamine concentration  [95].  Thus, a non-ATG start site followed by a conserved N-terminal 

addition may result a very sensitive form of inducible translation repression.
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Does PRE identification reveal trends concerning RNA regulons in plants?

It has been previously reported that RNA-binding proteins, among them mulitple PUF-

family proteins, associate with functionally related sets of genes [35].  Indeed, in our analysis, 

we find that LHCa2 and LHCa4, closely related genes that are likely co-regulated, both contain a 

putative PUF-binding PREs.  However, TGTA-containing PREs generally do not appear to be 

significantly enriched in any Gene Ontology (GO) category based on all other A. thaliana genes 

as a background model and using GO term-enrichment web service (data not shown) [79].  It is 

likely that, even in the case of PUF-binding elements, specificity is achieved or enhanced 

through a combination of primary and secondary mRNA structures as indicated by atomic 

models of protein-mRNA interaction [34].   Additionally, the cellular /developmental context of 

PUMILIO has been shown to influence the cohort of mRNAs to which it binds [48].  PUF-

elements aside, between our GO analysis and manual curation, we find very few instances of 

conserved co-regulation of functionally related genes by the same motif, and essentially none to 

match that seen for the vacuolar ATPase in Drosophila (see Introduction) [48].  Undoubtedly, 

we have false negatives resulting from a lack of sequence coverage in the 3' UTR, but a yeast 

three-hybrid screen against the Arabidopsis PUF-family protein, APUM-2, revealed interaction 

with the 3'UTRs from only five genes, which appear to be unrelated.  Of those we found a 

conserved motif in the chlorophyll binding protein, as discussed above.  Also, a DNAJ protein 

identified in the screen has a motif with a low E-value (6.7x10-5) that did not pass our 

conservative statistical cutoff.  Of the remaining three, all have orthologs in least four species 

with 3' UTR coverage, but the element is not conserved.  In summary, either co-regulation at the 

mRNA level is rarely conserved at the levels of divergence used in our analysis, or it is 

uncommon in dicots.  Better ways to assess such small sequence elements within narrow 

phylogenetic scopes and the requisite sequence data to do so will help to differentiate these 

possibilities.    

One extension of the RNA regulon model is that, analagous to transcriptional modules, 

some mRNAs will be under combinatorial control by a suite of factors.   Only 7% (n=6) of 5' 

54



UTRs harbor legitimate examples of multiple-conserved motifs (File 3, PRE_categories.xls).  In 

contrast, 17% (n=14) of PRE-containing 3'UTRs have significant conservation outside of the 

most conserved PRE (File 3, PRE_categories.xls).  Such a difference has a p-value of <10-2 of 

being a result of sampling error if, under the null-hypothesis, both regions have an equivalent 

number of multi-site-containing groups, calculated from their combined frequency of 11.4%. 

Although the difference is not extreme, it does support a model in which the 3' UTR, because it 

is free of ribosomes, is a more appropriate platform for combinatorial regulation, or signal 

integration, than the 5' UTR.

It is still unclear whether or not particular types of post-transcriptional regulation are 

specific to a protein's function.  We've found that many mRNAs, either from single genes or 

genes that share a function or domain, appear to be under multiple forms of post-transcriptional 

regulation (Figure 2.5B).   

Two CCAAt-binding transcription factors have conserved microRNA target sites (Table

2.3).  Additionally, two other family members have PREs located in the 5' UTR (Table 2.8 and 

File 1, 5UTR_motif.pdf).  Neither of these PREs bears any resemblance to the microRNA target 

site nor are they detected as other microRNA target sites.  As discussed above, one PRE, linked 

to AT5G06510.1, may be the result of the uATG initiation, while the other mRNA, 

AT3G53340.1, appears to have an extensive but uncharacterized PRE.

Two components of cytochrome c oxidase have seemingly different modes of post-

transcriptional control; AT3G15640.1 has a conserve microRNA binding site (Table 2.3) in the 

5' UTR while AT2G07687.1 (Table 2.7 has an extensive but clearly unrelated PRE in the 3' 

UTR.   Such elements could be the basis for differential regulation.    

Calcineurin B-like proteins are calcium responsive kinase regulators.   AT4G26570.1 and 

AT5G47100.1 represent the two major branches of this protein family and both harbor a 

multiple-ATG-containing element within their 5' UTR, suggesting that premature initiation 

maybe a conserved mechanism of translation repression for these genes.  Additionally, based on 

complementarity to miR847, AT5G47100.1 may overlap a conserved smRNA-binding site.     

55



The RAP family members contain an AP2-transcription-factor domain, and RAP2.4 

(AT178080.1) is thought to serve as a mutual control point for ethylene and light responses [97]. 

AP2 is known to be under smRNA regulation (mORF target-site), but, in spite of their length, the 

RAP PREs do not appear to be result of such regulation.  Notably RAP2.4 is the only gene we 

have identified that possesses a conserved element in both its 3' and 5' UTRs.  A paralog 

(AT4G00730.1) has a similar 3' UTR PRE but lacks the 5' UTR PRE.  The RAP2.12 

( AT1G53910.3) PRE matches the canonical PUF-binding site, which is missing from an 

alternative isoform that varies only in its 3' UTR.

As discussed elsewhere in this paper, polyamine synthesis in known to be a 'hotspot' for 

translational control.  In all eukaryotes, a CPuORF is thought to reduce AdoMetDC (Table 2.4) 

levels through polyamine-induced ribosome stalling, although through somewhat distinct peptide 

sequences [95] .  In another polyamine pathway, mammalian spermidine synthase is alternatively 

spliced, in response to polyamine depletion, to include a premature stop site which triggers the 

NMD pathway [98].  Also, mammalian spermine synthase also contains an uORF that overlaps 

the mORF.  We have identified a spermidine synthase homolog (AT5G53120.5) with an 

extensive PRE (File 1, 5UTR_motif.pdf and Figure 2.5B).  This gene codes for five different 

alternative transcripts, which vary solely in their 5' UTR.  However, the PRE is present in all 

isoforms, while the variation lies upstream.  Interestingly, the PRE contains a possible non-

canonical start site, AgaCTGG.  As discussed above, it is the upstream region of the FCA 

mRNA that controls non-canonical initiation of that protein [76].  Also, alternative start sites are 

employed in other mammalian genes associated with spermidine synthesis.  Thus, a reasonable 

untested hypothesis is that spermidine synthase expression in plants is controlled in part by 

inducible premature initiation. 

Taken together, it appears that particular protein families are disposed to regulation by 

cis-elements within their mRNAs but that the mechanism of regulation is surprisingly variable. 

Moreover, unless our knowledge of smRNA targets is dramatically incomplete, many of these 

mRNAs fall outside the jurisdiction of smRNA surveillance, suggesting that, in plants, 
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transcript-specific protein interactions and premature translation initiation may be more 

important than smRNA-mediated-repression in explaining post-transcriptional variation in gene 

expression [2].

Methods

Sequence acquisition and preparation

See Figure 2.1 for a general guide to the following computation pipeline.  Transcript data 

for A. thaliana were downloaded from 

http://www.arabidopsis.org/help/helppages/BLAST_help.jsp#datasets on 24 September 2009 

(Version 9). Putative transcripts for all other plant species were downloaded from 

http://www.plantgdb.org/prj/ESTCluster/progress.php on 7 October 2009 [99].  None of 

sequence sets have undergone significant addition since that date.  The longest ORF from each 

putative transcript was extracted using a custom Perl module (uORF.pm available at 

http://web.utk.edu/~jvaughn7/code/bio/) based on the criteria that an ATG be followed in-frame 

by a TAA, TGA, or TAG or that an ORF extend to the end of the putative transcript.  These 

ORFs were translated to peptide sequences and reciprocal BLAST searched, using blastp  

(version 2.2.16), in species-wise fashion with an e-value cutoff of <1E-30. In order to diminish 

confounding effects of lineage specific gene loss or incomplete sequence data on orthology 

assessment, accessions were then clustered based on their BLAST scores using OrthoMCL 

(version 1. 4) [100], with default parameters.  5' or 3' UTRs shorter than 8 nucleotides were 

excluded from analysis.  Sequences completely overlapped by a larger, identical sequence were 

subsumed into that sequence. 

  

Motif Identification

We used MEME (version 4.3.0) [55] to search for overrepresented sequences across the 

UTRs associated with orthologous groups of coding sequences [101].  Because in-
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paralogs/alternative-transcripts within a group confound direct interpretation of E-values 

produced by MEME, each orthologous group was divided into all possible subgroups, where 

each subgroup contains only one sequence per species.  For tractability reasons, if there were 

more than 30 possible subgroups per orthologous groups, only 30 randomly selected subgroups 

were processed further.  For example, if an orthologous group contained 4 A. thaliana, 3 G. max, 

and 6 V. vinifera sequences, there would be 4*3*6 or 72 subgroup combinations; only 30 of 

these would be randomly selected for further evaluation.  11% of orthologous groups were large 

enough to require such reduction.  Again, because of incomplete sequence information or lineage 

specific loss, we used the MEME option that detects zero or one motif in all sequences ('zoops'), 

where motifs could be between 6 and 30 nucleotides long.  A 2nd-order Markov model based on 

all A. thaliana 5' UTRs (or 3' UTRs, depending on the region being searched) was used as a 

background model in all MEME searches [102].  To correct for multiple tests, we divided an E-

value cut-off of 0.05 by the number of orthologous subgroups compared: 91,331 for 5' UTR and 

73,893 for 3' UTR.  Only the lowest scoring subgroup of an orthologous group was processed 

further.  A motif was excluded from further analysis if the A. thaliana representative had a p-

value of greater than 1x10-9 of belonging to the motif by chance.  Also, motifs were excluded 

from 5' UTR comparisons unless the mORF proteins for more than 70% of informant species 

aligned, using ClustalW with default parameters, to within 25 amino-acids of the 5' terminus of 

the A. thaliana representative.  All analyses were also carried out on 5' and 3' UTR control 

datasets, which were generated by randomizing all orthologous groups, such that species 

composition per orthologous group was maintained: all sequences were put into a pool based on 

the species to which they belong, and, for every orthologous group, the actual sequence was 

replaced with another sequence, drawn at random with replacement, from the same species pool. 

These datasets were used to determine our false discovery rate.  Though not reported in detail, 

we tested numerous alternative algorithms.  Generally word-based approaches such as Weeder 

[103] and FootPrinter [104] were less sensitive than MEME; assumably because they are less 

tolerant of site degeneracy.  For example, at a comparable false discovery rate, Weeder found 12 
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enriched motifs in the 5'UTR compared to 194 by MEME.  Additionally, algorithms that took 

phylogeny into account, PhyloGibbs [105] and PhyloCon [106], had equivalent or lower 

sensitivity than MEME, which is expected given that the lineages under analysis are highly 

diverged [107].  

Motif categorization

The sequence of the most frequent letter at each site - consensus sequence - associated 

with each motif was checked for >5 consecutive mononucleotide repeats or >3 consecutive 

dinucleotide repeats.  These motifs were removed from downstream processing.  

The A. thaliana representative with +/-10 flanking nucleotides from each significant 

motif was searched against known and predicted smRNA target sites using the Arabidopsis 

Small RNA Project (ASRP) database (2 June 2010) [32] and data from [71].  

All possible open reading frames associated with a motif were checked for protein-coding 

potential.  Each continuous reading frame from the A. thaliana representative was translated to 

protein and aligned using pairwise BLAST (b2seq) to every other sequence (also translated) of 

the appropriate frame in the MEME alignment.  Only b2seq alignments with an e-value of <0.01 

were considered homologous.  All sequences passing this criteria were then aligned together 

using ClustalW (version 1.82), back-translated, and assessed for purifying selection against non-

synonymous mutations using PAML (version 3.14) [108]  according to the protocol in [109] and 

a tree topology based on Figure 2.2D [110].  In brief, a likelihood ratio test was evaluated for a 

model in which the non-synonymous to synonymous substitution ratio was allowed to vary and 

another model in which it was fixed at 1.  Motifs with resulting p-values, from the Chi-squared 

distribution, of <0.01 were considered protein-coding motifs.  Additionally, the motif was 

removed if the A. thaliana peptide associated with the coding potential had a blastp match (e-

value cut-off of 10-5) to any Viridaeplantae protein in the Genbank Refseq database that was 1.5 

times longer than itself.  The same analysis was done with explicit uORFs that overlap the motif. 
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These were considered CPuORFs if, by manual curation (as in Figure 2.3), their nucleotide 

conservation was exclusively associated with the uORF.

  To identify PREs, we further differentiated remaining motifs based on the largest 

window in a positional weight matrix for which the average of all highest scoring letters for each 

column in the window was >0.92 (searched from left to right).  The positional weight matrix was 

supplied by MEME; each letter in the matrix represents the frequency of that letter in the site. 

Windows that were >4 nucleotides long, that were not known smRNA targets, did not show 

coding potential, and did not contain mono- or di- nucleotide repeats were annotated as PREs.

All possible 4-mer word frequencies were assessed for combined sets of PREs - 5' and 3' 

processed separately.  The most frequent word was removed, leaving a gap to prevent artifactual 

fusions, and then the search was rerun until no more 4-mers existed.  This prevents confounding 

effects 4-mer overlap - TGGA overlapping GGAA, for example.  Null distributions for each 4-

mer were then simulated by randomizing the dataset 10,000 times with per-element length intact. 

Because our initial inference of conservation accounts for higher-order statistical properties of 

the UTR, each letter in these randomizations was considered equally probable. The same 4-mer 

frequency assessment was perform for each randomized dataset.  Actual frequencies were placed 

within the simulated distributions and the number of distribution values for the 4-mer in question 

greater than the actual 4-mer frequency was divided by 10,000 to get the p-value.  

To further differentiate between PREs acting at the transcriptional versus post-

transcriptional level, we searched the AGRIS database [82] in the manner described above for 

smRNA-related motifs. The IUPAC form used for AGRIS elements was converted to a regular 

expression prior to searching.  Any A. thaliana region associated with a PRE, as with smRNA 

search above, were also checked again for imperfect matches to mature smRNAs using 

psRNATarget web server [111] with default parameters.  Significant matching smRNA families 

are reported in Table 2.6 and 2.7.  
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Addendum: Comparative transcriptomics in plants with orthoGroup.pm and  
Anchored-MEME

The sequence similarity between two proteins suggests their structural similarity (although 

the reverse is not always true).  In turn, structural similarity suggests that the two proteins have 

similar biochemistry, be it enzymatic activitiy, protein-protein interaction, or another molecular 

function.  Beyond mere similarity, the determination that two proteins are orthologous allows for 

a more powerful inference of similar function.  If two proteins are orthologous then they were 

the same sequence in the last shared ancestor.  It is inferred that these two proteins will continue 

to serve the same role in the extant lineages that they were serving in the ancestor [112].

As opposed to two lineages in a pairwise comparison, many lineages can be used to 

assemble orthologous group.  Like the pairwise approach, the interpretation remains the same: all 

of the genes in the ortholgous groups were the same gene in the last shared ancestor of all the 

species considered.  Because of local and/or global duplication events within a particular lineage 

being compared, orthologous groups may contain more than one gene from a single species; such 

a sequence is called 'in-paralogous' relative to the other genes in respective species and 'co-

orthologous' or simply 'orthologous' to genes in the other species being compared.  

Manipulating orthologous group data with orthoGroup.pm

The following set of Perl libraries uses BioPerl and original code to bundle many common 

tasks one might desire to perform on/with an orthologous group into a uniform object interface. 

As with all associated code in this dissertaion, these Perl classes can be downloaded from 

http://web.utk.edu/~jvaughn7/code.  The orthoGroup object is acquired from an input/output 

object, orthoGroupIO, which takes many input formats - an OrthoMCL file [100], a directory 

of FASTA files, a directory of alignments, or a BLAST report - and links them with a raw 
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sequence database (Bio::DB::Fasta).  An orthoGroupIO can then be looped through, 

producing a series of orthoGroup objects.  orthoGroup is designed such that certain 

filtering procedures can be done on the object and only those sequences passing the filtering 

procedure get acted on during future method calls (Table 2.9).  This can dramatically clarify the 

scripts that uses these objects. 
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Table 2.9: Methods supplied by the orthoGroup class

Method_Name Function Argument Return

getAccNamesBySpecies see Argument/Return String: Species name Ref to list: All accessions in 
orthoGroup belonging to species

getAccNamesByPattern see Argument/Return String: Regular 
expression pattern

Ref to list: All accesssion in 
orthoGroup matching regex

seqObjArray see Argument/Return none Ref to list: All Bio::Seq objects

filterBasedOnLength see Argument/Return Scalar: Minimum raw 
sequence length 
required

1 or 0, filters internal state

trimRawSeqsTo Trims the raw sequence to the length 
argument.  If no start position is given, starts from the 
begining.  If 'fromEnd' is given only the last nucleotides 
specified by (1) are retained.

(1) Scalar: length <2> 
Scalar: start position - 
can be integer or 
'fromEnd'

1 or 0, filters internal state

removeAcc see Argument/Return String: Name of the 
accession to remove

1 or 0, filters internal state

next for cycling through each sequence in the group; 
come also use seqObjArray

none Bio::Seq object

makeFasta Makes a fasta file from the orthoGroup; 
if [2] is set to '1' then a 'temp.fasta' file is created (or 
overwritten)

(1) String: location, 
where to put the file 
<2> or 0, make a 
temporary file

1 or 0

geneCount see Argument/Return none Integer: number of genes in 
orthoGroup

taxaCount see Argument/Return none Integer: number of taxa in orthoGroup

printOrthoMCLForm see Argument/Return none String: string representation of 
orthoGroup in OrthoMCL format 

abbreviateNames see Argument/Return String: regex pattern to 
remove from matching 
accessions

1 or 0, filters internal state

doesItContain does the list of current accessions 
match a given regular expression pattern

String:  regex pattern 1 or 0: match or not

speciesWiseSubsets Reduces orthoGroup to 
subsets of orthoGroups such that each only contains 
one sequence from every species in the original 
orthoGroup and no two subsets have an identical 
sequence composition.

Hash: 
<'maximumSubsets' => 
Integer,
'useRandIfTooBig' => 
0 or 1>

orthoGroup::orthoGroupIO object; 
0 if subset number > 'maximumSubsets'

filterSpecies Only accessions belonging to the 
species in the existence hash argument are kept  

Ref to Hash: {'species1' 
=> 1, 'species2 => 1}

1 or 0, filters internal state

filterInclusiveSeqs Raw sequences smaller than 
and identical to a larger sequence are removed

none 1 or 0, filters internal state
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Extending MEME with anchored-MEME preprocessor

In this chapter, we confronted a major hurdle with regard to comparative sequence 

analysis in plants - rampant paralogy.  This feature of plant genomes is a result of numerous 

genome duplication events.  To avoid many of the complications associated with paralogy in 

Section 1, we adopted a brute-force approach, looking at all possible subgroups in an 

orthologous group (sub-group method).  A more sophisticated approach would incorporate all 

data from an orthologous group concurrently, but would be robust to the possibility of element 

loss in an in-paralog.  We have developed software to address this need.

Phylogenetic footprinting is a technique for identifying short regulatory regions in the 

genome.  The technique requires that a region be under a slower rate of substitution than its 

surrounding genomic context [113].  As originally proposed, phylogentic footprinting requires an 

estimate of nucleotide substitution rates.  This estimate, because it is based on a common register 

of sites, requires neutrally evolving regions to be aligned.  These alignments are often the source 

of errors and discrepancies in the field of cis-regulatory element (cis-element) identification 

[114].  Additionally, both experimental and theoretical data is accumulating to suggest that cis-

elements are commonly turned over.  In brief, temporary redundancy resulting from de novo cis-

element creation allows the 'native' cis-element to be replaced without a lapse in carrier fitness 

[53,115].  Thus, ideally, cis-element identification would not  require alignments.  Alignment-

free techniques have existed for more than a decade and have been used to find motifs among co-

regulated genes and homologous proteins .  They have also been exploited for cis-element 

identification in orthologous promoters.  Furthermore, researchers have incorporated 

phylogenetic information into alignment-free approaches, although such techniques begin to 

strain the definition of phylogenetic footprinting, in that they are taking an indirect measure of 

the hypothetical element substitution rate relative to its surroundings.  As an example, 

FootPrinter [104], uses a tree to calculate substrings of a particular length with the least number 
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of substitutions, given the underlying phylogenetic tree.  Though it has many insightful features 

and optimizations, the algorithm and other comparable methods, has significant drawbacks:  1) 

The tree used to relate the sequences must be manually generated.  Optionally, it can be 

estimated from the sequences under study, but, in order to avoid dampening the signal of a long 

stretch of conservation, the tree should come from neighboring genomic space not involved in 

the search.  As proposed by the authors, the closest protein-coding region would be suitable to 

the task. 2)  By using the phylogenetic tree as a guide, the algorithm assumes that de novo 

binding sites, which are not related by decent, do not occur with a substantial frequency.  Again, 

experimental and theoretical work indicates otherwise.  3) Lineage-specific motif loss is 

penalized in a fairly ad hoc manner.  Though this may be innocuous, or even advantageous, for 

single-gene investigations, it becomes problematic for large-scale analysis and, to an even 

greater extent, for handling in-paralogous sequences.  4) The algorithm does not produce an 

absolute statistical criteria and, so, requires comparison of a motif's score with a simulated null 

distribution of scores. This distribution is derived from the computationally-intensive simulation 

of random sequences based on  neutral distances between species on the tree.  

We favor a simpler approach in which sequence data is divided into protein-coding space 

(the 'anchor' in 'Anchored-MEME') and proximal regulatory space.  The coding space is used to 

assess the substitution rate between sequences and establish a correction factor by which to 

weigh regulatory sequences.  Underlying our approach, we are assuming that, as long as it is not 

a result of random expectation or sequence relatedness, sequence similarity and genomic context 

are sufficient to infer the functional significance of a motif.  In the end, lineage bias in regulatory 

element composition and evolution is of utmost interest, but it should be an a posteri 

consideration.  We envision a framework wherein results from Anchored-MEME are then fed 

back into a pipeline as implemented in [53].

Design and Implementation

The user is asked to supply a codon alignment of orthologous CDSs along with an 
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unaligned set of hypothesized regulatory regions - promoters, UTRs, exons, or combinations of 

each.

If a neutral site has undergone a substitution, by definition, we assumed the substitution 

to have been a stochastic event.  If all sites have undergone substitutions, then the two sequences 

are effectively randomized.  Thus, to quantitate the degree of randomization, we estimated the 

substitutions per site (K) by aligning translated coding sequences (CDSs) from each orthologous 

group and then back-translating each sequence relative to the alignment, such that the codon 

frame was maintained.  In pairwise fashion, each sequence within a codon alignment was 

compared with every other sequence, such that the percent identity across all fourfold degenerate 

sites shared by the two sequences was evaluated.  Any comparison with fewer than 10 available 

sites was not processed further; the rationale for selecting this value is described below.  This 

percent identity was then used to estimate the number of fourfold degenerate site substitutions 

(K4d) between the two sequences.  In turn, a binomial distribution was used to estimate the 

fraction of sites that have not undergone a substitution.  In calculating the chance that no 

substitutions have occurred, the binomial function reduces to:

 Pr K4d=1−
1
s

sK 4d

where,

s = total sites compared, K4d = the substitutions per site between the two sequences

As the number of sites, s, becomes greater than 10, this function further reduces to:

Pr K4d=
1
e

K4d

For the MEME analysis described below, each sequence was weighed such that 

sequences that have undergone effectively randomizing divergence should weigh ~1 relative to 

one another, whereas identical sequences should weigh 0.5 relative to one another.  Three 

identical sequences should each be weighed 0.3334, etc.  Hence, we used the following equation 

to weigh each sequence with regard to its possible contribution to a motif score:
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1

1∑i=1

n
Pr K 4d

i


m    

where,

i = a pairwise comparison, n = total pairwise comparisons for that species, m = minimum motif 

size

 

Results and Extensions

As a proof-of-principle, we ran Anchored-MEME on the 5' UTR dicot dataset used above. 

In  9,647 orthologous groups, we identified substantially more elements using the same 

correction for multiple-tests used for the sub-groups method (Figure 2.7).  Because there are 

fewer tests, the threshold is higher.  Interestingly, there are groups that were not identified using 

anchored-MEME approach but were found only under the sub-group approach.  These may 

reflect groups where element loss in a paralog dilutes the signal, suggesting extensive 

subfunctionalization [62]. Alternatively, these may reflect the inclusion of coding sequences 

resulting from sequencing errors, an artifact to which the sub-group method is more susceptible. 
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Critically absent from our algorithm is a proper accounting of the tree topology relating the 

sequences within an orthologous group.  This level of detail has little impact when a sequence is 

highly diverged (K = 1) from all other sequences or when it is very similiar to another sequence 

(K = 0.01), but becomes importent in terms of middle distances (K = 0.1).  Unfortunately, many 

in-paralogous sequences are located at this distance; thus, the number of elements identified in 

Figure 2.7 is likely to be inflated.  In short, the algorithm overestimates the weight a sequence 

should have because we do not consider correlated mutations among the sequences to which it is 

compared.  Conceptually, this failing should be easily corrected: a tree topology can be generated 

based on the mORF alignment and, for each pairwise relationship, evolutionary distances 
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Figure 2.7: E-values of Anchored-MEME method versus E-values of sub-group method.  
Each point represents lowest E-value of a motif identified for an individual orthologous group.
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between nodes would then be divided by the number of leaves associated with that node (see 

 Figure 2.8).  The algorithm would then proceed as described above.   

 Figure 2.8: Correcting for tree topology in sequence weighing.
Red circles indicate the sequence being weighed.  In this scenerio, A1 is in-paralogous to A2 and  
B1 is in-paralogous to B2.  I1 and I2 indicates inferred nodes in the tree. Kx,y indicates the  
evolutionary distance between x and y as inferred from the CDS.
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Chapter 3: Upstream start sites of translation - a plant 
transcriptomics perspective
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Large portions of this Introduction are soon to be published as part of:

von Arnim AG and Vaughn JN.  uORF-mediated translational control in eukaryotes.  In: The 

Encyclopedia of Systems Biology, Springer, expected 2011. 

Small portions of the methods and results have been published as part of:

Kim, BH, Cai, X, Vaughn, JN, and von Arnim, AG.  On the functions of the h subunit of 

eukaryotic initiation factor 3 in late stages of translation initiation.  Genome Biol, 2007, 8, R60 

Though I had an advisory role, the algorithm used to calculate uAUG enrichment scores was 

implemented into software by Sagar Utturkar.

Abstract

Numerous sequence elements within the 5' untranslated region (5'UTR) have been shown to 

inhibit and, to a lesser extent, enhance translation.  The most ubiquitous of these elements, 

upstream start sites of translation (uAUGs), are found in abundance (>30%) in many eukaryotic 

transcripts.  We examined the distribution and conservation of these elements across eleven 

angiosperm species with extensive transcriptome coverage.  Between 30% and 45% of genes in 

each species give rise to uAUG-containing transcripts.  Additionally, AUG is consistently the 

most depleted triplet in the 5' UTR.  We employed pairwise comparisons of Arabidopsis  

thaliana / Brassica napus and Solanum tuberosum / Solanum lycopersicum transcriptomes to 

assess the conservation of these sequence elements in the 5' UTR. As found previously in 

mammals and fungi, AUGs within orthologous 5' UTRs show significantly higher conservation 

than any other triplet.  We observed only a weak functional bias in the extent of uAUG 

conservation among different functional groups of genes, the extreme groups being involved in 

stress response and development.  Extending our analysis in hopes of finding more precise 

molecular functions of uAUGs, we used the angiosperm dataset of eleven species and scored the 

uORF enrichment of a subset of 2,094 orthologous groups.  Based on these results, we estimated 
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that 5% of orthologous groups fall into an uAUG-enriched category, 42% are uAUG-depleted, 

and 53% are uAUG-neutral.  Among genes that are uAUG-depleted, there is a substantial bias 

for genes related to translation.  Using groups with precedent for uAUG-enrichment from 

Chapter 2,  we examined gene-specific patterns of uAUG conservation across dicot and monocot 

5' UTRs.  In summary, uAUGs appear to be functionally significant across both narrow and wide 

evolutionary distances in plants.

Introduction

In Chapter 2, we identified examples of local conservation in the 5' UTR associated with 

the AUG triplet that signals initiation to the scanning ribosome.  These upstream AUGs 

(uAUGs) result in upstream open-reading frames (uORFs).  An uORF is best described as a short 

ORF that begins 5' to the longest ORF in an eukaryotic mRNA. We refer to the portion of an 

mRNA found upstream of the longest ORF as the "5' untranslated region" (5' UTR), in spite of 

the fact that uORFs, which are by definition found within this region, are often translated. 

Because of the mechanics of eukaryotic translation, downstream ORFs, which exist in the 3' 

UTR, are not translated.  Therefore, they have little impact on the biology of a cell. The term 

"upstream ORF" is not particularly applicable to prokaryotes, where mRNA transcripts 

commonly contain multiple protein-coding regions and initiate translation in a different way.

According to the scanning model of eukaryotic translation initiation, the small (40S) 

ribosomal subunit, in association with a bound tRNAMet and assorted initiation factors, scans 

from the 5' terminus (5' cap) of an mRNA toward its 3' end.  A start codon is recognized 

primarily through codon-anticodon pairing with tRNAMet. At this point, the large (60S) ribosomal 

subunit joins the complex, and  translation elongation begins.  An uORF poses a barrier to the 

scanning 40S ribosome because, upon recognition of the uORF start codon, the uORF peptide 

must be translated and terminated. Upon translation of an uORF, the translation machinery must 
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perform a reinitiation event (see Figure 1.2 and 1.4). Reinitiation differs from standard 5' cap-

dependent initiation in ways that are not yet fully understood. A ribosome whose 40S subunit 

dissociates from the mRNA after termination can be regarded as having suffered a permanent 

loss of reinitiation competence. Conversely, a 40S ribosome that resumes scanning downstream 

of the uORF displays a conditional loss of reinitiation competence because it lacks, among other 

factors, a tRNAMet.  These factors must be reacquired while the ribosome is scanning in order to 

successfully recognize the start codon of the main ORF further downstream.  uORF-mediated 

translation repression is primarily dictated by a) the probability of initiation at the start codon of 

an uORF (based on sequence context and upstream events), b) the uORF's length, and c) the 

distance between an uORF stop and the next downstream start codon (see Chapter 4, Section 1). 

An uORF can be created or removed by a single base change. Such mutations may have 

dramatic consequences for gene expression and phenotype of the organism, on par with 

mutations that alter mRNA splice sites or the active sites of enzymes and other proteins [24]. 

About one third of eukaryotic genes give rise to uORF-containing mRNAs (ranging from ~13% 

in yeast to ~47% in mammals).  Prior attempts to address uAUG and uORF conservation have 

focused on general trends across multiple genomes.  Analysis of human and mouse as well as 

yeast lineages focused on the frequency of triplet conservation within alignable regions of the 

5'UTR [116].  uAUGs in these lineages show higher conservation than controls regardless of the 

frame of translation relative to the main ORF.  Examination of four closely related fungal species 

within the Cryptococcus genus revealed that at least one-third of uORFs are conserved for their 

effect on translation [86].  This conservation does not appear to be related to constraint at the 

peptide level.  All of the aforementioned studies focused on genome-wide uAUG/uORF 

conservation.  Attempts to identify gene-specific examples of functional uORFs have also been 

undertaken in yeast, where researchers developed an expert system to search for constrained 

patterns of uORFs across 8 lineages separated by 100 million years of evolution [117].  The 

expert system was trained on the GCN4 mRNA's 5' UTR and, so, is biased in that regard.  Still 

researchers claim to have identified 252 uORFs in the baker's yeast genome that could be 
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functional and 32 that are very likely to be functional.  As in the mammalian and Cryptococcus 

studies, yeast uORFs are typically not constrained at the peptide level.  

While experimental evidence for effects of uORFs on fitness is sparse and largely indirect, 

at least 14 uORF-altering single nucleotide polymorphisms (SNPs) have been linked to human 

disease phenotypes [24]. Moreover, uORFs are particularly abundant in mRNAs that code for 

regulatory proteins, such as transcription factors and protein kinases [118].

The inference of functional constraint on uAUGs has led to a number of different 

hypotheses concerning their biological mode of action:

a) uORFs produce short peptides.  A peptide-dependent uORF is one whose amino acid 

sequence is critical for function. With rare exceptions the peptides function in cis, i.e. one 

peptide molecule affects the expression of the mRNA molecule from which it was translated. 

Nascent uORF peptides are thought to slow progression of the ribosome by stalling it or by 

preventing termination and thus reinitiation [119]. As expected, peptide-dependent uORFs tend 

to be conserved at the amino acid level, and have a codon substitution bias favoring synonymous 

over nonsynonymous changes. Though clearly necessary for the regulation of some genes, they 

represent a minority of uORFs in all species examined [25,26].

b) Peptide-independent uORFs regulate translation via initiation-reinitiation regardless of 

their encoded peptide.  Thus, uORFs may be a quick evolutionary route to reduce protein 

expression without disrupting more sensitive spatio-temporal gene regulation at the 

transcriptional level. 

c) In addition to their direct impact on initiation efficiency, some uORFs indirectly reduce 

the stability of the mRNA via nonsense-mediated decay (NMD).  In plants, this pathway is 

thought to require uORF longer than 90 nts  [120]. 

d) A uORF may increase gene expression at the major ORF if, for example, initiation at one 

upstream uAUG prevents initiation at a second, highly inhibitory, downstream uAUG (see 
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Chapter 1, Section 2).  Examples include the uORFs in the yeast bZip transcription factor, 

GCN4, and related mammalian bZips [121]. Note, in such cases, gene expression will most 

likely still be reduced relative to a comparable uORF-less mRNA. 

e) An uORF can affect the choice of start codons for the  post-transcriptional regulation 

major ORF, allowing multiple N-terminal isoforms to be produced from a single mRNA 

molecule [122]. 

f) Low-level transcription is stochastic and thus contributes substantially to the molecular 

noise of gene expression. Translational repression in conjunction with high-level transcription is 

a strategy for controlling noise in gene expression [123]. However, this hypothesis has yet to be 

tested with regard to uORFs.

As it stands, there is little data on which genes are under which forms of uORF regulation. 

In what follows, we extend many of the described findings from yeast and mammals to plants. 

We also identify gene-specific forms uAUG enrichment and analyze the uAUG/uORF structure 

of these groups with regard to the aforementioned hypotheses. 

   

Results

Angiosperm orthologous groups

Using an approach described in Chapter 2 (see Methods), we identified orthologous groups 

across the following lineages (Figure 3.1):

Dicots - Arabidopsis thaliana, Brassica napus (rapeseed), Citrus sinesis (orange), Glycine max  

(soybean), Gossypium hirsutum (cotton), and Nicotiana tabacum (tobacco).

Monocots - Hordeum vulgare (barely), Oryza sativa (rice), Panicum virgatum (switch-grass),  

Saccharum officinarum (sugarcane), and Zea mays (corn).  
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The split between these two major branches of the angiosperm tree occurred ~150 million 

years ago [124].  While the monocot lineages are all from the same plant family, Poaceae, most 

are usefully diverged, such that long stretches of identical sequences are not solely a result of 

relatedness [52].   

uAUGs are present in ~38% of angiosperm transcripts

Between 30% and 45% of genes in each angiosperm species gives rise to uAUG-containing 

transcripts (Figure 3.2A).  General inclusion of protein coding sequence would bias poorly 

curated transciptomes toward the higher uAUG frequencies.  Since well-curated Arabidopsis and 

Oryza are both near average, such artifacts appear to be minimal; thus, the range of values seen 

likely represents natural variation.  Additionally, there is no relationship between genome size 

and percent of transcripts with an uAUG - Zea, a ~2.7Gbp genome, and Arabidopsis, a 157 Mbp 

genome, are roughly equivalent.  
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Figure 3.1: Tree representing descent and relative divergence of the species in this analysis.  
Modified from [110] and based on chloroplast genomes.  The family name is given above  
representative species.
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uAUGs are depleted in the 5'UTR of plants 

Even though many transcripts contain uAUGs, because of their often inhibitory effect, it is 

expected that the 5' UTR will generally be depleted in AUGs across the transcriptome.  This 
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Figure 3.2: uAUGs are found in ~38% of mRNAs in angiosperm transcriptomes.  
A) Bar graph of the percentage of known transcripts for the given angiosperms that contain at  
least one uAUG.  Note, alternative transcripts of the same gene are included in the analysis.  
Species are sorted lowest, left, to highest, right, based on their frequency. B) 5' UTR length  
distributions for each species represented as a box plot.  The whiskers of box plots represent the  
minimum and maximum values in the distribution.  Boxes represent 25% below the median  
(thick, center line) and 25% above the median.
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assumes that there is a substantial fraction of genes for which uAUG introduction is selected 

against.  Using putative 5' UTR sequences from the 11 angiosperm lineages, we found that 

uAUGs show consistently lower than expected frequencies in the 5' UTR (Figure 3.3).  This bias 

does not appear in the 3' UTR (Figure 3.4).  For ATG, the bias does not appear to be related to 

the degree of sequence coverage or sequence curation: Oryza and Aradidopsis have extensive 

full-length-cDNA support but very different degrees of bias. Other triplets also show significant 

bias, some negative, like AUG, and some positive. Interestingly, the direction of the bias appears 

to be highly conserved among all eleven species. Of note, triplets with same base in position 1 

and 3 typically show a positive bias, whereas triplets with three different bases show a negative 

bias. As a possible explanation, one might consider that 5' UTRs are enriched in repeat motifs 

(AGAGAG, CTCTCT, etc), which could be a cause for this bias.  Yet, the bias doesn't appear to 

correlate with the absolute number of repeats within the 5' UTR - CT|TC and AG|GA repeats 

account for ~90% of the dinucleotide repeats in the 5' UTR (not shown).  Also, removal of these 

repeats (5 or more dinucleotides in a row) had a discernible but minor effect on the general 

profile of triplet bias (Figure 3.5).  One could further enhance the stringency of the repeat filter, 

but, as the threshold begins to approach the size of the word being analyzed, the analysis 

becomes circular.  Though much weaker, some of these triplet bias patterns do appear in the 3' 

UTR.  In summary, mutational mechanisms such as replication slippage may be biasing the 

frequency of short repeats in both UTR regions, but, based on their differential enrichment in the 

5' UTR, these short repeats appear to have some function, either in transcription or translation. 

Importantly, while ATGs are the most biased triplet, the bias is surprisingly weak: there are 

roughly 25% fewer than expected ATGs in the 5' UTR.  Thus, either a large fraction of proteins 

are tolerant of uAUGs or most uAUGs have only a mild effect on expression levels. 
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Figure 3.3: uAUGs in the 5' UTR are observed at consistently lower frequencies than expected.  
Triplets starting with A and C are shown in the top panel. Triple starting G and T are shown in the bottom panel.  Y-axis shows the  
log2(observed/expected), where expected is calculated from the dinucleotide frequency (see Methods).
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Figure 3.4: AUGs in the 3' UTR have no frequency bias.  
See Figure 3.3 for description.
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Figure 3.5: Removal of 5' UTRs with dinucleotide repeats does not substantially change triplet  
bias profile.  
Only calculations from Arabidopsis 5' UTRs are shown as a representative profile. Repeats were 
considered those with 5 or more dinucleotides in a row. 

uAUGs are under purifying selection in flowering plants

As described in Introduction, fungal and mammalian 5' UTRs possess conserved uAUGs. 

Using pairs of species from two separate branches of the dicot tree, we tested if such 

conservation existed in plants.  The 5' UTRs of orthologous proteins between Arabidopsis  

thaliana / Brassica napus (rape seed) and Solanum lycopersicum (tomato) / Solanum tuberosum 

(potato) were aligned with one another in pairwise fashion using the BLAST pairwise alignment 

program, b2seq.   Additionally, human/mouse alignments were used as input to our 

computational pipeline in order to recapitulate results from an earlier study [116] using the 

software we had developed.  Since the plant 5' UTRs had already been clustered based on 

relatedness, our alignability criteria were less stringent than the analysis in mammals. Regions 

were considered alignable if their match length was greater than 50 nts and if the comparison had 

an e-value of less than 0.01.  The conservation score for each triplet was calculated as the 

number of perfectly conserved triplets in the alignment divided by the total number of triplets 

within all sequences in the alignment.   
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Figure 3.6: uAUGs are conserved in a higher percentage of applicable alignment columns than  
any other triplet in the 5' UTR. 
Dots indicate the AUG conservation frequency.  Boxes indicate the distribution of conservation  
frequencies for all other non-AUG triplets.  The whiskers of box plots represent the minimum 
and maximum values in the distribution.  Boxes represent 25% below the median (thick, center  
line) and 25% above the median.  A) Whole-transcriptome pairwise  comparisons:  Brassicaceae  
- Arabidopsis thaliana and Brassica napus, Solanaceae - tomato and potato, Mammals - human  
and mouse.  B-C) Brassicaceae uAUG conservation within high-level GO categories - molecular  
function categories (B) and biological process categories (C).
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uAUG conservation within the 5' UTR appears to extend to plants (Figure 3.6A).  As 

expected, triplets are more conserved between two species from a single genus, Solanum, than 

two species from different genera within the same family, Brassicaceae.  Again, the extensive 

conservation across mammals reflects the more stringent alignability criteria used previously. 

Functional groups appear to be equivalently enriched in conserved uAUGs 

Purifying selection appears to be acting on mutations that disrupt AUGs in the 5' UTR.  In 

the Introduction, we discussed many hypothetical functional explanations for uAUGs.  As a 

preliminary approach toward understanding uAUG function, we examined uAUG conservation 

with regard to   functional categorization.  Each pairwise alignment in the Brassicaceae 

comparison used above, was grouped into a Gene Ontology (GO) Slim category.  In essence, 

these categories represent root nodes of the three main GO hierarchical categorization schemes.

Few GO categories deviate from the general uAUG conservation profile seen in whole 

transcriptome comparisons (Figure 3.6B-C).  Of all categories, 'Response to stress' and 'Signal 

transduction' show the strongest and weakest uAUG conservation, respectively.  These also 

happen to be two of the most narrowly defined of the GO categories used, suggesting that more 

resolution in classification may be critical to differentiating functional bias among genes with 

conserved uAUGs.  Ideally, gene specific examples of such conservation could be identified, and 

we pursued this aim in the next section.  

Very few orthologous groups show uAUG enrichment across angiosperms

The techniques used in the previous section required that the 5' UTRs of compared species 

be aligned.  Because an AUG is only three letters long, in order to arrive at gene-specific 

resolution, such a method would require tens to hundreds of transcriptomes at the family level of 
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phylogenetic scope.  Even with current sequencing advances, such coverage is unlikely in the 

near future.  If portions of a sequence are constrained, large evolutionary distances between 

compared sequences increases the signal-to-noise ratio in a comparative sequence analysis. 

Thus, a comparison of all angiosperms would broaden our available sequence pool and enhance 

signals if they do in fact exist.  Orthologous groups generated from 11 angiosperm species were 

used to extend our analysis of uAUG conservation.  

As stated, because of extensive divergence across the angiosperm tree, 5' UTRs used in this 

analysis could no longer be aligned with any appreciable confidence.  Instead, we focused on 

uAUG enrichment or depletion.  By this we mean that the 5' UTRs associated with an 

orthologous group possess more or less AUGs relative to a suitable control, GUA [86].  GUA is 

the reverse of AUG and, since the scanning complex reads the start codon 5' to 3', the GUA is 

not expected to have any bearing on translation.  Additionally, it has the same mononucleotide 

composition, is replicated identically, and does not share a dinucleotide overlap with AUG. 

Moreover, GUA shows no discernible bias in the 5' UTR of any angiosperm analyzed (Figure

3.3).  

Our hypothesis was that there are genes for which uAUGs are not tolerated, genes for which 

uAUGs are neutral, and a small group for which uAUG may be selectively retained.  Of these we 

expected the first group to be the largest because the general depletion of AUGs from the 5' UTR 

of angiosperms (Figure 3.3).  Concerning uAUG enrichment, though we observed uAUG 

conservation in alignments between plants in the same family (Figure 3.6), we did not know if 

such purifying selection would span the angiosperm tree.

We returned to the angiosperm orthologous groups for this analysis.  Of these groups, only 

2,094 had all 11 species represented.  Only these 2,094 groups were processed further.  We then 

scored uORF enrichment in the linked 5' UTRs based on an algorithm in which the per-sequence 

AUG content for all sequences from each species was tabulated using a simple string search 

(Figure 3.7A).  The per-species median uORF number was then calculated.  We used the median, 
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as opposed to the mean, in order to guard against possible artifacts resulting from the inclusion 

of coding sequence where AUG may be very common.  If the median was >0.5, species received 

a score of 1; otherwise, 0.  The per-species scores were tabulated and summed to give an 

enrichment score.  It is also conceivable to use the median score directly, and analyze resultant 

distributions.  We found that results were more interpretable using the 0 or 1 approach because it 

more effectively identified groups where uAUG enrichment or depletion spanned the entire 

phylogenetic tree.  Using the median directly, some groups may have many uAUGs in a UTR 

within dicots but few in monocots, and would still score as high as groups where single-uAUG 

enrichment spans the entire tree.  

Many clusters have a substantially different uAUG enrichment score relative to the 

control, GUA (Figure 3.7B).  Specifically, uAUG depletion is much more common than 

depletion of the control.  These results are consistent with our hypothesis that mutations that 

would create an uAUG are selected against in many genes, whereas they are neutral in others. 

Vice versa, we hypothesized that mutations that disrupt uAUGs may be selected against in some 

genes (uAUG enrichment).  However, on first glance, this analysis did not reveal a clear surplus 

of uAUG-enriched groups (score of 8-11). We reexamined this question after considering that 

the AUG dataset may be the aggregate of three underlying distributions, depleted, neutral and 

enriched, whereas the GUA dataset consists entirely of the neutral distribution.
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Figure 3.7: uAUGs are depleted from many orthologous groups.
A) Example of how an enrichment score is derived from 5' UTRs from an orthologous group.  
Gray boxes represent uORFs in the 5' UTR (black line).  Species names beside a sequence are  
abbreviated to the first letter of the genus and specific epithet in the adjacent table.  B)  
Histogram of enrichment scores for all orthologous groups with 11 species represented. 
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Using the GUA distribution as representative of a neutral distribution, we modeled enriched 

and depleted fractions as binomial distributions with 11 trials.  Because of variation resulting 

from species relatedness, this model is unlikely to be the best reflection of  distributions resulting 

from biased enrichment scores, but it models the control distribution well barring a slight 

underestimate of variance (not shown).  Each of these distributions - enriched, depleted, and 

neutral - was assigned a relative contribution to the actual distribution (Figure 3.7B).  The GUA 

distribution was used directly as the neutral distribution.  This results in a five parameters: 

proportion accounted for by the neutral distribution (fn), proportion accounted for by the depleted 

distribution (fd), p for depleted distribution (pd), proportion accounted for by the enriched 

distribution (fe), p for enriched distribution (pe).  Since, the total contributions must sum to 1 ( fn 

= 1 - ( fd + fe ) ), a four parameter model results.  This is the 'NDE-model (w/ enriched)' in Figure

3.8A.  

For contrast, we also modeled the AUG distribution, under the assumption that there is no 

AUG-enriched fraction of gene ('ND-model (no enriched)' in Figure 3.8A), which, for reasons 

defined above, results in a two-parameter model.  Though the two models produce a comparable 

fit across most of the distribution, the NDE-model with enrichment is, as expected, substantially 

better at representing the enriched categories (9 through 11).  For validation, we checked 

enrichment scores for previously identified uORFs that appeared to be conserved at the peptide-

level across dicots; as many of these are known to be conserved across the angiosperm tree as 

well, these  conserved peptide uORFs would likely exhibit AUG-enrichment.  Of these 19 groups 

(Table 2.4), only five had orthologous groups with all 11 representatives.  Of these five, four had 

an enrichment score of >9.  Therefore, our enrichment score does appear to reflect groups in 

which AUGs are functional, and that the NDE-model, versus the ND-model, is justified.

The NDE-model suggests that 5% of orthologous groups fall into the AUG-enriched 

category, while the balance is split between the AUG-depleted (42%) and neutral (53%) 

categories (Figure 3.8B).  For Arabidopsis, 5% equates to roughly 1,250 genes, a value that 
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dramatically exceeds characterized cases of uORF function (~70 genes).  In spite of illuminating 

the size of the fraction of orthologous groups that might generally require an AUG, the NDE-

model makes it clear that we would, at best, have a 50% chance of picking a group that truly 

requires AUGs.  Alternatively, the AUG-depleted groups are easily identified, and groups with a 

0 enrichment score are almost certainly intolerant of uAUGs.

Genes from orthologous groups with uAUG depletion serve fundamental roles in the cell

As expected from general depletion in AUGs across all 5' UTRs in the transcriptome (Figure

3.4), many orthologous groups are depleted in AUGs (Figure 3.7).  But, unlike simply examining 

general features within the transcriptome of a single species, comparative analysis allowed us to 

identify particular genes in which uAUGs are not tolerated (Figure 3.8B).  If uAUGs, at best, 

lead to a small reduction in protein production, then genes that are depleted in AUGs should be 

fundamental to central metabolic pathways in the plant cell. 

To test this hypothesis, we extracted the Arabidopsis accessions from orthologous groups 

having enrichment scores of 0 (Figure 3.8B).  These accessions were then used to check for GO 

term enrichment relative to the entire Arabidopsis thaliana transcriptome using the AMIGO term 

enrichment web-service.  Among enriched terms, translation-related categories are the most 

significant and ubiquitous (Figure 3.9).  As translation is perhaps the most fundamental process 

in biology, this result coincides with our expectation.  Genes related to nucleotide biosynthesis, 

another central pathway, also appear to be differentially depleted in uAUGs.  Auxin synthesis is 

one of the only plant-specific categories that shows a significant uAUG-depletion bias, although 

response to heat, salt, and metal ions all have lower but significant enrichment as well (shown as 

'Stress Response' in Figure 3.9).  
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Figure 3.8: NDE model predicts the relative proportion of uAUG-depleted, enriched, and  
neutral orthologous groups.  
A) Black bars indicate the actual distribution AUG enrichments scores (Figure 3.7) converted  
to frequencies.  Green bars represent prediction of the ND-model, which has two parameters  
and does not account for an enriched component. Blue bars represent the NDE-model, which  
has four parameters and does account for an enriched component.  B) Relative proportions of  
'neutral', 'depleted', and 'enriched' categories within the total predicted enrichment distribution.  
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Figure 3.9: uAUGs are depleted in pathways central to all cellular life.  
GO term enrichment was assessed for Arabidopsis genes associated with orthologous groups that had an enrichment score of 0.  The  
interconnected graph represents the hierarchy of GO terms.  The darker the box-node the smaller the p-value of term enrichment  
among uAUG-depleted genes relative to the Arabidopsis transcriptome.  Size of the box-node is irrelevant
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Because we initially limited our analysis to orthologous groups with 11 representatives, we 

were concerned that we were introducing bias into the GO enrichment analysis: genes shared 

across 11 species are likely to be genes related to fundamental biological processes.  To address 

this issue, we ran a similar analysis as above, except that instead of the entire Arabidopsis 

transcriptome, Arabidopsis accessions from the moderate enrichment class (5 through 8 in Figure

3.8B) were used as a background model.  This result also indicates that the introduction of 

uAUGs into genes related to translation is not tolerated (Figure 3.10).  Because we limit the size 
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Figure 3.10: Moderate enrichment control.  
Similiar to Figure 3.9, except that these data represent enrichment relative to a background of  
genes with moderate (5-8) enrichment scores (Figure 3.8).  See Figure 3.9 for description. 
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of our background model by ~10-fold, enrichment categories with moderate significance in 

Figure 3.9 disappear.  Thus, while these results bear out the conclusions above, they are perhaps 

overly conservative.  Genes related to the categories that disappear are not anymore significantly 

enriched among the 2,094 gene analyzed than many other categories (not shown), and so their 

presence in Figure 3.9 is not likely to be an artifact of general enrichment in the analysis.

Specific examples of peptide-independent  uAUG conservation show uORF stacking

As described above, it is difficult to differentiate true-positives from false-positives in terms 

of orthologous groups that exhibit AUG-enrichment.  Still, because 5% of these groups may 

require uAUGs (Figure 3.8B), we considered it worthwhile to further investigate uAUG 

coverage across the monocot-dicot divide.  In Chapter 2, we described a set of 19 AUG-

containing conserved elements within the 5' UTRs of orthologous dicot genes (Table 2.8).  These 

regions did not appear to overlap known smRNA binding sites or to be constrained at the peptide 

level.  Using this dataset as a starting point, we examined these groups in more detail with regard 

to the additional monocot data.  Note that many of these groups do not appear in the enrichment 

score analysis (Figure 3.7) because they do not have the requisite 11 species represented.  Of the 

four that did, all four have an enrichment score >8.
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Figure 3.11 (next page): Orthologous groups exhibiting uORF stacking. 
(A-C) Transcript alignments are shown in miniature followed by all possible ORFs, where the  
darkness of red indicates the context strength of the ATG.  ORFs are positioned relative to the  
alignment and appear in separate rows based on their frame relative to the end of the  
transcript.  The consensus start of the main ORF is indicated by a green diamond on the scale.  
The 3' region of main ORF is clipped for viewing purposes.  Orange vertical lines in  
'Nucleotide conservation' lane indicates the level of identity in that column.  The orange  
horizontal line below each accession indicates sequence coverage for the given accession  
relative to the alignment.  Blue boxes indicate the presence of a splice-site consensus sequence  
- [A|G]GGA.  A) INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2. B) CALCINEURIN B-
LIKE 3 C) ASYMMETRIC LEAVES 1.
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Figure 3.12: Local alignments of regions around the uORF start sites.  
Heavy black underlines indicate an ATG-containing column. A) INOSITOL  
PHOSPHORYLCERAMIDE SYNTHASE 2. B) CALCINEURIN B-LIKE 3 C) ASYMMETRIC  
LEAVES 1.
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Of the genes we examined with more than two clearly defined monocot orthologs (7 out of 

19), few trends were evident.  Using diagnostic graphics like those in Figure 3.11, the only 

discernible pan-angiosperm pattern was the occurrence of multiple overlapping uORFs in three 

separate orthologous groups.  The three groups depicted in Figure 3.11 are functionally unrelated 

both in terms of pathways in which they act and molecular functions that they perform. 

INOSITOL PHOSPHORYLCERAMIDE SYNTHASE 2 (Figure 3.11A) encodes an enzyme in the 

sphingolipid biosynthesis pathway. CALCINEURIN B-LIKE 3 (Figure 3.11B) encodes a calcium-

responsive regulator of kinase activity. ASYMMETRIC LEAVES 1 (Figure 3.11C) encodes a 

developmental transcription factor.  Yet, each of these proteins shares of general pattern of uORF 

stacking around and overlapping the start site of the main ORF, a pattern that could potentially 

be highly inhibitory.  The general alignability of many of these uORF start sites across very 

divergent lineages indicates that they have been under purifying selection since the earliest 

angiosperms (Figure 3.12).   

Discussion

uORFs appear to to be present in many transcripts and are functionally constrained across 

both narrow and wide evolutionary distances in plants (Figure 3.2A, 3.8B, and 3.12).  Monocots 

generally appear to have fewer uAUG-containing transcripts (Figure 3.2A), and this is not 

related to  5' UTR length (Figure 3.2B).  More transcriptomes are needed to confirm this trend, 

and also to differentiate whether these lower values are unique to grasses.  In any case, the bias 

against AUGs in the 5' UTR is not significantly different between monocot and dicot lineages 

(Figure 3.3).

Examination of closely related plant species reveals that, like mammals, some mutations that 

disrupt uAUGs are under purifying selection relative to other 5' UTR triplets (Figure 3.6A). 

Though this functional constraint appears to span genes associated with all biological processes, 
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uAUGs harbored by stress response genes are dramatically constrained (Figure 3.6C). 

Interestingly, orthologous groups in the pan-angiosperm analysis that are depleted in uAUGs are 

also commonly found among genes associated with stress response (Figure 3.9).  Thus, stress 

responsive genes are perhaps the most dramatic example of the NDE-model (Figure 3.8B), in 

which many genes cannot tolerate uAUGs but those that possess uAUGs require them for proper 

function.  Though solely speculation, it stands to reason that certain genes belonging to these 

stress response categories - Hsp70 and Hsp101, for example [110] - need  to be translated at full 

capacity when the transcriptional response is initiated.  Alternatively, genes that mediate the 

transcriptional activation of these 'responder' genes may need to be expressed either with reduced 

yield or reduced noise to prevent premature investment in a major physiological transition.  We 

still lack the resolution to test this prediction, but requisite sequence data may be available in the 

near future (http://www.onekp.com/index.html).  

Using data from Chapter 1, we were able to identify a small sample of orthologous groups in 

which peptide-independent uORF conservation may span the angiosperm tree.  INOSITOL 

PHOSPHORYLCERAMIDE SYNTHASE 2 contains uORFs ranging from ~80 to ~200 nts and 

these are often followed by a canonical splice sequence; thus, this transcript may be a good 

candidate for conserved uORF-mediated NMD (Figure 3.11A).  Interestingly, sequence 

constraint appears around the uORF start sites in both monocot and dicots but these regions are 

unalignable and, thus, may not be homologous (Figure 3.12A).  Although, given that purifying 

selection may be acting on a very small region of this 5' UTR, we would not expect homology to 

be discernible.  CALCINEURIN B-LIKE 3 uORFs are typically shorter and closer to the start of 

the main ORF (Figure 3.11B).  Also, while the sequence region around the two uORFs is highly 

constrained in dicots (Figure 3.12B), there is no extensive sequence constraint in the 5' UTRs of 

monocots.  The high degree of conservation within this region, at least in dicots, may either 

result from the requirement of very strong start codon context for both start sites or from 

overlapping an unknown cis-element. Lastly, like the CALCINEURIN B-LIKE, the 
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ASYMMETRIC LEAVES 1 mRNA has a high concentration of uORFs around the start of the 

main ORF (Figure 3.11C).  These are typically short.  Additionally, there is discernible sequence 

constraint associated with this region acting in both monocots and dicots (Figure 3.12C). 

Interestingly, in all sequences, there is a large span (~300 nts) of ORF-less sequence space 

downstream of these uORF clusters.  Because of the possibility of re-initiation, this mRNA is 

perhaps the best candidate as of yet for uORF-mediated N-terminal isoform production [122]. 

Also, while Oryza has lost its initial uORF ATG (relative to other monocots), it has gained one 

downstream (Figure 3.12C).

Interestingly, uORF-stacking is not only associated with peptide-independent uAUG 

conservation, but also with many conserved peptide uORFs.  For example, the beginning of the 

sucrose-responsive  bZip11 uORF is overlapped by a shorter uORF in all lineages that we have 

analyzed (not shown).  These uORFs may be anti-inhibitory in the case of bZip11 (see Chapter 4, 

Section 1), which also appears to be a valid explanation for many of the initial uORFs in Figure

3.11.  Why nature would maintain an inhibitory uORF only to diminish its effect with an anit-

inhibitory uORF remains somewhat puzzling but speaks to the possibility that these genes 

require very precisely tuned expression levels. 

In this analysis, we have focused on orthologous groups in which all species were 

represented; thus, we reduce our total pool of orthologous groups from ~9,000 to 2,094.  As 

described above, this was done mainly to accommodate our scoring algorithm and to emphasize 

uAUG enrichment that spanned the entire angiosperm tree.  Ideally, we could use all of these 

groups.  This may be possible by using a Branch Length Scores, which can account for 

relatedness among lineages under study [125].  In effect, the underlying tree relating the species 

is used to calculate the score.  In our case, the presence/absence score would be used (Figure

3.7A), such that the length of the subtree connecting all 1's would become the score. 
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Methods

Sequence acquisition and preparation for analysis of 5' UTR triplet composition 

Transcript data for A. thaliana were downloaded from 

http://www.arabidopsis.org/help/helppages/BLAST_help.jsp#datasets on 24 September 2009 

(Version 9). Putative transcripts for all other plant species (see Results) were downloaded from 

http://www.plantgdb.org/prj/ESTCluster/progress.php on 2 February 2011 [99].  The longest 

ORF from each putative transcript was extracted using a custom Perl module (uORF.pm 

available at http://web.utk.edu/~jvaughn7/code/bio/) based on the criteria that an ATG be 

followed in-frame by a TAA, TGA, or TAG or that an ORF extend to the end of the putative 

transcript.  These ORFs were translated to peptide sequences and reciprocal BLAST searched, 

using blastp (version 2.2.21), in species-wise fashion with an e-value cutoff of <1E-30. All 

BLAST searches were performed using the Newton supercomputer at the University of 

Tennessee.  In order to diminish confounding effects of lineage specific gene loss or incomplete 

sequence data on orthology assessment, accessions were then clustered based on their BLAST 

scores using OrthoMCL (version 1. 4) with default parameters [100].  Only 5' UTRs linked with 

those proteins clustered into orthologous groups were used.

Analysis of 5' UTR triplet composition

UTRs having annotated residues other than A, C, G, or T were removed; counts were of all 

overlapping words containing an A, C, G, or T.  UTRs shorter than 3 nts were removed. 

Percentage of transcripts with an AUG (Figure 3.7A) was found by searching each resultant 5' 

UTR for one or more AUGs.  For triplet expectation (Figure 3.4 and 3.5), dinucleotides and 

triplet words were counted using a sliding window incremented by 1 residue.  Importantly, to 

avoid artificial fusion triplets, UTR sequences were not concatenated prior to assessment of 
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dinucleotide and triplet frequencies.  Dinucleotide frequencies were then used in a conditional 

probability formula to predict the expected triplet frequency, for example: 

p(AUG) = p(AU) × p(UG)/(p(UG) + p(UA) + p(UT) + p(UC))

Analysis of AUG substitution rates and their functional bias

For the pairwise uAUG conservation analysis (Figure 3.6), transcript data for Arabidopsis 

thaliana was downloaded from 

http://www.arabidopsis.org/help/helppages/BLAST_help.jsp#datasets on 24 September 2009. 

Putative transcripts for all other plant species were downloaded from 

http://www.plantgdb.org/prj/ESTCluster/progress.php on 7 October 2009 [99].  Orthologous 

groups were generated in the manner given above.  Transcripts with 5' or 3' UTRs shorter than 8 

nuclotides were excluded from analysis.  Data for the mammalian lineage comes from prealigned 

sequences made available at ftp://ftp.ncbi.nih.gov/pub/koonin/uAUG/.

Each 5' UTR from a given species within a particular orthologous group was aligned with all 

5' UTRs of the other species in that group.  Pairwise alignments were carried out using b2seq of 

the BLAST suite (version 2.2.16). Regions were considered alignable if their match length was 

greater than 50 nts and if the comparison had an e-value of less than 0.01.  Each sequence within 

an alignable region was then parsed for its triplet conservation using custom Perl scripts in 

conjunction with the Bioperl library [126]. A sliding window of three nucleotides incremented in 

one nucleotide steps was used.  

The Gene Ontology for A. thaliana was downloaded from 

ftp://ftp.arabidopsis.org/home/tair/Ontologies/ on 4 September 2009.  Each orthologous group 

was assigned a GO categorization base on the A. thaliana ortholog.  uAUG enrichment was 

assessed as the average number of uAUGs per sequence in the group divide by the average 

sequence length in the group.
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Assessing uAUG enrichment

Using the angiosperm orthologous groups described above and their associated 5' UTRs, 

groups were given a triplet enrichment score ('AUG' and control 'GUA') based on the following 

algorithm (see Figure 3.7A): 1) Each 5' UTR was searched for the number of triplets.  2) The 

median value was taken with regard to all sequences representing each individual species.  3) 

Median values were rounded to the nearest integer.  4) If the resultant value was one or greater, 

the species received a score of 1; otherwise, 0.  5) Scores were tabulated for each orthologous 

group.  Only orthologous groups with 11 species represented were used, resulting in 2,094 

groups.

Hypothetical distributions underlying the AUG distribution were modeled such that the 

'neutral' category was defined by the GUA distribution (Figure 3.7B).  The 'enriched' and 

'depleted' categories were modeled as binomial distributions.  The relative contribution of each 

category to the actual distribution was a free parameter ranging from 0 to 1.  The p parameter in 

the 'enriched' and 'depleted' models was also a free parameter, ranging from 0 to 1.  In total this 

resulted in 4 free parameters for the NDE-model.  The parameters were fit by minimizing the 

squared difference between the prediction and the actual frequency of each enrichment-score. 

Minimization was performed using an evolutionary strategy implemented in Perl 

(http://search.cpan.org/~pjb/Math-Evol-1.12/Evol.pm).  The two parameters for the ND-model 

(p for 'depleted' category and relative contribution) were fit in a similar manner.  

GO term enrichment

Arabidopsis accessions from groups with an enrichment score of 0 were tested for GO term 

enrichment using the 'Term Enrichment' webservice (http://amigo.geneontology.org/).  The 

'TAIR' background model was used with default parameters.  We additionally used  Arabidopsis 
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accessions from groups with an enrichment score of 5 through 8 as a background model, with 

default parameters as well.

Group-specific curation

Groups with precedent for conserved AUGs in the 5' UTR (see Results) were aligned as full 

transcipts using ClustalW with default parameters.  ORFs were then mapped back to the 

alignment using custom Perl scripts in conjuction with the Bioperl library [126].  Local 

alignments of the 5' UTR (Figure 3.12) were generated using MEME (Version 4.4.0) [127] and a 

background model of dinucleotide frequencies based on all Arabidopsis 5' UTRs.  
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Chapter 4: The mechanics of translation initiation
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Section 1 of this chapter has been previously published in:

 Roy B, Vaughn JN, Kim B-H, Zhou F, Gilchrist MA, von Arnim AG (2010) The h subunit of 

eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open 

reading frames. RNA 16: 748-761.

Small portions of the data and analysis in Section 3 have been previously published in:

Kim B-H, Cai X, Vaughn JN, von Arnim AG (2007) On the functions of the h subunit of 

eukaryotic initiation factor 3 in late stages of translation initiation. Genome Biol 8: R60.

Though I had an advisory role, the computational pipeline used to analyze secondary 

structure in the 5' UTR was implemented as software by Qidong  Jia at the University of 

Tennessee  
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Abstract

The multiplicity of events that affect a single uORF initiation-reinitiation cycle can confound 

intuitive predictions of the system being tested.  This complexity grows substantially with the 

addition of multiple uORFs.  Ideally, we could formalize these events into a model, which would 

make quantitative predictions based on known elemental processes.  To address this need, we 

developed a 'sum-histories' computational model of the scanning process that incorporates the 

experimentally observed effects of uORF length, intercistonic length, and start codon sequence 

context (Section 1).  Data from dual luciferase assays involving an allelic series of 21 mutant 

5'UTR constructs with various uORF structures of the Arabidopsis AtbZip11 5' UTR as a model 

system were used to estimate the quantitative parameters of the model. According to these 

estimates, ~75% of encounters between the ribosomal preinitiation complex and a start codon 

result in elongation, and this occurs regardless of sequence context.  In addition, estimates were 

made in order to identify salient defects associated with a mutation in the subunit h of eukaryotic 

initiation factor 3 (eIF3h). Based on these result, we concluded that eIF3h buffers against the loss 

of reintiation competence that has been observed to occur during uORF elongation.  Though the 

luciferase reporter system described in Section 1 was useful for characterizing molecular defects 

for a single gene, ideally we could apply existing models to all endogenous transcripts of the 

entire Arabidopsis transcriptome.  The translation state of all expressed mRNAs in Arabidopsis 

can be measured using polysome fractionation followed by microarray hybridization.  In Section 

2, we examine 5' UTR features in light of emerging data based on this technique, finding that 

secondary structure around the mRNA 5' cap is a major determinant of translation state.  In 

Section 3, we used high-resolution data from yeast in order to test computational methods that 

will maximize the biological insight gained from these assays while minimizing the large cost 

associated with such multi-fraction microarray experiments.  Though motivated by technical 

improvement, the result in Section 3 further suggest a decoupling of translationally active and 

quiescent pools of mRNA.      
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Section 1: The mechanics of initiation/reinitiation can predict the extent of  
uORF-mediated repression and the molecular defects associated with a mutation  
in eIF3h

Introduction

Quantitative models of translation have extensive precedent in the literature, but, to our 

knowledge, only two of these models deal explicitly with the events preceding translation 

initiation (though some of these models do allow a single generic initiation rate to vary between 

mRNAs [128,129].  Both Skjøndal-Bar & Morris [130] and Dimelow and Wilkinson [131] 

incorporated known initiation factors into a large system of differential equations in an attempt to 

explore initiation affects manifested by variations in the concentration and phosphorylation state 

of these factors.  The later study concludes that, based on currently available data, useful 

estimates of the rates of most of these reactions cannot be determined.  Neither of these models 

deals with uORFs explicitly, in spite of a clear correlation between initiation efficiency and 

uORF content [22,132].  Hence, in order to assess the degree to which these events can explain 

our system, we took a more abstract approach by modeling the effect of uORFs based on the 

known repercussions of various uORF-associated parameters, such as uAUG context, uORF 

length, and length of the spacer sequence between uORFs.

The von Arnim lab has undertaken numerous in vivo dual luciferase assays to test the effects 

of varying uORF structures on translation initiation efficiency.  The variations are derived from 

the Arabidopsis AtbZip11 5'UTR, which harbors a cluster of phylogenetically conserved uORFs 

(Figure 4.1A).  In brief, the translation efficiency was determined by taking the ratio between the 

activities of two luminescent reporter proteins. Firefly luciferase was expressed from a uORF-

containing 5'UTR (condition) and Renilla luciferase was expressed from an unstructured, uORF-

less 5'UTR (control).  Each reporter construct was driven by the same promoter to control for 
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transcript abundance.  These reporter constructs were then co-transformed into seedlings and 

given time to express.  These seedlings are then ground and their lysate is assayed for luciferase 

ratios.    

To facilitate quantitatively rigorous conclusions for these numerous experiments, we 

constructed a computational model of translation initiation on the uORF-containing AtbZip11 

leader (Figure 4.1B). The five variables of the model correspond to canonical events of the 

scanning model of translation and represent the following mechanistic events (Figure 4.2). 

Variables pcs and pcw represent the probability that the 40S ribosome recognizes an AUG in 

strong or weak sequence context, respectively. Variable k1 describes the rate per nucleotide (nt) 

at which the ribosome loses its reinitiation competence, permanently, during uORF translation. 

The remaining ribosomes, said to have suffered only conditional loss of competence due to loss 

of Met-tRNA-eIF2-GTP (ternary complex), will terminate translation and resume scanning. 

Variable k2 describes the rate per nt scanned at which the ribosome regains its full reinitiation 

competence, in part by acquiring a ternary complex. Finally, certain uORFs trigger permanent 

loss of reinitiation competence in a fashion dependent on the peptide sequence, independent of 

their length. This is true for uORF2b of AtbZip11.  Variable p2b represents the probability of 

escape from the attenuation caused by translating the peptide of uORF2 of AtbZip11, where 

p2b=0 indicates dissociation of the ribosome from the mRNA every time, i.e. no escape. 
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Figure 4.1:  'Sum-histories' model of initation-reinitation.
A) Constructs used to estimate model parameters - those involving only changes in start context  
are not shown. Asterisks indicate where 'native' context is modified to strong.  Staggering of  
uORFs indicates their reading frame relative to one another. Where not specified explicitly, the  
end of each line represents the start of the reporter mORF.  B) 'Sum-histories' approach to  
modeling multiple uAUG containing transcripts.
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Results

Parameters culled from the literature (Table 4.1) yielded a poor fit between model and wild-

type experimental data (Figure 4.2G). We therefore adopted an evolutionary algorithm to 

generate estimates for each parameter for both wild-type and eif3h mutant plants, using as a 

fitness criterion the least sum-squares fit between model and experimental data (see Methods). 

To assess uncertainty with regard to experimental variation, we generated 95% confidence 

intervals (CIs) for these parameters by bootstrapping from the experimental data (Figure 4.2B-F). 

Significantly, the maximum likelihood estimate (MLE) for k1, the rate at which reinitiation 

competence is lost during uORF translation, was lower in wild-type plants than in eif3h mutant 

plants (Table 4.1). Thus, in the wild type, 50% loss of competence was estimated at 58 nt of 

uORF translated, whereas in the mutant 50% loss of competence was more rapid, at 22 nt. In 

contrast, the parameter estimates for AUG recognition (pcx) were affected little by eIF3h. Weak 

context was the same between the two genotypes. Strong context differed by a small, yet 

statistically significant, margin (Table 4.1). The escape from attenuation at uORF2 (MLE(p2b) = 

0.16 for wild type) suggests that translation of uORF2b allows only one out of six wild-type 

ribosomes to retain reinitiation competence. In contrast, in eif3h p2b was effectively nil (Figure

4.2F), indicating complete loss. The low MLEs for p2b suggest that uORF2 strips ribosomes of 

their reinitiation competence more effectively than suggested by its length. It stands to reason 

that the mechanisms driving k1 and p2b are intimately related. Loss of competence (k1) and 

uORF2 dissociation penalty (p2b) were negatively correlated in WT conditions, i.e. modeling 

trials in which loss of competence was mild tended to assign a very strong dissociation penalty to 

uORF2 and vice versa (not shown). The k2 parameter for regain of initiation competence during 

scanning was smaller in wild type than in eif3h, i.e. slower recovery in the wild type. However, 

k2 had a weak effect on fit, and hence was poorly constrained, in the eif3h background (Figure

4.2C; Table 4.1). In summary, the new parameters generally improved the fit between model and 
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experimental data (Figure 4.2G). The modeling work supports two conclusions; (i) translation 

initiation on the AtbZip11 leader can be explained to a large degree by translation of inhibitory 

uORFs, reinitiation, and leaky scanning; and (ii) the most evident molecular function of eIF3h is 

the retention of reinitiation competence during uORF translation.
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Table 4.1: Estimates of parameters in model of translation initiation

Wild type eif3h mutant

Parameter Estimate from literature  MLE  95% CI  MLE 95% CI

Rate of loss-of- 
competence (k1)

0.008 [133,134]  0.012 0.006 - 0.017  0.031 0.026 - 0.036

Rate of gain-of-
competence (k2)

0.015 [135]  0.008 0.004 - 0.014 0.009 0.008 - 0.092

Probability of initiation, 
strong context (pcs)

0.950 [11]  0.71 0.67   - 0.76  0.82 0.78   - 0.84

Probability of initiation, 
weak context (pcw)

0.250 [11]  0.72 0.69   - 0.76  0.72 0.69   - 0.74

uORF 2b penalty (p2b) set to 1 *  0.16 0.026 - 0.31  0 0 - 0

MLE, Maximum likelihood estimate
CI, confidence interval
* Value could not be estimated from literature data.
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Figure 4.2 (next page): Computational model of the translational defect in eif3h mutant  
plants. 
(A) Model parameters. (Gray boxes) ORFs. Spanning bars indicate the range over which a  
given term applies. (B–F) Distributions of parameter estimates. x-axis length reflects the  
manually set boundaries of possible parameter estimates. y-axis counts indicate the number of  
times out of 100 trials that a parameter fell into one of 20 x-axis bins. (B) Loss rate of  
reinitiation competence (k1) as a function of uORF length (u [nt]). (C) Regaining of  
reinitiation competence (k2) as a function of intercistronic spacer length (s [nt]). (D)  
Probability of AUG recognition in a strong context (pcs). (E) AUG recognition in a weak  
context (pcw). (F) Escape from attenuation upon translation of uORF2b peptide (p2b). (G)  
Scatter plot illustrating the match between model output using Maximum Likelihood Estimates  
(x-axis) and experimental data (y-axis, bars are one standard error) for all 21 AtbZip11  
leader constructs in wild-type (dark green) and eif3h plants (red). (Light green symbols)  
Predicted expression values using model parameters culled from the literature (see Table
4.1).
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The 2b portion of uORF2 is an inhibitory attenuator peptide that is activated when AtbZip11 

translation is repressed by sucrose. The computer model incorporated an equivalent uORF2 

penalty. Although we worked at a comparatively low sucrose concentration of 1%, changing the 

peptide sequences of uORF2 and 3 via compensatory frameshift mutations resulted in 

translational derepression, the extent of which was more pronounced in eif3h than in wild type. 

Despite alteration of the uORFs’ peptide sequences, translation remained dependent on eIF3h 

albeit at a diminished level. Several versions of the frameshifted uORF with slightly different 

coding sequences gave similar results [136]. In conclusion, the role of eIF3h in reinitiation is not 

restricted to the uORF2 peptide. Instead, as suggested by the model, eIF3h helps to retain 

reinitiation competence in peptide sequence-dependent and sequence-independent ways.

Discussion

The computational model is founded on the notion that four types of variables drive 

initiation efficiency at the main start codon: the context of uORF start codons , the length of the 

previously translated uORF , any attenuation caused by the nature of the uORF peptide , and the 

spacer length between a uORF stop codon and the next AUG start codon . Granted that eIF3h 

stimulates reinitiation, is it not possible that eIF3h simply increases the affinity between the 40S 

subunit and eIF3, such that a post-termination 40S subunit can effectively recruit a fresh eIF3 

complex from the soluble cytosolic pool? Speaking against this is that eIF3h's effect is 

conditional on attributes of the uORF, and in two distinct ways. First, eIF3h suppresses the 

permanent loss of reinitiation competence during uORF translation. Specifically, it reduces the 

rate parameter, k1, by about two-fold (Figure 4.2B). Second, eIF3h reduces the additional loss of 

reinitiation competence caused by uORF2 (p2b, Figure 4.2F). The effect of eIF3h on parameters 

k1 and p2b may well be due to one and the same molecular activity of eIF3h. We propose eIF3h 

facilitates post-initiation retention of eIF3 on the ribosome, and ribosomes that have retained 

eIF3 will be more likely to resume scanning and reinitiate than ribosomes that have not. 
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Discrepancies between model and experiment were dispersed over the entire data set and 

were generally within two standard errors of the experimental mean (Figure 4.2G). However, 

there were exceptions, which are evidence of mechanistic events that have yet to be modeled. 

The set of variables was deliberately kept to the minimum that is well supported by prior 

knowledge. For example, uAUG2a is very inhibitory, especially in the eif3h mutant, even though 

it is in a weak context and masked by uORF1. This might point to ribosome-ribosome 

interactions. Let us consider that the uORF2 attenuator peptide slows the progression of 

elongating or terminating 80S ribosomes, consistent with the uORF2 penalty in both wild type 

and mutant (Figure 4.2F). We now postulate that ribosome occupancy by uORF2 affects the 

trajectory of upstream ribosomes that are poised to reinitiate after uORF1. The block on uORF2 

would block 40S ribosomes that are scanning downstream from uORF1 and this might cause 

them to dissociate from the mRNA, possibly in an eIF3h-dependent way. Another plausible 

mechanism is that stacking of initiation-competent 40S ribosomes may foster AUG recognition 

at uAUG2a or 2b, which would exacerbate exponentially the eIF3h-dependent inhibition of 

expression. AUG recognition by 40S ribosomes can also be enhanced when the ribosome is 

blocked by RNA secondary structure [137]. Stacking on top of uAUG2a might arise from a 

block of eif3h mutant ribosomes upon termination of uORF1, a block of 60S subunit joining on 

uAUG2b, a block in elongation over a triplet of rare arginine codons present in uORF2b, or a 

combination of these. These possibilities remain to be tested. At pcw= 0.78, our parameter 

estimate for initiation at AUG in a weak context was fairly high, but not unprecedented, 

compared to published values . The postulated ribosome stacking effect may be the reason 

underlying the high AUG recognition and may explain why leaders harboring uORF1 are 

generally eIF3h dependent, but in a fashion dependent on uAUG2a.

Methods

We developed a suite of Perl objects to handle the data management, automate model 
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calculations, and estimate model parameters (evolModel available at 

http://web.utk.edu/~jvaughn7/code/). Each 5'UTR sequence was parsed for uORFs using a 

custom Perl module (uORF.pm described above). Initiation efficiency was modeled as the sum 

probability of a strongly binary tree representing all possible initiation events that a ribosome 

could experience prior to encountering the start codon of the main ORF. Hence the model is 

referred to as the 'sum-history' model (Figure 4.1B).  The probability of initiation at a given 

AUG was calculated as the context of that AUG (weak or strong) multiplied by the effects of the 

previously translated uORF's length  and distance from that previously translated uORF's stop:

P u , s= pcxe−k 1 u
1−e−k2 s



where,

P(u,s) = probability of initiation; pcx = probability of initiation based on context (strong or weak); 

k1 = rate of loss-of-competence per nucleotide; k2 = rate of gain-of-competence per nucleotide; u 

= length of last translated uORF; s = length from last translated uORF stop to the start of the 

current ORF 

See Results and  for further description of parameters.

AUG contexts were considered strong (pcs, [GA]nnAUGG, [GA]nnAUGn or nnnAUGG), 

and weak (pcw, nnnAUGn), with n being any other nucleotide and brackets indicating alternatives 

. The uORF2b penalty (p2b)was applied when uORF2b sequence was translated, which included 

the translation of uORF2a. The experimental data are from 21 AtbZip11 reporter constructs. The 

five parameters in the model were optimized for best fit with the experimental data using an 

evolutionary strategy implemented in Perl with Math::Evol 

(http://www.cpan.org/authors/id/P/PJ/PJB/Math-Evol-1.10.tar.gz) and run for 80 cpu seconds 

maximum with default parameters and with a relative and absolute convergence criteria of 10-11 

and 10-16, respectively; if fit did not improve by the given criteria within the last 25 generations 
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then optimization was terminated. In order to correct for differential efficiency of reporters, fit 

was evaluated based on the following equation:

∑
j=1

m

∑
i=1

n

[ ln 
x i , j

xnorm

−ln 
y j

ynorm

]
2

where, 

n = the number of experiments per condition; m = the number of conditions; xnorm = experiment 

median of the uORF-less leader condition; ynorm = model prediction of the uORF-less leader; x = 

the experimental result; y = model prediction

Each of the 100 optimization trials was started with parameter values selected from a 

uniform distribution delimited by the biologically relevant minima and maxima described below. 

The sampled range and initial value of the adjustable step-size, in parentheses, for all parameters 

are as follows: weak (pcw) and strong (pcs) contexts as well as p2b, 0 - 1 (0.204); k1 and k2, 0 - 0.10 

(0.025). To obtain confidence intervals for our estimates, the reference dataset used to evaluate 

fit was bootstrapped from the original dataset for each trial of parameter estimation (Hillier, 

2005; Hunt 1998). Increasing the trial number further had only a nominal effect on confidence 

intervals. To assure parameter convergence, 100 trials were run against the set of 21 conditions 

without bootstrapping. All but one of the resulting parameter estimates varied to within <0.001% 

of the parameter mean, suggesting that a global minimum (within the bounded region) was 

consistently found. The one exception was rate of gain-of-competence (k2) in eif3h, which found 

local minima 12 out of 100 times and, excluding these values, varied to within 1% of the 

parameter mean. Meta-analysis suggests that this is not a result of rough topology around the 

MLE but of k2's lack of impact on model fit to the eIF3h data once the parameter exceeds ~0.009.

116



Section 2: Translation state and UTR features

Introduction

In Section 1, we have shown that repressive effects of uORFs effectively explain most of the 

variation in translation rates among the luciferase constructs assayed.  Ideally, we could 

challenge our models of initiation with observations concerning the translation state of 

endogenous transcripts.  In pursuit of this aim, our lab is attempting to measure this value for all 

mRNAs in aerial plant organs using polysome fractionation and microarray technology. 
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Figure 4.3: Polysome-microarray schematic.  
A) Schematic of experimental pipeline for polysome microarray.  B) Illustrative ultraviolet  
absorbance profile of total RNA after ribosomes have been fractionated by centrifugation  
through a sucrose gradient.  'M' indicates the monosomal fraction.  Transparent red boxes in (A)  
and (B) indicate the same fraction of the gradient.  Figure modified from [132].  
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Results and Discussion

Secondary structure in the 5' UTR influences translation state more than any generic 

mRNA feature

5' UTR, CDS, and 3' UTR sequences were downloaded from TAIR (Version 9).  Sequences 

features were extracted using custom programs.  Secondary structural features in the 5' UTR 

were predicted using UNAFold software [138].  Prior work has looked at the relationship 

between sequence features and translation state [139].  In that analysis, each feature was looked 

at in isolation, yet many transcript features are correlated.  For example, uORF number and 5' 

UTR length are predictors of one another, but increases in sequence length also correlate with the 

probability of containing secondary structure. Thus, we began this analysis by plotting each 

attribute against every other attribute as well as against the TL of 3,774 Arabidopsis transcripts 

present in 4 biological replicates (Figure 4.4).

As expected there is a clear relationship between uORF number and the length of the 

5’UTR, as well as between length of the 5’ UTR and folding energy of its secondary structure 

(‘Energy’).  The free energy of the most stable secondary structure is distinctly related to the 

translation state, as seen previously [139]. This supports the notion that secondary structures in 

the 5’ UTR have an inhibitory effect on translation efficiency.  The length of the coding sequence 

and translation state are not correlated. This is somewhat contrary to the a priori assumption that 

a longer CDSs will generally have more ribosomes and, thus, should find itself in the NP state 

less frequently.  As described in Chapter 1, some of this discrepancy is related to the reduction in 

ribosome density as CDSs get longer  [13].

Whereas random expectation predicts only 12% of CDSs will begin with an AUG in strong 

context, we found that 67% of genes have this feature.  This finding indicates that strong 

initiation is important, but, interestingly, AUG start codon context was not related to TL. 
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Similarly, though uORFs are known to repress translation initiation in all eukaryotic systems, 

uORF number appears to have only a small effect on TL.  This may be due to the fact that 

uORFs attract ribosomes and therefore push mRNAs into the polysomal fraction, without 

actually contributing to the formation of gene product from the main ORF.  Additionally, it is 

possible that measurements of uORF effect are dampened because TL indicates an mRNA's 

ribosome-occupancy, which may be only partially related to the initiation rate.  Another 

interesting relationship involves TL and 3' UTR length.  TL is optimal for mRNAs with 3' UTRs 

in the 200-400 nt range.  Initiation context, though not related to TL, does appear to have many 

non-linear relationships with other sequence features, most notably the sharp drop associated 

with 3' UTR lengths less than 300 nts long.  Together these data indicate that an optimally 

expressing mRNA in Arabidopsis will have little 5' UTR secondary structure, strong AUG 

context, and a 3' UTR length of 300-400 nts.
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Figure 4.4: mRNA sequence features and translation state. 
Scatterplots of mRNA sequence features shown in all possible pairwise combinations.  Red  
lines are the LOWESS regression, which creates a locally-weighted polynomial fit to the data.  
The "Energy" attribute indicates the lowest energy (kcal/mol) from among all 60 nt windows  
within the 5' UTR.



mRNA secondary structure around the cap reduces translation state by 32%

In spite of many weak, nonlinear relationships between TL and other sequence features, 

secondary structure within the 5'UTR appears to have the greatest effect on whether or not an 

mRNA is associated with ribosomes.  In a monumental experiment in E. coli, 154 versions of 

green flourescent protein were created such that they differed only in their synonymous site 

nucleotides [140].  The mRNA to protein ratios of these different constructs could vary by 250-

fold.  Strikingly, little of this variation is explained by codon adaption index, while 50% is 

explained by the RNA secondary structures these mutations produce around the 5' terminus of 

the mRNA.  Though these experiments were carried out in a bacterial system, the results are born 

out in computational studies of yeast, where structure around the cap is selected against [141].  

Table 4.2: Structural features at the cap are associated with a 32% reduction in translation  
state.

Structure (< -15 kcal/mol) within 60nts of cap Structure (< -15 kcal/mol) anywhere in 5' UTR

TL(+) TL(-)  total pairs p-value TL(+) TL(-) total pairs p-value

-0.259  0.291 44 0.0094 0.273 0.326 570 0.35

* TL (+) and TL (-) give translation state with and without secondary structures, respectively. TL is the log-ratio of 
mRNA abundance in polysomal and non-polysomal fractions. TL=log(PL/NP)

Based on results in the previous subsection, we addressed whether or not the observed 

relationship between translation state and secondary structure has a cap bias.  In order to separate 

the role of secondary structure on translation state from that of other co-variables, such as uORFs 

and 5'UTR length, we collected pairs of sequences, one with secondary structure (ΔG ≤ 

-15kcal/mol) and one without, in such a way that co-variables such as uORF number etc. were 

effectively constant within each pair (see Methods).

Table 4.2 shows the results from 44 pairs with secondary structure near the cap of the 

mRNA. The log-difference in translation state of 0.550 indicates that structure around the 

transcript cap reduces translation state by 32%.  No significant difference was seen when 

transcripts with structures of equal or greater strength anywhere within the 5' UTR are used as 
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the condition group.  As predicted by experiments in vitro [142], the scanning complex may be 

able melt most structures within the 5' UTR but may not be able to bind if the transcript cap is in 

a double-stranded state.     

Methods

Translation state data were averaged from four independent replicates of polysome 

microarray data collected from 10-day-old wild-type Arabidopsis seedlings ([132] and 

unpublished data). This analysis was based on 3,774 genes that yielded expression data in each 

of the four experiments.  Sequence features were parsed using custom Perl scripts and 5' UTR 

sequence data downloaded via TAIR (version 10).  Each 5'UTR sequence was parsed for uORFs 

using a custom Perl module (uORF.pm).  AUG contexts were considered strong (pcs, 

[GA]nnAUGG, [GA]nnAUGn or nnnAUGG), and weak (pcw, nnnAUGn), with n being any other 

nucleotide and brackets indicating alternatives .  Secondary structure in the 5' UTR was assessed 

by extracting the 5’ UTR and the first 100 nt of the coding sequence (CDS). Then, we used 

UNAFold [138] with default parameters to predict the free energy of the secondary structure 

across a sliding window size of 60 nts, step size 20 nts, from the 5' cap to the beginning of the 

CDS.

To analyze the effect of cap structure, we selected sequences with secondary structure in the 

first 60 nt (ΔG ≤ -15kcal/mol) and paired each of them with a control sequence lacking 

secondary structure (ΔG > -15kcal/mol).  Sequence pairs were selected such that they had: 1) the 

same start codon context, 2) no uORFs, and 3) nearly identical length of 5’ UTR (± 20 nt), CDS 

(± 40 nt), and 3’ UTR (± 30 nt).  This filtering resulted in 44 sequence pairs.  A comparable 

approach was used for mRNAs possessing structure anywhere within the 5' UTR, which resulted 
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in 570 pairs; this number is much higher than the 44 pairs because there are many more 

transcripts with 5' UTR secondary structure when the criteria is not limited by cap-proximity.   

Section 3: The decoupling of ribosome- occupancy and ribosome-density       

Introduction

In Section 2, we used translation state (TL=log(PL/NP)) as an indirect measure of ribosome 

occupancy, the fraction of mRNA molecules occupied by at least one ribosome. However, this 

method does not distinguish well between highly translated and moderately translated mRNAs. 

Alternatively, each of the 12-14 fractions from a polysome gradient - each corresponding to a 

specific number of ribosomes - can be applied to a microarray, thus obtaining the relative 

concentrations of all expressed mRNAs within that sample.  The most common number of 

ribosomes with which an mRNA species is associated can be divided by that mRNA's main ORF 

length to get the ribosome-density of a transcript [13].  While ribosome-density does not reveal 

the kinetics of translation reactions, if one assumes fairly constant elongation and termination 

rates, ribosome-density is directly proportional to the initiation rate of mRNAs in the 

translational pool  [143]. It is evident that high-resolution fractionation is more accurate in 

measuring translational efficiency than low-resolution fractionation and ribosome occupancy, but 

the cost is prohibitive. Using high-resolution data from yeast, we assessed the degree to which 

ribosome-occupancy predicts ribosome-density and how best to exploit polysome fractionation 

data in order to feasibly arrive at a more accurate measures of ribosome-density for the 

Arabidopsis transcriptome.
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Results and Discussion

Ribosome-occupancy is a poor predictor of ribosome-density

As it stands, no studies have been carried out in higher eukaryotes using high-resolution 

polysome fractionation.  Such resolution has been achieved in yeast, and we used that study in 

what follows [13].  Briefly, yeast cells were harvested at log-phase growth conditions and lysed. 

Lysate was centrifuged through a sucrose gradient in order to differentiate mRNAs with varying 

numbers of associated ribosomes.  Each fraction was then applied to a two-color microarray. 

Each fractionated mRNA (red dye) was compared with a common reference (green dye) of 15mg 

total mRNA.  Relative concentrations were then normalized to a spiked-in control of known 

concentration, a step that allows comparisons across fractions.  Ribosome-occupancy is the 

fraction of a gene's mRNA associated with at least one ribosomes relative to the total amount of 

mRNA for that gene.  Ribosome-density is calculated as the ribosome number associated with 

the peak fraction among the polysomal fractions divided by (mORF length / 100); thus, the units 

of ribosome-density are number of ribosomes per 100 nts.

Ribosome-occupancy is a poor predictor of density (Figure 4.5A), suggesting that, even in 

simple eukaryotes there exist two pools of mRNAs that should be considered independently.  In 

fact, the molecular underpinnings of variation in ribosome occupancy are somewhat unclear. 

Many transcripts may be in a non-translating state, either because they are highly transcribed and 

have not been exposed to the cytoplasm ("kinetic effect") or because they are actively partitioned 

in the nucleus or cytoplasm  and made inaccessible to ribosomes ("partitioning effect") [19].

124



Figure 4.5 (next page): Assessing ribosome-density estimation methods using yeast data 
A) Scatterplot of ribosome-density versus ribosome-occupancy.  B) Correlation coefficient  
between density (ribosomes per 100 nts) and occupancy (percent of mRNAs associated with 1 or  
more ribosomes) plotted against specific ORF length ranges. C) Scatterplot of the number of  
ribosomes most frequently associated with a transcript versus the same value as predicted by the  
SPL-LPL method.  D) As in (C) except that the binomial model is used instead of the SPL-LPL  
method.  In both (C) and (D), because the actual data and the binomial model prediction are  
integers, these were randomly shifted around the integer value so that all the data can be  
visualized. E) Illustration of the binomial model and its predictions for an ORF length of 501  
and a p parameter set to 0.2.  F) Similar illustration using ORF length of 1002.  
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Correlation between ribosome occupancy and ribosome density depends on ORF-length

Because very short transcripts can only harbor one or two ribosomes, it is assumed that, if 

ribosome-occupancy and ribosome-density are related, short transcripts will show the highest 

correlation between these two attributes.  For example, if the mORF is only 100 nts long, then, 

because of spatial constraints, it can harbor ~2 ribosomes at most.  Thus, any reduction in 

translation efficiency will move many mRNAs into the non-polysomal fraction as well as 

reducing the ribosome-density.  We tested this expectation by looking at transcripts categorized 

by their lengths.  Each category has a range of 200 nts and overlaps the neighboring categories 

by 100 nts.

Strikingly, our results were effectively opposite our expectation (Figure 4.5B).  For shorter 

transcripts, there is significant decoupling between ribosome-occupancy and ribosome-density. 

The distinct rise in correlation as the ORF length range increases, suggested that shorter (and, to 

a lesser degree, longer) transcripts are more susceptible to this decoupling.  One explanation is 

that shorter transcripts produce highly expressed proteins such as ribosomal and histone subunits, 

and these may be under unique forms of translation control [42,144].  Additionally, the 

differential decoupling of shorter transcripts may reflect kinetic effects associated with higher 

transcription rates: many mRNAs have not yet been exposed to ribosomes. 

The use of small and large polysomal fractions reduces the true variation in ribosome 

density 

Because ribosome-occupancy is a poor predictor of ribosome-density, we are exploring cost-

effective ways to acquire a more accurate measure of initiation efficiency.  In prior studies, 

researchers generated a small-polysome and a large-polysome fraction (SPL and LPL, 

respectively) and calculated the ribosome density based on an estimate of the average or median 

number of ribosomes found within each fraction [143].  In other words, if an mRNA is found in 

the SPL (or LPL) fraction, one must ask, in the absence of other information, what is the best 
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guess as to the number of ribosomes to which this mRNA is attached. Such a guess can come 

from a profile of the UV spectrum (Figure 4.3B),  where the height of a particular fraction 

represents the contribution of the given ribosome number to the entire polysome population.  We 

explored the efficacy of the SPL-LPL approach using the high-resolution yeast dataset. 

Moreover, since we knew the contribution of each ribosome fraction to the pooled SPL and LPL 

fractions, we could generate our best guesses based on these elemental values; thus, we evaluated 

this approach using the best possible guess.

The SPL-LPL method over-predicted the ribosome number of mRNAs associated with <2 

ribosomes (Figure 4.5C).  Alternatively, the method under-predicted the ribosome number when 

an mRNA was actually associated with >6 ribosomes.  Such bias was anticipated: because the 

best guess of ribosome number for the SPL fraction was 2.2 (see Methods), the ribosome-density 

of transcripts that harbor only 1 ribosome gets inflated.  Likewise, because the best guess for the 

LPL fraction was 6.9, higher values are deflated.  Since ribosome number (and resultant 

ribosome-density) is the value we would be attempting to estimate, there is no clear way to 

correct for this bias using the SPL-LPL approach.  It should also be noted that the bias is not 

linear, suggesting that factors other than  statistical averaging are confounding this method.       

      

A simple mathematical model of ribosome-density improves resolution

It is clear from the previous subsection that we lost substantial information by applying a 

best guess as to the ribosome number across all transcripts.  If certain assumptions are made 

about the distribution of the data then a more accurate estimate of ribosome number might be 

achieved that alleviates this difficulty.  The initiation event that starts protein polymerization is a 

binary event with a certain probability of occurring or not occurring.  If a binary event has a 

fixed probability (such as a coin-flip), then the total number of events expected to occur in a 

particular number of trials has a binomial distribution.  One can imagine the ORF of an mRNA 

as having a certain number of slots into which a ribosome can fit.  Whether or not a slot is filled 
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is a result of whether or not a ribosome has initiated.  At steady state conditions, the number of 

possible slots in an ORF can be considered the number of trials.  The ribosome density profile 

can then be modeled as a binomial distribution which is determined by the probability of 

initiation (Figure 4.5E-F).

We assumed a maximum effective ribosome size of 40nts.  In order to generate the number 

of slots for the model, we divided each ORF by this value.  Given a random starting point 

between 0 and 1, the  p parameter was fit for each gene, such that the squared difference between 

the SPL fraction as predicted by the model and as seen in the data was minimized.

The binomial model improves on the estimation of mRNAs associated with 1 and 2 

ribosomes, but these are still over-predicted in general (Figure 4.5D).  Additionally, the binomial 

model does not resolve the problem of underestimating  mRNAs with a high ribosome number. 

A closer inspection of the data used to predict ribosome number indicated that the SPL fraction 

for mRNAs with a high ribosome number is simply too high if in fact the binomial model is a 

somewhat accurate representation of initiation process.  For example, if the ribosome number is 

10, the binomial model would require a very small frequency of a gene's mRNAs to be in the 

SPL fraction.  This is rarely the case.  It is possible that a significant proportion of the SPL and 

LPL signal is simply a result of underlying noise in the data.  Such signal would drive the 

binomial model to over-prediction of low ribosome numbers and, more dramatically, under-

prediction of higher ribosome number. We tested this possibility by subtracting the lowest signal 

across all ribosome fractions from each ribosome fraction, and rerunning the analysis.  Though 

there was a minor improvement (not shown), fit was still comparable to Figure 4.5D.  In 

summary, this discrepancy may speak to a violation in our assumptions concerning the steady-

state conditions of mRNAs in the translating pool.  We described above how the kinetic effects 

of transcription can affect polysome occupancy.  They may also affect the perceived rate of 

initiation because many mRNAs have not had sufficient time to accumulate ribosomes and so 

fall into the SPL fraction. In yeast, it has been estimated that the median time to steady-state 
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ribosome loading is ~2 min, whereas the median half-life of an mRNA is ~1.5 hrs [145].  This 

finding speaks against a kinetic explanation of SPL enrichment as most mRNAs will be in steady 

state relative to their ribosome number.  An alternative explanation is that the "pioneer round" of 

translation that occur upon exit of the nuclear pore has much slower kinetics than cytosolic 

initiation and elongation [146].        

Outlook on improved resolution

Pooled fraction polysome microarray experiments are commonly used to assess the 

translation state of all mRNAs in the transcriptome.  Typically, these are used in terms of 

condition/control experiments [22,23,132], but they are also used for absolute quanitification of 

translation rates [143].  Our results have shown that, depending on the conclusions being drawn, 

variation in NP/PL ratios may be indicative of other factors besides initiation rate, emphazing the 

need to consider ribosome-occupancy and ribosome-density as two distinct biological states. 

Additionally, SPL-LPL methods are likely to give a false impression of the true variation in 

initiation rates across the transcriptome.  

Is it possible to predict the number of ribosomes with which an mRNA is associated?  We 

have shown that two methods, one used previously [143], and one developed by us based on 

underlying biological assumptions, were both unsuccessful.  Future elaborations of models that 

account for transcription rate may improve fit.  Additionally, more sophisticated noise reduction 

may make the binomial model more appropriate.  It should be noted that the microarrays used for 

the yeast data are more likely to be susceptible to cross-hybridization error than those in current 

use in most polysome assays, which account for mismatches .  

It should be noted that the binomial model presented here has the useful feature that it 

predicts the component of the translationally-active pool of mRNAs that are found in the non-
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polsomal, NP, state.  Thus, it would be able to account for this component of the profile in 

attempting to diagnose molecule defects related to ribosome-occupancy.    

Methods

Yeast data was downloaded from http://genome-

www.stanford.edu/yeast_translation/data.shtml.  Summary data was directly used to assess the 

Pearson correlation coefficient of ribosome-occupancy and ribosome-density.  For length 

analysis, the Pearson correlation coefficient were assessed for all genes within a particular length 

range (Figure 4.5B).  A sliding window of 200nts was used, starting with the shortest mORF (70 

nts) and moving in 100nt increments.  

For the SPL-LPL method (Figure 4.5C), fractions containing 1-3 ribosomes were pooled 

(SPL).  Fractions containing >3 ribosomes (LPL) were also pooled.  The relative proportion of 

each was multiplied by best guess for the number of associated ribosomes in a pooled fraction. 

The best guess was calculated from the data by counting all replicates from all genes that fell 

within a particular peak fraction.  These values were pooled based on where we decided to divide 

the PL fraction (>3 ribosomes), and the mean was taken for each pool separately.  This is 

expressed in the following equation; note, s + l does not equal 1 because there is a certain 

frequency of mRNAs in the NP fraction:

R[ s , l ]=
sr slr l

sl

    

where, 

R = number of ribosomes associated with a transcript, s = frequency of a transcript in SPL 

fraction, l = frequency of transcript in LPL fraction, rs = best guess of ribosome number for SPL 

fraction, and rl = best guess of ribosome number for LPL fraction.

For the binomial method (Figure 4.5D-F), an effective ribosome size of 40 nts was used. 
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Each ORF was divided by this value to give the number of potential slots or trials.  The 

frequency of successful initiation events (p) was then fit to the data using an evolutionary 

strategy and, alternatively, the downhill simplex algorithm, both of which were implemented in 

Perl and are available at http://search.cpan.org/~pjb/Math-Evol-1.12/Evol.pm and 

http://search.cpan.org/~tom/Math-Amoeba-0.05/lib/Math/Amoeba.pm, respectively.  For both of 

these algorithms, default parameters were used with limits on p between 0 and 1.  p was found 

for each gene by minimizing the following fitness function:

f [ p ]=∑n= r

i=1
 si−m [ p ]2

where,

m [ p]=
B [3, p ,

l
40

]−B[0, p ,
l

40
]

1−B [0, p ,
l

40
]

and, 

r = number of replicates, si = frequency of a transcript in the SPL fraction for an individual 

replicate, m = the predicted frequency a transcript in the SPL fraction as a function of the 

probability of initiation at its main ORF,  x = the ribosome number, p = the probability of 

initiation, l = ORF length, and B = the cumulative binomial probability as a function of number-

of-positions-filled, probability of initiation, and number-of-possible-positions. 

In brief, the numerator of the m[p] function represents the probability of an mRNA having 1, 

2, or 3 ribosomes attached.  This value is then divided by the probability of an mRNA being in 

the polysomal fraction (1 - probability_of_an_mRNA_being_in_the_non-polysomal_fraction). 

For consistency, we chose to use the same fractions to combine for the SPL (and, hence, 

LPL) pools as was used in the SPL-LPL method assessment.        
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Addendum: A nucleotide-specific kinetic model of translation initiation

Introduction

When given a system of many constituents and the interactions of those constituents, human 

intuition often fails to make the correct prediction as to how that system will behave over time. 

Yet, scientists can recognize when the correct behavior has been predicted.  Thus, a critical test 

of systems biology is whether or not it can take the same input and do better than intuition at 

predicting emergent properties or phenotypes.  Translation, particularly with regard to a large 

class of mRNAs, is just such a system.  The translation of these mRNAs is known across many 

conditions and in a variety of genetic backgrounds.  Many of the constituents and their 

interactions are known.  Yet, whether the data fit what is known or not is still unclear.  

Results in Chapter 4, Section 1 imply nucleotide-specific molecular events commonly occur 

during translation initiation on the AtbZip11 5'UTR.  Our 'sum-histories' model did not have the 

granularity to estimate such events.  For example, the weak start-codon context parameter was 

estimated to be much higher than known values; ribosome stacking resulting from multiple 

initiation/termination events in the 5'UTR could be responsible for the enhanced initiation 

efficiency [137].  Moreover, other regulatory events involving mRNA secondary structure and/or 

RNA-protein interactions are intimately related to the presence of scanning and elongating 

ribosomes, both in the 5'UTR and in the coding region [137,140,141].  In brief, as the ribosome 

reads the message, it may encounter steric hindrance to its forward progression from other 

ribosomes or from proteins bound at specific locations. This mixture of elongation and stalling 

results in complex, nonlinear relationships.  Adding further complexity, some mRNAs are under 

combinatorial control by multiple interacting proteins [47,77,78].  While these may not have a 

dramatic effect on bZip11 translation, we would like for our models of initiation to be as general 

as possible.  Though we can model these events indirectly by the inclusion of constants that 

reduced efficiency in sequence specific manner - as with the uORF2b penalty in the 'sum-

histories' model - ideally we could be more biochemically exact.
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As discussed in Introduction to Section 1, pre-existing models do account for more specific 

molecular events related to initiation [130,131].  Yet these models focus on the sequential 

binding and activation of factors that interact with a translated mRNA.  They are not robust to 

the removal or addition of sequence elements that might affect translation.  Moreover, when 

processivity effects and ribosome-ribosome interactions are modeled, they are considered to 

scale across the entire mRNA region, whereas in reality, these are highly localized events. As 

described below, our approach is sequence-centric in that the user can specify particular 

sequence patterns at which molecular events occur; the computational framework then accounts 

for any spatial constraints related to the molecules involved.  This approach allows a biologist to 

quickly test their intuition concerning the potential effects of a sequence element or a mutation. 

Results and Discussion

An exact stochastic simulation of initation and reinitiation

Our modeling approach extended the work of Niemitalo, et al. in which each nucleotide 

position of an mRNA encoding a human protein disulfide isomerase was monitored for 

endoribonuclase exposure [147].  Our model took as starting conditions a single 5'UTR (mRNA 

molecule) and a saturating population of the other elemental components: large and small 

ribosomal subunits, eIF3, and eIF2-tRNA.  Simulations end with start codon recognition at the 

mainORF. The 5' UTR was subdivided into its constituent nucleotides. Because there is only one 

representative species of each nucleotide position, all resultant complexes are either present or 

absent (1 or 0). This, in turn, was how ribosome stalling by other ribosomes was modeled: 

forward movement can not occur if the upcoming nucleotide is unavailable.  Important processes 

not yet addressed include RNA secondary structure, rare codon stalling effects, peptide stalling 

effects, and internal ribosomal entry sites. The robust framework of this model would allow these 

mechanisms to be incorporated in the future without fundamentally altering the current 
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configuration. In fact, because the model treats the initiation/elongation process as a set of 

chemical reactions perpetuating from a single nucleotide position to one of two neighboring 

positions (forward or backward), any of these processes could be accounted for with minor 

effort.

Instead of manually generating all chemical reaction equations, they were generated by a 

Perl script using a spreadsheet template (Table 4.3). This method of organization was necessary 

because of the highly repetitive nature of processes that occur during initiation, such as forward 

scanning, elongation, etc., coupled with the point processes that can occur concurrently.  After 

the reactions were generated, the system was simulated using the Gibson-Bruck Next Reaction 

algorithm, which is an optimized version of the Gillespie First Reaction algorithm [148]. Briefly, 

the propensity of a reaction is calculated as the population size of each reactant multiplied by the 

given reaction constant. This propensity value describes a function of probable times. A random 

number is generated and used in the time function; each reaction then has a time. The reaction 

are sorted based on this time value. The smallest value is selected to occur (hence "First Reaction 

Method"). The Gibson-Bruck Next Reaction Method uses a graph data structure to significantly 

decrease the amount of updates required for each cycle.

Simulation can recapitulate many features of uORF-mediated suppression

Initially, to test the utility of this simulation framework, we used data from transfected 

mammalian cell cultures that directly characterized how re-initation depends on uORF length 

[133] and the length of space between a uORF stop and the next downstream start [135].  These 

uORF length effects (Figure 4.6A) and spacer effects (Figure 4.6B) were reproduced by the 

simulation.  In the case of changes in spacer length, the first-order kinetics are apparent. 

Alternatively, uORF length effects appear to have a fairly precise threshold, suggesting that a 

sequential  step may be required in order to loose re-initiation competence during uORF 

translation.  Running the model on a series of 5'UTRs of Arabidopsis AtbZip11 that differ in 
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their uORF pattern [136] (see Figure 4.1A) yielded a fit that, though not replicating the breadth 

of values, approximates their values relative to one another (Figure 4.6C).  It should be noted 

that the parameters for this test were not rigorously optimized; doing so might further improve 

the ability of the model to predict the full range of initiation efficiency seen in the AtbZip11 data 

(Figure 4.6C).  In any case, this test showed that the 'sum-histories' model from Section 1, which 

used an extended set of this data, and these simulations are complementary.
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Table 4.3: Reaction template for exact stochastic simulation of translation initiation.

For 'reactant' and 'product', complexes are indicated by underscores between constituents.  'forward' and 'reverse' are rates used in  
the propensity function of the simulation.  'zone' describes where on the mRNA a reaction is allowed to occur; reactions can occur  
anywhere on the mRNA that matches the given regular expression.  'diffusion behavior' defines if and how a given chemical species  
moves on the mRNA.  'bind size' defines the number of nts covered by the chemical species.

molecular process reactant product forward reverse zone
diffusion
behavior

bind
size

preinitaion complex formation eIF2+tRNA eIF2_tRNA 100 0 SINK 0 0

preinitaion complex formation eIF3+eIF2_tRNA eIF3_eIF2_tRNA 100 0 SINK 0 0

preinitaion complex formation eIF3_eIF2_tRNA+small eIF3_eIF2_tRNA_small 100 0 SINK 0 0

mRNA cap binding eIF3_eIF2_tRNA_small eIF3_eIF2_tRNA_small 100 0 S[ATGCVXYZ] BIND 30

scanning eIF3_eIF2_tRNA_small eIF3_eIF2_tRNA_small 30 10 . move,1 30

start site identification (weak context) eIF3_eIF2_tRNA_small eIF3_tRNA_small+eIF2 10 0 .{$bindPosition}[^VYAG].{2}ATG[^G] 0 30

start site identification (moderate context) eIF3_eIF2_tRNA_small eIF3_tRNA_small+eIF2 20 0
(.{$bindPosition}[VYAG].{2}ATG[^G]|.

{$bindPosition}[^VYAG].{2}ATGG) 0 30

start site identification (strong context) eIF3_eIF2_tRNA_small eIF3_tRNA_small+eIF2 30 0 .{$bindPosition}[VYAG].{2}ATGG 0 30

translation initiation eIF3_tRNA_small+large eIF3_tRNA_small_large 2 0 .{$bindPosition}ATG 0 30

translation initiation eIF3_tRNA_small_large eIF3_small_large+tRNA 1000 0 .{$bindPosition}ATG 0 30

elongation eIF3_small_large eIF3_small_large 10 0 .{$bindPosition}[ACTGN]{3} move,3 30

subunit loss during elongation eIF3_small_large small_large+eIF3 3 0 .{$bindPosition}[ACTGN]{3} 0 30

elongation small_large small_large 10 0 .{$bindPosition}[ACTGN]{3} move,3 30

termination (no resumption of scanning) small_large TOSINK 100 0 .{$bindPosition}(TAG|TGA|TAA) 0 30

termination eIF3_small_large eIF3_small 100 0 .{$bindPosition}(TAG|TGA|TAA) 0 30

resumption of scanning eIF3_small eIF3_small 30 10 . move,1 30

reacquisition of the ternary complex eIF3_small+eIF2_tRNA eIF3_eIF2_tRNA_small 3 0 . 0 30

main ORF translated (protein made) eIF3_small_large Protein+TOSINK 10000 0 B 0 30

main ORF translated (protein made) small_large Protein+TOSINK 10000 0 B 0 30

main ORF skipped eIF3_eIF2_tRNA_small TOSINK 10000 0 B 0 30

main ORF skipped eIF3_small TOSINK 10000 0 B 0 30
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Figure 4.6: Comparison of actual data with results from simulated translation initiation.
(A) and (B) published experimental data that measured the effect of (A) uORF length [133] and 
(B) length of the spacer between uORF and main ORF [135] on translation of the mainORF 
downstream. (C) Experimental data from a series of 5' UTRs of the Arabidopsis bZip11 gene  
that vary in their uORF pattern [136] (see Figure 4.1B). Each of the 12 constructs is labeled  
with the numbers of the uORFs that are present. WT AtbZip11 has 5 uAUGs that form 4 uORFs,  
1 2a/2b, 3, and 4. None, no uORFs.

Model can be used to make predictions concerning ribosomal footprints

As discussed in the Introduction, technical advances in the RNA sequencing coupled with 

older ribosome protection assays have allowed for a genome-wide characterization of the 

translation process by ribosome footprinting [16]. Specifically, the likelihood of finding a 

ribosome on a specific nucleotide has been measured across the entire transcriptome of a yeast 

cell.  These data have nucleotide-specific resolution: the kinetics associated with the first 

position in a codon - which are driven by the time needed to acquire the correct aminoacylated 
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tRNA - can be clearly differentiated from those of the second and third positions, which are 

driven by ribosome translocation after peptide bond formation.  Such resolution can speak to 

many biochemical events, but currently it is difficult to formulate such complex kinetic models. 

Our simulation framework allows some of that formulation to be automated.

Figure 4.7 illustrates results from simulation of initiation on a simple 5' UTR using the 

reaction template in Table 4.3, scoring whether a nucleotide is protected by a ribosome or 

exposed.  As expected, there is a brief delay until the positions farther from the cap begin to 

interact with the scanning complex.  Position 1 is exposed much more frequently than other sites. 

This is due to the ability of the simulation to account for spatial aspects of the scanning complex. 

In order for cap binding to occur, at least 18 nucleotides must be exposed ('bind size' and 'bind 

position' in Table 4.3).  As modeled, initiation occurs at roughly the same speed as the forward 

biased scanning rate; thus there is little ribosome stacking associated with this step.  Because the 

rate of cap-binding is not limiting, stochastic differences in scanning rate do result in ribosome-

ribosome interactions as well as erratic dynamics in site exposure.  Additionally, these lead to a 

5' to 3' bias in exposure, excluding cap-proximal positions.   

139



Methods

Reactions and their rates were entered via a custom template (Table 4.3).  Because these rates are 

in most cases unknown, parameters were manually selected to reflect their presumed values 

relative event rates that are fairly well known, such as the elongation rate of ~30 nts/sec [21]. 

The input sequences - a 5' UTR containing the main start codon plus its +4 position for context 

assessment - were parsed to produce a list of the position of all uAUGs, their respective stop 

codon positions, and the context of the respective start codons. uAUGs that overlap the main 

AUG have the full sequence length as their stop codon position.  This list was used by another 

module to build a list of chemical reactions that coincide with the positional constraints.  The 

total system of reactions was then simulated using the Gibson-Bruck next reaction algorithm, 

implemented under the Dizzy simulation library written in Java [149] and ported to Perl via 
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Figure 4.7: Using kinetic simulation framework to make nucleotide-specific predictions  
concerning ribosome occupancy on a generic 5' UTR sequence.  
Schematic of the sequence used to simulated the initiation events.  Stars indicate positions for  
which the protected-exposed plots are shown. 
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Inline::Java.  Initiation rate of a 5' UTR was reported as the stable slope of the initiation events 

versus time. Stability was considered achieved when the Pearson correlation coefficient of 

initiation versus time was >0.75 (not including  the time before the first initiation event) and 

statistically significant (<10-2). 
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Chapter 5: Perspectives and Future Directions

142



 

Post-transcriptional regulation is emerging as a major factor in predicting gene expression 

levels.     Translation initiation is a focal point of post-transcription control.  The canonical 

model of translation initiation predicts that amino-acid polymerization will begin at the first 

AUG codon encountered by the scanning pre-initiation complex.  Surprisingly, ~30% of plant 

mRNAs contain an initial AUG that is not associated with the major ORF.  The resultant 

upstream open reading frame (uORF) should dramatically inhibit protein expression.  Using 

numerous translation assays and a computational model of initiation, we showed that eukaryotic 

initiation factor 3 contributes to uORF tolerance during the elongation phase (Chapter 4, Section 

1).  Additionally, our computational model indicates that known elemental processes of initiation 

and re-initiation are sufficient to predict the inhibitory effects of complex uORF structures.     

The presence of factors, such as eIF3, that diminish the effect of uORFs, led us to assess if 

uORFs are in fact neutral features in the transcriptome (Chapter 3).  Based on patterns of triplet 

bias, we found that a large proportion of gene families cannot tolerate uORFs.  These families 

appear to be related to fundamental cellular processes such as translation and nucleotide 

synthesis.  Interestingly, a comparison of orthologous 5' UTRs revealed that AUGs are conserved 

at a higher frequency than any other triplet in the 5' UTR, indicating that uORFs have been 

exploited by Nature to regulate a subset of genes.  

To address which genes might be under uAUG/uORF-mediated regulation, we identified 5' 

UTR elements that are conserved between Arabidopsis and five other families of dicot plants 

(Chapter 2).  uORFs with peptide-independent function appear to be conserved at least as often 

as those that encode a peptide with synonymous/non-synonymous substitution bias.  We 

additionally created a computational pipeline to categorize all conserved UTR elements 

emerging from the study.  Other conserved elements in the 5' UTR are common, particularly 
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purine-rich sequences.  For contrast, we used the same pipeline to categorized conserved motifs 

in the 3' UTR.  This region generally harbors more complex motifs included likely PUF-binding 

elements and sequences that are likely to be involved in the localization of Expansin mRNAs. 

These data have implications for the RNA regulon concept in plants.

These findings, their implications, and their experimental and theoretical precedent in the 

literature are summarized in Table 5.1.   
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Table 5.1: Major findings of this dissertation.

Findings Implications  Precedent

Elemental processes of initiation-reinitiation can explain 
most of the suppressive effects of uORFs.

Even in complex uORF arrangements the 
canonical scanning model is sufficient 
explanation for reduced expression levels. 

Molecular defects of eIF3h are related to the uORF 
elongation phase.

eIF3h supports eIF3-ribosomal interaction during 
early phase of elongation.  [5,44]p

uAUGs are depleted from the 5' UTR. Nature selects against uAUG in a large class of 
genes.   [86,116,118]vf

uAUGs, when present, are conserved across short 
evolutionary distances

In some case, nature selects against removal of 
uAUGs once established.  [86,116]vf

5% of genes require a uAUG across the large 
evolutionary distances between monocots and dicots.

uAUGs have fundamental importance to 
flowering-plant biology.  [117]f

uAUG-depleted genes function in translation and 
nucleotide synthesis, as well as auxin synthesis and 
stress response. 

These proteins cannot tolerate even mild 
suppressive effects of an uAUGs.

 [24]v

The 5' UTR contains additional coding potential in the 
form of Conserved Peptide (CP)uORFs.

Because it is not a part of the CDS, this coding 
potential regulates expression, likely through cis-
acting mechanisms.

 [25-27,119]pvifb

Additional conserved coding sequences start with non-
AUG start sites and encode N-terminal extensions of the 
main ORF.

These N-terminal extensions lead to functionally 
distinct protein isoforms. [76,119,150]  pvb

Many conserved 5' sequence elements contain AUG, but 
the downstream uORF is not conserved at the peptide 
level.

Peptide-independent repression via uAUGs and 
uORFs is also functionally constrained in 
evolution.

 [24,86,117]vf

Polypurine repeats are conserved in the 5' UTR. These repeats are functioning at the post-
transcriptional level.

Putative PUF-protein binding elements are conserved in 
the 3' UTRs of many targeted mRNAs.

Plants use Puf elements and presumably PUF 
proteins to regulate gene expression of 
functionally diverse mRNAs. 

 [49] p

Multiple Expansin genes contain a conserved 3' UTR 
element.

The conserved element is responsible for the 
known subcellular localization of some expansin 
transcripts.

 [81]p

Ribosome-occupancy and ribosome-density are highly 
decoupled in yeast, particularly for short transcripts.

mRNAs exist is two main states, translationally 
active and quiescent.  [151]f

RNA secondary structure around the cap reduces 
translation state by 32%.

Cap-structure channels mRNA into a 
translationally quiescent state.  [140,142,151,1

52]vfb

The binomial model is a poor predictor of ribosome-
density.

Kinetic effects of transcription and/or large 
variation in ribosome number confound simple 
model of ribosome-density. 

pFrom plants, vvertebrates, iinvertebrates, ffungi or bbacteria
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These results suggest a more refined set of biological questions.  I discuss these questions 

below and present future analyses and experiments, which may begin to address them.

Exploring bioinformatic leads

mRNA specificity for a majority of the ~200 RNA-binding proteins in Arabidopsis is 

unknown [153].  In terms of those that are known, Arabidopsis has 26  PUF-domain-containing 

proteins [154].  While a subclass of PUF domains bind non-canonical motifs, most bind TGTA-

containing sequence elements in the 3' UTR  [35].  Interestingly, we only find 16 conserved 

putative PUF binding sites (Table 2.7).  Comparably, a fungal genome comparisons within the 

genus Aspergillus revealed 48 such conserved sites [155].  While we have certainly missed some 

true positives, the relationship between PUF-protein and client mRNA may be near one-to-one in 

plants.  This is suggested by yeast-3-hybrid assays in plants [41,49,156] but not by Drosophila 

pull-down experiments [48], which showed that one PUF-protein may bind mRNAs from ~1,000 

different genes.  It still remains to be seen what proportion of these 1,000 interactions are 

evolutionarily constrained, but our comparative sequence analysis would predict a fairly small 

fraction.

We generated an extensive list of conserved mRNA sequence elements, which we 

hypothesized to be acting at the post-transcriptional level.  Though some of these elements have 

pre-existing support for such a hypothesis, most are uncharacterized.  Some Expansin mRNAs 

show subcellular localization.  These mRNAs also have clearly defined mRNA elements in the 3' 

UTR (Figure 2.6).  Do these fit the XYZ model of translation repression and localization whereby 

an RNA-binding protein bound to the 3' UTR suppresses translation initiation (see Figure 1.2 and 

Chapter 1 text)?  If so, it would, to our knowledge, be the first demonstration that this model is 

applicable to plants.  Confirming and extending this model in plants might entail 1) Identifying 

Protein X via pulldown with the Expansin target [157], 2) Identify transcriptome wide targets 
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using Protein X as bait and performing RNA-seq or microarray on the resultant elution [35], 3) 

Assay sub-cellular localization of identified transcripts [81], 4) Assess the translation state of all 

genes with regard to the effect of Protein X knockout or knockdown [132].  

Coupling functional and comparative transcriptomics

In Chapters 2 and 3, I described RNA sequence elements that are critical to plants, an 

inference based on their resistance to mutations across large evolutionary distances.  In Chapter 

4, I discussed genome-wide assays of translation state.  These two approaches naturally represent 

two orthogonal dimensions by which to elucidate post-transcriptional pathways in plants, one 

reinforcing the other [158].  Co-regulated genes can be searched for overrepresented motifs and 

these motifs compared across lineages.  Emerging polysome microarray data from multiple 

conditions and genetic backgrounds lend themselves to element identification in a manner that 

has helped understand transcriptional regulatory modules [159].  Currently, the search for motifs 

within plant transcripts that are co-regulated at the translational level has been inconclusive 

[22,23], but more sophisticated approaches that integrate comparative sequence analysis could 

dramatically sharpen resolution (see [160] and Chapter 2, Addendum).  Our Anchored-MEME 

approach is appealing because it incorporates phylogenetic data into an already established and 

well-maintained tool for identifying motifs in co-regulated and/or co-bound genes  [127].   

Still another exciting avenue of research would couple comparative sequence analysis with 

comparative functional genomics [161].  Though polysome microarrays have yet to be 

performed in rice, this would be an ideal touchstone with regard to similiar work in Arabidopsis, 

allowing us to begin to map divergence in post-transcriptional modulation against divergence 

between monocots and dicots.  As indicated by Chapters 2 and 3, there are clearly cases where 

elements have been retained across these branches and elements that are specific to each branch. 

Are such distinctions in conservation reflected in functional assays?      
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Lineage-specific element retention and loss

Using eleven plant transcriptomes, we have estimated that 5% of genes across major 

branches of angiosperms are under regulation of uAUGs (Figure 3.8B).  Additionally, nearly half 

of genes show significant uAUG depletion, suggesting that lack of uAUGs is important for 

function.  It is of particular interest how these proportions would change with regard to changes 

in phylogenetic scope.  For example, as suggested by our analysis of angiosperms, do only 5% of 

the 35% of uAUG-containing genes in Arabidopsis require an uAUG.  Alternatively, if only the 

Brassicaceae lineage was used to assess uAUG enrichment, would the estimate of constraint be 

higher?  If so, it would mean that certain uORFs are conserved among the Brassicaceae, but not 

beyond.  In turn, this would suggest that uAUGs are important in defining phenotypic differences 

between major clades.  We are fairly confident from this analysis and previous studies  that 

peptide-dependent uORFs are deeply conserved ([26] and Table 2.5) suggesting that, if there are 

substantial differences with regard to phylogenetic scope, they will be related to peptide-

independent effects. 

The "1000 Plants" initiative aims to sequence 1000 transcriptomes from a broad sampling of 

the plant phylogeny (http://www.onekp.com/).  Although it is unclear when these sequences will 

be made available (Neal Stewart, personal communication), because they will contain UTR 

regions, they will add a vast amount of potential information to the analyses presented here.  The 

software developed for the research above is robust to the expansion in data and also lends itself 

to parallelization.  As it stands the rate limiting step for this pipeline involves clustering 

sequences into orthologous groups after the pairwise BLAST has been performed. (This assumes 

that BLAST searches were performed in parallel on a super-computer, as was done in our 

angiosperm analysis in Chapter 3.)  A recent version of OrthoMCL (version 2.0) claims to have 

optimized this step to accommodate hundreds of proteomes, but, having used version 1.4, I 

cannot confirm this improvement.
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We were not able to identify with confidence peptide-independent uAUG/uORF 

conservation using pan-angiosperm comparisons, although we showed that they likely exist in 

5% of genes (Figure 3.8).  The sequence coverage associated with the onekp project would allow 

us to resolve gene-specific examples.  Such examples would indicate viable hypotheses of 

uAUG/uORF function based on their patterns of conservation.

Exploiting initiation models to understand patterns of uORF conservation

The previous passage describes examining uORF patterns of conservation with regard to 

functional hypotheses.  Such an analysis would be fairly ad hoc in the absence of a rigorous 

method for predicting the molecular repercussions of conserved uORFs on protein production. 

Assuming that parameters associated with initiation-reinitation apply across flowering plants, the 

model described in Chapter 3, Section 1 would be highly suited to this task.  Many of the 

functional explanations for uORF activity are dependent on tightly defined spatial constraints; 

thus, an obvious approach might be to score uORFs relative to a common point-of-reference, 

such as the start of the mORF.  Unfortunately, this approach fails to appreciate the fact that the 

first uORF seen may mask the effects of downstream uORFs.  Alternatively, a short uORF that is 

close to the mORF can repress expression as effectively as a longer uORF that is farther from the 

mORF.  Only an approach that accounts for the mechanics of initiation-reinitation would be able 

to determine that the long and short uORFs have the same effect on translation.  These and 

similiar insights might be critical to understanding why particular uORF patterns (Figure 3.11 

and 3.12) are enriched among the genes that harbor them.    

Translationally active versus quiescent transcripts

Ribosome-occupancy is an indicator of the mRNAs in a cell that are translationally active. 

Alternatively, under assumptions of constant elongation rates, ribosome-density (number of 

ribosomes per unit length of mRNA) is an indirect estimate of the number of proteins produced 
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per mRNA per unit time.  Although stated as such, these values are clearly distinct, they are also 

experimentally related by the fact that some translationally active mRNAs will be found in the 

non-polysomal fraction of a polysome gradient.  We have shown that sequence features that 

affect occupancy may be different than those that affect density.  For example, secondary 

structure around the cap negatively affects translation state, which, as defined in Chapter 4, is a 

relative measure of ribosome-occupancy (Figure 4.4).  Yet, uORFs, which we know can 

drastically reduce density in yeast [16], have a much more subdued effect on occupancy.  Models 

of translation, particularly initiation, will help to deconvolve occupancy and density effects. 

Additionally, these models could help to reduce the cost of such assays that are based on 

expensive microarray analysis of density gradient fractions.  If a model predicts the frequency of 

mRNAs in lighter fractions versus heavier fractions, then only three density gradient fractions 

could be used to arrive at ribosome occupancy and density (instead of 14 fractions used 

previously ).  As a first pass, we have used the simplest possible empirical model of initiation - 

represented as the p parameter in a binomial distribution (Figure 4.5).  Though some gains were 

made in improving resolution, more sophisticated models that address kinetic aspects of gene 

expression may be required.  These are currently under active development (Michael Gilchrist, 

personal communication).
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