2 research outputs found

    An EEG Signal Recognition Algorithm During Epileptic Seizure Based on Distributed Edge Computing

    Get PDF
    Epilepsy is one kind of brain diseases, and its sudden unpredictability is the main cause of disability and even death. Thus, it is of great significance to identify electroencephalogram (EEG) during the seizure quickly and accurately. With the rise of cloud computing and edge computing, the interface between local detection and cloud recognition is established, which promotes the development of portable EEG detection and diagnosis. Thus, we construct a framework for identifying EEG signals in epileptic seizure based on cloud-edge computing. The EEG signals are obtained in real time locally, and the horizontal viewable model is established at the edge to enhance the internal correlation of the signals. The Takagi-Sugeno-Kang (TSK) fuzzy system is established to analyze the epileptic signals. In the cloud, the fusion of clinical features and signal features is established to establish a deep learning framework. Through local signal acquisition, edge signal processing and cloud signal recognition, the diagnosis of epilepsy is realized, which can provide a new idea for the real-time diagnosis and feedback of EEG during epileptic seizure

    Long-term epileptic EEG classification via 2D mapping and textural features

    No full text
    Interpretation of long-term Electroencephalography (EEG) records is a tiresome task for clinicians. This paper presents an efficient, low cost and novel approach for patient-specific classification of long-term epileptic EEG records. We aim to achieve this with the minimum supervision from the neurologist. To accomplish this objective, first a novel feature extraction method is proposed based on the mapping of EEG signals into two dimensional space, resulting into a texture image. The texture image is constructed by mapping and scaling EEG signals and their associated frequency sub-bands into the gray-level image domain. Image texture analysis using gray level co-occurrence matrix (GLCM) is then applied in order to extract multivariate features which are able to differentiate between seizure and seizure-free events. To evaluate the discriminative power of the proposed feature extraction method, a comparative study is performed, against other dedicated feature extraction methods. The comparative performance evaluations show that the proposed feature extraction method can outperform other state-of-art feature extraction methods with a low computational cost. With a training rate of 25%, the overall sensitivity of 70.19% and specificity of 97.74% are achieved in the classification of over 163 h of EEG records using support vector machine (SVM) classifiers with linear kernels and trained by the stochastic gradient descent (SGD) algorithm.Scopu
    corecore