424 research outputs found

    Ultra thin ultrafine-pitch chip-package interconnections for embedded chip last approach

    Get PDF
    Ever growing demands for portability and functionality have always governed the electronic technology innovations. IC downscaling with Moore s law and system miniaturization with System-On-Package (SOP) paradigm has resulted and will continue to result in ultraminiaturized systems with unprecedented functionality at reduced cost. The trend towards 3D silicon system integration is expected to downscale IC I/O pad pitches from 40µm to 1- 5 µm in future. Device- to- system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. As supply currents will increase upto 220 A by 2012, the current density will exceed the maximum allowable current density of solders. The intrinsic delay and electromigration in solders are other daunting issues that become critical at nanometer size technology nodes. In addition, formation of intermetallics is also a bottleneck that poses significant mechanical issues. Recently, many research groups have investigated various techniques for copper-copper direct bonding. Typically, bonding is carried out at 400oC for 30 min followed by annealing for 30 min. High thermal budget in such process makes it less attractive for integrated systems because of the associated process incompatibilities. In the present study, copper-copper bonding at ultra fine-pitch using advanced nano-conductive and non-conductive adhesives is evaluated. The proposed copper-copper based interconnects using advanced conductive and non-conductive adhesives will be a new fundamental and comprehensive paradigm to solve all the four barriers: 1) I/O pitch 2) Electrical performance 3) Reliability and 4) Cost. This thesis investigates the mechanical integrity and reliability of copper-copper bonding using advanced adhesives through test vehicle fabrication and reliability testing. Test vehicles were fabricated using low cost electro-deposition techniques and assembled onto glass carrier. Experimental results show that proposed copper-copper bonding using advanced adhesives could potentially meet all the system performance requirements for the emerging micro/nano-systems.M.S.Committee Chair: Prof. Rao R Tummala; Committee Member: Dr. Jack Moon; Committee Member: Dr. P M Ra

    Peripheral soldering of flip chip joints on passive RFID tags

    Full text link
    Flip chip is the main component of a RFID tag. It is used in billions each year in electronic packaging industries because of its small size, high performance and reliability as well as low cost. They are used in microprocessors, cell phones, watches and automobiles. RFID tags are applied to or incorporated into a product, animal, or person for identification and tracking using radio waves. Some tags can be read from several meters away or even beyond the line of sight of the reader. Passive RFID tags are the most common type in use that employ external power source to transmit signals. Joining chips by laser beam welding have wide advantages over other methods of joining, but they are seen limited to transparent substrates. However, connecting solder bumps with anisotropic conductive adhesives (ACA) produces majority of the joints. A high percentage of them fail in couple of months, particularly when exposed to vibration. In the present work, failure of RFID tags under dynamic loading or vibration was studied; as it was identified as one of the key issue to explore. Earlier investigators focused more on joining chip to the bump, but less on its assembly, i.e., attaching to the substrate. Either of the joints, between chip and bump or between antenna and bump can fail. However, the latter is more vulnerable to failure. Antenna is attached to substrate, relatively fixed when subjected to oscillation. It is the flip chip not the antenna moves during vibration. So, the joint with antenna suffers higher stresses. In addition to this, the strength of the bonding agent i.e., ACA also much smaller compared to the metallic bond at the other end of the bump. Natural frequency of RFID tags was calculated both analytically and numerically, found to be in kilohertz range, high enough to cause resonance. Experimental investigations were also carried out to determine the same. However, the test results for frequency were seen to be in hundred hertz range, common to some applications. It was recognized that the adhesive material, commonly used for joining chips, was primarily accountable for their failures. Since components to which the RFID tags are attached to experience low frequency vibration, chip joints fail as they face resonance during oscillation. Adhesives having much lower modulus than metals are used for attaching bumps to the substrate antennas, and thus mostly responsible for this reduction in natural frequency. Poor adhesive bonding strength at the interface and possible rise in temperature were attributed to failures under vibration. In order to overcome the early failure of RFID tag joints, Peripheral Soldering, an alternative chip joining method was devised. Peripheral Soldering would replace the traditional adhesive joining by bonding the peripheral surface of the bump to the substrate antenna. Instead of joining solder bump directly to the antenna, holes are to be drilled through antenna and substrate. S-bond material, a less familiar but more compatible with aluminum and copper, would be poured in liquid form through the holes on the chip pad. However, substrates compatible to high temperature are to be used; otherwise temperature control would be necessary to avoid damage to substrate. This S-bond would form metallic joints between chip and antenna. Having higher strength and better adhesion property, S-bond material provides better bonding capability. The strength of a chip joined by Peripheral Soldering was determined by analytical, numerical and experimental studies. Strength results were then compared to those of ACA. For a pad size of 60 micron on a 0.5 mm square chip, the new chip joints with Sbond provide an average strength of 0.233N analytically. Numerical results using finite element analysis in ANSYS 11.0 were about 1% less than the closed form solutions. Whereas, ACA connected joints show the maximum strength of 0.113N analytically and 0.1N numerically. Both the estimates indicate Peripheral Soldering is more than twice stronger than adhesive joints. Experimental investigation was carried out to find the strength attained with S-bond by joining similar surfaces as those of chip pad and antenna, but in larger scale due to limitation in facilities. Results obtained were moderated to incorporate the effect of size. Findings authenticate earlier predictions of superior strengths with S-bond. A comparison with ACA strength, extracted from previous investigations, further indicates that S-bond joints are more than 10 times stronger. Having higher bonding strength than in ACA joints, Peripheral Soldering would provide better reliability of the chip connections, i.e., RFID tags. The benefits attained would pay off complexities involved in tweaking

    Survey/study of the interconnection problem in microelectronics. Conclusion and management considerations Final report

    Get PDF
    Interconnection problem in microelectronics - systems design, reliability, and trends in microcircuitr

    Reliability analysis of foil substrate based integration of silicon chips

    Get PDF
    Flexible electronics has attracted significant attention in the recent past due to the booming wearables market in addition to the ever-increasing interest for faster, thinner and foldable mobile phones. Ultra-thin bare silicon ICs fabricated by thinning down standard ICs to thickness below 50 μm are flexible and therefore they can be integrated on or in polymer foils to create flexible hybrid electronic (FHE) components that could be used to replace rigid standard surface mount device (SMD) components. The fabricated FHE components referred as chip foil packages (CFPs) in this work are ideal candidates for FHE system integration owing to their ability to deliver high performance at low power consumption while being mechanically flexible. However, very limited information is available in the literature regarding the reliability of CFPs under static and dynamic bending. The lack of such vital information is a major obstacle impeding their commercialization. With the aim of addressing this issue, this thesis investigates the static and dynamic bending reliability of CFPs. In this scope, the static bending reliability of CFPs has been investigated in this thesis using flexural bending tests by measuring their fracture strength. Then, Finite Element Method (FEM) simulations have been implemented to calculate the fracture stress of ultra-thin flexible silicon chips where analytical formulas may not be applied. After calculating the fracture stress from FEM simulations, the enhancement in robustness of ultra-thin chips (UTCs) against external load has also been proved and quantified with further experimental investigations. Besides, FEM simulations have also been used to analyse the effect of Young’s Modulus of embedding materials on the robustness of the embedded UTCs. Furthermore, embedding the UTCs in polymer layers has also been experimentally proven to be an effective solution to reduce the influence of thinning and dicing induced damages on the robustness of the embedded UTCs. Traditional interconnection techniques such as wire bonding may not be implemented to interconnect ultra-thin silicon ICs owing to the high mechanical forces involved in the processes that would crack the chips. Therefore, two novel interconnection methods namely (i) flip-chip bonding with Anisotropic Conductive Adhesive (ACA) and (ii) face-up direct metal interconnection have been implemented in this thesis to interconnect ultra-thin silicon ICs to the corresponding interposer patterns on foil substrates. The CFP samples thus fabricated were then used for the dynamic bending reliability investigations. A custom-built test equipment was developed to facilitate the dynamic bending reliability investigations of CFPs. Experimental investigations revealed that the failure of CFPs under dynamic bending was caused mainly by the cracking of the redistribution layer (RDL) interconnecting the chip and the foil. Furthermore, it has also been shown that the CFPs are more vulnerable to repeated compressive bending than to repeated tensile bending. Then, the influence of dimensional factors such as the thickness of the chip as well as the RDL on the dynamic bending reliability of CFPs have also been studied. Upon identifying the plausible cause behind the cracking of the RDL leading to the failure of the CFPs, two methods to improve the dynamic bending reliability of the RDL have been suggested and demonstrated with experimental investigations. The experimental investigations presented in this thesis adds some essential information to the state-of-the-art concerning the static and the dynamic bending reliability of UTCs integrated in polymer foils that are not yet available in the literature and aids to establish in-depth knowledge of mechanical reliability of the components required for manufacturing future FHE systems. The strategies devised to enhance the robustness of UTCs and CFPs could serve as guidelines for fabricating reliable FHE components and systems

    High Temperature LTCC based SiC Double-sided Cooling Power Electronic Module

    Get PDF
    This objective of this dissertation research is to investigate a module packaging technology for high temperature double-sided cooling power electronic module application. A high-temperature wire-bondless low-temperature co-fired ceramic (LTCC) based double-sided cooling power electronic module was designed, simulated and fabricated. In this module, the conventional copper base plate is removed to reduce the thermal resistance between the device junctions to the heat sink and to improve the reliability of the module by eliminating the large area solder joint between the power substrate and the copper base plate. A low-temperature co-fired ceramic (LTCC) substrate with cavities and vias is used as the dielectric material between the top and bottom substrates and it also serves as the die frame. A nano silver attach material is used to enable the high-temperature operation. Thermal and thermo-mechanical simulations were performed to evaluate the advantages of the LTCC double-sided power module structure and compared to other reported module structures and its wire-bonded counterpart. The junction-to-case thermal resistance for the power module without a copper base plate is 0.029oC/W, which is smaller than that of the power module with a copper base plate. Thermo-mechanical simulation reveals that double-sided cooling power modules generate higher thermal stresses when compared to that of the single-sided cooling power modules which indicates the trade-off between the junction temperature and the thermo-mechanical stress. Electrical and thermal characterizations were performed to test the functionality of the fabricated module using a 1200V rated voltage blocking capability. The forward and reverse characteristics of the SiC power MOSFET and SiC diode module were tested to 200°C and they demonstrated the functionality of the power module. The junction-to-ambient thermal resistance of the proposed module is shown to reduce by 11% compared to the wire-bonded equivalent which shows an improvement of the thermal performance of the double-sided cooling structure. Finally, the reliability of the several power substrates was evaluated based on the thermal stress and fatigue life simulation of the bonding layer to determine the mechanical weakest spots of the power module. Thermal cycling experiments were also conducted to validate the simulation results

    Fabrication of thick film circuits

    Get PDF
    Call number: LD2668 .T4 1969 M338Master of Scienc

    Cost-effective design and manufacturing of advanced optical interconnects

    Get PDF

    ELECTRICAL AND MECHANICAL CHARACTERIZATION OF MWNT FILLED CONDUCTIVE ADHESIVE FOR ELECTRONICS PACKAGING

    Get PDF
    Lead-tin solder has been widely used as interconnection material in electronics packaging for a long time. In response to environmental legislation, the lead-tin alloys are being replaced with lead-free alloys and electrically conductive adhesives in consumer electronics. Lead-free solder usually require higher reflow temperatures than the traditional lead-tin alloys, which can cause die crack and board warpage in assembly process, thereby impacting the assembly yields. The high tin content in lead-free solder forms tin whiskers, which has the potential to cause short circuits failure. Conductive adhesives are an alternative to solder reflow processing, however, conductive adhesives require up to 80 wt% metal filler to ensure electrical and thermal conductivity. The high loading content degrades the mechanical properties of the polymer matrix and reduces the reliability and assembly yields when compared to soldered assemblies. Carbon nanotubes (CNTs) have ultra high aspect ratio as well as many novel properties. The high aspect ratio of CNTs makes them easy to form percolation at low loading and together with other novel properties make it possible to provide electrical and thermal conductivity for the polymer matrix while maintaining or even reinforcing the mechanical properties. Replacing the metal particles with CNTs in conductive adhesive compositions has the potential benefits of being lead free, low process temperature, corrosion resistant, electrically/thermally conductive, high mechanical strength and lightweight. In this paper, multiwall nanotubes (MWNTs) with different dimensions are mixed with epoxy. The relationships among MWNTs dimension, volume resistivity and thermal conductivity of the composite are characterized. Different loadings of CNTs, additives and mixing methods were used to achieve satisfying electrical and mechanical properties and pot life. Different assembly technologies such as pressure dispensing, screen and stencil printing are used to simplify the processing method and raise the assembly yields. Contact resistance, volume resistivity, high frequency performance, thermal conductivity and mechanical properties were measured and compared with metal filled conductive adhesive and traditional solder paste

    The Development of Novel Interconnection Technologies for 3D Packaging of Wire Bondless Silicon Carbide Power Modules

    Get PDF
    This dissertation advances the cause for the 3D packaging and integration of silicon carbide power modules. 3D wire bondless approaches adopted for enhancing the performance of silicon power modules were surveyed, and their merits were assessed to serve as a vision for the future of SiC power packaging. Current efforts pursuing 3D wire bondless SiC power modules were investigated, and the concept for a novel SiC power module was discussed. This highly-integrated SiC power module was assessed for feasibility, with a focus on achieving ultralow parasitic inductances in the critical switching loops. This will enable higher switching frequencies, leading to a reduction in the size of the passive devices in the system and resulting in systems with lower weight and volume. The proposed concept yielded an order-of-magnitude reduction in system parasitics, alongside the possibility of a compact system integration. The technological barriers to realizing these concepts were identified, and solutions for novel interconnection schemes were proposed and evaluated. A novel sintered silver preform was developed to facilitate flip-chip interconnections for a bare-die power device while operating in a high ambient temperature. The preform was demonstrated to have 3.75× more bonding strength than a conventional sintered silver bond and passed rigorous thermal shock tests. A chip-scale and flip-chip capable power device was also developed. The novel package combined the ease of assembly of a discrete device with a performance exceeding a wire bonded module. It occupied a 14× smaller footprint than a discrete device, and offered power loop inductances which were less than a third of a conventional wire bonded module. A detailed manufacturing process flow and qualification is included in this dissertation. These novel devices were implemented in various electrical systems—a discrete Schottky barrier diode package, a half-bridge module with external gate drive, and finally a half-bridge with integrated gate driver in-module. The results of these investigations have been reported and their benefits assessed. The wire bondless modules showed \u3c 5% overshoot under all test conditions. No observable detrimental effects due to dv/dt were observed for any of the modules even under aggressive voltage slew rates of 20-25 V/ns

    US Microelectronics Packaging Ecosystem: Challenges and Opportunities

    Full text link
    The semiconductor industry is experiencing a significant shift from traditional methods of shrinking devices and reducing costs. Chip designers actively seek new technological solutions to enhance cost-effectiveness while incorporating more features into the silicon footprint. One promising approach is Heterogeneous Integration (HI), which involves advanced packaging techniques to integrate independently designed and manufactured components using the most suitable process technology. However, adopting HI introduces design and security challenges. To enable HI, research and development of advanced packaging is crucial. The existing research raises the possible security threats in the advanced packaging supply chain, as most of the Outsourced Semiconductor Assembly and Test (OSAT) facilities/vendors are offshore. To deal with the increasing demand for semiconductors and to ensure a secure semiconductor supply chain, there are sizable efforts from the United States (US) government to bring semiconductor fabrication facilities onshore. However, the US-based advanced packaging capabilities must also be ramped up to fully realize the vision of establishing a secure, efficient, resilient semiconductor supply chain. Our effort was motivated to identify the possible bottlenecks and weak links in the advanced packaging supply chain based in the US.Comment: 22 pages, 8 figure
    • …
    corecore