15,761 research outputs found

    Long term availability of raw experimental data in experimental fracture mechanics

    Full text link
    Experimental data availability is a cornerstone for reproducibility in experimental fracture mechanics, which is crucial to the scientific method. This short communication focuses on the accessibility and long term availability of raw experimental data. The corresponding authors of the eleven most cited papers, related to experimental fracture mechanics, for every year from 2000 up to 2016, were kindly asked about the availability of the raw experimental data associated with each publication. For the 187 e-mails sent: 22.46% resulted in outdated contact information, 57.75% of the authors did received our request and did not reply, and 19.79 replied to our request. The availability of data is generally low with only 1111 available data sets (5.9%). The authors identified two main issues for the lacking availability of raw experimental data. First, the ability to retrieve data is strongly attached to the the possibility to contact the corresponding author. This study suggests that institutional e-mail addresses are insufficient means for obtaining experimental data sets. Second, lack of experimental data is also due that submission and publication does not require to make the raw experimental data available. The following solutions are proposed: (1) Requirement of unique identifiers, like ORCID or ResearcherID, to detach the author(s) from their institutional e-mail address, (2) Provide DOIs, like Zenodo or Dataverse, to make raw experimental data citable, and (3) grant providing organizations should ensure that experimental data by public funded projects is available to the public

    Photoelastic Stress Analysis

    Get PDF

    Initial planetary base construction techniques and machine implementation

    Get PDF
    Conceptual designs of (1) initial planetary base structures, and (2) an unmanned machine to perform the construction of these structures using materials local to the planet are presented. Rock melting is suggested as a possible technique to be used by the machine in fabricating roads, platforms, and interlocking bricks. Identification of problem areas in machine design and materials processing is accomplished. The feasibility of the designs is contingent upon favorable results of an analysis of the engineering behavior of the product materials. The analysis requires knowledge of several parameters for solution of the constitutive equations of the theory of elasticity. An initial collection of these parameters is presented which helps to define research needed to perform a realistic feasibility study. A qualitative approach to estimating power and mass lift requirements for the proposed machine is used which employs specifications of currently available equipment. An initial, unmanned mission scenario is discussed with emphasis on identifying uncompleted tasks and suggesting design considerations for vehicles and primitive structures which use the products of the machine processing

    Space Transportation Materials and Structures Technology Workshop

    Get PDF
    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems

    Reliability analysis and micromechanics: A coupled approach for composite failure prediction

    Get PDF
    This work aims at associating two classical approaches for the design of composite materials: first, reliability methods that allow to account for the various uncertainties involved in the composite materials behaviour and lead to a rational estimation of their reliability level; on the other hand, micromechanics that derive macroscopic constitutive laws from micromechanical features. Such approach relies on the introduction of variabilities defined at the microscale and on the investigation of their consequences on the material macroscopic response through an homogenization scheme. Precisely, we propose here a systematic treatment of variability which involves a strong link between micro- and macroscales and provides a more exhaustive analysis of the influence of uncertainties. The paper intends to explain the main steps of such coupling and demonstrate its interests for material engineering, especially for constitutive modelling and composite materials optimization. An application case is developed throughout on the failure of unidirectional carbon fibre-reinforced composites with a comparative analysis between experimental data and simulation results

    Applications of aerospace technology in the electric power industry

    Get PDF
    An overview of the electric power industry, selected NASA contributions to progress in the industry, linkages affecting the transfer and diffusion of technology, and, finally, a perspective on technology transfer issues are presented

    Concepts and techniques for ultrasonic evaluation of material mechanical properties

    Get PDF
    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions
    corecore