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INTRODUCTION

Reliable performance o3 advanced, high-strength materials in
critical applications depends oil assuring that each pant placed in
service satisfies the conditions assumed in design and life pre-
diction analyses, Reliability assu

r
ance requires the availability

of nondestructive evaluation (NUE) techniques tic , only for defect
detection but also for verification of mechanical strength and
associated properties. Advanced NDC- techniques are needed to con-
firm that metallic, composite, or ceramic parts will not fail under
design loads due to inadequate or degraded mechanical strengO ,
This calls for NpE techniques that are sensitive to variations in
microstructure, extrinsic properties, and dispersed flaw populations
that govern the ultimate mechanical performance of a structure.

The purpose of this paper is to revii, ►w ultrasonic methods that
can be used for material strength prediction and verification.
Emergent technology involving advanced u ltrasonic techniques and
associated measurements is described. It is shown that ultrasonic
NO is particularly useful in this area b-mause it involves mech-
anical elastic waves that are strongly modulated by morphological
factors that govern mechanical strength and also dynamic failure
modes. These aspects of ultrasonic NDE will be described in con-
junction with advanced approaches and theoretical concepts for
signal acquisition and analysis fo- ^ateTi,als Characterization,
It is emphasized t;iat the technoll ogy is iii its infancy and that much
effort is still required before the techniques and concepts caii be
transferred from laboratory to field conditions.
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Fig. 1, Diagram illustrating the relation of defect and material
characterization to defining the integrated effect of the
material-defect state on structural integrity and life.

PRELIMINARY CONSIDIMATIONS

In its most general context, nondestructive evaluation (NDE) is
a branch of materials science that is concerned with all aspects of
the uniformity, quality, and serviceability of materials and strut-
turos. Therefore, NDE should not be defined solely by the current
emphasis on the detection of overt flaws (Sharpe, 1976). Certainly,
it is necessary to extend NDH technology to characterize discrete
flaws vocording to their location, size, orientation, and nature.
This leads to improved assessment of the potential criticality of
individual flaws. Concurrently, it is necessary to develop NDB
techniques for characterizing various inherent material properties.
In this case, 

the 
emphasis is on evaluation of microstructural and

morphological factors that ultimately govern mechanical strength and
dynamic performance. As illustrated in Fig. 1, a holistic approach
combines nondestructive characterization of defects and also material
environments 

in 
which the defects reside. This leads to improved

accuracy 
in 

predicting structural integrity and life upon exposure to
service conditions, particularly in the presence of discrete flaws.

The specification of flaw criticality and prediction of safe
life depend on the assumption of a realistic set of extrinsic prop-
orties and conditions, such as those listed 

in 
Fig. 2. Fracture and

life prediction analysis models invariably presuppose flaw develop-
ment and propagation in materials with well established moduli,
ultimate strengths, fracture toughnesses, and fatigue and creep prop-
erties. It is within the province and capability of NDE technology
to verify whether or not 

a 
structural part possesses the properties

assumed in design analysis (Vary, 1980). There are numerous NH
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Fig, 2. Material propert ies and conditions that can be assessed
by various nondestructive evaluation (ND13) techniques.

techniques that can be useO for material properties characterization
(e.g., radiometric, electromagnetic, ultrasonic) ( McMaster, 1959;
Green, 1973; l0ra"Womer, 1977; Hayward, 1978). Many of these are
complementary and can be used to extend or corroborate measurements
by other methods. This paper focuses on ultrasonic techniques that
have demonstrated potentials for materials characterization, These
techniques rely on physical acoustic properties of materials and the
interaction of elastic stress waves with morphological factors in the
ultrasonic regime (Mason, 1958; Kolsky, 1963; Kolsky, 1973),

All the material prop"rties and conditions listed in Fig. 2 are
amenable to ultrasonic evaluation to differing degrees (Vary, 19784;
1980). The speed of wave propagation and energy loss by interaction
with material microstructure and geometrical factors underlie ultra-
sonic determination of material properties. There is a well-estab-,
listed body of theoretical and experimental knowledge concerning the
ultrasonic measurement of olast ic moduli (Truell et al, 1969; Schroi-
ber et al. 1973). Conversely, ultrasonic prediction of tansile and
yield strengths, and fract ire toughness are currently 'based on empir-
ical correlations (Vary, 1978b),

Proposed models for explaining the above-mentioned empirical
correlations invoke the concept of ultrasonic stress wave inter-
actions with material microstructure to the degree where the stress
waves actually promote plastic deformation and microcrach extension
(van list, 1973; Vary, 1979a), This stress wave interaction concept
forms the basis for an ultrasonic approach to defining material--
defect interactions as a moans for prodiction of ultimate strengtli
and dynamic reaction to applied loads. Illustrative examples of the
concept are discussed hereinafter.

A-	 .-	 ...	 
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Fig. 3. Alternative data processing and analysis methods upon the
acquisition of ultrasonic signals from a test article.

ULTRASONIC DOMAINS

There are three major domains for presenting, processing, and
analyzing ultrasonic data; (1) image domain, (ii) time domain, and
(iii) frequency domain. As indicated in Fig, 3, the detailed treat-
ment of ultrasonic signals within each domain can be accomplished by
various methodologies, e g., acoustic tomography, acoustic microscopy,
velocity and attenuation measurement, spectral signature analysis
(Brown, 1073; Kessler and Yuhas, 1978; Krautkramer, 1977; Vary 1980).
The end objectives range from defect detection to material property
characteri ation,

Irrespective of the methodology used, the fundamental process
in the image domain produces a representation of signal strength
against spatial coordinates, An example is given in pig. 4 wherein
material quality variations associated with microvoids and fiber
content in a composite laminate are revealed. In the image domain,
the location and size of flaws or the extent of defective material,
become apparent, The chief advantage of ultrasonic imaging is in
affording moans for qualitative ranking of test articles relative to
defect pupulations and material anomalies (Posakony, 1978).

The time domain methodologies all employ electrical analogs of
ultrasonic echoes and transmitted waveforms that are displayed as
signal amplitude versus time oscilloscope traces. Specific signals
are selected for detailed examination and quantitative measurements
of energy, velocity, or attenuation, Time domain measurements are
currently predominant in defect and material characterization.

s
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Fig. •1, Through transmission immersion ultrasonic amplitude scans
(isometric scans) of graphite/polyimide composite laminate
panels. Scans show variations of transmitted signal rel-
ative to zero transnission baseline reference at bottom.
Although each panel was formed with the same cure pressure,
it is evident that material quality and uniformity differ
from panel to panel (Vary and Bowles, 1979).
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Fig. S. Interlaminar shear strength of graphite/polyimide composite
laminate specimens compared to ultrasonic modulus based on
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separate correlation curves that were obtained corresponded
to different combinations of morphological factors that con-
trolled fracture modes during short beam shear tests for
interlaminar shear strength (Vary and Bowles, 1977).
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Matvrial strength correlations derived from time domain signals
are indicated 

in 
Fig. S. This is an example of a widely-used ultra-

sonic, appr ,)ach to material characterization that involves measuring
elastic co ,istants and related strength properties. Measurement of
elastic moduli are fundamental to understanding and predicting mater-
ial lvhavior, Since they are related to interatomic forces, elastic
moduli indicate maximum attainable strength ,,,# (Green, 1973). Long!-
tudijal (v ) and transversc (v t ) wave vQlQities give the longitud-
inal M) a^d shear (G) moduli, respectiviviy, where,

1, r; i-N	 and	 G = ov'

f'or linear isotropic solV!., -,;tese twG moduli are sufficient to com-
pletvly define elastic behavior, given interconnecting relations with
other moduli, e.g., bulk modulus, tensile modulus, Poisson's ratio
and flie Lamc'^ constant (Schreiber et al, 1973). AniSOtTOPiC and most
poly,rystalline solids present a more complex situation since the
principal moduli (L vnd G) will assume different values with differ-
vnt directions of ultrasonic wave propagation. Nevertheless, there
exists an extensive literature that confirms the capabilities of var-
ious time domain measurements for predicting mechanical strength for
mate-ials ranging from cast iron to concrete (Vary, 1980).

Frequency domain methodolo gies begin with the acquisition and
trai;;formation of ti! lie donwin signals, The transformations to the
fre(joency domain are made by either (i) analog frequency spectrum
anal v.' M s or (ii) digital Fourier transform algorithms (Goriclie, 1970;

Adle r et al, 1977; Rose and Thomas, 1979; Vary, 1979b). Working in
the frequency domain affords access to defect and materialcharacter-
iZation data that arc unattainable or impractical to seek in the time
domain. An example of the frequency domain approach and methodology
is discussed under MATERIAL TRANSFER FUNCTION.

STIUSS WAVE, INTERACTION

As mentioned previously, significant correlations of ultrasonic
att(.nuation and velocity with material strength properties exist.
Mangy- of these ultrasonic versus property correlations appear to be
fortuitous, having been found by trial or chance rather than by ex-
ten 4 ions of established principles, The classical elastic wave model
doe^^ support the expectation that velocity will relate to strength
through elastic moduli. However, current theory does r,.ot adequately
account for the strong correlations of ultimate strengths and frac-
ture toughness with attenuation. It is proposed that this lack can
be remedied by considering fracture models in which ultra ,,;onic stress
wav-s interact with material morphological factors to thr. extent that
they actually promote microcracking and also catastrophic crack Qx-
tention. This point of view coincides with dynamically-based models
for fracture behavior (Kolsky, 1973; Curran et al, 1977).
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F ► ti	 ► n of the eyuivaIonce of ultrasound and str,
propagation under linear clastic conditions wherein

m,lt k 1*131 m ► : rust ructurc governs tilt rasoni: attenuat ion
and fracture phenomen. ► .

The - tress wave interaction concept stated above can he used for
!Ig it 	 ical hasis for correlat ions found between tilt ra-

., 	 • t, neat ion : ► n%l material strengtIt and toug;haess.	 The working;
hvpot1.	 i- th.it g ivcn 1 ,iivar elastic condit ions, propagation of
probe ult . Alld is governed b y the same material morphological
factors that govern tress wares generated during; fracture, Fig. t1.
The importance of mi-. rust ructurc in controlling mechanical behavior
is, of course, well cstahl (shed (NUcCrone, 1 !)' - ; I roes ct al, 19 7 Rl .
:he use of probe ultrasound, as depicted in Fir;.	 would he expected
to define material transfer functions that determine stresi wave in-
t cr,r: t ion: such as rcd I rest ion and energ„\ loss due to scattering, and
absorption, for example. Considering, material inicrostructure as .I
filter with a transfer fuivtion definable in terms of the ultrasonic
.ttenuation Loefficicnt proves to he a useful Loncept, as indicated
!,, results cited undcr FRACTURE TOW"JIXESS AND ATTIAIIAT10S.
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n ultrasonic pul-•ed input (left) is used to excitr the
acousto-ultrasonic output waveform (right) from which the
stress wave factor, l:	 is measured. Both the ultrasonic
input pulse echoe, a0 wacousto-ultrasonic output can he
measured by the alternative factors indicated in order to

determine the material modulation transfer function.



STRUSS WAVF FACTOR

An illustrative example of the application of the stress wave
interaction concept is given herewith, The application involves a
novel approa0i that wasdeveloped to evtiluatc fiber composite panels
for mechanical strength properties and in-service strength loss.
The approach combines instrumentation from two proviou ,.;ly separate
technologies: W acoustic emission and ',U) pulse ultrasonics
Riptai and Harris, 1971; Spanner, 19 714; Xrautk-ramer, 1977). The
usual procedure with acoustic emission involves 

the 
detection and

analysis of spontaneous stress wave emissions due to material defor-
mation and flaw growth. 

The 
11acousto-ultrasonic" procedure employs

ultrasonically excited elastic waves that simulati acoustic emission
events, as indleated 

In 
Figs, 8, V (Vary and Bowles, 197 71; 1979).

Theo object is to generate a repeating, controlled set of elastic
wave ,, that will interact with material morphology and boundary sur-
facet; 

in 
a manner similar 

to 
spontaneous 

Stress 
waves that arise

at the onset of fracture, The resultant output waveform resembles
llbur , >t ll type acoustics 	 both in the time and frequency domains.
Like spontancous acoustic emission waveforms the acousto-ultrasonic
waveform carries substantially more information on the material in
which it Tuns than 

on 
the signal ,i ours e. It is a tiiixed function of

multimode velocities, attenuation.,-, , dispersions, and reflections, it
has been demonstrate ,2 that, in the restricted case of fiber composite
laminates, the acousto-ultrasonic waveform will yield correlations
with ultimate tensile and interlaminar shear strengths, Figs. 10, 11,

The correlation.,; were obtained by measurement of a "stress wave
factor" (see Fig. 8). The stress wave factor may be described as a
measure of the efficiency of stress wave energy transmission. This
factor apparently provides a means for rating the efficiency of the
dynamic strain energy tran!,for in the composites t,=sted heretofore
(Vary and Lark, 1979). Once microcracking starts 

in 
the brittle

matrix or fibers, it is to be expected that prompt dissipation of
Stress wave energy away from the Crack initiation sites contributes
to dynamic integrity and ultimate strength, in unidirectional coln-
posites, the stress wave factor is greatest along the fiber direction
which is also the direction of maximum strength. Regions of small
values of stress wave factor are regions of higher ultrasonic atten-
uation (Williams and Lampert, 1980). These regions are also observed
to be regions of weakness where dynamic strain energy is likely to
concentrate and promote further microcracking failure.

The preceding discussion leads to a point made previously with
regard to the phenomenon of stress wave interactions and their rela-
tion to failure dynamics. The fundamental argument being advaned
is that spontaneous stress waves that arise during microevacking can
interact wish other potential crack sites leading to either cleavage

"A
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or void	 and thence large-scale abrupt failure, provided
,in initiating ox,4ess strain has been applied (Vary, 1979a). Since
the stress waves are ultrasonic in nature and subject to modulation

by the, material microstructure, it should be possible to determine a
modulation transfer function by ultrasonic means. Measurement of a,
stress wave factor as described herein affords only a relative means.
Time domain attenuation mea n-urements provide alternative means if the
material sample geometry permits access along appropriate directions.
However, the more appropriate approach is to work in 

the 
frequency

domain wherein signal deconvolution is readily accomplished and the
material transfer function 

can 
be precisely defined,

MATEIIIA1 TrWNSFER FU.NCTXOI;

The conditions under which the material transfer function can
be defined are restricted. 

An 
isotropic polycrystalline aggregate

is assumed for the purposes of this discussion. It is also assumed
that the sample has flat, parallel opposing surfaces and satisfies
the conditions necessary to obtain two back surface echoes as indi-
cated 

in 
Fig. 12 (Truell et al l 1969). Signal acquisition and pro-

cessing would be accomplished as indicated in Fig, 13 (Vary, 1979b),

it will !)c 
s
een that f,

'
 equency domain analysis yields an ultra-

sonik! transfer function, T, for the material 
in 

terms of its attenu-
ation coefficient, (, and reflection coefficient, It. The quantities
Bl, B2, Lil l I"., T, and R are taken as 'ourier transforms of corres-
ponding time domain quantities (Bracewell, 1978). Thi q puts the
aforementioned quantities into the;frequency domain, where signal de-
convolution and transfer function definition can proceed with simple
mathematical manipulations. The attenuation coefficient, being a
function -f frequency, is likewise defined in the frequenc y domain,

crm

where, f is fruquenc y and c and m are experimental constants (Vary,
19`81); Serabian, 1980), given that scatter attenuation prevails.
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X
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Fig. 12. Diagram of echo stystem showing quantities involved in the
definition of the material ultrasonic transfer function.
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As indicated in Fig. 11121 , a broadband ultrasonic pulse signal pro-
duds a series of back surface echoes in the material specimen, The
first two bock surfoee echoes Bl and B." re-enter the ultrasonic trans-
ducer which acts as sender and receiver, Fig. 13, I t is appropriate
to take the internal echo M as the source si gnal I.-r B1 0 thusC2

BI = (1+RMJ	 (3)

where, fl+R) is 
the 

transmission function at the specimen-transduce"r
intcrface (Truell, et ,al, 1969). A portion of the energy of Bl is re-
flected and appears as the second internal echo E-2, giving,

B2 = TIZ(1+R)1-:1	 (4)

where, the transfer function T iiicorporates signal modulation factors
associated witli the material microstructure (e.g., grain scattering,
absorption, etc*.) and interface effects. Combining the two preceding
equations,

T ;; B2/RB1	 (5)

The transfer functions associated with coupling and other factors of
signal transduction were ignored as they cancel out just as the term
(I+R) (1. 1) vanishes upon combining Equations (3) and (4) to got (5).
It has been shown by Papadakis (1976) that the attenuation coefficient
can be measured by frequency spectrum analysis and that,

^Ix = (1/2x) fan (Ml/B2)	 (6)

where, x is specimen thickness,

I
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By noting that the ratios, 02/01, Appearing in 3quations (5) and
(6) are identical functions of ultrasonic frequency, we have,

T * extr(-3xcx)	 (7)

that is, the material transfer function or ultrasonic wave filtering
characteristic is defined in terms of the attenuation coefficient
and reflection coefficient, For nondi,spersive materials, the reflec-
tion coefficient A is independent of frequency. it is a function of
material velocity and density (Trusll at al, 1969; i aapada,kis, 1976)
Recalling that DI and 02 were taken its Fourier transforms of corres-
ponding time domain echoes, it is clear that Equation (5) gives the
transfer function T as the ratio of the frequency spectra of time
domain waveforms. 'Therefore, in complex polar form,

T x (i/Ft) W /a1)exp(W	 (S)

whero, al and a2 are the amplitude spectra for signals Ill and 02,
respectively, while + is the difference in phase spectra (^2-- I) ,
Here, T represents the doconvolution of the time domain counterparts
of ill anti S2 (Newhouse and Fugaason, 1977; Bracewell, 1978).

Equations (7) and (S) are a basis for determining Material prop-
er^tles Tiy means of ultrasonic spectrum a+nalysi.s and associated ultra-
sonic at tenuati on lamon qurement , The essential operati ons for nccomp-
l.ishing this, as implomonted by ai computer system, are illustrated A.
Figs. 14 and 15, A number of ultrasonic factors dorived from materinj
transfer function and Attenuation curves have provear to correlate wall
with microstructure, fracture toughness, and yield strength in metals,
as discussed in the following section.

FRACTURE TOUGHNESS AND ATTF NUATTQN

Thv feasibility of ultrasonic measuromont of pinno strain frac-
ture toughness Ira s been demunstvated for two mnraging stools and a
titanium alloy (Vary, 19781)). A principal ultrasonic factor that
correlates with fracture toughness is 0 which is the slope, dtx/df,
of the nttenuaation versus frequency curve, Equation (2). 'Tile ccon-
stants e And m for than material microstructure are established by the
fregaaenr.N' C10111a.in nrraryses represented to Figs. 14 and 15, Tilecor®
rol att i ons that have boon found are shown in Figs, 16, 17, and 18,

Fracture toughness, yield strength, and related mi.crostructur aal
factors are apparently intimately connected with ultrasonic and hence
(stress) wave propagation factors an polycrystalline metallic mnter-
ials. The empirical correlations that are exhibited in pigs, 16
through 18 imply that stress wave Interactions are important during
rapid (catastropic) crack extension, as under the conditions for
determining fracture toughness (Brown and Sraavloy, 1966) ,
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titanium alloy u;id n maraging steel, The lefthand graph
is based on data from Fig, 16 and, combines the ultrasonic
factor $ With fracture toughness Kjc in the quantity a,

as defined abc— lie figure (Vary, 1978b),
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1'.1g, 18. Experimental correlation of ultrasonic attenuation factor
and fracture toughness "characteristic length" factor for
three motels. The exporimental data agree with theoretical
relation given by Equation (9) (Vary, 1979a).

it can be inferred that spontaneous stress waves generated dur-
Ing crack nucleation will contribute to promoting the onset of rapid
unstable crack extension. A stress wave interaction model based on
this idea was used to derive equations that predict the empirical
correlations shown 

in 
Fig!-,. 17 

and 
18 (Vary, 1979a). For the ;oly-

crystalline aggregates for which the equations were derived t ., ►ere ox-
ists a close relation between fracture toughness and yield strength.
This accounts for the appearance of yield strength G 

in the equations
connecting Mane strain fracture toughness K 

Ic 
and trie ultrasonic

attenuation factor h,

(K 
Ic /a y ) 

2 
a M(v 1061m) 

^	
(9)

; AK 
le 

t BB 1 - C	 (10)

where, v, is velocity anal 	 B, C, and M are experimental constants
that are related to material microstructural factors, The quantity i1
s the derivative da/df evaluated at 

an 
attenuation coefficient a-1,

while t is da/df evaluated at a particular threshold frequency that
corresponds to a critical ultrasonic wavelength in the material. This
wavelength is related to the mean grain boundary spacing, Equation
(9) describes the lines through the data in Fig. 18 while equation



17

(10) JoserlhoA the lines through the data 
III 

Fig. 17. The empirical
coefficient A and B In Equation (10) carr

y
 opposite n1gebraic signs

that appear to depend on the mode of fracture. Thus, if these co-
efficients tire experimentally determined for a material that frac-
tures 

In 
a predominantly brittle manner, A assumes a negative sign,

givinly, a negative slope as for 
the 

line for titanium III Pig, 17.
The coefficients and associated quantities 

in 
Equation (10) apparent-

ly relate to modes of stress wave energy dissipation, residual strain
in crack nucleation sites, and whether the nucleation sites are
energy "sink-s" or "sources" duringfracture. The coefficient M in
Equation (9) appears to be related to microstructural factors such as
grain size, lath spacing, ligament length (Rahn et al, 1972), The
quantity m in Equation (9) Is the exponent on frequency in Equation
(41 ) . Ont:e these experimental constants have been determined for a
ma l"rial, Equations (9) and (10) can be taken as simultaneous rela-
tions to solvo for K 

IC 
and') y in terms of the ultrasonic factors.

CONCLUDING REMARKS

The ultrasonic NDE approacho.,; and results that have been high-
lighted herein indicate potentials for material characterization and
property prediction, Stress wave interaction and material transfer
function concepts were cited as bases for explaining correlations be-
tween material mechanical behavior and ultrasonically-measured quanti-
ties, it Is observed that the criticality and effect of any discrete
flaw (crack, inclusion, or other stress raiser) is definable only in
terms 

of 
its material MiCrOStrUCtural environment. This underscores

the importance of ultrasonic techniques that can characterize stress
wave energy transfer properties of a material,
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