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a b s t r a c t

This work aims at associating two classical approaches for the design of composite materials: first,

reliability methods that allow to account for the various uncertainties involved in the composite

materials behaviour and lead to a rational estimation of their reliability level; on the other hand,

micromechanics that derive macroscopic constitutive laws from micromechanical features. Such

approach relies on the introduction of variabilities defined at the microscale and on the investigation

of their consequences on the material macroscopic response through an homogenization scheme.

Precisely, we propose here a systematic treatment of variability which involves a strong link between

micro- and macroscales and provides a more exhaustive analysis of the influence of uncertainties. The

paper intends to explain the main steps of such coupling and demonstrate its interests for material

engineering, especially for constitutive modelling and composite materials optimization. An application

case is developed throughout on the failure of unidirectional carbon fibre-reinforced composites with a

comparative analysis between experimental data and simulation results.

1. Introduction

If mechanical performances of composite materials offer
gradually attractive design perspectives for many industrial appli-
cations, huge safety margins introduced owing to the important
scatter of their properties still appear as a strong limitation for
their large development. Recently structural reliability analyses
[1,2] have allowed significant progress in the conception phases
and for maintenance programs through a more rational estimation
of the risk exposure. By considering the parameters of a structure
(for instance loads, geometry, materials properties, etc.) as random
variables, these methods account for uncertainties arising and
provide either a quantitative evaluation of the failure probability
for a given application or a range of use to achieve a specified
reliability level.

Obviously, the relevance of results obtained by such analyses
highly depends on the problem representation retained, and then
especially on the mathematical modelling of the materials beha-
viour. In the case of heterogeneous materials, the macroscopic
response results from mechanisms occurring at the microscale
within their constituents and at their interfaces, and from the
spatial distribution of these constituents. From the definition of a
representative volume element of the composite material, classical

homogenization techniques offer in such context a rigorous frame-
work to derive its overall behaviour from local informations [3–5].

Accordingly, the association of probabilistic modelling and
micromechanics seems to be an interesting and appropriate
way to achieve consistent characterizations of composite
behaviours [6]. In addition to the description of fluctuations at
various scales, such approach can also integrate the microscopic
origin of failure and confers a clear physical meaning to material
reliability. Most of failure models developed in this sense uses a local
failure criteria (on composite constituents and/or on the interfaces)
with a statistical distribution of strength parameters (generally of
Weibull type) and assumes equal or local load sharing to represent
the damage growth. In this case, homogenization techniques enable
the estimation of the composite effective behaviour and the deriva-
tion of local fields from macroscopic solicitation [7–10].

In keeping with such probabilistic micro–macro approaches,
the present work stands out by a more exhaustive treatment of
variability. We propose indeed an explicit association of reliability
methods and micromechanics that creates a link between
micro- and macroscales concerning the effects of uncertainties.
The main objectives associated to this approach are:

� to capture a large amount of inherent fluctuations at the
microscale (constituents properties, morphological features,
etc.) and analyse their consequences on the composite macro-
scopic reliability; from this, one can deduce the most signifi-
cant micromechanical parameters and, for example, steps that
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need special care in the manufacturing process to enhance the
design and optimization of given structural applications;
� more generally, to develop interactions between micromecha-

nics and probabilistic modelling; first, the introduction of
statistical data provides enriched identification and validation
procedures of micromechanical models; then, reliability indi-
cators can help to quantify their sensitivity to assumptions
retained and therefore to improve representations.

Section 2 of this paper will describe the general background of
such coupled approach, namely recall the different steps of a
classical reliability analysis and precise where micromechanical
aspects are introduced. We present in Section 3 the case study of
this paper, namely a unidirectional carbon-epoxy composite, and
the micromechanical formulation chosen to represent its beha-
viour is detailed in Section 4. The reliability model and simulation
procedure are presented in Section 5. From the comparison
between experimental reliability and simulation results, the final
discussion of Section 6 will illustrate the aforementioned advan-
tages of the approach, especially the estimation of relative
importance of uncertainties introduced or modelling adjustments
that can be deduced.

2. General background

Structural reliability analyses allow the performance estima-
tion of systems which exhibit notable fluctuations that cannot be
captured by deterministic models. In the present study, we focus
on the reliability of a mechanical system component (later
referred as the ‘‘structure’’) associated to a heterogeneous mate-
rial. In view of this, a reliability analysis requires three important
steps:

� first, the selection of N input random variables (denoted by
vector X ¼ fXigi ¼ 1,: :n) that describe the various sources of
uncertainties arising;
� then, the choice of a failure scenario which is mathematically

defined by a limit state function G;
� and finally, the calculation of indicators (such as the mechan-

ical system failure probability Pf) which provide a qualitative
and quantitative evaluation of the structure reliability.

Considering the first point, uncertainties affecting composite
materials concern both the microscopic level which is relative
to the material microstructure (constituents properties, spatial
distribution, interfaces characteristics, presence of defaults, etc.)
and the macroscopic level (model relevance, composite proper-
ties, structure geometry, load, etc.). Most often, they come from
the material manufacturing process, results dispersion in experi-
mental characterization (poor testing reproductibility, scale
effects, etc.), load variability or simply by the lack of knowledge
of some data. In the present approach, the choice of random
variables is motivated by two arguments:

� material design and optimization perspectives, so that most of
microstructural parameters that can be governed in some way
during manufacturing process need to be included;
� availability of experimental results, which can justify probabil-

istic models associated to random variables (in particular their
joint probability function fX, otherwise marginal density
functions ffXi

gi ¼ 1: :N , and correlations relations) and provide
consequently physical consistent representations.

The second requirement is the definition of the failure scenario
defining the limit state beyond which the structure is not

considered as reliable. According to the study objectives, such
limit state may correspond either to some mechanical strength
achievement or to serviceability. From this, one needs to define
the performance (or limit state) function G which denotes the
boundary in the space of X between the safe domain Ds (such that
GðXÞ40) and the failure domain Df (such that GðXÞr0). Impor-
tant aspects relative to the choice of the failure criterion are as
follows:

� expression of G should be motivated by the physical origin of
the failure scenario in order to derive a realistic representation
of the structure reliability; in the case of heterogenous materi-
als, it may concern either microscopic features (for local failure
modes) or macroscopic data (for structural instabilities);
� if G has an implicit definition based on the mechanical

response of the structure, the analysis will involve a coupling
between reliability methods and a mechanical model (if neces-
sary associated to finite-element simulations);
� finally, practical aspects can influence the decision (especially

simulation time), in view of the complexity of the previous
coupling or mathematical properties of G.

The calculation of reliability indicators constitutes the last step of
a reliability analysis. Considering only time independent case, the
probability of failure is given by

Pf ¼ ProbðGðXÞr0Þ ¼

Z
Df

fXðXÞ
YN
i ¼ 1

dXi ð1Þ

For most practical problems, it is well known that the formulation
of fX and its integration over the failure region is typically too
difficult to be computed directly. Among numerical methods
developed to estimate Pf [1,2], approximation methods (FORM/
SORM) that rely on simplifications of the failure domain are
clearly computationally efficient. Moreover, they provide in
addition to Pf a sensitivity analysis that identifies the influence
of random parameters (importance and nature [11,12]). Such
complementary information is very useful in view of the both
objectives of the present work.

It was important to present from the beginning the main
guidelines of the reliability analysis and in which way informa-
tions relative to the microscale should be introduced. Indeed, all
choices and assumptions retained in what follows (on random
variables, mechanical modelling, failure scenario, numerical
implementation) will be governed by before-mentioned objec-
tives and recommendations.

3. Material description and experimental data

The engineering case investigated in this paper concerns
composite stay cables used for the first time in France in 2002
by the Freyssinet International Company for the execution of the
Laroin pedestrian footbridge ([13], Fig. 1). Each stay cable of this
structure is composed of two or three strands of seven carbon-
epoxy cylindrical rods (Fig. 2).

This work deals with the reliability assessment of these
composite rods that correspond to the cables elementary struc-
ture. Manufactured by the SOFICAR company (SOciété des FIbres
de CARbone, Company of Carbon Fibre, located in Abidos, France),
these pultruded unidirectional composite rods are composed of
aligned TORAYCA high-strength carbon fibres T700SC-12K,
embedded in an epoxy resin Eponal 401 manufactured by BOSTIK
FINDLEY (mean fibre volume fraction of 67%) (Fig. 3). For the
validation of the rods model, one needs in what follows to
investigate the behaviour of another pultruded products of
SOFICAR, namely unidirectional carbon-epoxy composite laminates



with rectangular section, designed for bridge concrete reinforce-
ment. These laminates are composed of aligned TORAYCA high-
strength carbon fibres T800H-2n12K, embedded in the same epoxy
resin as rods (mean fibre volume fraction of 62.8%) (Fig. 3).

From the mechanical point of view, fibres exhibit transversally
isotropic (around axis given by unit vector n) brittle behaviour
and epoxy resin is isotropic viscoelastic [14,15]. Experimental
data on components that concern elastic properties and failure
values measured under uniaxial tension tests have been provided
by manufacturers (Tables 1 and 2). Note that measures on fibres
correspond to axial characterizations (along n) and have been
obtained on 200 mm length impregnated fibres.

Concerning composite products, SOFICAR have investigated
their macroscopic features for quality control, precisely their
dimensions (rods diameter f¼ 670:1 mm; width l¼5070.3 mm
and thickness e¼1.270.05 mm of plates) and their mechanical

performances in the axial direction in view of their own further
applications:

� the tensile strength RT(n) of rods (bridge stay cables), through
N¼158 tests,
� the elastic modulus E(n) of plates (concrete reinforcement),

through N¼74 tests [16].

Cumulative frequencies Fi for each of these measures represent
the raw experimental data given in Figs. 6, 7 and 11 for RT(n) and
Figs. 9 and 10 for E(n). It should be noted that all the experimental
tests have been realized with 200 mm usable length composite
samples and on the same test bench INSTRON 4485. An investiga-
tion of the precision of the experimental procedure by SOFICAR
through a comparative analysis with normalized data (elastic
modulus and tensile strength) has shown a minorating error of
their device of maximum 3%: raw data of SOFICAR represent
indeed among 97% and 100% of normalized values.

4. Micromechanical modelling

Classical homogenization techniques, and especially estima-
tion methods, constitute a very appropriate framework to estab-
lish the mechanical model of the material since they provide (see
[3–5] for a review):

� on one hand, the overall behaviour of heterogenous materials
from microstructural features and components behaviours;
this allows the introduction of random parameters relative to
the local scale and also the model validation through macro-
scopic properties;
� on the other hand, an estimation of strain or stress local fields

during the load, which is useful for the definition of the failure
scenario.

The representative volume element (RVE) V corresponds here to the
sample used for quality control itself, that is the 200 mm length
cylindrical rod or rectangular laminate, that can be considered as
statistically homogeneous in regard to the fibres dimension (cylind-
rical filaments of 8 mm diameter). The material exhibits a ‘matrix-
inclusion’ morphology since fibres have the same shape, orientation
and mechanical behaviour. According to the manufacturing process
(pultrusion), fibres are randomly spatially distributed within the
RVE, the matrix is continuous and interfaces can be considered as
perfect. Concerning the solicitation, small perturbations, rate inde-
pendent and isothermal conditions are considered. Due to the
predominance of fibres properties and the kind of solicitation
applied to the composite (longitudinal tension), the viscous aspect

Fig. 2. Structure of the footbridge.

Fig. 3. Composites rods and laminates.

Table 1
Mechanical properties of TORAYCA fibres (mean values, source: TORAY).

Fibres Young modulus,

Ef(n) (MPa)

Yield stress,

sF
f ðnÞ (MPa)

Yield strain,

eF
f ðnÞ (%)

T700SC-12K 230 000 4870 2.1

T800H-2n12K 294 710 5541 1.88

Table 2
Mechanical properties of Eponal 401 resin (source: BOSTIK).

Young modulus, Er (MPa) Yield stress, sF
r (MPa) Yield strain, eF

r (%)

28007125 63.874.1 2.470.3

Fig. 1. The Laroin footbridge (France, Pyrénées Atlantiques).



of the matrix can be neglected and all components are assumed to
be linear elastic.

The choice of the appropriate homogenization scheme relies on
various parameters, such as the geometry of the heterogenous
material, the mechanical contrast between phases or the particle
volume fraction [17]. Even if some limitations can appear for high
carbon fibres volume fraction, we have chosen to use the
well-known Mori–Tanaka estimate [18] for following reasons: it
represents the overall material anisotropy induced by oriented
reinforced fibres (through the Eshelby tensor), allows the intro-
duction of various microstructural features (shape of constituents,
etc.) and accounts in some way for the interactions between
constituents [19]; moreover, in comparison to iterative schemes
(self-consistent, differential, etc.), such formulation provides expli-
cit expressions of the overall elasticity and local fields, which
greatly simplify the coupling with reliability analysis.

Usual intrinsic notations are employed throughout. All tensors
used in this study are defined on the Euclidean vectorial space R3

for which the set of vectors ðe1,e2,e3Þ constitutes an orthonormal
basis. Especially, Tk represents the vectorial space of tensors of
order k (kAN). In order to make clear expressions in the paper,
the inner products are labelled as follows: a � b, 8ða,bÞAðT1 ¼R3

Þ
2;

a:b, 8ða,bÞA ðT2Þ
2; a::b, 8ða,bÞAðT4Þ

2. Additionally, the tensor
products of two second-order tensors a and b are defined by

½a� b� : x¼ ðb : xÞa, ½a�b� : x¼ a � x � bT

½a�b� : x¼ a � xT � bT , a�b¼ 1
2 ða�bþa�bÞ

(
ð2Þ

for any tensor xAT2. In particular, the term a�l ¼ a� a: :� a

represents the lth tensor product of a tensor a (lAN).

4.1. General formulation

Let denote by r and e (respectively R and E) the stress and
strain local (resp. macroscopic) fields. In the Mori–Tanaka for-
mulation, the matrix is considered as the reference medium and is
subjected to its own stress. The composite compliance tensor

Shom
MT such that E¼Shom

MT : R is then given by

Shom
MT ¼SðmÞ þ fiðSðiÞ�SðmÞÞ : /BSMT

ðiÞ ð3Þ

where SðkÞ denotes the compliance tensor respectively of the
matrix (k¼m) and of the inclusion (k¼ i) and fi ¼ 9Vi9=9V9 the
inclusion volume fraction (Vi the inclusion volume within RVE).
The stress concentration tensor, /BSMT

ðiÞ , that provides the aver-
age stress over the inclusion phase

/sSðiÞ ¼
1

9Vi9

Z
Vi

s dV ¼/BSMT
ðiÞ : R ð4Þ

takes the following expression (I the second-order unit tensor):

/BSMT
ðiÞ ¼/BSdil

ðiÞ : ½ð1�fiÞI � Iþ fi/BSdil
ðiÞ �
�1 ð5Þ

where the stress concentration tensor of the dilute scheme /BSdil
ðiÞ

depends on the Eshelby tensor SE
ðmÞ of the inhomogeneity within

the matrix ([20,21]; see expressions in Appendix A):

/BSdil
ðiÞ ¼S

�1
ðiÞ : ½I� IþSE

ðmÞ : SðmÞ : ðS
�1
ðiÞ �S

�1
ðmÞÞ�

�1 ð6Þ

4.2. Base model

As a starting point, the mechanical model is built upon simple
assumptions concerning the components nature, shape and
behaviour:

1. the porosity within the resin is negligible; the matrix medium
corresponds then directly to the epoxy resin material (SðmÞ ¼SðrÞ

and S
E
ðmÞ ¼S

E
ðrÞ) and the fibres represent the inclusion phase

(SðiÞ ¼Sðf Þ and fi¼ ff the fibres volume fraction);
2. the fibres phase is modelled as a cylindrical inclusion of axis n

with circular section, the Eshelby tensor is then given by
Eq. (A.4);

3. fibres are assumed to be isotropic with mechanical properties
corresponding to their axial features, namely the Young
modulus Ef and the Poisson ratio nf are taken:

Ef ¼ Ef ðnÞ

nf ¼ nf ðn,tÞ

(
ð7Þ

whatever the unit vector t orthogonal to n. According to
assumptions 1 and 3, the compliance tensors of components
has the form:

SðjÞ ¼
1þnj

Ej
I� I�

nj

Ej
I� I ð8Þ

with (j¼r) for the resin and (j¼ f) for the fibres.

From this, relevant calculations give rise to the following expres-
sion of the stress concentration tensor on the fibres phase
expressed within the basis fFlgl ¼ 1,6 defined in Appendix A
(Eq. (A.1)):

/BSMT
ðiÞ ¼/BSMT

ðf Þ ¼
X6

l ¼ 1

blFl ð9Þ

with

b1 ¼
2Ef

D
½ð1�ff Þð1�nrnf ÞErþ ff ð1�n2

r ÞEf �

b2 ¼
Ef

D
½ð1�ff Þð1�nf�2nrnf ÞErþ½1þnrþ ff ð1�nr�2n2

r Þ�Ef �

b3 ¼
4ð1�n2

r ÞEf

ð1�ff Þð1þnf ÞErþð3�4nrþ ff Þð1þnrÞEf

b4 ¼
2ð1�nrÞEf

ð1�ff Þð1þnf ÞErþð1þ ff Þð1þnrÞEf

b5 ¼�
ð1�ff ÞEf

D
½ðnr�nrnf�2nf ÞErþnrð1þnrÞEf �

b6 ¼
ð1�ff Þðnf�nrÞErEf

D
ð10Þ

and

D¼ ð1�ff Þ
2
ð1�nf�2n2

f ÞE
2
r þ ff ½1þ ff ð1�2nrÞ�ð1þnrÞE

2
f

þð1�ff Þ½1þnrþ ff ð2�nr�nf�4nrnf Þ�ErEf ð11Þ

4.3. Model uncertainties

The assumptions retained for the base model have been
considered mainly in view of the lack of exhaustive experimental
data concerning some points. As a result, some aspects that can
affect the composite mechanical behaviour are not taken into
account, which introduces modelling uncertainties on the repre-
sentation obtained. In order to investigate the influence of such
simplifications, we propose to reconsider separately each of the
previous assumptions.

4.3.1. Matrix porosity

If the resin formulation and the manufacturing process are not
fully optimized, the composite matrix may exhibit some notable
rate of porosity. Compared to the base model, such phenomena



will affect the matrix properties which should be considered in its
turn as a heterogenous material (Fig. 4).

Such problem is carried out with two successive homogeniza-
tion procedures (the different scales being assumed to be well
separated):

� the first one is performed at the scale of the porous resin (RVE),
which is considered as a two-phase material with resin as the
matrix (SðmÞ ¼SðrÞ and S

E
ðmÞ ¼S

E
ðrÞ) and pores as spherical

inclusion phase (SðiÞ ¼SðpÞ ¼O and fi¼ fp the porosity);
combining the expression (A.3) of the Eshelby tensor leads
finally to the resulting isotropic behaviour of the porous resin
with a compliance tensor SðjÞ ¼SðprÞ of the form (8) with
effective Young modulus Epr and Poisson ratio npr such that

Epr ¼
2ð1�fpÞð7�5nrÞEr

2ð7�5nrÞþ fpð1þnrÞð13�15nrÞ

npr ¼
2nrð7�5nrÞþ fpð3�2nr�5n2

r Þ

2ð7�5nrÞþ fpð1þnrÞð13�15nrÞ

8>>><
>>>:

ð12Þ

� the second one is done at the composite scale (RVE), which is
considered as a two-phase material with porous resin as the
matrix (SðmÞ ¼SðprÞ and S

E
ðmÞ ¼S

E
ðprÞ) and fibres as the cylind-

rical inclusion phase with spherical section (SðiÞ ¼Sðf Þ and fi¼ ff

the fibres volume fraction); this step is clearly identical to the
base model homogenization and can be achieved substituting
the following properties in the result (9):

Er-Epr

nr-npr

(
ð13Þ

4.3.2. Fibres shape

The question of the circular shape of the cylindrical fibres
phase is investigated here. Indeed, some steps of the pultrusion
process may induce some compression in the cross-section of
manufactured composites (die, pulling), leading to a more com-
plex shape for the fibres within the final product. In order to
access the impact of such feature, we consider an elliptical section
for the cylindrical inclusion.

Let denote by the unit orthogonal vectors t and k the
ellipse principal axes such that (n,t,k) represents an orthonormal
basis of R3, (at,ak) the minor and major semi-axes (Fig. 5) and
l¼ at=akA ½0,1� its aspect ratio (l¼ 1 corresponds to the circular
section).

In that case, the expression (A.5) of the Eshelby tensor leads to
a stress concentration tensor on the fibres phase on the form:

/BSMT
ðiÞ ¼/BSMT

ðf Þ ¼
X12

l ¼ 1

b0lGl ð14Þ

with the basis fGlgl ¼ 1,12 defined in Appendix A (Eq. (A.2)). Since
the inversion of fourth-order tensors expressed in such a basis
cannot be done explicitly, the components fb0lgl ¼ 1,12 are obtained
through numerical computations.

4.3.3. Fibres behaviour

High-performance carbon fibres are produced from drawn
polyacrylonitrile (APN) fibres by a process of controlled pyrolysis
followed by a high-temperature heat treatment. The resulting fibres
are strongly anisotropic, namely transversally isotropic around their
axis n, because of the preferential molecular orientation of the drawn
precursor. Written in the orthonormal basis (n,t,k) of R3, their elastic
behaviour is consequently entirely described by five parameters:

Sðf Þ ¼
1�nf ðt,kÞ

Ef ðtÞ
F1þ

1

Ef ðnÞ
F2þ

1þnf ðt,kÞ

Ef ðtÞ
F3

þ
1

2mf ðn,tÞ
F4�

nf ðn,tÞ

Ef ðnÞ
ðF5þF6Þ ð15Þ

where Ef(n) and Ef(t) (8t) are the Young moduli related respectively
to the axial and transverse directions, nf ðn,tÞ (8t) and nf ðt,kÞ (8ðt,kÞ)
are the Poisson ratios related respectively to the axial and transverse
planes, and mf ðn,tÞ (8t) is the shear modulus related to the axial
planes. Without any specific experimental characterization, we
propose to work here with a simplified type of anisotropy:

� Poisson ratios and shear modulus are kept equal to their values
in the base model (isotropic behaviour), that is:

nf ðn,tÞ ¼ nf ðt,kÞ ¼ nf

mf ðn,tÞ ¼
Ef ðnÞ

2ð1þnf ðn,tÞÞ
¼

Ef ðnÞ

2ð1þnf Þ

8><
>: ð16Þ

� the contrast between axial and transverse Young moduli is
described through a scalar parameter YA ½0,1� such that

Ef ðtÞ ¼YEf ðnÞ ð17Þ

Under these assumptions, one obtains the following expression
for the stress concentration tensor:

/BSMT
ðiÞ ¼/BSMT

ðf Þ ¼
X6

l ¼ 1

b00l Fl ð18Þ

with

b001 ¼
2YEf ðnÞ

DY
½ð1�ff Þð1�nrnf ÞErþ ff ð1�n2

r ÞEf ðnÞ�

b002 ¼
Ef ðnÞ

DY
½ð1�ff Þð1�nf�2nrnfYÞErþ 1þnrþ ff ð1�nr�2n2

r Þ
� �

YEf ðnÞ�

b003 ¼
4ð1�n2

r ÞYEf ðnÞ

ð1�ff Þð1þnf ÞErþð3�4nrþ ff Þð1þnrÞYEf ðnÞ

b004 ¼
2ð1þnrÞEf ðnÞ

ð1�ff Þð1þnf ÞErþð1þ ff Þð1þnrÞEf ðnÞ

b005 ¼�
ð1�ff ÞEf ðnÞ

DY
½ðnr�nrnf�2nfYÞErþnrð1þnrÞYEf ðnÞ�

b006 ¼
ð1�ff Þðnf�nrÞYErEf ðnÞ

DY

:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð19Þ

and

DY ¼ ð1�ff Þ
2
ð1�nf�2n2

f YÞE
2
r þ ff ½1þ ff ð1�2nrÞ�ð1þnrÞYE2

f ðnÞ

þð1�ff Þ
YþnrY
þ ff ð1þY�nrY�nf�4nrnfYÞ

" #
ErEf ðnÞ ð20Þ

Fig. 4. Scale separation.

Fig. 5. Cylindrical inclusion with elliptical section.



The case Y¼ 1 and Ef(n)¼Ef corresponds obviously to the base
model (9).

As a conclusion, note that in all cases (base model and three
variations) the macroscopic behaviour of the composite remains
transversely isotropic with axis n through the introduction of the
Eshelby tensor of a cylindrical inclusion.

5. Reliability model and simulation procedure

As detailed above, the micromechanical scheme provides for
each given morphology (components types and distribution) an
estimation of the overall behaviour and average local fields
(respectively from Eqs. (3) and (4)). In order to introduce uncer-
tainties and establish their influence, this section aims at coupling
such deterministic mechanical representation with reliability
analysis. It should be noted that the relevance of the approach
relies on the availability of statistical experimental characteriza-
tions, especially to define the distribution of random variables and
failure scenario. Accordingly, the paper focuses on mechanical
monotonic solicitations of the composite materials investigated by
manufacturers; long-term durability effects (fatigue or extreme
environmental conditions) are not considered here.

The development follows the three general steps described in
the first section.

5.1. Random variables

Uncertainties sources retained in this paper concerns:

� on one hand, the materials data (resin, fibres and composite):
components mechanical properties (elastic behaviour and yield
strength), the microstructural phases distribution (fibres
volume fraction) and the composite geometry (rods diameter),
� on the other hand, the micromechanical modelling: porosity of

the matrix, fibres shape and behaviour.

Without any specific correlation characterization, all random
variables are assumed to be independent. The estimation of
the failure probability (1) can be done in that case only
from the individual distribution functions fXi

associated to each
random variables Xi. Classically, microstructural reliability
approaches favour the Weibull model to account for the distribu-
tion of random variables, especially for strength parameters. This
choice, which is based on the weakest link assumption, allows to
account for some scale effect [22]. In the present case, data
relative to fibres and composite have been obtained on samples
of same length, the scale effect can reasonably be neglected.
Moreover, our interest is to deal as much as possible with
available data, that are given here through mean values of
parameters with possibly lower and upper bounds (Tables 1 and
2). It seems then more relevant to turn to the Normal distribution
function which provides the ratios included within mean centred
intervals.

Precisely, for random variables Xi associated to materials data,
one retains the mean value Xi provided by manufacturers or
literature (case of Poisson ratios) and the standard deviation SXi

is
taken such that 99.73% of the data values are included between
given intervals (for the Normal distribution, ProbðX�3SX rXrXþ

3SXÞ ¼ 99:73%). As an example, one retains following distribution
parameters for the resin Young modulus:

Er ¼ 2800 MPa, SEr
¼

125

3
C42 MPa ð21Þ

If the deviation interval is not specified, one considers that 99.73%
of the data values are included within ½0:9X ,1:1X � by choosing

SX ¼
10%� X

3
ð22Þ

Since modelling uncertainties concern physical or mechanical
features, we have chosen values consistent with their nature and
with the bibliography [14,15]. For instance, the matrix porosity fp

and mechanical contrast Y that are investigated in what follows
are restricted to

fp r10%, 0:01rYr0:07 ð23Þ

As before, the standard deviation is defined by Eq. (22).

5.2. Failure scenario

In this study, the reliability of the composite rod corresponds
to its mechanical strength achievement under monotonic loads
since failure data provided by manufacturers (TORAY and SOFI-
CAR) deal only with such solicitations. Precisely, the composite
failure point is defined as its yield strength which is governed by
local damage behaviours. For fibre-reinforced materials, this may
be related either to components failure (fibres and matrix) or
interfaces microcracking. In the case of stay cables submitted to
longitudinal tension, the predominant failure mode basically
corresponds to the fibres breakage [14,15].

As said before, fibres are studied together, assuming identical
geometry and mechanical behaviour (namely brittle elastic).
From this, their failure point can be treated in a global manner
with a limit state function of classical form:

G¼ sF
f ðnÞ�/sISðf Þ ð24Þ

where /sISðf Þ denotes the maximum principal value of the average
stress over the fibres phase given by the localization expression (4).
The composite material is then considered as failed (not reliable)
when the average mechanical state over fibres within the composite
reaches the fibres axial failure strength. Contrary to existing works
that restrict the probabilistic character to the strength [7–10], note
that the present coupled approach accounts for the variability of
both the strength (here sF

f ðnÞ described by Table 1) and the
solicitation (here /sISðf Þ described by Tables 1 and 2 through
Eq. (4)). Accordingly, the influence of uncertainties on both strength
parameters and elastic properties is integrated and leads to a more
complete representation and understanding of variability effects.

As a comment, the global representation of the fibres failure
adopted through criterion (24) is clearly restricted to the present
configuration (unidirectional carbon reinforcement, axial load) for
which the composite exhibit brittle elastic behaviour. For other
materials (glass fibres reinforcement for instance) or other kinds
of solicitations, one should introduce the progressive aspect of
damage by differentiating the fibres strength (for example
through values given by a random Weibull distribution) and the
load sharing to provide an enriched reliability representation.

5.3. Reliability calculations

The selection of a probabilistic code is essentially based on its
application range, computational efficiency and various abilities
such as the combination with other tools (see [23] for a review).
The free and open probabilistic code FERUM [24] has been chosen
for various reasons. The present analysis requires quite simple
calculations due to mechanical behaviours considered (brittle
elastic) and explicit expressions provided by the Mori–Tanaka
scheme. Moreover, one needs to set up easily this direct coupling
with the micromechanical model and to derive complete sensitiv-
ities analyses to fulfill the purpose in view. Accordingly, a direct



coupling between FERUM and the micromechanical model has
been set up:

� FERUM generates realizations of the random variables vector X,
evaluates function G and its derivative necessary for the
determination of Pf and for the sensitivity analysis,
� the mechanical model provides for each vector X the expres-

sion of the local stress entering the failure criterion (24).

Among computational methods, note that various approximation
schemes have been investigated and compared (see Table 3) and,
accordingly, the approximation method FORM has been used in
most cases since it requires less calls to the failure function G for
equivalent estimation of the probability of failure.

6. Results and discussion

This part aims at comparing simulation results and experi-
mental data. Precisely, we investigate the failure probability of
carbon-epoxy rods submitted to longitudinal tension tests. The
macroscopic stress on the material is thus

S¼Snnn� n with Snn ¼
4F

pf2
ð25Þ

with F the longitudinal force applied.

6.1. Base model

As a beginning, the reliability analysis has been performed
using the base model. Table 4 summarizes the seven random
variables retained and the parameters of their distribution. Note
that only Poisson ratios data (for resin and fibres) come from the
literature, all others have been provided by manufacturers.

Simulation results of the failure probability are presented in
Fig. 6 and compared with raw experimental data provided by
SOFICAR. The model clearly leads to a poor representation of the
failure probability. For example for the force F¼86 kN, simulation
gives Pf¼5% whereas raw data comes around Pf¼35%; the R2

coefficient of determination confirms in both cases the bad
correlation with experimental data (Table 5).

Among various reasons that can lead to such deviation, we
have studied first the influence of the device uncertainties.

Accordingly, simulated results have been compared with experi-
mental raw minimized of 3% (maximum error provided by
SOFICAR). If these variability tends to decrease the difference
with the model (Pf (F¼86 kN)¼18%, Fig. 6; important increase of
R2, Table 5), the deviation remains yet too important to be
explained only by such aspect.

As a consequence, we have considered in a second step the
model uncertainties. The coupling with micromechanics makes
such investigation possible. For this, in addition to variables used
for the base model (Table 4), supplementary random variables
have been introduced independently (respectively fp, l and Y) to
describe the uncertainties related respectively to the matrix
porosity, fibres shape and fibres anisotropy (Table 6). For these
three parameters, Fig. 7 shows that their influence on the failure
probability of the composite rod is quite negligible compared to
the base model, even for extreme values of some of them (for
instance a porosity of 10% is not really acceptable for such
products). In view of their respective impact, a simultaneous
treatment of the three aspects would have led to the same
conclusion. If such result is not surprising in the present context
(in view of the composite and solicitation studied), the coupled
approach makes it possible to confirm such expectations through
probabilistic investigations. Accordingly, this analysis tends to
justify the assumptions retained in the base formulation and to
look after an other explanation of the deviation.

Table 3
Computational methods comparison.

Method Calls to G Pf (base model, F¼84 kN)

FORM 45 1.6042�10�2

SORM (Tvedt) 53 1.6568�10�2

SORM (Breitung) 53 1.6493�10�2

SORM (Hohenbichler-Rackwitz) 53 1.6571�10�2

Monte Carlo 1000 1.65�10�2

Table 4
Failure analysis—random variables (base model).

Variables Mean value Standard deviation

Epoxy Young modulus, Er (MPa) 2800 42

Epoxy Poisson ratio, nr 0.4 0.01

Fibres Young modulus, Ef (MPa) 230 000 7667

Fibres Poisson ratio, nf 0.3 0.01

Fibres yield stress, sF
f ðnÞ (MPa) 4870 162

Fibres volume fraction, ff (%) 67 2

Rod diameter, f (mm) 6 0.03

Fig. 6. Experimental cumulative frequencies Fi of the tensile strength RT(n) of

carbon-epoxy rods and simulated failure probability Pf according to the load

(base model).

Table 5
Coefficient of determination of the representations.

Experimental data Raw data 3% minimized Raw data

Model Base Base Corrected (pact ¼ 95%)

Range of comparison Pf r1 Pf r0:4

R2 0.24 0.64 0.95 0.98

Table 6
Failure analysis—supplementary random variables.

Variables Mean value Standard deviation

Resin porosity, fp (%) 10 0.3

Fibres aspect ratio, l 0.5 0.02

Anisotropic contrast, Y 0.05 0.002



6.2. Model correction

In addition to the failure probability, a reliability analysis
provides also interesting information that can help to clarify the
problem. In particular, the sensitivities of Pf with respect to the
variables mean values show that the fibres yield stress sF

f ðnÞ and
the fibres volume fraction ff play the most significant role on the

rod reliability among microstructural parameters (Fig. 8). In order
to separate the respective influence of these two features, we
have chosen to study unidirectional carbon-epoxy composite
laminates manufactured by SOFICAR (with high-strength carbon
fibres T800H-2n12K), and precisely their elastic behaviour for
which the single impact of ff can be analysed.

The Mori–Tanaka formulation gives rise to the following
expression of the composite effective modulus E(n) for the base
model:

EðnÞ ¼ ½n� n : Shom
MT : n� n��1

¼D½ð1�ff Þð1�nf�2n2
f ÞErþ½1þnrþ ff ð1�nr�2n2

r Þ�Ef �
�1 ð26Þ

with D given by (11). Introducing again a probabilistic model with
the variabilities on microstructural parameters defined in Table 7,
one can thus derive the theoretical distribution of such property
by means of Monte Carlo simulations [25,26] and compare it to
the experimental measures of the elastic modulus E(n) realized
by SOFICAR. Fig. 9 shows again a bad approximation of experi-
mental results: the model leads indeed to an amount around 15%
of plates such that EðnÞr178 GPa whereas measures give at
least 65%.

From this analysis, we can conclude that the deviation problem
probably takes its origin in the definition of the fibres volume
fraction ff. In agreement with the expert evaluation of SOFICAR, it
is indeed possible that all the fibres put in the composite may not
be completely used due to various degradations during the
manufacturing process (fibres cut or not perfectly impregnated)
or to a bad position within the product (default in straightness). In
order to translate such idea, we propose to introduce a new
random parameter pact characterizing the amount of fibres within
the composite really active on the mechanical point of view.

In what follows, we propose then to deal with a corrected
micromechanical model for which the fibres volume fraction used

Fig. 7. Experimental cumulative frequencies Fi of the tensile strength RT(n) of

carbon-epoxy rods and simulated failure probability Pf according to the load (base

model with influence of the model uncertainties).
Table 7
Elastic modulus analysis—random variables (base model).

Variables Mean value Standard deviation

Epoxy Young modulus, Er (MPa) 2800 42

Epoxy Poisson ratio, nr 0.4 0.01

Fibres Young modulus, Ef (MPa) 294 710 7667

Fibres Poisson ratio, nf 0.3 0.01

Fibres volume fraction, ff (%) 67 2

Fig. 8. Sensitivities with respect to the mean values of random variables

(corrected model, Pf¼10�2).



in the Mori–Tanaka constitutive law is changed to:

ff-f 0f ¼ pact � ff ð27Þ

with pact r100%. By definition, the identification of the distribu-
tion of the variable pact requires microstructural observations of
the manufactured composites. Since such information is not
available in the present case, this variable is identified through
the elastic response of composite plates. For this, the procedure
consists in introducing in the probabilistic model the Normal
random variable pact with mean value pact and standard deviation
defined by Eq. (22) in addition to those described in Table 7, and
in searching the value of pact that leads to the best representation
of the Young modulus E(n). Fig. 10 shows that the best agreement
with raw experimental data is obtained for a mean value
pact ¼ 95%, which is rather a good ratio for the manufacturing
process.

In order to estimate the influence of such correction of the
mechanical model on the failure response of composite rods, we

have introduce in the failure probabilistic model the Normal
random variable pact with identified mean value pact ¼ 95% and
standard deviation defined by Eq. (22) in addition to those already
described in Table 4. Fig. 11 proves the clear improvement of the
representation provided by the correction of the fibres volume
fraction, which is confirmed also in Table 5 with even a coefficient
of determination R2 ¼ 98% for the range of Pf r0:4. This consti-
tutes a very satisfactory result in view of such complex and
uncertain phenomena as composite failure.

Beyond the study of this quite simple application case, one of
the main objectives of this part was to demonstrate here the
enriched identification and validation phases allowed by such
coupled micromechanical and reliability approach:

� for the checking of the mechanical model uncertainties since
the influence of various features introduced within the for-
mulation can be quantified,
� and, if required, for its correction by pointing out significant

parameters and providing judicious guidelines to improve it.

The representative character of a micromechanical modelling is
investigated in a more rational way, not limited to a comparison
with some experimental tests but with an important number of
results (here 74 measures for the identification of pact and 158
measures for the validation of Pf). In the context of composite
materials, this allows to integrate the inherent variability of their
response, not to accept or reject a model on the base of a few
results but, on the contrary, to provide an exhaustive and
quantified analysis of its relevance towards an important number
of experimental data.

6.3. Design optimization

We propose now to focus on another interest of the approach,
useful this time for the development of composite materials. Once
the model has been established and validated, it is indeed
interesting to study the sensitivities of Pf that provides judicious
guidelines for design optimization.

The sensitivities of Pf with respect to the variables mean values
give first the most significant parameters for the structure
reliability. For the corrected model, Fig. 12 shows that the mean

values sF
f ðnÞ of the fibres yield stress, ff of the fibres volume

Fig. 9. Experimental cumulative frequencies Fi of the elastic modulus E(n) of

carbon-epoxy plates of rods and simulated theoretical distribution of E(n) (base

model).

Fig. 10. Experimental cumulative frequencies Fi of the elastic modulus E(n) of

carbon-epoxy plates of rods and simulated theoretical distribution of E(n)

(corrected model).

Fig. 11. Experimental cumulative frequencies Fi of the tensile strength RT ðnÞ of

carbon-epoxy rods and simulated failure probability Pf according to the load

(corrected model).



fraction, pact of the amount of active fibres and f of the rod
diameter play the most important role. Precisely, this diagram
indicates a similar positive impact of these variables on the
reliability: a same increase in percent of each mean value will
cause a same decrease of the failure probability. Accordingly, the
coupled analysis allows to highlight the microstructural para-
meters that lead to the best improvements of the rod reliability,

namely the kind of fibre for sF
f ðnÞ, the composite composition for

ff and the manufacturing process for pact , and to provide a

quantitative estimation of their respective influence.
On the other hand, the study of the sensitivities of Pf with

respect to the variables standard deviation helps for quality
control with again a quantitative information. Fig. 13 shows the
parameters whose deviation causes the most uncertainties in the
composite response and then less reliability. Here, the coupled
approach shows that a particular attention should be given to
fibre manufacturing process (to ensure a reproductibility of the
fibres yield stress sF

f ðnÞ) and to the composite manufacturing

process (to avoid strong deviations of the fibres volume fraction ff

and of the amount of active fibres pact).

7. Conclusion and perspectives

Since microstructural parameters (constituents properties and
their arrangement) and local failure phenomena have a significant
impact on the macroscopic reliability of composite structures, the
coupling between reliability analysis and micromechanics pre-
sented in this paper offers open perspectives for many aspects:

� for the progress of advanced material engineering, since it
improves the understanding of uncertainties consequences,
especially at the microscale;
� for the development, identification and validation of constitu-

tive modelling, by providing a rational and enriched estimation
of the relevance of micromechanical models;
� for the composites design and optimization, through a realistic and

quantitative link between microstructural uncertainties and macro-
scopic performances (effective properties and failure response).

On the other hand, the implementation of such approach requires the
availability of data relative both to micro- and macroscales, namely
material physical characteristics and statistical responses, in order to
justify, validate and, if necessary, calibrate the mechanical model.

Even if the application presented here has been handled on a
quite simple case of composite material, failure mode and mechan-
ical model, this allows however to explain and demonstrate clearly
the capacities of the coupled approach. It can obviously be applied to
more complex configurations, especially with micromechanical
models that consider more microstructural features, interaction
effects, plastic behaviours or progressive damage. The introduction
within such approach of long-term effects (fatigue, durability),
which particularly influence the composite reliability, should also
be investigated to improve the representation.

Among perspectives to this work, it should be noted finally
that such coupling can also be put in place up to a structure scale.
Indeed, the probabilistic code FERUM allows also the coupling
with finite-element softwares and the procedure can be applied
to investigate the design of composite structures (see [27]).
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Appendix A

Let define the bases fFlgl ¼ 1,6 and fGlgl ¼ 1,12 of T4 where the set
(n,t,k) represents an orthonormal basis of R3:

F1 ¼
1
2 ðI�n�2Þ � ðI�n�2Þ

F2 ¼ n�4

F3 ¼ ðI�n�2Þ�ðI�n�2Þ� 1
2 ðI�n�2Þ � ðI�n�2Þ

F4 ¼ ðI�n�2Þ�n�2þn�2�ðI�n�2Þ

F5 ¼ n�2 � ðI�n�2Þ

F6 ¼ ðI�n�2Þ � n�2

8>>>>>>>>>><
>>>>>>>>>>:

ðA:1Þ

Fig. 12. Sensitivities with respect to the mean values of random variables

(corrected model, Pf¼10�2).

Fig. 13. Sensitivities with respect to the standard deviation of random variables

(corrected model, Pf¼10�2).



G1 ¼ n�4, G2 ¼ t�4, G3 ¼ k�4

G4 ¼ n�2 � t�2, G5 ¼ t�2 � n�2

G6 ¼ t�2 � k�2, G7 ¼ k�2
� t�2

G8 ¼ k�2
� n�2, G9 ¼ n�2 � k�2

G10 ¼ n�2� t�2þt�2�n�2

G11 ¼ t�2�k�2
þk�2

�t�2

G12 ¼ n�2�k�2
þk�2

�n�2

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðA:2Þ

The Eshelby tensor of inclusions of various shape within an
isotropic matrix (Young modulus Em, Poisson ratio nm) is given by
[17,18]

� for a spherical inclusion:

S
E
ðmÞ ¼

2ð4�5nmÞ

15ð1�nmÞ
I� Iþ

5nm�1

15ð1�nmÞ
I� I ðA:3Þ

� for a cylindrical inclusion of axis n with circular section:

S
E
ðmÞ ¼

1

2ð1�nmÞ
F1þ

3�4nm

4ð1�nmÞ
F2þ

1

2
F4þ

nm

2ð1�nmÞ
F6 ðA:4Þ

� for a cylindrical inclusion of axis n with elliptical section of
axes (t,k) and aspect ratio l (Fig. 5):

S
E
ðmÞ ¼

X12

l ¼ 1

glGl ðA:5Þ

with

g1 ¼ 0, g2 ¼
1

2ð1�nmÞ

1þ2l
ð1þlÞ2

þ
1�2nm

1þl

" #
,

g3 ¼
1

2ð1�nmÞ

l2
þ2l

ð1þlÞ2
þð1�2nmÞ

l
1þl

" #
, g4 ¼ 0,

g5 ¼
nm

1�nm

1

1þl
, g6 ¼

1

2ð1�nmÞ

1

ð1þlÞ2
�ð1�2nmÞ

1

1þl

" #
,

g7 ¼
1

2ð1�nmÞ

l2

ð1þlÞ2
�ð1�2nmÞ

l
1þl

" #
, g8 ¼

nm

1�nm

l
1þl

,

g9 ¼ 0, g10 ¼
1

1þl
,

g11 ¼
1

1�nm

1þl2

2ð1þlÞ2
þ

1�2nm

2

" #
, g12 ¼

l
1þl

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA:6Þ
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