61 research outputs found

    Classifier ensembles for f MRI data analysis: an experiment

    Get PDF
    Abstract Functional magnetic resonance imaging (fMRI) is becoming a forefront brain-computer interface tool. To decipher brain patterns, fast, accurate and reliable classifier methods are needed. The support vector machine (SVM) classifier has been traditionally used. Here we argue that state-of-the-art methods from pattern recognition and machine learning, such as classifier ensembles, offer more accurate classification. This study compares 18 classification methods on a publicly available real data set due to Haxby et al. [Science 293 (2001[Science 293 ( ) 2425[Science 293 ( -2430. The data comes from a single-subject experiment, organized in 10 runs where eight classes of stimuli were presented in each run. The comparisons were carried out on voxel subsets of different sizes, selected through seven popular voxel selection methods. We found that, while SVM was robust, accurate and scalable, some classifier ensemble methods demonstrated significantly better performance. The best classifiers were found to be the random subspace ensemble of SVM classifiers, rotation forest and ensembles with random linear and random spherical oracle

    Estudio de métodos de construcción de ensembles de clasificadores y aplicaciones

    Get PDF
    La inteligencia artificial se dedica a la creación de sistemas informáticos con un comportamiento inteligente. Dentro de este área el aprendizaje computacional estudia la creación de sistemas que aprenden por sí mismos. Un tipo de aprendizaje computacional es el aprendizaje supervisado, en el cual, se le proporcionan al sistema tanto las entradas como la salida esperada y el sistema aprende a partir de estos datos. Un sistema de este tipo se denomina clasificador. En ocasiones ocurre, que en el conjunto de ejemplos que utiliza el sistema para aprender, el número de ejemplos de un tipo es mucho mayor que el número de ejemplos de otro tipo. Cuando esto ocurre se habla de conjuntos desequilibrados. La combinación de varios clasificadores es lo que se denomina "ensemble", y a menudo ofrece mejores resultados que cualquiera de los miembros que lo forman. Una de las claves para el buen funcionamiento de los ensembles es la diversidad. Esta tesis, se centra en el desarrollo de nuevos algoritmos de construcción de ensembles, centrados en técnicas de incremento de la diversidad y en los problemas desequilibrados. Adicionalmente, se aplican estas técnicas a la solución de varias problemas industriales.Ministerio de Economía y Competitividad, proyecto TIN-2011-2404

    How quantum computers learn from data.

    Get PDF
    Doctor of Philosophy in Physics. University of KwaZulu-Natal, Durban 2017. ,Humans are experts at recognising patterns in past experience and applying them to new tasks. For example, after seeing pictures of a face we can usually tell if another image contains the same person or not. Machine learning is a research discipline at the intersection of computer science, statistics and mathematics that investigates how pattern recognition can be performed by machines and for large amounts of data. Since a few years machine learning has come into the focus of quantum computing in which information processing based on the laws of quantum theory is explored. Although large scale quantum computers are still in the first stages of development, their theoretical description is well-understood and can be used to formulate `quantum software' or `quantum algorithms' for pattern recognition. Researchers can therefore analyse the impact quantum computers may have on intelligent data mining. This approach is part of the emerging research discipline of quantum machine learning that harvests synergies between quantum computing and machine learning. The research objective of this thesis is to understand how we can solve a slightly more specific problem called supervised pattern recognition based on the language that has been developed for universal quantum computers. The contribution it makes is twofold: First, it presents a methodology that understands quantum machine learning as the combination of data encoding into quantum systems and quantum optimisation. Second, it proposes several quantum algorithms for supervised pattern recognition. These include algorithms for convex and non-convex optimisation, implementations of distance-based methods through quantum interference, and the preparation of quantum states from which solutions can be derived via sampling. Amongst the machine learning methods considered are least-squares linear regression, gradient descent and Newton's method, k-nearest neighbour, neural networks as well as ensemble methods. Together with the growing body of literature, this thesis demonstrates that quantum computing offers a number of interesting tools for machine learning applications, and has the potential to create new models of how to learn from data

    Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies

    Get PDF
    Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Learning to Reduce Annotation Load

    Get PDF
    Modern machine learning methods and their applications in computer vision are known to crave for large amounts of training data to reach their full potential. Because training data is mostly obtained through humans who manually label samples, it induces a significant cost. Therefore, the problem of reducing the annotation load is of great importance for the success of machine learning methods. We study the problem of reducing the annotation load from two viewpoints, by answering the questions âWhat to annotate?â and âHow to annotate?â. The question âWhat?â addresses the selection of a small portion of the data that would be sufficient to train an accurate model. The question âHow? focuses on minimising the effort of labelling each datapoint. The question âWhat to annotate?â becomes particularly compelling if we can select data to be annotated in an iterative and adaptive way, a setting known as active learning (AL). The key challenge in AL is to identify the datapoints that are the most informative for the model at a given stage. We propose several techniques to address this challenge. Firstly, we consider the problem of segmenting natural images and image volumes. We take advantage of image priors, such as smoothness of objects of interest, and use them in a novel form of geometric uncertainty. Using this, we design an AL technique to efficiently annotate data that is tailored to segmentation applications. Next, we notice that no single manually-designed strategy outperforms others in every application and that often the burden of designing new strategies outweighs the benefits of AL. To overcome this problem we suggest learning an AL strategy from data by formulating the AL problem as a regression task that predicts the reduction in the generalisation error achieved by labelling each datapoint. This enables us to learn AL strategies from simulated data and to transfer them to new datasets. Finally, we turn towards non-myopic data-driven AL strategies. To this end, we formulate the AL problem as a Markov decision process and find the best selection policy using reinforcement learning. We design the decision process such that the policy can be learnt for any ML model and transferred to diverse application domains. Effectively addressing the question âHow to annotate?â is of no less importance as large cost savings can be achieved by labelling each datapoint more efficiently. This can be done with intelligent interfaces that interact with a human annotator. We make two contributions towards answering the question âHow?â. Firstly, we propose an efficient technique to annotate 3D image volumes for image segmentation. Annotating data in 3D is cumbersome and an obvious way to facilitate it is to select a subset of the data lying on a 2D plane. To find the optimal plane (i.e. the one containing the most informative datapoints) we design a branch-and-bound algorithm that quickly eliminates hypotheses about the optimal projection. Secondly, we propose an intelligent data annotation method to train object detectors. Instead of always asking the human annotator to draw bounding boxes in images, we detect automatically in which cases we can rely on the current detector and verify its proposal

    Eight Biennial Report : April 2005 – March 2007

    No full text

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    인공지능 보안

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 자연과학대학 협동과정 생물정보학전공, 2021. 2. 윤성로.With the development of machine learning (ML), expectations for artificial intelligence (AI) technologies have increased daily. In particular, deep neural networks have demonstrated outstanding performance in many fields. However, if a deep-learning (DL) model causes mispredictions or misclassifications, it can cause difficulty, owing to malicious external influences. This dissertation discusses DL security and privacy issues and proposes methodologies for security and privacy attacks. First, we reviewed security attacks and defenses from two aspects. Evasion attacks use adversarial examples to disrupt the classification process, and poisoning attacks compromise training by compromising the training data. Next, we reviewed attacks on privacy that can exploit exposed training data and defenses, including differential privacy and encryption. For adversarial DL, we study the problem of finding adversarial examples against ML-based portable document format (PDF) malware classifiers. We believe that our problem is more challenging than those against ML models for image processing, owing to the highly complex data structure of PDFs, compared with traditional image datasets, and the requirement that the infected PDF should exhibit malicious behavior without being detected. We propose an attack using generative adversarial networks that effectively generates evasive PDFs using a variational autoencoder robust against adversarial examples. For privacy in DL, we study the problem of avoiding sensitive data being misused and propose a privacy-preserving framework for deep neural networks. Our methods are based on generative models that preserve the privacy of sensitive data while maintaining a high prediction performance. Finally, we study the security aspect in biological domains to detect maliciousness in deoxyribonucleic acid sequences and watermarks to protect intellectual properties. In summary, the proposed DL models for security and privacy embrace a diversity of research by attempting actual attacks and defenses in various fields.인공지능 모델을 사용하기 위해서는 개인별 데이터 수집이 필수적이다. 반면 개인의 민감한 데이터가 유출되는 경우에는 프라이버시 침해의 소지가 있다. 인공지능 모델을 사용하는데 수집된 데이터가 외부에 유출되지 않도록 하거나, 익명화, 부호화 등의 보안 기법을 인공지능 모델에 적용하는 분야를 Private AI로 분류할 수 있다. 또한 인공지능 모델이 노출될 경우 지적 소유권이 무력화될 수 있는 문제점과, 악의적인 학습 데이터를 이용하여 인공지능 시스템을 오작동할 수 있고 이러한 인공지능 모델 자체에 대한 위협은 Secure AI로 분류할 수 있다. 본 논문에서는 학습 데이터에 대한 공격을 기반으로 신경망의 결손 사례를 보여준다. 기존의 AEs 연구들은 이미지를 기반으로 많은 연구가 진행되었다. 보다 복잡한 heterogenous한 PDF 데이터로 연구를 확장하여 generative 기반의 모델을 제안하여 공격 샘플을 생성하였다. 다음으로 이상 패턴을 보이는 샘플을 검출할 수 있는 DNA steganalysis 방어 모델을 제안한다. 마지막으로 개인 정보 보호를 위해 generative 모델 기반의 익명화 기법들을 제안한다. 요약하면 본 논문은 인공지능 모델을 활용한 공격 및 방어 알고리즘과 신경망을 활용하는데 발생되는 프라이버시 이슈를 해결할 수 있는 기계학습 알고리즘에 기반한 일련의 방법론을 제안한다.Abstract i List of Figures vi List of Tables xiii 1 Introduction 1 2 Background 6 2.1 Deep Learning: a brief overview . . . . . . . . . . . . . . . . . . . 6 2.2 Security Attacks on Deep Learning Models . . . . . . . . . . . . . 10 2.2.1 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.2 Poisoning Attack . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Defense Techniques Against Deep Learning Models . . . . . . . . . 26 2.3.1 Defense Techniques against Evasion Attacks . . . . . . . . 27 2.3.2 Defense against Poisoning Attacks . . . . . . . . . . . . . . 36 2.4 Privacy issues on Deep Learning Models . . . . . . . . . . . . . . . 38 2.4.1 Attacks on Privacy . . . . . . . . . . . . . . . . . . . . . . 39 2.4.2 Defenses Against Attacks on Privacy . . . . . . . . . . . . 40 3 Attacks on Deep Learning Models 47 3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.1.2 Portable Document Format (PDF) . . . . . . . . . . . . . . 55 3.1.3 PDF Malware Classifiers . . . . . . . . . . . . . . . . . . . 57 3.1.4 Evasion Attacks . . . . . . . . . . . . . . . . . . . . . . . 58 3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . 60 3.2.2 Feature Selection Process . . . . . . . . . . . . . . . . . . 61 3.2.3 Seed Selection for Mutation . . . . . . . . . . . . . . . . . 62 3.2.4 Evading Model . . . . . . . . . . . . . . . . . . . . . . . . 63 3.2.5 Model architecture . . . . . . . . . . . . . . . . . . . . . . 67 3.2.6 PDF Repacking and Verification . . . . . . . . . . . . . . . 67 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3.1 Datasets and Model Training . . . . . . . . . . . . . . . . . 68 3.3.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 71 3.3.3 CVEs for Various Types of PDF Malware . . . . . . . . . . 72 3.3.4 Malicious Signature . . . . . . . . . . . . . . . . . . . . . 72 3.3.5 AntiVirus Engines (VirusTotal) . . . . . . . . . . . . . . . 76 3.3.6 Feature Mutation Result for Contagio . . . . . . . . . . . . 76 3.3.7 Feature Mutation Result for CVEs . . . . . . . . . . . . . . 78 3.3.8 Malicious Signature Verification . . . . . . . . . . . . . . . 78 3.3.9 Evasion Speed . . . . . . . . . . . . . . . . . . . . . . . . 80 3.3.10 AntiVirus Engines (VirusTotal) Result . . . . . . . . . . . . 82 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Defense on Deep Learning Models 88 4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4.1.1 Message-Hiding Regions . . . . . . . . . . . . . . . . . . . 91 4.1.2 DNA Steganography . . . . . . . . . . . . . . . . . . . . . 92 4.1.3 Example of Message Hiding . . . . . . . . . . . . . . . . . 94 4.1.4 DNA Steganalysis . . . . . . . . . . . . . . . . . . . . . . 95 4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.2.2 Proposed Model Architecture . . . . . . . . . . . . . . . . 103 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . 105 4.3.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.3.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 107 4.3.5 Message Hiding Procedure . . . . . . . . . . . . . . . . . . 108 4.3.6 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . 109 4.3.7 Performance Comparison . . . . . . . . . . . . . . . . . . . 109 4.3.8 Analyzing Malicious Code in DNA Sequences . . . . . . . 112 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5 Privacy: Generative Models for Anonymizing Private Data 115 5.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.1.2 Anonymization using GANs . . . . . . . . . . . . . . . . . 119 5.1.3 Security Principle of Anonymized GANs . . . . . . . . . . 123 5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 5.2.2 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.3 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 126 5.2.4 Evaluation Process . . . . . . . . . . . . . . . . . . . . . . 126 5.2.5 Comparison to Differential Privacy . . . . . . . . . . . . . 128 5.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 128 5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6 Privacy: Privacy-preserving Inference for Deep Learning Models 132 6.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 135 6.1.2 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 6.1.3 Deep Private Generation Framework . . . . . . . . . . . . . 137 6.1.4 Security Principle . . . . . . . . . . . . . . . . . . . . . . . 141 6.1.5 Threat to the Classifier . . . . . . . . . . . . . . . . . . . . 143 6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Experimental Process . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 Target Classifiers . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.4 Model Training . . . . . . . . . . . . . . . . . . . . . . . . 147 6.2.5 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . 150 6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 7 Conclusion 153 7.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 154 7.0.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 155 Bibliography 157 Abstract in Korean 195Docto
    corecore