25 research outputs found

    Compact preference representation and combinatorial vote

    Get PDF
    In many real-world social choice problems, the set of alternatives is defined as the Cartesian product of (finite) domain values for each of a given set of variables, and these variables cannot be asusmed to be prefentially independent (to take an example, if X is the main dish of a dinner and Y the wine, preferences over Y depends on the value taken for X). Such combinatorial domains are much too large to allow for representing preference relations or utility functions explicitly (that is, by listing alternatives together with their rank or utility); for this reason, artificial intelligence researchers have been developing languages for specifying preference relations or utility functions as compactly as possible. This paper first gives a brief survey of compact representation languages, and then discusses its role for representing and solving social choice problems, especially from the point of view of computational complexity

    Multi-Attribute Decision Making using Weighted Description Logics

    Full text link
    We introduce a framework based on Description Logics, which can be used to encode and solve decision problems in terms of combining inference services in DL and utility theory to represent preferences of the agent. The novelty of the approach is that we consider ABoxes as alternatives and weighted concept and role assertions as preferences in terms of possible outcomes. We discuss a relevant use case to show the benefits of the approach from the decision theory point of view

    Allocation des buts affectés à un groupe d'agents

    Get PDF
    Dans ce travail, nous présentons un formalisme permettant de déterminer, à partir des buts assignés à un ensemble d'agents et d'une représentation des agents, les buts individuels de chaque agent du groupe. Pour cela, nous utilisons CO*,une logique de préférences conditionnelles développée par Craig Boutilier. Nous étendons CO* et les notions développées par Boutilier au cas multi-agents

    Logics for approximate and strong entailments

    Get PDF
    We consider two kinds of similarity-based reasoning and formalise them in a logical setting. In one case, we are led by the principle that conclusions can be drawn even if they are only approximately correct. This leads to a graded approximate entailment, which is weaker than classical entailment. In the other case, we follow the principle that conclusions must remain correct even if the assumptions are slightly changed. This leads to a notion of a graded strong entailment, which is stronger than classical entailment. We develop two logical calculi based on the notions of approximate and of strong entailment, respectively. © 2011 Elsevier B.V.The authors acknowledge partial support of the bilateral Austrian-Spanish project HA2008-0017 and the Eurocores-LogICCC ESF project LoMoReVI. Esteva and Godo also acknowledge partial support of the Spanish project FFI2008-03126-E/FILO and Rodrıguez acknowledges the projects CyT-UBA X484 and the research CONICET program PIP 12-200801-02543 2009-2011. Finally, Esteva, Godo and Rodrıguez also acknowledge partial support of the MaToMUVI project (PIRSES-GA-2009- 247584).Peer Reviewe

    Multi-attribute decision making with weighted description logics

    Full text link
    We introduce a decision-theoretic framework based on Description Logics (DLs), which can be used to encode and solve single stage multi-attribute decision problems. In particular, we consider the background knowledge as a DL knowledge base where each attribute is represented by a concept, weighted by a utility value which is asserted by the user. This yields a compact representation of preferences over attributes. Moreover, we represent choices as knowledge base individuals, and induce a ranking via the aggregation of attributes that they satisfy. We discuss the benefits of the approach from a decision theory point of view. Furthermore, we introduce an implementation of the framework as a Protégé plugin called uDecide. The plugin takes as input an ontology as background knowledge, and returns the choices consistent with the user’s (the knowledge base) preferences. We describe a use case with data from DBpedia. We also provide empirical results for its performance in the size of the ontology using the reasoner Konclude

    Preference Modelling

    Get PDF
    This paper provides the reader with a presentation of preference modelling fundamental notions as well as some recent results in this field. Preference modelling is an inevitable step in a variety of fields: economy, sociology, psychology, mathematical programming, even medicine, archaeology, and obviously decision analysis. Our notation and some basic definitions, such as those of binary relation, properties and ordered sets, are presented at the beginning of the paper. We start by discussing different reasons for constructing a model or preference. We then go through a number of issues that influence the construction of preference models. Different formalisations besides classical logic such as fuzzy sets and non-classical logics become necessary. We then present different types of preference structures reflecting the behavior of a decision-maker: classical, extended and valued ones. It is relevant to have a numerical representation of preferences: functional representations, value functions. The concepts of thresholds and minimal representation are also introduced in this section. In section 7, we briefly explore the concept of deontic logic (logic of preference) and other formalisms associated with "compact representation of preferences" introduced for special purpoes. We end the paper with some concluding remarks

    Logic and social choice theory.

    Get PDF

    Computational aspects of voting: a literature survey

    Get PDF
    Preference aggregation is a topic of study in different fields such as philosophy, mathematics, economics and political science. Recently, computational aspects of preference aggregation have gained especial attention and “computational politics” has emerged as a marked line of research in computer science with a clear concentration on voting protocols. The field of voting systems, rooted in social choice theory, has expanded notably in both depth and breadth in the last few decades. A significant amount of this growth comes from studies concerning the computational aspects of voting systems. This thesis comprehensively reviews the work on voting systems (from a computing perspective) by listing, classifying and comparing the results obtained by different researchers in the field. This survey covers a wide range of new and historical results yet provides a profound commentary on related work as individual studies and in relation to other related work and to the field in general. The deliverables serve as an overview where students and novice researchers in the field can start and also as a depository that can be referred to when searching for specific results. A comprehensive literature survey of the computational aspects of voting is a task that has not been undertaken yet and is initially realized here. Part of this research was dedicated to creating a web-depository that contains material and references related to the topic based on the survey. The purpose was to create a dynamic version of the survey that can be updated with latest findings and as an online practical reference
    corecore