
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Logic and social choice theory.

Endriss, U.

Publication date
2011
Document Version
Final published version
Published in
Logic and Philosophy Today; vol. 2

Link to publication

Citation for published version (APA):
Endriss, U. (2011). Logic and social choice theory. In J. van Benthem, & A. Gupta (Eds.),
Logic and Philosophy Today; vol. 2 (pp. 333-378). (Studies in Logic; No. 30). College
Publications.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://dare.uva.nl/personal/pure/en/publications/logic-and-social-choice-theory(7c0f04c7-f12c-458a-b5cf-6124758c85f7).html


Logic and Social Choice Theory

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

2011

Abstract

We give an introduction to social choice theory, the formal study of mechanisms for

collective decision making, and highlight the role that logic has taken, and continues to

take, in its development. The first part of the chapter is devoted to a succinct exposition

of the axiomatic method in social choice theory and covers several of the classical theorems

in the field. In the second part we then outline three areas of recent research activity:

logics for social choice, social choice in combinatorial domains, and judgment aggregation.
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1 Introduction

When a group needs to make a decision, we are faced with the problem of aggregating the

views of the individual members of that group into a single collective view that adequately

reflects the “will of the people”. How are we supposed to do this? This is a fundamental

question of deep philosophical, economic, and political significance that, around the middle of

20th century, has given rise to the field of social choice theory. Logic has played an important

role in the development of social choice theory from the very beginning.1 In this chapter we

give an introduction to social choice theory and we review a number of research trends that

emphasise the place of logic in this field.

A typical (but not the only) problem studied in social choice theory is preference aggre-

gation. Let us begin by considering an example.

Example 1 (Condorcet Paradox). Suppose five individuals each declare their preferences by

providing a ranking of the elements of a set of alternatives X = {x, y, z}, as follows:

Individual 1: x � y � z
Individual 2: x � y � z
Individual 3: y � z � x
Individual 4: z � y � x
Individual 5: z � x � y

What preference order would best represent the collective view of the group? An approach

that suggests itself is to use the majority rule: rank x above y if and only if a majority of the

individuals do, and similarly for all other pairs of alternatives. If we accept this rule, then we

must rank x above y (as three out of five individuals do) and y above z (as, again, three out

of five individuals do). This suggests that the collective preference order should be x � y � z.
But this solution is in conflict with the fact that three out of five individuals rank z above

x! This in an instance of the Condorcet Paradox, named after Marie Jean Antoine Nicolas

de Caritat, the Marquis de Condorcet (1743–1794), the French philosopher, mathematician,

and political scientist who first discussed the problem at length. Another reading of the

paradox is that, when we use the majority rule to decide on the relative ranking of each

pair of alternatives, then we end up with a cyclical preference relation: x � y � z � x.

Yet another perspective is the following: Even if we are content with just finding a best

alternative (rather than a full collective preference order), whichever alternative we decide

to declare the winner, there will always be another alternative that is preferred by a strict

majority of the individuals. 2

1A curious anecdote in this regard is the fact that, during his final year as an undergraduate at City College

of New York in 1940, Kenneth J. Arrow, the father of social choice theory and winner of the 1972 Nobel Prize

in Economics, took a class with Alfred Tarski (Suppes, 2005).

2



The question now arises whether there are better methods of aggregation than the major-

ity rule. Social choice theorists have approached this question using the so-called axiomatic

method. This method amounts to formulating normatively desirable properties of aggregation

rules as “axioms” in a mathematically rigorous manner, to then obtain precise characterisa-

tions of the aggregation rules that satisfy these properties. The best known example is the

Impossibility Theorem from Kenneth J. Arrow’s seminal work “Social Choice and Individ-

ual Values”, originally published in 1951 (Arrow, 1963). Arrow argued that any acceptable

method of aggregation should satisfy at least the following two axioms:

(1) If every individual ranks x above y, then so should society.

(2) It should be possible to determine the relative social ranking of x and y by considering

only the relative ranking of x and y supplied by each of the individuals.

Observe that the majority rule, for example, does satisfy both of these requirements—but

of course, as we have seen, it is not a “proper” aggregation method, as it may generate

a preference order with cycles. Arrow then proved a truly astonishing result: If there are

at least three alternatives, then the only kind of mechanism that will respect both of our

axioms and that will return a collective preference that is a linear order for any combination

of individual preferences is a dictatorship, i.e., a function that simply copies the preferences

of a fixed individual and returns it as the collective preference! In other words, satisfying

both axioms and the requirement of being nondictatorial is impossible.

Section 2 of this chapter is an introduction to the axiomatic method in social choice theory.

As part of this introduction, we present a selection of the most important classical theorems in

the field: Arrow’s Theorem, Sen’s Theorem on the Impossibility of a Paretian Liberal, May’s

characterisation of the majority rule for two alternatives, the Muller-Satterthwaite Theorem

establishing the impossibility of devising an acceptable aggregation rule that is monotonic,

and the Gibbard-Satterthwaite Theorem showing that any voting rule can be manipulated.

We provide full proofs for all of these results.

The axiomatic method often makes reference to notions from logic, albeit only in an in-

formal manner. For instance, the notion of axiom used here is inspired by, although different

from, the use of the term in mathematical logic, and most of the results we will discuss

establish the “logical inconsistency” of certain requirements. The fact that preferences are

modelled as binary relations also provides a bridge to formal logic, and some further connec-

tions will be commented on in Section 2.

In recent years a number of other, and more formal, uses of logic have emerged. Some

of these developments have been fuelled by the insight that the significance of social choice

theory goes beyond the humanities and the social sciences and that topics such as preference

aggregation also have applications in computer science, e.g., for collective decision making
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in multiagent systems or the aggregation of ranked search results in an Internet meta-search

engine. This insight, together with the fact that formal methods traditionally associated

with computer science have turned out to be helpful in the analysis of social choice problems,

has lead to the emergence of a new research area called computational social choice.

In the second part of this chapter we will discuss a selection of recent developments in

social choice theory and computational social choice in which formal logic plays a central role.

Section 3 reviews approaches to formalising parts of social choice theory in a suitable logic,

e.g., a modal logic or classical first-order logic. This line of research is useful not only in view

of deepening our understanding of some of the concepts of social choice theory and clarifying

the expressivity required from a language that will allow us to talk about these concepts, but it

also bears the potential of leading to some very practical applications. Formalisation is a first

step towards automation, and this kind of work may pave the way for the future development

of tools that will allow us to automatically reason about mechanisms for collective decision

making. Section 4 is an introduction to the area of social choice in combinatorial domains,

i.e., the design and analysis of collective decision making mechanisms for problems where the

set of alternatives has a combinatorial structure, as is the case, for instance, when a group

has to decide which of a number of issues to accept and which to reject. Many social choice

problems arising in practice have a combinatorial component and classical methods in social

choice theory are often not adequate to deal with this computational challenge. Several of

the approaches that have been proposed to tackle this difficult problem involve a language

for the compact representation of preferences, and these languages are typically based on

logic. Section 5 covers the basics of judgment aggregation, a relatively new topic in social

choice theory dealing with the problem of aggregating the judgments of a group of individuals

judges on a set of interrelated propositions. These propositions are modelled as formulas of

propositional logic. We conclude in Section 6 with a few general remarks about the field and

suggestions for further reading.

2 The Axiomatic Method in Social Choice Theory

In this section, we present the axiomatic method, as pioneered by Arrow (1963). It probably

is the most important methodological tool in social choice theory (see, e.g., Arrow et al.,

2002; Sen, 1986; Austen-Smith and Banks, 1999; Gaertner, 2006). We will prove several of

the seminal theorems in the field. Throughout, let N = {i1, . . . , in} be a finite set of (at least

two) individuals (or voters, or agents); and let X = {x1, x2, x3, . . .} be a (not necessarily

finite) nonempty set of alternatives (or candidates, or social states).2

2In this exposition we do not distinguish between feasible and infeasible alternatives, as some of the

literature does (particularly in the context of social choice functions, which we discuss in Section 2.2). We

also do not model variable electorates.
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Each voter in N is endowed with, and will be asked to express, a preference over the

alternatives in X . There are a number of options at our disposal when we want to model such

preferences. In most of social choice theory, preferences are either linear or weak orders on

X . Recall that a linear order is a binary relation that is irreflexive, transitive, and complete,

while a weak order is a binary relation that is reflexive, transitive, and complete. Throughout

this section, we shall assume that preferences are linear orders, but all definitions given and

all results proven can easily be adapted to the case of weak orders. By taking preferences

to be linear orders, we accept certain basic principles. One of them is that we cannot

compare preferences across individuals: our model cannot express whether individual 1 likes

alternative x more than individual 2 likes alternative y.3 There also is no notion of preference

intensity: we cannot model whether individual 1’s preference of x over y is more intense than

her preference of y over z. Yet another such principle is that we take it that each individual

has the cognitive capacity to rank any two alternatives. We stress that other models of

preference, such as utility functions (Roemer, 1996) or partial orders (Pini et al., 2008), are

also interesting and relevant, but here we shall restrict ourselves to linear orders.

Let L(X ) denote the set of all linear orders on X . A profile R = (R1, . . . , Rn) ∈ L(X )N

is a vector of linear orders (i.e., preferences), where Ri is the linear order supplied by in-

dividual i. We write NR
x�y to denote the set of individuals that rank alternative x above

alternative y under profile R. For instance, if R is the profile given in Example 1 above,

then NR
z�x = {3, 4, 5}.

2.1 Social Welfare Functions: Arrow’s Theorem

The first type of preference aggregation mechanism we consider are functions that map a

profile of preference orders to a single (collective) preference order. Such a function is called

a social welfare function (SWF). Formally, a SWF is a function F : L(X )N → L(X ).

Let us now give a precise account of the two axioms mentioned in the introduction above,

which Arrow (1963) argued to be basic requirements for any acceptable SWF. The first is

a fundamental principle in economic theory, due to the Italian economist Vilfredo Pareto

(1848–1923), that states that if x is at least as good as y for all and strictly better for some

members of a society, then x should be socially preferred to y. Given that we assume that

preferences are strict, i.e., no individual will be indifferent between two distinct alternatives,

this simplifies to asking that x should be socially preferred to y if everybody prefers x to

y. We now formulate this principle as an axiom (i.e., a property) that may or may not be

satisfied by a given SWF.

3Note that while it is likely that, if individual 1 ranks x first and individual 2 ranks y last, then individual 1

likes x more than individual 2 likes y, this is a heuristic inference that is outside of the formal model.
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Pareto. A SWF F satisfies the Pareto condition if, whenever all individuals rank

x above y, then so does society: NR
x�y = N implies (x, y) ∈ F (R).

In addition to the Pareto condition, a widely accepted standard requirement, Arrow proposed

an independence axiom that states that the relative social ranking of two alternatives should

not change when an individual updates her preferences regarding a third alternative. That

is, social choices should be independent of irrelevant alternatives.

Independence of irrelevant alternatives (IIA). A SWF F satisfies IIA if the

relative social ranking of two alternatives only depends on their relative individual

rankings: NR
x�y = NR′

x�y implies (x, y) ∈ F (R) ⇔ (x, y) ∈ F (R′).

That is, if the set of individuals ranking x above y does not change when we move from profile

R to profile R′, then the social preference order obtained under R should make the same

judgment regarding the relative ranking of x and y as the social preference order obtained

under R′. Arrow argued that the Pareto condition and IIA are basic democratic principles

that any acceptable SWF must satisfy. Note, however, that the Pareto condition and IIA

alone do not guarantee a democratic procedure. Specifically, any dictatorship, i.e., any SWF

that for a fixed “dictator” i ∈ N will map any profile R to the dictator’s reported ranking

Ri, satisfies both properties. Arrow’s deeply surprising result shows that dictatorships are

in fact the only SWFs that satisfy both properties, at least when there are three or more

alternatives.

Theorem 1 (Arrow, 1951). Any SWF for three or more alternatives that satisfies the Pareto

condition and IIA must be a dictatorship.

Proof. Our proof broadly follows Sen (1986) and is based on the idea of “decisive coalitions”.

Consider any SWF F for three or more alternatives that satisfies the Pareto condition and

IIA. Let us call a coalition G ⊆ N decisive on alternatives (x, y) if G ⊆ NR
x�y entails

(x, y) ∈ F (R). When G is decisive on all pairs of alternatives, then we simply say that G is

decisive. Note that the Pareto condition is satisfied if and only if the grand coalition N is

decisive, while an individual i is a dictator if and only if the singleton {i} is decisive. The

main idea of the proof is to show that, whenever some coalition G (with |G| > 2) is decisive,

then there exists a nonempty G′ ⊂ G that is decisive as well (this property is known as the

Contraction Lemma). Given the finiteness of N , this means that F satisfying the Pareto

condition will, by induction, entail that F is dictatorial.

Before proving the Contraction Lemma, let us first establish a fundamental property of the

notion of decisiveness. Suppose society will rank x above y whenever exactly the individuals

in G do: (x, y) ∈ F (R) whenever NR
x�y = G. We will show that this is a sufficient condition

for G being decisive on any given pair (x′, y′). We prove the case where x, y, x′, y′ are all
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distinct (the other cases are similar and left as an exercise to the reader). Consider a profile

where everyone in G ranks x′ � x � y � y′ and all other individuals make the judgments

x′ � x, y � y′, and y � x (note that we leave their judgments on x′ vs. y′ undetermined).

That is, exactly the individuals in G rank x � y, which implies x � y for the social ranking.

The Pareto condition implies x′ � x and y � y′ for the social ranking. Thus, by transitivity,

we get x′ � y′ for the social ranking. Finally, by IIA and the fact that we had left the

relative ranking of x′ and y′ undetermined for individuals outside of G, any other profile R

with G ⊆ NR
x′�y′ will also result in (x′, y′) ∈ F (R). Hence, if exactly the individuals in G

ranking x above y is a sufficient condition for society to do the same, then G is decisive (on

all pairs of alternatives).

Now we turn to the proof of the Contraction Lemma. Let G ⊆ N with |G| > 2, i.e., there

are nonempty coalitions G1 and G2 with G = G1 ∪G2 and G1 ∩G2 = ∅. We want to show

that G being decisive entails either G1 or G2 being decisive as well. (We now shall make use

of the fact that there are at least three alternatives.) Consider a profile where all individuals

in G1 rank x � y � z, all individuals in G2 rank y � z � x, and all others rank z � x � y.

As G is decisive, we have y � z in the social ranking. We distinguish two cases:

(1) Society ranks x above z. Note that it is exactly the individuals in G1 that rank x above

z. Thus, by IIA, in any profile R where exactly the individuals in G1 rank x above z,

society will do the same. But, as we have seen earlier, this means that G1 is decisive.

(2) Society ranks z above x, and thus y above x. As exactly the individuals in G2 rank y

above x, by the same kind of argument as above, G2 must be decisive.

As indicated earlier, this concludes the proof of the theorem: repeated application of the

Contraction Lemma reduces the Pareto condition to the existence of a dictator.

Arrow’s Theorem may be read either as a characterisation of dictatorships in terms of the

axioms of Pareto and IIA, or as an impossibility theorem: it is impossible to devise a SWF

for three or more alternatives that is Pareto efficient, independent, and nondictatorial.

Observe that we have made explicit use of both the assumption that there are at least three

alternatives and the assumption that the set of individuals is finite (the latter was required

for the inductive application of the Contraction Lemma). Indeed, if either assumption is

dropped, then Arrow’s Theorem ceases to hold: First, for two alternatives, the majority rule,

which returns the ranking made by the majority of individuals (with ties broken in favour

of, say, the first alternative), satisfies both the Pareto condition and IIA and clearly is not

dictatorial. Second, for an infinite number of individuals, Fishburn (1970) has shown how to

design a nondictatorial SWF that is Pareto efficient and independent. Whether or not the

set of alternatives is infinite is uncritical.
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Several alternative proofs for Arrow’s Theorem may be found in the literature (see, e.g.,

Barberà, 1980; Geanakoplos, 2005; Gaertner, 2006). We want to briefly mention one such

proof here, due to Kirman and Sondermann (1972), which reduces Arrow’s Theorem to a well-

known fact in the theory of ultrafilters. Given the importance of ultrafilters in model theory

and set theory, this proof provides additional evidence for the close connections between logic

and social choice theory. Recall that an ultrafilter G for a set N is a set of subsets of N
satisfying the following conditions (Davey and Priestley, 2002):

(i) The empty set is not included: ∅ 6∈ G.

(ii) G is closed under intersection: if G1 ∈ G and G2 ∈ G, then G1 ∩G2 ∈ G.

(iii) G is maximal: for all G ⊆ N , either G ∈ G or (N \G) ∈ G.

Let us now interpret N as a set of individuals and G as the set of decisive coalitions for a given

SWF satisfying the Pareto condition and IIA. It turns out that G satisfies the three conditions

above, i.e., it is an ultrafilter. Condition (i) clearly holds, because the empty coalition is not

decisive. Conditions (ii) and (iii) can be shown to hold (under the assumption that |X | > 3)

using the same kind of technique we have used in the proof of Theorem 1 to show that G

being “almost decisive” implies decisiveness of G.

Hence, any property of ultrafilters will extend to the set of decisive coalitions. Recall

that an ultrafilter is called principal if it is the set of all subsets containing a fixed element d.

That is, a principal filter directly corresponds to the set of decisive coalitions for a dictatorial

SWF. Arrow’s Theorem now follows from the fact that any finite ultrafilter must be principal

(Davey and Priestley, 2002). For recent examples of applications of ultrafilters in social choice

theory, we refer to the works of Daniëls and Pacuit (2009) and Herzberg and Eckert (2011).

2.2 Social Choice Functions: Sen, May, Muller-Satterthwaite

A social choice function SCF is a function F : L(X )N → 2X \{∅} mapping profiles of linear

orders on alternatives to nonempty sets of alternatives. Intuitively, for a given profile of

declared preferences, F will choose the “best” alternatives. If F always returns a singleton,

then F is called resolute. We can think of a SCF as a voting rule, mapping profiles of ballots

cast by the voters to winning candidates.

The first result we shall review for the framework of SCFs is Sen’s Theorem on the Impos-

sibility of a Paretian Liberal (Sen, 1970b). Sen introduced a new type of axiom, liberalism,

which requires that for each individual there should be at least one pair of alternatives for

which she can determine the relative social ranking (i.e., she should be able to ensure that at

least one of them does not win). This idea makes sense if we think of X as the set of social

states. For example, if x and y describe identical states of the world, except that in x I will

paint the walls of my bedroom in white while in y I will paint them in pink, then I alone

should be free to decide on the social ranking of x and y.
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Liberalism. A SCF F satisfies the axiom of liberalism if, for every individual

i ∈ N , there exist two distinct alternatives x, y ∈ X such that i is two-way

decisive on x and y in the sense that whichever of the two i ranks lower cannot

win: i ∈ NR
x�y implies y 6∈ F (R) and i ∈ NR

y�x implies x 6∈ F (R).

In fact, as we shall see, for the purposes of Sen’s Theorem it suffices to assume that there are

at least two individuals with this power. The second axiom required to state the theorem is

again the Pareto condition, which takes the following form in the context of SCFs:

Pareto. A SCF F satisfies the Pareto condition if, whenever all individuals rank

x above y, then y cannot win: NR
x�y = N implies y 6∈ F (R).

It turns out that the two axioms are incompatible:

Theorem 2 (Sen, 1970). No SCF satisfies both liberalism and the Pareto condition.

Proof. For the sake of contradiction, suppose there exists a SCF F satisfying both liberalism

and the Pareto condition. Let i1 and i2 be two distinguished individuals, let x1 and y1 be

the alternatives on which i1 is two-way decisive, and let x2 and y2 be the alternatives on

which i2 is two-way decisive. We shall derive a contradiction for the case where x1, y1, x2, y2

are pairwise distinct (the remaining cases are similar and left as an exercise to the reader).

Consider a profile with the following properties:

(1) Individual i1 ranks x1 above y1.

(2) Individual i2 ranks x2 above y2.

(3) All individuals rank y1 above x2 and also y2 above x1.

(4) All individuals rank x1, x2, y1, y2 above all other alternatives.

Due to liberalism, (1) rules out y1 as a winner and (2) rules out y2 as a winner. Due to the

Pareto condition, (3) rules out x1 and x2 as winners and (4) rules out all other alternatives

as winners. As a SCF must return a nonempty set of winners, we have thus derived a

contradiction and are done.

Note that Sen’s Theorem, unlike Arrow’s, does not rely on the number of individuals being

finite. It does, however, presuppose that there are at least two individuals (which, technically,

is not the case for Arrow’s Theorem). Sen’s Theorem also does not, a priori, make any

assumptions on the number of alternatives, although the requirement that liberalism should

apply to at least two individuals quickly rules out the case of two or fewer alternatives.

We now turn to yet another type of axiom: monotonicity. Intuitively, a SCF is monotonic

if any additional support for a winning alternative will benefit that alternative. Somewhat

surprisingly, not all commonly used voting rules do satisfy this property.
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Example 2 (Failure of monotonicity). Under plurality with runoff, the voting rule used to

elect the French president, the two candidates that are ranked first by the largest number of

voters are presented to the electorate in a second round of voting. Suppose 17 voters vote

according to the following preferences:

6 voters: x � z � y
5 voters: y � x � z
6 voters: z � y � x

Then x and z will make it into the second round, where x will beat z with 11 to 6 votes

(because the 5 voters from the middle group will now vote for x). Now suppose that two

of the 6 voters from the last group (who support z and rank x last) change strategy and

instead vote according to x � z � y (i.e., they join the first group). Then x and y will make

it into the second round (with 8 and 5 points, respectively), where y will beat x with 9 to

8 votes (because the 4 voters from the diminished last group will now vote for y). That is,

even though the old winner x received additional support, she lost the new election. 2

We shall consider two axioms that instantiate the generic idea of monotonicity, each of which

is at the heart of a further classical theorem. The first of these is May’s Theorem (May, 1952).

It uses the axiom of positive responsiveness, which requires that whenever an alternative x? is

amongst the winners and some individuals raise x? in their linear orders without affecting the

relative rankings of any other pairs of alternatives, then x? should become the sole winner.

Positive responsiveness. A SCF F satisfies positive responsiveness if x? ∈
F (R) implies {x?} = F (R′) for any alternative x? and distinct profiles R and R′

with NR
x?�y ⊆ NR′

x?�y and NR
y�z = NR′

y�z for all y, z ∈ X \{x?}.

Observe that the requirement that R and R′ be distinct ensures that there are at least one

individual i and one alternative y such that i moves x? from below to above y when switching

from R to R′. The axiom of weak monotonicity, which we only mention in passing here, is

the axiom we obtain when we weaken {x?} = F (R′) to x? ∈ F (R′) in the above statement.

As Example 2 has demonstrated, plurality with runoff violates both weak monotonicity and

positive responsiveness.

Two simple further axioms feature in May’s Theorem: anonymity and neutrality.

Anonymity requires that F be symmetric with respect to individuals: if π is a permutation on

N , then F (R1, . . . , Rn) = F (Rπ(1), . . . , Rπ(n)) for any profile R. Neutrality requires that F be

symmetric with respect to alternatives: if π is a permutation on X , then π(F (R)) = F (π(R))

for any profile R (with π extended to sets of alternatives and profiles in the natural manner).

May’s Theorem provides a complete characterisation of the simple majority rule for social

choice with two alternatives. The simple majority rule (more often referred to as the plurality
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rule when there are more than two alternatives) is the SCF that returns as winners those

alternatives that have been ranked first by the largest number of voters. That is, in the case

of two alternatives x and y, x wins under profile R if |NR
x�y| > |NR

y�x|, y wins if the opposite

is true, and both win if the two figures are the same.

Theorem 3 (May, 1952). A SCF for two alternatives satisfies anonymity, neutrality and

positive responsiveness if and only of it is the simple majority rule.

Proof. The simple majority rule is easily seen to satisfy all three properties. For the opposite

direction, suppose F is anonymous, neutral and positively responsive. Let X = {x, y}.
As there are only two alternatives, any profile R can be fully described in terms of NR

x�y
and NR

y�x. Due to anonymity, only the cardinalities of NR
x�y and NR

y�x are relevant to the

determination of the outcome. Suppose the number of individuals is odd (the other case is

similar and left as an exercise to the reader). Distinguish two cases:

(1) Suppose that for every profile R with |NR
x�y| = |NR

y�x| + 1, only x wins. Then, by

positive responsiveness, only x will win whenever |NR
x�y| > |NR

y�x|, i.e., F is the simple

majority rule.

(2) Suppose there exists a profile R with |NR
x�y| = |NR

y�x|+1, but y wins (alone or together

with x). Now suppose one individual that reported x � y under R switches to y � x.

Call the new profile R′. By positive responsiveness, now only y wins. But this new

situation, with |NR′
y�x| = |NR′

x�y| + 1, is symmetric to the earlier situation. Thus, by

neutrality, x should win, i.e., we have arrived at a contradiction.

Hence, the only possibility is for F to coincide with the simple majority rule.

Next on our list is the Muller-Satterthwaite Theorem (Muller and Satterthwaite, 1977), which

shows how a stronger form of monotonicity can lead to an impossibility similar to Arrow’s

Theorem. This result applies to resolute SCFs. If F is resolute, we shall simply write

x = F (R) rather than x ∈ F (R) to indicate that x is the winner under profile R.

Strong monotonicity. A resolute SCF F satisfies strong monotonicity if x? =

F (R) implies x? = F (R′) for any alternative x? and distinct profiles R and R′

with NR
x?�y ⊆ NR′

x?�y for all y ∈ X \{x?}.

Unlike for weak monotonicity (or positive responsiveness), here we do not require that the

relative rankings of other pairs (y, z) need to be maintained when raising x?.

One further axiom we require is surjectivity. F is surjective if it does not rule out certain

alternatives as a possible winners from the outset: for every x ∈ X there exists a profile R

such that F (R) = x. Finally, a resolute SCF F is dictatorial if there exists an individual

i ∈ N such that the winner under F is always the top-ranked alternative of i.
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Theorem 4 (Muller and Satterthwaite, 1977). Any resolute SCF for three or more alterna-

tives that is surjective and strongly monotonic must be a dictatorship.

Proof. We will show that any resolute SCF that is surjective and strongly monotonic must

also satisfy the Pareto condition and an independence property similar to IIA, thereby re-

ducing the claim to a variant of Arrow’s Theorem for resolute SCFs.

First, let us show that strong monotonicity entails the following independence property: if

x 6= y, F (R) = x, and NR
x�y = NR′

x�y then F (R′) 6= y. Suppose the three premises hold. Now

construct a third profile, R′′, in which all individuals rank x and y in the top two positions,

with NR′′
x�y = NR

x�y. By strong monotonicity, F (R) = x implies F (R′′) = x. Again by strong

monotonicity, F (R′) = y would imply F (R′′) = y. Thus, we must have F (R′) 6= y.

Next, let us show that surjectivity and strong monotonicity together imply the Pareto

condition. Take any two alternatives x and y. Due to surjectivity, there exists a profile under

which x wins. Now move x above y in all individual ballots (if not above already). By strong

monotonicity, x still wins (and y does not). Now, by independence, y does not win for any

profile in which all individuals continue to rank x above y, i.e., we get Pareto efficiency.

We now prove that any resolute SCF for three or more alternatives that is independent

and Pareto efficient must be a dictatorship. As for Theorem 1, we again use the “decisive

coalition” technique. Call a coalition G ⊆ N decisive on (x, y) if G ⊆ NR
x�y implies y 6= F (R).

We start by proving that, if G = NR
x�y implies F (R) 6= y, then G is decisive on any

given pair (x′, y′). We prove the case where x, y, x′, y′ are all distinct (the other cases are

similar and left as an exercise to the reader). Consider a profile R where everyone in G ranks

x′ � x � y � y′ and all other individuals rank x′ � x, y � y′, and y � x. Furthermore,

x, y, x′, y′ are ranked above all other alternatives by all individuals. Note that we do not

specify the relative ranking of x′ and y′ by individuals outside of G. In this profile, x′

must win: G = NR
x�y excludes y as a possible winner and the Pareto condition rules out x

(dominated by x′) and y′ (dominated by y). Now consider any profile R′ with G ⊆ NR′

x′�y′ .

As we had left the relative ranking of x′ and y′ under R unspecified for individuals outside

of G, w.l.o.g., we may assume NR
x′�y′ = NR′

x′�y′ . Thus, by independence, F (R′) 6= y′, i.e., G

is decisive on (x′, y′).

We are now ready to prove a variant of the Contraction Lemma for SCFs. Let G be a

coalition with |G| > 2 that is decisive (on all pairs), and let G1 and G2 be coalitions with

G = G1 ∪G2 and G1 ∩G2 = ∅. We will show that either G1 or G2 must be decisive as well.

Consider a profile where all individuals in G1 rank x � y � z, all those in G2 rank y � z � x,

and all others rank z � x � y. Furthermore, all individuals rank all other alternatives below

x, y, z. As G is decisive, z cannot win, which leaves two cases:

(1) The winner is x. Note that the individuals in G1 were the only ones ranking x above

z. By independence, z will lose (to x) in any profile where precisely the individuals in
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G1 rank x above z. By our earlier observation, this means that G1 is decisive on all

pairs of alternatives.

(2) The winner is y, i.e., x does not win. Considering that it is exactly the individuals in

G2 that rank y above x, by the same argument as above, it follows that G2 is decisive.

Recall that the Pareto condition means that the grand coalition N is decisive. By induction,

applying the Contraction Lemma at each step, we can reduce this fact to the existence of a

singleton that must be decisive, i.e., there exists a dictator.

Observe that if we drop the requirement of surjectivity, then we do obtain SCFs that are

nondictatorial and strongly monotonic. For instance, any constant SCF that simply maps

any input profile to a fixed winner x? satisfies both conditions.

Theorem 4, which is what is nowadays usually referred to as the Muller-Satterthwaite

Theorem, is in fact a corollary to the original result of Muller and Satterthwaite (1977)

and the Gibbard-Satterthwaite Theorem, which we shall review next. In our exposition, we

instead prove the Gibbard-Satterthwaite Theorem as a corollary to Theorem 4.

2.3 Strategic Manipulation: The Gibbard-Satterthwaite Theorem

So far there has been no need to distinguish between the preferences an individual declares

when reporting to an aggregation mechanism (i.e., her ballot) and the true preferences of

that individual. This distinction does become crucial when we want to reason about the

incentives of individuals.

Example 3 (Manipulation). Consider the following profile, broadly inspired by the situation

in Florida during the United States presidential elections in the year 2000:

49% of the electorate: Bush � Gore � Nader

20% of the electorate: Gore � Bush � Nader

20% of the electorate: Gore � Nader � Bush

11% of the electorate: Nader � Gore � Bush

Suppose this represents the true preferences of the voters. Under the plurality rule, which

awards one point to a candidate whenever he is ranked first by a voter, Bush will win

this election (49% of the awarded points) ahead of Gore (40%), with Nader in last place

(11%). Now suppose the Nader supporters (the last group) decide to misrepresent their true

preferences on the ballot sheet and to instead rank Gore first. Then Gore (51%) will beat

Bush (49%). As the Nader supporters prefer Gore over Bush, they have an incentive to

engage in this kind of strategic manipulation. 2
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While the Nader voters would have been well advised to manipulate in this sense, it seems

unfair to blame them. Rather, we may want to put the blame on the designers of the voting

rule used, for allowing situations in which it is in the best interest of an individual to lie

about her preferences. Are there voting rules that do not have this deficiency?

We encode this desideratum as another axiom. Informally speaking, a SCF is called

strategy-proof if it never gives any individual an incentive to misrepresent her preferences.

Strategy-proofness. A resolute SCF F is strategy-proof if for no individual

i ∈ N there exist a profile R (including the “truthful preference” Ri of i) and a

linear order R′i (representing the “untruthful” ballot of i) such that F (R−i, R
′
i)

is ranked above F (R) according to Ri.
4

In the early 1970s, Gibbard (1973) and Satterthwaite (1975) confirmed a long-standing con-

jecture stating that there exists no acceptable resolute SCF that is strategy-proof.

Theorem 5 (Gibbard and Satterthwaite, 1973/1975). Any resolute SCF for three or more

alternatives that is surjective and strategy-proof must be a dictatorship.

Proof. We will show that strategy-proofness implies strong monotonicity. The claim then

follows from Theorem 4. Suppose F is not strongly monotonic. That is, there exist profiles

R and R′ as well as distinct alternatives x and x′ such that F (R) = x and F (R′) = x′

even though NR
x�y ⊆ NR′

x�y for all y ∈ X \{x}. Now suppose we move from R to R′, with

individuals changing their ballots one by one. There must be a first individual whose change

affects the winner. Thus, w.l.o.g., we may assume that R and R′ differ in exactly one ballot.

Let the individual corresponding to that ballot be i. We can distinguish two cases:

(1) i ∈ NR′

x�x′ . In this case, imagine i’s true preferences are as in R′. Then she can

profit from instead voting as in R (causing x rather than x′ to win). Thus, F is not

strategy-proof.

(2) i 6∈ NR′

x�x′ . As we have NR
x�x′ ⊆ NR′

x�x′ , this implies i 6∈ NR
x�x′ and thus i ∈ NR

x′�x. Now

imagine i’s true preferences are as in R. Then she can profit from instead voting as in

R′, i.e., F is not strategy-proof.

Thus, lack of strong monotonicity implies lack of strategy-proofness in all cases.

It is important to note that the Gibbard-Satterthwaite Theorem only applies to resolute

SCFs. There are several variants of the theorem for irresolute rules, the best known of which

is the Duggan-Schwartz Theorem (Duggan and Schwartz, 2000). On the other hand, there

are also positive results that show that irresolute strategy-proof SCFs do exist, albeit SCFs

4Here (R−i, R
′
i) denotes the profile we obtain when we replace Ri in R by R′i.

14



that lack the discriminatory force of rules that would usually be considered acceptable in the

context of voting, i.e., the set of winners will typically be large (Brandt and Brill, 2011).

There are a number of ways that have been suggested to circumvent the impossibility

flagged by Theorem 5. The first approach is to restrict the domain (Gaertner, 2006). If some

profiles can be assumed to never occur, then certain impossibilities will turn into possibilities.

The best known example are Black’s single-peaked preferences (Black, 1958). A preference

profile is called single-peaked if there exists an ordering � on X (e.g., reflecting the left-

right spectrum of political parties) such that any individual prefers x to y if x is between

(with respect to �) y and her most preferred alternative. If an electorate has single-peaked

preferences, then there do exist attractive SCFs that are strategy-proof, e.g., Black’s median

voter rule, which asks each individual for her top choice and then elects the alternative

proposed by the voter representing the median with respect to �.

Another approach, initiated by Bartholdi et al. (1989), has been to look for voting rules

for which it is computationally intractable (i.e., NP-hard) to decide how to manipulate, even

if an individual does have all the necessary information to do so. This indeed turned out

to be possible for a select number of voting rules, even though more recent work suggests

that worst-case notions such as NP-hardness fail to provide effective protection. Faliszewski

et al. (2010) review the state of the art of using complexity as a barrier against manipulation.

Given the close links between complexity theory and mathematical logic, this line of work

provides yet another connection between logic and social choice theory.

A third approach consists in investigating variants of the standard formal framework of

social choice theory, by altering the notion of preference, the notion of ballot, or both. For

instance, the widely used rule of approval voting (Brams and Fishburn, 1978), in which you

vote by nominating any number of “acceptable” candidates and the candidates receiving the

most nominations win, does in fact not fit the framework in which the Gibbard-Satterthwaite

Theorem is stated (because ballots are not linear orders). In the context of approval voting,

and more generally, in the context of social choice mechanisms where the language used to

express (declared) ballots does not coincide with the language used to model (true) prefer-

ences, positive results concerning incentives to vote sincerely are achievable (Endriss, 2007;

Endriss et al., 2009). Finally, if we model preferences and ballots as utility functions rather

than as binary relations, and thus increase their informational content, strategy-proofness

will become feasible under certain assumptions. This is the point where social choice theory

meets game-theoretical mechanism design (see, e.g., Nisan, 2007).

3 Logics for Social Choice Theory

Classical social choice theory, as presented in Section 2, is a mathematically rigorous but

not a formal enterprise. For instance, the axioms proposed are not themselves expressed
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in a formal language, such as the language of classical first-order logic, endowed with a

well-defined syntax and semantics. Indeed, in most work in social choice theory, references

to “logic” are merely intended as references to the rigorous use of the axiomatic method.5

However, in recent years we have witnessed more and more contributions that make use of

logic in a more direct sense of that term. In particular, there have been several proposals for

casting parts of the framework of social choice theory in a logical language. In this section,

we review some of these proposals. Before we proceed, however, we should first ask ourselves

why one would want to express problems of social choice in logic. One argument is surely

that doing so will help us gain a deeper understanding of the domain we are formalising. This

may be said in defence of any exercise in formalisation. But there are at least two further

very good reasons, which we shall briefly elaborate on here.

The first reason is that formalisation is a necessary step towards automation. Just as logic

has long been used in computer science to specify and automatically verify the properties

of software and hardware systems, logic may also prove useful to formally specify and check

the properties of procedures of social choice. This vision has been articulated in the social

software programme of Parikh (2002).

The second reason is that, once we confine ourselves to expressing axioms in a formal

language, we are able to compare the expressive power required to formulate different results

in social choice theory. This point has first been made by Pauly (2008), who argued that

besides its normative appropriateness and logical strength, a further important quality of

an axiom is the richness of the language required to express it. For instance, it is natural

to ask whether a given framework of social choice theory is definable in classical first-order

logic, or whether there are certain inherently higher-order features that cannot be simplified.

This perspective is related to the fact that some axioms are intuitively simpler (and thus less

contestable) than others. For instance, an inter-profile axiom such as IIA (making reference

to both the actual profile under consideration and a counterfactual other profile we are

comparing to) is conceptually much more complex than the Pareto condition, which merely

prescribes what to do if the profile under consideration meets certain requirements.

In the sequel, we review some of the proposals for using logic to model social choice

that have been advanced in the literature. We concentrate on the problem of modelling the

Arrovian framework of SWFs, which has received by far the most attention. In our review,

5Even the monograph of Murakami (1968), despite bearing the name “Logic and Social Choice”, is essen-

tially an exposition of and an investigation into the then, in 1968, still nascent axiomatic method. Murakami’s

work does however include one genuine application of formal logic: He considers voting with abstention for

the case of two alternatives x and y, i.e., there are three possible inputs an individual may supply (x � y,

y � x, abstention) and three corresponding outcomes (x wins, y wins, tie). This suggests an interpretation in

three-valued logic and Murakami shows, by means of reference to a functional completeness result in three-

valued logic, that any voting rule for this domain can be defined in terms of some nesting of the plurality rule

for subelectorates of varying size, a “negation operator”, and the set of constant rules.
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we distinguish between work on logics that have been specifically designed for this purpose

and work exploring possibilities for representing concepts from social choice theory within

the confines of standard logical frameworks. Where applicable, we also comment on attempts

at using the formalisation proposed as a basis for automating tasks in social choice theory.

3.1 Designing Logics for Modelling Social Choice

One approach is to design a logic specifically for our needs, either from scratch or by adapting

an existing logical framework. This approach has the advantage that we can tailor our logic

precisely to our requirements. A disadvantage of this approach is that we cannot directly

draw on existing results for that logic, including algorithms for reasoning tasks such as model

checking or satisfiability checking. For a new logic it will also be more difficult to interpret

results stating that a given social choice problem is expressible in that logic, as it may be

unclear how the expressive power of that logic relates to that of more established logics.

To date there have been relatively few examples for logics specifically designed to model

social choice. Remarkably, most (if not all) contributions of this kind make use of the general

framework of modal logic. To be sure, there has been substantial work on modal logics

that can express concepts from game theory, both the notions of strategy and preference

that are central to noncooperative game theory and the notion of coalition that is central

to cooperative game theory. We will not review this literature on logic and games here, and

instead only point to a few key references. An important early contribution has been Parikh’s

game logic (Parikh, 1985), which extends propositional dynamic logic and can express that

in a given game a given player has a strategy to bring about a state in which a given formula

ϕ is true. The coalition logic of Pauly (2002) is centred around the concept of a coalition of

individuals having the power to move to a state in which a given formula ϕ holds. An early

contribution to the study of games using dynamic epistemic logic is the work of Van Benthem

(2001). For a review of and commentary on the field of logic and games we refer to Van der

Hoek and Pauly (2006) as well as to Van Benthem et al. (2011).

While concepts such as the strategies of an individual or the power of a coalition, which

are widely studied in that literature, are also important concepts for social choice theory, the

works cited above do not focus on the explicit modelling of the mechanism used to implement

a social choice. Instead, the focus has been on individuals (and sometimes coalitions of

individuals) and how they act in a given environment, which is appropriate in game theory,

but less so in social choice theory, where we want to take the perspective of the mechanism

designer. Two works that have taken this perspective are those of Ågotnes et al. (2011) and

Troquard et al. (2011). We shall review the former in some detail.
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Ågotnes et al. (2011) define a modal logic for reasoning about SWFs.6 The language

of this logic is parametric in N (individuals) and X (alternatives), i.e., any formula in this

logic will only make statements about SWFs for the particular number of individuals and

alternatives chosen. The set of states is the Cartesian product of the set of possible profiles

and the set of pairs of alternatives. A model is defined by such a set of states (i.e., by N
and X ) and by a SWF F . There are three types of atomic propositions: pi for i ∈ N is

true in state (R, (x, y)) if individual i ranks x � y under profile R; q(x,y) for x, y ∈ X is

true in any state the second component of which is (x, y); and the special proposition σ is

true in state (R, (x, y)) if (x, y) ∈ F (R), i.e., if the collective preference under R will rank

x � y. There are two (universal) modal operators: [prof]ϕ is true in a state (R, (x, y)) if

ϕ is true in state (R′, (x, y)) for every profile R′; [pair]ϕ is true in state (R, (x, y)) if ϕ is

true in state (R, (x′, y′)) for every pair of alternatives (x′, y′). We are now able to express

interesting properties of the SWF F (which determines the valuation of σ). For instance, F

is dictatorial if and only if the following formula is true in every state of the model:

dictatorial :=
∨
i∈N

[prof][pair](pi ↔ σ)

The formula expresses that there exists an individual i (the dictator) such that, to whichever

state (R, (x, y)) we move in terms of the profile (by application of [prof]) and the pair

of alternatives under consideration (by application of [pair]), it will be the case that the

collective preference will rank x � y (i.e., σ will be true) if and only if individual i ranks

x � y (i.e., pi is true). Another example is the Pareto condition:

pareto := [prof][pair](p1 ∧ · · · ∧ pn → σ)

That is, in every state (R, (x, y)) it must be the case that, whenever all individuals rank

x � y (i.e., all pi are true), then also the collective preference will rank x � y (i.e., σ is

true). Ågotnes et al. (2011) show how to express Arrow’s Theorem in this manner and give a

sound and complete axiomatisation of their logic. It follows that the theorem is, in principle,

derivable in the logic, even if in practice obtaining such a derivation may prove difficult.

A limitation of this logic is that we need to fix N before we can start writing down

formulas. While Arrow’s Theorem states that it is impossible to find a suitable SWF for any

finite set N , the variant of the theorem that is formalised here applies only to the particular

set N chosen. That is, the theorem that has been formalised is actually weaker than the

original theorem. In particular, the fact that Arrow’s Theorem ceases to hold when we move

to an infinite electorate cannot be modelled in this logic. (Similar remarks apply to the fact

that we have to fix X before fixing the language of the logic, but this point is somewhat

6The following description of the logic introduced by Ågotnes et al. (2011) assumes some familiarity with

basic modal logic (see, e.g., Blackburn et al., 2001).
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less critical, as the formalisation of Arrow’s Theorem given by Ågotnes et al. (2011) does in

fact not involve any propositions of the form q(x,y).) As we shall see, modelling the Arrovian

framework in a suitable logic without fixing the set of individuals in the language is a hard

challenge in the field of logics for social choice theory, which to date has not been solved in

a truly satisfactory manner. A further challenge is the fact that Arrow’s Theorem requires

that F must be defined on every possible combination of preferences (the so-called universal

domain assumption). In our exposition in Section 2 this assumption has been implicit in the

definition of a SWF, but any logic for modelling the Arrovian framework must account for

it explicitly. Ågotnes et al. (2011) deal with this issue by including in their axiomatisation

a large axiom that explicitly states for every possible profile that it must be part of every

model. Again, to date no truly elegant and satisfactory approach to address this challenge

has been put forward.

3.2 Embedding Social Choice Theory into Existing Logical Frameworks

Besides designing a new logic for social choice theory, a second approach is to attempt to

embed the part of social choice theory we want to model into an existing and well-understood

logic. This has the advantage that we can rely on known results and existing tools for that

logic. We will review three such approaches, using first-order logic, propositional logic, and

higher-order logics, respectively.

Let us begin by reviewing a proposal for embedding the Arrovian framework of SWFs

into classical first-order logic (Grandi and Endriss, 2009). First-order logic is clearly a good

language for talking about binary relations in general and linear orders in particular. What

is less clear is whether it is a good language for modelling properties such as IIA. The

formulation of IIA includes an implicit universal quantification over preference profiles, and

those profiles themselves consist of several linear orders. This may suggest that simple

quantification over plain objects, and thus first-order logic, is not enough to model this

domain. As it turns out, these difficulties can be overcome. The central idea, due to Tang

and Lin (2009), is to introduce the concept of a situation, a name referring to a profile that

we can quantify over rather than quantifying over profiles directly.

Let N (for individuals), X (for alternatives), and S (for situations) be 1-place predicates.

Furthermore, let p be a 4-place predicate (to model individual preferences) and let w be

a 3-place predicate (to model the collective preference): p(z, x, y, u) says that individual z

ranks x above y under the profile associated with situation u, while w(x, y, u) says that the

collective preference order ranks x above y under the profile associated with situation u.

In first-order logic, we can easily specify that all preferences should be linear orders. For
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instance, the following formula expresses that the individual preferences must be transitive:

∀z.∀x1.∀x2.∀x3.∀u.[N(z) ∧X(x1) ∧X(x2) ∧X(x3) ∧ S(u) →
(p(z, x1, x2, u) ∧ p(z, x2, x3, u)→ p(z, x1, x3, u))]

That is, for any z that represents an individual, any x1, x2, x3 representing alternatives, and

any u representing a situation, if individual z ranks x1 above x2 in the profile associated

with u, as well as x2 above x3, then she will also rank x1 above x3 in the same situation.

Other simple formulas express that every object must belong to exactly one of the three

available types (individual, alternative, situation) and that any two profiles associated with

distinct situations differ in at least one preference judgment. The only difficulty consists

in ensuring that there exists a situation for every possible preference profile (the universal

domain assumption). This, unfortunately, requires a rather cumbersome formula that stipu-

lates that for any individual z, alternatives x and y, and situation u with p(z, x, y, u), there

also must exist a situation v associated with the profile we obtain when we swap x and y in

the preference order of z in the profile associated with u, but leave everything else the same.

Any model of these formulas corresponds to a SWF. We can now specify further formulas

to express properties of SWFs. For instance, Arrow’s IIA can be expressed as follows:

∀u1.∀u2.∀x.∀y.[S(u1) ∧ S(u2) ∧X(x) ∧X(y) →
[∀z.(N(z)→ (p(z, x, y, u1)↔ p(z, x, y, u2))) → (w(x, y, u1)↔ w(x, y, u2))]]

That is, for any two situations u1 and u2 and for any two alternatives x and y, if each

individual z makes the same judgment regarding x and y in u1 and u2, then also the collective

preference order should agree on the judgment regarding x and y in u1 and u2. Arrow’s

Theorem now reduces to a statement saying that a particular set of first-order formulas does

not have a finite model (Grandi and Endriss, 2009). It is not possible, using this approach, to

reduce Arrow’s Theorem to (the validity of) a first-order formula. The reason is that in first-

order logic we cannot force models to be finite (and, as we have seen, Arrow’s Theorem only

holds when the set of individuals in finite). However, for any fixed finite set of individuals

we can easily write a corresponding first-order formula modelling Arrow’s Theorem. Under

this restriction it should also, in principle, be possible to derive a proof of the theorem using

an automated theorem proved for first-order logic, even if to date no such proof has been

realised in practice.

In fact, for a fixed set of individuals and a fixed set of alternatives we also obtain a fixed set

of profiles and we can “ground” above first-order representation, by replacing every universal

quantification with a conjunction and every existential quantification with a disjunction,

thereby obtaining a representation in propositional logic. Tang and Lin (2009) explain how

to generate such a representation for the case of two individuals and three alternatives (the

smallest nontrivial instance of Arrow’s Theorem), consisting of 106354 clauses in propositional
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logic, using a simple computer program. They were able to verify that this set of clauses is

indeed unsatisfiable by using a satisfiability solver (a state-of-the-art SAT-solver requires less

than one second to verify this). This is a significant result and the first fully automated proof

of an instance of Arrow’s Theorem. Tang and Lin also prove two inductive lemmas (by hand),

one showing that, if there exists a SWF meeting Arrow’s conditions for n individuals and

m alternatives, then there also exists such a SWF for n + 1 individuals and m alternatives,

and the other showing that then there also exists such a SWF for n alternatives and m+ 1

alternatives. Together with the “base case” proved using the SAT-solver this yields the full

theorem, for any finite N and any finite X . A possible criticism of this approach is that the

(manual) proofs of the two lemmas are conceptually not much simpler than a manual proof

of the full theorem. A very attractive feature of the approach, on the other hand, is that

it can be used to quickly check whether a conjectured theorem does hold for a fixed small

number of individuals and alternatives. That is, beyond verification of known results, this

approach may also prove useful for the discovery of new theorems.7

A third approach has been followed by Nipkow (2009) and Wiedijk (2007), who have

formally verified two of the proofs of Arrow’s Theorem given by Geanakoplos (2005) using the

interactive theorem provers Isabelle and Mizar, respectively, which are based on higher-

order logics. The condition of the finiteness of N is easily expressible in such a language,

which means that the theorem can be stated in its full generality. It is important to stress

that these are formalisations and verifications of proofs rather than of a theorem. That is, the

person carrying out the verification has to code an existing proof step by step; the interactive

theorem prover can be used to verify these steps, but it does not derive a proof of the full

theorem automatically.

In summary, all existing approaches to modelling the Arrovian framework do have some

drawbacks. First, most of them require us to fix the set of individuals and alternatives up

front, as their names form part of the language defined, and in any case the less expressive

logics considered are not powerful enough to express the finiteness condition on the set of

individuals. Second, expressing the universal domain assumption in an elegant manner is

typically difficult. Third, a fully automated proof of Arrow’s Theorem is still pending, even

if several partial attempts have already succeeded.

7In an area of social choice theory different from preference aggregation, namely the area concerned with

extending a preference order defined over some objects to a preference order defined over sets of such objects

(Barberà et al., 2004), a refinement of the approach of Tang and Lin (2009) has recently led to the fully

automated discovery of a number of genuinely new impossibility theorems (Geist and Endriss, 2011).
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4 Social Choice in Combinatorial Domains

In practise, many collective decision making problems have a combinatorial structure. Exam-

ples include referenda, where voters are asked whether they wish to accept each of a number

of proposals, or electing a committee of officials (rather than a single official), where we have

to decide which of the candidates standing should receive a seat on the committee. If there

are m proposals included in a referendum, each of which may be either accepted or rejected,

then there are 2m possible outcomes. If there are m seats to be filled on our committee and

there are m′ candidates standing, then there are
(
m′

m

)
possible committees. In either case,

the number of actual alternatives that our voters need to consider is (at least) exponential

in m. These problems have been studied in political science for some time, but the insight

that this is an inherently computational challenge that should be addressed with the tools

of computer science is relatively recent (Lang, 2004). Today, social choice in combinatorial

domains is one of the core topics studied in computational social choice (Chevaleyre et al.,

2008). In this section, we review some of the work in the area.

For ease of exposition, we restrict attention to binary combinatorial domains, where each

issue has to take one of two values: 1 (“yes”) or 0 (“no”). Let I be a finite set of such

binary issues. Each issue k ∈ I is associated with a variable Xk that may take either value 1

or 0. We will sometimes write xk as a shorthand for Xk = 1 and x̄k as a shorthand for

Xk = 0. An assignment of values to all variables is a (combinatorial) alternative, i.e, X
now has the form {0, 1}I . By a slight abuse of notation, we will sometimes think of the

Xk as propositional variables and use the corresponding propositional language to express

properties of combinatorial alternatives. If we think of combinatorial alternatives as truth

assignments, then such a formula may or may not be satisfied by a given alternative. For

example, (1, 0, 0) satisfies the formula X1 ∧X2 → X3, while (1, 1, 0) does not.

Example 4 (Paradox of Multiple Elections). Suppose 13 voters are asked to vote on three

binary issues. Our voters might be the members of a small city council, and the three issues

might represent whether or not to fund a new museum, a new school, or a new metro line.

Suppose we ask each voter for her most preferred outcome:

• 3 voters each support (1, 0, 0), (0, 1, 0), and (0, 0, 1).

• 1 voter each supports (1, 1, 1), (1, 1, 0), (1, 0, 1), and (0, 1, 1).

Now, if we decide issue-by-issue and use the simple majority rule for each issue, then the

outcome will be (0, 0, 0), with a 7 to 6 majority on each issue, even though this is the only

combinatorial alternative that has not been voted for by a single voter. This is known as a

Paradox of Multiple Elections. In this particular form, it is due to Brams et al. (1998). 2

Why do we consider Example 4 a paradox? In fact, it might very well be that a voter’s

happiness is proportional to the number of issues on which her choice coincides with the

22



collective choice, in which case (0, 0, 0) is not an unreasonable outcome at all. Logic can

help us to to give a precise definition of what we mean by “paradox” (Grandi and Endriss,

2011). Let us see how. Example 4 considered an aggregation procedure F mapping a profile

of combinatorial alternatives, one for each individual, to a single combinatorial alternative.

That is, in this context a ballot is simply a combinatorial alternative. Recall that we can use

the propositional language defined over {Xk | k ∈ I} to describe properties of combinatorial

alternatives. Now think of a formula in that language as an integrity constraint. For a given

integrity constraint γ, we call a combinatorial alternative rational if it satisfies γ. Now we

can define a paradox as a triple consisting of an aggregation procedure F , a profile of ballots

B, and an integrity constraint γ, where every individual ballot Bi in B does satisfy γ, but

F (B) does not. That is, even though all the individual ballots are rational, the outcome of

the election is not. Under this definition, Example 4 qualifies as a paradox if we choose the

integrity constraint X1 ∨X2 ∨X3.

How can we avoid this kind of paradox? One approach to consider is to directly vote

on combinatorial alternatives. If we apply the plurality rule to the data of Example 4, then

(1, 0, 0), (0, 1, 0), and (0, 0, 1) receive 3 points each and we need to pick a winner by means

of a tie-breaking rule. Whichever way we break the tie, the paradox will be avoided, and

in this highly symmetric example any of the three front-runners seems an equally deserving

winner. In general, however, this is not a good approach, as it does rely excessively on the

tie-breaking rule. For example, if we assume that every profile is equally likely to occur, then

for 10 issues and 20 individuals, the probability that no combinatorial alternative receives

more than a single vote is roughly 83% (because 210 × · · · × (210 − 19)/(210)20 ≈ 0.83).

This problem could be overcome by using other voting rules than the plurality rule,

namely rules that elicit more information from the voters. Most voting rules considered in

the literature require each voter to provide a complete ranking of all alternatives (Brams and

Fishburn, 2002). A well-known example is the Borda rule, proposed by the French engineer

and political scientist Jean-Charles de Borda (1733–1799), under which an alternative receives

|X |−1 points from every voter who ranks her first, |X |−2 points from every voter who ranks

her second, and so forth. But for, say, 10 issues we would have to ask each voter to rank a

total of 210 = 1024 combinatorial alternatives, which is not a realistic requirement.

Thus, if we want to avoid paradoxical outcomes, then we have to face serious challenges of

a computational nature. A central point here is the fact that simply asking an individual to

report her preferences can already become a challenging issue. Therefore, before reconsidering

the full problem of social choice in combinatorial domains, we first introduce a number of

approaches to modelling preferences in combinatorial domains.
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4.1 Languages for Compact Preference Representation

A compact preference representation language is a formal language that can be used to express

a given class of preference structures and that, usually, does require significantly less space to

do so than an explicit representation. It is important to note that we cannot expect a magic

solution. For example, suppose there are m binary issues and we merely want to represent

which combinatorial alternatives an individual finds acceptable and which she does not find

acceptable, i.e., we want to express a dichotomous preference structure on 2m alternatives.

There are 22m such structures. Hence, even the most sophisticated representation language

will have to use 2m bits to be able to encode every possible structure. That is, we should

look for representation languages that can represent those preferences that we are likely to

encounter in a compact manner, but the same language may require more space on other

preferences, or it may not be able to express all possible preferences. The study of compact

preference representation languages is part of knowledge representation and reasoning, one

of the major research areas in artificial intelligence (Goldsmith and Junker, 2008).

The most widely used compact preference representation language in computational social

choice are conditional preference networks, or CP-nets for short (Boutilier et al., 2004). A

CP-net consists of a directed graph, the nodes of which are the issues, and one so-called

CP-table for each issue. The CP-table for issue k ∈ I specifies for each possible assignment

of values to the variables associated with the parents of k a preference relation on the possible

values for Xk. Each CP-table induces a partial order: a combinatorial alternative is preferred

to another combinatorial alternative from which it differs only in one issue, if the pair matches

one of the entries of the table. The preference relation induced by a CP-net is the transitive

closure of the relation induced by its CP-tables.

Example 5 (CP-net). The following is a CP-net for three binary issues, represented by the

variables X, Y , and Z. Recall that we write x to say that X takes value 1 and x̄ to say that

X takes value 0, etc. Each variable is annotated with its CP-table:

X Y Z- -
R

x � x̄ x : y � ȳ
x̄ : ȳ � y

xy : z � z̄
xȳ : z � z̄
x̄y : z � z̄
x̄ȳ : z̄ � z
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This CP-net generates the following partial order (with → representing �):

xyz
↗
↘

xȳz

xyz̄

↘
↗

xȳz̄ → x̄ȳz̄ → x̄ȳz → x̄yz → x̄yz̄

For instance, xyz̄ � xȳz̄, which is another way of saying (1, 1, 0) � (1, 0, 0), follows from the

first entry in the CP-table for Y . Observe that we cannot rank xȳz and xyz̄. 2

CP-nets can express a large class of partial orders, albeit not all of them. If the number of

variables on which any single variable may depend is relatively small, which is a reasonable

assumption to make in many problem domains, then a representation in terms of a CP-net

will be relatively compact.

Another important family of preference representation languages is based on the idea that

we can use the propositional language over variables introduced earlier to express goals. For

example, X1 ∨X2 expresses the goal of accepting at least one of the first two issues. If we

assign weights or priorities to these goals, then we can represent a wide range of preferences

in this manner. For instance, a set of weighted goals defines a utility function by stipulating

that the utility of a combinatorial alternative is the sum of the weights of the goals that

are satisfied by that alternative. Similarly, a set of goals labelled with priority levels may

be interpreted in a lexicographic manner by stipulating that one combinatorial alternative

is preferred to another if there exists a priority level ` such that for each level of higher

priority both alternatives satisfy the same number of goals and for level ` the first alternative

satisfies more goals than the second. Forms of aggregation other than taking sums or using

a lexicographic order have also been proposed and analysed (see, e.g., Lang, 2004; Uckelman

and Endriss, 2010). This approach goes back to the work on penalty logic by Pinkas (1995); its

relevance to preference representation in the context of social choice has first been recognised

by Lafage and Lang (2000). For a discussion of the expressive power and relative succinctness

of these languages, refer to the work of Coste-Marquis et al. (2004) for prioritised goals and

Uckelman et al. (2009) for weighted goals. Note that classical propositional logic is not the

only logic of interest for specifying goals. For instance, in a domain where variables specify

whether or not a given individual will or will not receive a given resource, and where there

are multiple identical copies of each resource available, weighed goals expressed in linear logic

make for a useful preference representation language (Porello and Endriss, 2010).

4.2 Possible Approaches to Social Choice in Combinatorial Domains

The first approach to social choice in combinatorial domains we want to discuss here is known

as combinatorial vote (Lang, 2004). The idea is to ask individuals to express their preferences

in terms of a given compact preference representation language and to apply our voting rule

of choice to these representations.
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Example 6 (Borda Rule and Prioritised Goals). Suppose three voters have to decide on two

binary issues, associated with variables X and Y . We ask them to express their preferences

as a set of prioritised goals (1 indicates high priority and 0 indicates normal priority):

Voter 1: {X:1, Y :0}
Voter 2: {X ∨ ¬Y :0}
Voter 3: {¬X:0, Y :0}

Under a lexicographic interpretation, these goals induce the following weak orders:

Voter 1: xy � xȳ � x̄y � x̄ȳ
Voter 2: xȳ ∼ xy ∼ x̄ȳ � x̄y
Voter 3: x̄y � x̄ȳ ∼ xy � xȳ

For voter 1, for instance, it is most important that X = 1, and getting Y = 1 has secondary

importance, while voter 3 has two equally important goals. For voter 2, the three alternatives

that satisfy at least one of X = 1 and Y = 0 are equally good and all better than the fourth

alternative. Now, suppose we want to apply the Borda rule to elect a winning alternative.

The standard Borda rule is defined for linear orders only, so we cannot use it here. There is

however a natural generalisation: an alternative obtains as many points from a voter as there

are other alternatives it dominates in the preference order reported by that voter. Alternative

xy, for instance, obtains 3 points from voter 1, and 1 point each from voters 2 and 3. Let us

summarise the points each combinatorial alternative will receive:

Alternative xy: 3 + 1 + 1 = 5

Alternative xȳ: 2 + 1 + 0 = 3

Alternative x̄y: 1 + 0 + 3 = 4

Alternative x̄ȳ: 0 + 1 + 1 = 2

Thus, alternative xy wins the election. 2

Example 6 is an illustration of the combinatorial vote approach—except for the fact that we

have unravelled the preferences provided in terms of the compact representation language

into an explicit representation before applying the voting rule. A full implementation of the

ideal of combinatorial vote would require an algorithm for computing the Borda winner that

can operate directly on preferences represented in terms of sets of prioritised goals. To date,

no such algorithms are available. In fact, while the approach is promising, besides a host of

work on compact preference representation languages that we can expect to eventually have

a significant impact in the area of social in combinatorial domains, concrete results have so

far been limited to complexity results pointing at some of the limitations of this approach.

For instance, one of the basic results due to Lang (2004) is that even if each voter can specify

only a single goal and even if we use the plurality rule (appropriately generalised so as to

26



award a point to a combinatorial alternative for every voter whose goal it satisfies), deciding

whether a given combinatorial alternative is an election winner is coNP-complete.

A second important approach to social choice in combinatorial domains is sequential

voting. The basic idea is to vote on the issues in sequence and to publicly announce the

decision on each issue as it is taken. For binary issues, in view of Theorem 3, the obvious

rule to use for each “local election” is the simple majority rule. There is a growing literature

devoted to sequential voting; here we only want to briefly mention two basic results. Both

of these results involve notions closely related to the Condorcet Paradox, which we had

introduced in Example 1. A Condorcet winner is an alternative that would win against any

other alternative in a majority contest. Similarly, a Condorcet loser is an alternative that

would lose against any other alternative in a majority contest. If a Condorcet winner does

exist, then we would hope that it does get elected (recall that the Condorcet Paradox did

demonstrate that a Condorcet winner need not exist though). If a Condorcet loser does exist,

then we would hope that it does not get elected.8

One basic result in sequential voting, due to Lacy and Niou (2000), is that when all issues

are binary and the simple majority rule is used in each local election (or, more generally, if

each local voting rule has the property of never electing a local Condorcet loser), then we will

never elect a combinatorial alternative that is a Condorcet loser. The proof is immediate:

simply consider what happens in the final local election (at this stage, there will be two

combinatorial alternatives left that might win; at most one of them can be the Condorcet

loser; thus the assumption on the local rule will ensure that the Condorcet loser cannot win).

A second basic result, due to Lang and Xia (2009), applies to the case where voters

express their preferences in terms of CP-nets. If the graphs underlying their CP-nets are all

acyclic and if there exists an ordering of the issues that is compatible with all of them, then

voting on the issues in that order using a local rule that will always elect a local Condorcet

winner when it exists will ensure that whenever there exists a combinatorial alternative that

is a global Condorcet winner, then that alternative will be elected.

In summary, if certain assumptions on the structure of preferences of the individuals are

satisfied, then we can design good mechanisms for social choice in combinatorial domains.

Solving significantly more general instances of the problem is, however, still out of reach.

What makes this problem both interesting and challenging is the close interplay of com-

putational and choice-theoretic concerns: on the one hand, we have to limit the amount of

information handled by the mechanism so as to be able to manage the complexity of the prob-

lem, while, on the other, we have to limit the degree of uncertainty faced by the individuals

to avoid paradoxical outcomes.

8Somewhat surprisingly, this basic property is violated by a number of standard voting rules, also outside

of combinatorial domains. For example, the plurality rule will elect the Condorcet loser z when 2 voters report

x � y � z, 2 voters report y � x � z, and 3 voters report z � x � y.
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5 Judgment Aggregation

Not only does logic play an important role in the analysis of aggregation problems, but

information expressed in terms of logic may itself be subject to aggregation. This kind of

problem is studied in the field of judgment aggregation (List and Puppe, 2009). This section

provides an introduction to judgment aggregation.

Example 7 (Doctrinal Paradox). Suppose a court of three judges has to decide on a case

in contract law. They are asked to judge whether the contract in question has been valid (p)

and whether the contract in question has been breached (q). Legal doctrine dictates that the

defendant be pronounced guilty if and only if both premises hold (p ∧ q). Judge 1 accepts

both premises and the conclusion, while the other two judges each only accept one of the

premises and thus are required to reject the conclusion:

p q p ∧ q
Judge 1: Yes Yes Yes

Judge 2: Yes No No

Judge 3: No Yes No

How should we aggregate this information to come to a collective judgment? If we believe

the correct approach is to first decide on each of the premises by majority and to then infer

the appropriate judgment for the conclusion (“premise-based procedure”), then we must

accept p (as two out of three judges do), q (as, again, two out of three judges do), and

p ∧ q (because p, q |= p ∧ q). If, however, we believe that we should directly aggregate the

individual judgments on the conclusion (“conclusion-based procedure”), then we must reject

p ∧ q (as a majority of the judges do). That is, two seemingly reasonable procedures return

contrary results. This is known as the Doctrinal Paradox (Kornhauser and Sager, 1993). An

alternative way of interpreting the paradox is the following: Each of the individual judges

has specified a logically consistent set of formulas, namely {p, q, p∧ q}, {p,¬q,¬(p∧ q)}, and

{¬p, q,¬(p∧q)}, while the collective judgment set we obtain when we decide on each formula

by majority is inconsistent: {p, q,¬(p ∧ q)}. 2

Kornhauser and Sager (1993) observed instances of the doctrinal paradox in their analysis

of actual court cases and their work is a contribution to legal theory. Pettit (2001) discusses

the philosophical implications of the paradox in view of the ideal of deliberative democracy.

Here we focus on the technical side of the field instead.

Let us now define the formal framework of judgment aggregation (List and Pettit, 2002;

Dietrich, 2006; List and Puppe, 2009). For any formula ϕ of propositional logic, let ∼ϕ
denote its complement: ∼ϕ := ψ if ϕ = ¬ψ and ∼ϕ := ¬ϕ otherwise. An agenda Φ is a finite

set of propositional formulas that is free of doubly-negated formulas and that is closed under
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complementation (i.e., ∼ϕ ∈ Φ whenever ϕ ∈ Φ). A judgment set J for agenda Φ is a subset

of Φ. J is called complete if ϕ ∈ J or ∼ϕ ∈ J for every formula ϕ ∈ Φ; J is called consistent

if J 6|= ⊥. The set of all consistent and complete judgment sets for agenda Φ is denoted as

J (Φ). Now let N = {i1, . . . , in} be a finite set of (at least two) individuals (or judges, or

agents) and suppose each individual i ∈ N provides a judgment set Ji ∈ J (Φ). That is, we

are given a profile J = (J1, . . . , Jn) ∈ J (Φ)N of judgment sets. Let NJ
ϕ := {i ∈ N | ϕ ∈ Ji}

denote the set of individuals that accept formula ϕ in profile J . A (resolute) judgment

aggregation procedure is a function F : J (Φ)N → 2Φ mapping any profile of complete and

consistent judgment sets to a single collective judgment set. The latter need not be complete

and consistent. For instance, as Example 7 has shown, if F is the majority rule, then the

collective judgment set may fail to be consistent.

5.1 Axioms and Procedures

The axiomatic method extends to the framework of judgment aggregation. Several of the

axioms that have been formulated for preference aggregation are naturally adapted to this

framework. Let us briefly review some of them here:

• Unanimity. If all individuals accept a given formula, then so should society: if ϕ ∈
J1 ∩ · · · ∩ Jn then ϕ ∈ F (J).

• Anonymity. The aggregation procedure should be symmetric with respect to individ-

uals: F (J1, . . . , Jn) = F (Jπ(1), . . . , Jπ(n)) for any permutation π : N → N .

• Neutrality. If two formulas have the same pattern of individual acceptance in a profile,

then both or neither should be accepted: if NJ
ϕ = NJ

ψ then ϕ ∈ F (J) ⇔ ψ ∈ F (J).

• Independence. If a formula has the same pattern of individual acceptance in two

different profiles, then it should be accepted under both or neither of these two profiles:

if NJ
ϕ = NJ ′

ϕ then ϕ ∈ F (J) ⇔ ϕ ∈ F (J ′).

• Monotonicity. If an accepted formula receives additional support, then it should still

be accepted: if ϕ ∈ J ′i? \Ji? and Ji = J ′i for all i 6= i? then ϕ ∈ F (J) ⇒ ϕ ∈ F (J ′).9

Let us now review a few concrete judgment aggregation procedures and see which axioms

they satisfy. As the reader may easily verify, the majority rule, which accepts a formula ϕ if

and only if a strict majority of the individuals do, satisfies all of the above axioms. But, as

we have seen, the majority rule may return an inconsistent judgment set.

9An alternative (intra-profile) monotonicity axiom stipulates that when ψ is accepted by a strict superset

of the individuals accepting ϕ, then ψ should be accepted by society whenever ϕ is (Endriss et al., 2010).
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The premise-based and the conclusion-based procedures, which we have also mentioned

already, first require us to declare which formulas in the agenda are to be treated as premises

and which are to be treated as conclusions. This already points at one of their weaknesses,

because there is no obvious criterion by which to make this distinction. The premise-based

procedure first applies the majority rule to the premises and accepts a conclusion ϕ if ϕ is a

logical consequence of the set of accepted premises. Suppose we declare all literals premises,

and all other formulas conclusions. Then, if every atomic formula occurring anywhere within

a complex formula in the agenda Φ does also occur as formula in Φ in its own right and if

the number n of individuals is odd, then the premise-base procedure is easily seen to always

return a complete and consistent judgment set. It also satisfies anonymity and all other

axioms with respect to those formulas that are declared premises, but it might violate them

with respect to the formulas that have been declared conclusions. The conclusion-based

procedure, which accepts a conclusion whenever a strict majority of the individuals do and

which does not pass judgment on any of the premises, is strictly speaking not a judgment

aggregation procedure F : J (Φ)N → 2Φ meeting our formal definition.

Arguably the most attractive type of judgment aggregation procedure are distance-based

procedures (Konieczny and Pino Pérez, 2002; Pigozzi, 2006; Miller and Osherson, 2009; Lang

et al., 2011). The idea is the following. First, define a metric on judgment sets that, in-

tuitively, specifies how distant two different judgment sets are. A common choice is the

Hamming distance H, which is defined as H(J, J ′) := 1
2 · |(J \J

′)∪ (J ′ \J)|, i.e., it counts on

how many formulas J and J ′ differ. The distance-based procedure based on H then returns

that complete and consistent judgment set that minimises the sum of the Hamming distances

to the individual judgment sets. As there may be more than one such optimal judgment set,

this is technically an irresolute procedure that may have to be combined with a tie-breaking

rule. This procedure is unanimous and—depending on the tie-breaking rule chosen—can be

made to be either anonymous or neutral, but it violates independence (and monotonicity).

Observe that, whenever the collective judgment set produced by the majority rule is complete

and consistent, then it will coincide with the outcome of the distance-based procedure (for

any reasonable metric, including H). Miller and Osherson (2009) discuss several variants of

the basic idea of distance-based judgment aggregation.

A distance-based generalised dictatorship is a procedure that works like a distance-based

procedure, but where we choose from amongst the judgment sets submitted by the individuals

(Grandi and Endriss, 2011). Despite its off-putting name, this is actually a very attractive

procedure that has similar axiomatic properties as the distance-based procedure choosing

from the set of all consistent and complete judgment sets, but that also has the additional

advantage of having very low computational complexity.
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5.2 An Impossibility Theorem and Further Directions of Research

As we have seen, one interpretation of the Doctrinal Paradox is the fact that the majority

rule will not always return a judgment set that is complete and consistent. List and Pettit

(2002) showed that this problem is not restricted to the majority rule. In fact, any judgment

aggregation procedure that meets certain minimal requirements will sometimes fail to produce

complete and consistent judgment sets.

Theorem 6 (List and Pettit, 2002). No judgment aggregation procedure for an agenda Φ

with {p, q, p∧q} ⊆ Φ that satisfies anonymity, neutrality, and independence will always return

a collective judgment set that is complete and consistent.

Proof. Observe that for any anonymous, neutral, and independent aggregation procedure F ,

collective acceptance of a formula will depend only on the number of individuals accepting

it. In particular, |NJ
ϕ | = |NJ

ψ | entails ϕ ∈ F (J) ⇔ ψ ∈ F (J). We distinguish two cases:

(1) Suppose the number of individuals n is even. Consider a profile J under which half

of the individuals accept p and the other half accept ¬p, i.e., |NJ
p | = |NJ

¬p|. Thus,

p ∈ F (J) ⇔ ¬p ∈ F (J), meaning that the collective judgment set must accept either

both of p and ¬p, or neither. But the former would violate consistency, while the latter

would violate completeness.

(2) Suppose n is odd (and n > 3).10 Consider a profile J under which n−1
2 individuals

accept p and q, 1 individual accepts p and not q, 1 individual accepts q and not p, and

the remaining n−3
2 individuals accept neither p nor q. Then |NJ

p | = |NJ
q | = |NJ

¬(p∧q)|.
Hence, either all or none of p, q, and ¬(p ∧ q) must be in F (J). If the former is the

case, then F (J) is not consistent. If the latter is the case, then completeness would

require that all of ¬p, ¬q, and p∧q are in F (J), which would again violate consistency.

Thus, for no number of individuals will we be able to devise an F satisfying all three axioms

that always returns complete and consistent judgment sets.

Theorem 6 is the original impossibility theorem in the field of judgment aggregation. Since

2002 several other impossibilities have been established (List and Puppe, 2009). While List

and Pettit’s result applies to agendas with a specific structure, namely those that include at

least two formulas and their conjunction, more recent results provide precise characterisations

of the class of agendas for which it is possible to find an aggregation procedure that satisfies

a given set of axioms and that will always return a collective judgment set that is complete

and consistent. For instance, for the axioms of unanimity, neutrality, independence, and

monotonicity the agendas Φ that are characterised in this manner are those for which any

10Recall that we assume that n > 2. Theorem 6 does not apply if there is just a single individual.
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inconsistent subset of Φ does itself have an inconsistent subset of size at most 2 (Nehring

and Puppe, 2007; List and Puppe, 2009). Recent work in computational social choice has

furthermore studied the computational complexity of deciding whether we can guarantee

consistent outcomes for a given agenda and a procedure meeting a given set of axioms.

This problem of the safety of the agenda turns out to be intractable (and more precisely,

Πp
2-complete) for most interesting sets of axioms (Endriss et al., 2010).

The connections between the impossibilities arising in the context of preference aggre-

gation and those arising in the context of judgment aggregation have been explored by a

number of authors and the two frameworks have been shown to be closely related (Dietrich

and List, 2007; Porello, 2010; Grossi, 2010; Grandi and Endriss, 2011), the most obvious (but

by no means the only) link being the insight that we can think of preference statements such

as “x � y” as judgments that may be true or false.

Finally, while originally associated with problems in legal reasoning and chiefly discussed

in the philosophical literature, it is not hard to see that judgment aggregation can have a

range of significant applications in other fields as well, e.g., in the Semantic Web, and more

specifically the aggregation of knowledge distributed over a number of different ontologies

(Porello and Endriss, 2011). These opportunities are yet to be explored in depth.

6 Conclusion and Further Reading

We have reviewed a number of classical and more recent contributions to the theory of social

choice and argued that logic has played, and continues to play, and important role in its

development as a scientific discipline. Naturally, given both this specific angle on the topic

and the proverbial lack of space, our exposition had to remain incomplete. Social choice

theory, and its cousin computational social choice, cover considerably more ground than has

been possible to give justice to here.

It is not easy to predict what direction the field is going to take in the future, but the

research questions raised in this chapter may be expected to play some role in its further

development: What is the “right” logic to model social choice? How far can we push the

automatisation of reasoning about problems in social choice theory? What is the best way

of balancing complexity concerns and the need to limit uncertainty amongst decision mak-

ers when designing mechanisms for social choice in combinatorial domains? What can the

methodology of judgment aggregation contribute to more general problems of information

aggregation arising in applications such as ontology merging?

We conclude with a few pointers to the literature for readers who want to delve deeper into

the subject. There are a number of excellent textbooks on the market that cover significant

parts of classical social choice theory. The book by Gaertner (2006) is particularly broad in

its coverage and highly accessible; the approach taken by Austen-Smith and Banks (1999)
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is somewhat more technical. Taylor (2005) focuses on strategic manipulation, while Moulin

(1988) provides clear links to welfare economics and distributive justice. Like the present

chapter, these books concentrate very much on the technical aspects of social choice theory

rather than on the ethical or economic justifications for its assumptions or the philosophical

and political ramifications of its results. The interested reader may want to consult the works

of Roemer (1996) and Riker (1982) for pointers in these directions. Finally, the classics of

Arrow (1963) and Sen (1970a) still make for instructive and fascinating reading today.

For the more recent developments described in Sections 3–5, no comprehensive exposition

is available. However, both List (2011) and Grossi and Pigozzi (2011) provide good introduc-

tions to judgment aggregation; and a more detailed exposition of problems in social choice

in combinatorial domains than we have given here may be found in the expository paper of

Chevaleyre et al. (2008). For a wider discussion of questions in computational social choice,

we refer to Chevaleyre et al. (2007).

Acknowledgements. I would like to acknowledge the numerous discussions with Umberto
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