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Compact preference representation and
combinatorial vote

Jérôme Lang∗

Abstract

In many real-world social choice problems, the set of alternatives is defined as
the Cartesian product of (finite) domain values for each of a given set of variables,
and these variables cannot be asusmed to be prefentially independent (to take an
example, if X is the main dish of a dinner and Y the wine, preferences over Y depends
on the value taken for X). Such combinatorial domains are much too large to allow
for representing preference relations or utility functions explicitly (that is, by listing
alternatives together with their rank or utility); for this reason, artificial intelligence
researchers have been developing languages for specifying preference relations or
utility functions as compactly as possible. This paper first gives a brief survey of
compact representation languages, and then discusses its role for representing and
solving social choice problems, especially from the point of view of computational
complexity.

1 Introduction

Voting procedures have been extensively studied by researchers in social choice theory
who have studied extensively all properties of various families of voting rules, up to an
important detail: candidates are supposed to be listed explicitly (typically, they are indi-
vidual or lists of individuals, as in political elections), which assumes that they should not
be too numerous. In this paper, we focus on the case where the set of candidates has a
combinatorial structure, i.e., is a Cartesian product of finite value domains for each one
of a set of variables: this problem will be referred to ascombinatorial vote. In this case,
the space of possible alternatives has a size being exponential in the number of variables
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Compact preference representation and combinatorial vote

and it is therefore not reasonable asking the voters to rank or evaluate on a utility scale all
alternatives.

Consider for example that the voters have to agree on a common menu to be composed
if a first course dish, a main course dish, a dessert and a wine, with a choice of 6 items
for each. This makes64 candidates. This would not be a problem if the four items to
choose were independent from the other ones: in this case, this vote problem over a set of
64 candidates would come down to four independent problems over sets of6 candidates
each, and any standard voting rule could be applied without difficulty. Things become
more complicated if voters express dependencies between items, such as “I would like
to have risotto ai funghi as first course, except if the main course is a vegetable curry, in
which case I would prefer smoked salmon as first course”, “I prefer white wine if one of
the courses is fish and none is meat, red wine if one of the courses is meat and none is
fish, and in the remaining cases I would like equally red or white wine”, etc.

As soon as variables are not preferentially independent, it is generally a bad idea to
decompose a combinatorial vote problem withp variables into a set ofp smaller problems,
each one bearing on a single variable: “multiple election paradoxes” [9] show that such a
decomposition leads to suboptimal choices, and give real-life examples of such paradoxes,
including simultaneous referenda on related issues. They argue that the only way of
avoiding the paradox would consist in “voting for combinations [of values]”, but they
stress its practical difficulty: “To be sure, if there are more than eight or so combinations to
rank, the voter’s task could become burdensome. How to package combinations (e.g., of
different propositions on a referendum, different amendments to a bill) so as not to swamp
the voter with inordinately many choices – some perhaps inconsistent – is a practical
problem that will not be easy to solve.”

In this paper we address this issue. Since the preference structure of each voter cannot
be reasonably expressed explicitly by listing all candidates, what is needed is a compact
preference representation language. Such preference representation languages have been
developed within the KR community; they are often build up on propositional logic, but
not always (see for instance utility networks [1] [14] or valued constraint satisfaction
[18] – however in this paper we restrict the study to logical approaches); they enable
a much more concise representation of the preference structure, while preserving a good
readability (and hence a proximity with the way agents express their preferences in natural
language).Therefore, the first parameter to be fixed, for a combinatorial vote problem, is
the language for representing the preferences of the voters.

Now, two other problems arise:

1. How are these compactly represented preferences pratcically specified by the vot-
ers? Assuming that voters can easily express by themselves (without any kind of
help) their preferences over combination of values using complex logical objects
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is often not reasonable; even if they do, it is highly possible that the preference
relation induced by the specification is incomplete or inconsistent. So as to help
agents expressing their preferences,interactive elicitation procedures work by find-
ing relevant questions to ask, until the agent’s preference relation is consistent and
complete. Preference elicitation in combinatorial domains has been investigated in
several recent works [2, 3, 13] and will not be considered here.

2. Once preference have been elicited, how is the outcome of the voting rule com-
puted? Obviously, the prohibitive number of candidates makes it hard, or even
practically impossible, to apply voting rules in a straightforward way, sicne all but
the simplest voting procedures need a number of operations at least linear (some-
times quadratic, sometimes even exponential) in the number of candidates, which
is not reasonable when the set of candidates has a strong combinatorial structure.
Computational complexity of some voting procedures when applied on combina-
torial domains has been investigated in [16], but this does not really address the
question ofhow these procedures should be applied in practice so as to get their
outcome (or an approximation of it) in a reasonable amount of time.

This article addresses the latter point.

2 Logical languages for compact preference representa-
tion

In this Section we are concerned with the preferences of asingle voter over a finite set of
candidatesX . We assume thatX has a combinatorial nature, namely,X is a set of possi-
ble assignments of each of a certain number of variables to a value of its (finite) domain:
X = D1 × ... × Dn, whereDi is the set of possible values for variablevi; the size ofX
is exponentially large inn. Because specifying a preference structure explicitly in such a
case is unreasonable, the AI community has developed several preference representation
languages that escape this combinatorial blow up. Such languages are said to befactor-
ized, or succinct, because they enable a much more concise representation of preference
structures than explicit representations. For the sake of brevity, following we focus on
logical languages, which means that domains are assumed to be binary. This does not
imply a real loss of generality, since a variable over a finite domain withk possible values
can be expressed using�log k� binary variables.

A preference relation � is a preorder, i.e., a reflexive and transitive binary relation on
A. M � M ′ means that alternativeM is at least as good (to the agent) as alternativeM ′.
Such a relation� is not necessarily complete, that is, it may be that neitherM � M ′ nor
M ′ � M holds for a pair of alternativesM andM ′ in A. We noteM � M ′ for M � M ′
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and not (M � M ′) (strict preference ofM over M ′), andM ∼ M ′ for M � M ′ and
M ′ � M (indifference). It is important to note thatM ∼ M ′ means that the agent
takesM andM ′ to be equally preferred, while the incomparability betweenM andM ′

(M �� M ′ andM ′ �� M ) simply means that no preference between them is expressed.

These definitions are about preferences over an arbitrary set of alternativesA. In
this paper, we consider propositional languages expressing preferences: such languages
express preferences over the set of possible interpretationsW over a given alphabetV AR.
A refinement of this definition is that of assuming that the set of possible alternatives
excludes some interpretations ofW . In this case, we assume that a formulaK is given:
this formula represents “integrity constraints” on the set offeasible alternatives, i.e., the
only interpretations we accept as possible alternatives are those ofMod(K), i.e.,A =
Mod(K). For instance, in a decision making problem consisting of recruiting at least one
and at most two of three candidatesa, b andc, the feasible alternatives are the models of
K = (a ∨ b ∨ c) ∧ (¬a ∨ ¬b ∨ ¬c).

We now briefly recall the propositional languages for preference representation we
study. In the following, the formulasGi are propositional formulas representing elemen-
tarygoals. The input of a logically-represented preference relation is a pair∆ = 〈K,GB〉
whereK is the propositional formula restricting the possible alternatives (the integrity
constraints) andGB (the goal base) is a set of elementary goals, generally associated
with extra data such as weights, priorities, contexts or distances.�K,GB (or simply�GB

when there is no risk of ambiguity) denotes the preference relation induced byGB over
Mod(K).

2.1 A brief overview of languages

2.1.1 Penalties

In this natural and frequently used preference representation language, the agent expresses
her preferences in terms of a set of propositional formulas that she wants to be satisfied.
In order to compare alternatives (models), formulas are associated with weights (usually,
numbers), which tell how important the satisfaction of the formula is considered. For-
mally, the preferences of an agent are expressed as a finite set of goals, where each goal
is a propositional formula with an associated weight. The complete preference is given
by a set of these goals:GB = {〈α1, G1〉, . . . , 〈αn, Gn〉}, where eachαi is an integer
and eachGi is a propositional formula. The degree of preference of a model is measured
as follows: for anyM ∈ Mod(K), we definepGB(M) =

∑{αi|M �|= Gj} to be the
penalty ofM . The preference relation�pen

GB is defined byM �pen
GB M ′ if and only if

226



Annales du LAMSADE n◦3

pGB(M) ≤ pGB(M ′) (with the convention
∑

(∅) = 0).1

2.1.2 Distance to goals

The preference relation based on penalties only makes a distinction between models sat-
isfying a formula and models violating it. On the other hand, if an agent prefers a formula
Gi to be satisfied, we could infer that she also prefers models “close” to this formula than
models “far”. Letd be a pseudo-distance between models, that is, a symmetric function
from X 2 → IR such thatd(M,M ′) = 0 if and only of M = M ′. For instance, the
Hamming distancedH(M,M ′) is the number of variables that are assigned different val-
ues inM andM ′.) The “distance” between a modelM and a formulaG is defined by
d(M,G) = minM ′|=G d(M,M ′). A goal base is a finite set of pairs〈αi, Gi〉; the distance
of a model to a goal base is defined byd(M,GB) =

∑
i{αi.d(M,Gi)}. and finally,�H

GB

is defined by

M �H
GB M ′ if and only if d(M,GB) ≤ d(M ′, GB)

2.1.3 Prioritized Goals

The languages defined above allow for compensations among goals (the violation of a
goal may be compensated by the satisfaction of a sufficient number of goals of lower im-
portance). Prioritization is used when such a compensation should not be possible, and
does not need any numerical data. In this case, a goal base is a pairGB = 〈{G1, . . . , Gn}, r〉
where eachGi is a propositional formula andr is a rank function from{1, . . . , n} to IN: if
r(i) = j, thenj is called the rank of the formulaGi. By convention, a lower rank means
a higher priority. The question is now how to extend the priority on goals to a preference
relation on alternatives. The following three choices are the most frequent ones:

best-out ordering Let rGB(M) = min{r(i) |M �|= Gi} ThenM �bo
GB M ′ iff rGB(M) ≥

rGB(M ′)

discrimin ordering Letdiscr+
GB(M,M ′) = {i |M |= Gi andM ′ �|= Gi} anddiscrGB(M,

M ′) = discr+
GB(M,M ′) ∪ discr+

GB(M ′,M) Then:

∣
∣
∣
∣

M �discrimin
GB M ′iff mini∈discr+

GB(M,M ′) r(i) < minj∈discr+
GB(M ′,M) r(j)

M �discrimin
GB M ′iff M �discrimin

GB M ′ or discrGB(M,M ′) = ∅.
1Many other operators can be used, in place of the sum, for aggregating weights of violated (or sym-

metrically, satisfied) formulas (see [15] for a general discussion).
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leximin ordering Let dk(M) be the cardinal of{i | M |= Gi andr(i) = k}.

∣
∣
∣
∣

M �leximin
GB M ′iff ∃k ≤ n s. t.dk(M) > dk(M

′) and∀j < k, dk(M) = dk(M
′);

M �leximin
GB M ′iff M �leximin

GB M ′ or di(M) = di(M
′) for anyi.

Note that�leximin
GB and�bo

GB are complete preference relations while�discrimin
GB is

generally not. We moreover have the following chain of implications:M �bo
GB M ′ ⇒

M �discrimin
GB M ′ ⇒ M �leximin

GB M ′.

More discussion, references and examples can be found in [16, 10].

2.1.4 Ceteris Paribus preferences

In this language, preferences are expressed in terms of statements like: “all other things
being equal, I prefer these alternatives over these other ones.” Formally, letC, G, and
G′ be three propositional formulas andV being a subset ofV AR such thatV ar(G) ∪
V ar(G′) ⊆ V . Theceteris paribus desire C : G > G′[V ] means: “all irrelevant things
being equal, I preferG∧¬G′ to¬G∧G′”, where the “irrelevant things” are the variables
that are not inV . The definitions proposed in various places differ somehow – we take
here the definition of [10]. For natural reasons, and to remain consistent with the original
definitions, we impose thatV ar(G) ∪ V ar(G′) ⊆ V .

Furthermore, we add to the original definition the ability to expressindifference state-
ments – without them,M ∼ M ′ could not be expressed.

Let GB = DP ∪ DI , whereDP andDI are defined as follows.

DP = {C1 : G1 > G′
1[V1], . . . , Cm : Gm > G′

m[Vm]}
DI = {Cn : Gn ∼ G′

n[Vn], . . . , Cp : Gp ∼ G′
p[Vp]}

We call the elements ofDP as “preference desires” while elements ofDI are “in-
difference desires”. For alli, Ci, Gi andG′

i are propositional formulas andV ar(Gi) ∪
V ar(G′

i) ⊆ Vi ⊆ V AR. We define the preference induced by a single desireDi = Ci :
Gi > G′

i[Vi], denoted byM >Di
M ′, by the following three conditions:

1. M |= Ci ∧ Gi ∧ ¬G′
i;

2. M ′ |= Ci ∧ ¬Gi ∧ G′
i;

3. M andM ′ coincide on all variables inV AR\Vi.
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If the above conditions 1-3 are satisfied for an indifference desireDi = Ci : Gi ∼
G′

i[Vi] in DI , then we say thatM and M ′ are indifferent with respect toDi, denoted
by M ∼Di

M ′. Now, the preference order�cp
GB is defined from the above dominance

relations by transitive closure of their union:M �cp
GB M ′ holds if and only if there

exists a finite chainM0 = M,M1, . . . ,Mq−1,Mq = M ′ of alternatives such that for all
j ∈ {0, . . . , q−1} there is aDi ∈ GB such thatMj >Di

Mj+1 or such thatMj ∼Di
Mj+1.

An important sublanguage of CP-preferences is the language of (binary)CP-nets,
which is obtained by imposing the following syntactical restriction:

• goalsG andG′ areliterals, that is, CP-statements express preference of a value over
its opposite for a given single variable, given some context (in other words,G and
G′ are of the form(xi = vi), wherexi ∈ V AR andvi ∈ {T, F}.

• the variables mentioned in the contextC of a preference statement about variable
xi must be contained in a fixed set of variables, called theparents of xi, denoted by
Parents(xi).

• for each variablexi and each possible assignmentπ of the parents ofxi, there is
one and only one CP-preferenceC : xi > ¬xi or C : ¬xi > xi such thatπ |= C.

The more expressive language ofTCP-nets [7] can also be obtained by syntactical
restrictions. See [19] for a discussion about the expressivity of these various languages.

For the sake of brevity, we omitted the family of preference representation languages
based onconditional logics. See [16, 10].

2.2 Issues in preference representation

At least four very important problems must be addressed when investigating the relevance
and complexity of preference representation languages.

Elicitation We already discussed this issue in Introduction and we do not want to come
back on this, since since is left outside the scope of this paper.

Expressive power R being a representation language, a relevant quesiton is whetherR
can express all preorders and/or all utility functions, or only complete preorders, or
only a strict subclass of them, etc. This issue is investigated in [10].

Computational complexity Let R being representation language. What is the computa-
tional complexity of comparing two alternatives given an inputGB of R, of decid-
ing whether a given alternative is optimal, of finding an optimal alternative? This
issue is investigated in [16].

229



Compact preference representation and combinatorial vote

Comparative succinctness GivenR,R′ two representation languages,R′ is said to be at
least as succinct asR iff is there a functionF from R to R′ such that

a. for eachGB ∈ R, GB andF (GB) induce the same preference relation (or
utility function);

b. F is polysize, i.e., there exists a polynomial functionp such that for allGB ∈
R, size(F (GB)) ≤ p(size(GB)).

This issue is investigated in [10].

3 Combinatorial vote

LetA = {1, ..., N} be a finite set ofvoters; X is afinite set ofalternatives (or candidates);
a individual preference profile P is a complete weak order�i (reflexive and transitive
relation) onX . A preference profile w.r.t. A andX is a collection ofN individual
preference profiles:P = (�1, ...,�N ). Lastly, letPA,X set of all preference profiles.

A voting correspondance C : PA,X → 2X \ {∅} maps each preference profileP of
PA,X into a nonempty subsetC(P ) of X . A voting (deterministic) rule r : P → X maps
each preference profileP of PA,X into a single candidater(P ). A deterministic rule can
be obtained from a correspondance by prioritization over candidates (for more details see
[8]). In the rest of the paper we focus on deterministic rules.

A combinatorial vote problem consists in applying voting rules when the set of al-
ternatives has a combinatorial structure and the voters’ preferences are expressed in a
compact preference representation language. Practically, a combinatorial vote problem is
composed of two steps: first, the agents express their preferences within a fixed (and com-
mon) representation languageR, and second, one or several optimal (i.e., non-dominated)
candidate(s) is (are) determined automatically, using a fixed voting rule.

For any representation languageR, one defines aR-profile for p voters as a collec-
tion B = 〈GB1, ..., GBp〉 of goal bases (one for each of thep voters), expressed in the
languageR, generating a profileP = InduceR(B) = {�GB1 , ...,�GBp}.

3.1 Combinatorial vote: direct approach

The “direct” approach to solving a combinatorial vote consists in applying these tasks in
sequence:

• elicit the preference relation for each voter, using a compact representation lan-
guage;
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• generate the whole preference relations onD1 × . . . × Dn from the input;

• apply the voting ruler.

The good point with this direct approach is that it leads to finding an optimal out-
come, more precisely, it allows for determining the exact winners according to the chosen
voting rule and the true preference of the agents. The (very) bad point is its very high
computational complexity in the general case. Here are examples, in the simplest com-
pact representation language, that is, the basic propositional representation (where each
agent specifies a unique propositional formula as his/her goal):

• computing a winner for the plurality rule needsO(log N) satisfiability tests (N =
number of agents);

• determining whether there exists a Condorcet winner is bothNP-hard andcoNP-
hard, and in inΘp

2 (the exact complexity is an open problem).

Further results, including for instance the complexity of determining whether there
exists a Condorcet winner for a given profile specified in a compact preference represen-
tation language, can be found in [16].

3.2 Combinatorial vote: sequential approach

The principle of the sequential appraoch is to exploit preferential independence of the
preference profiles. It is well-known that preferences relations (or utility functions) over
combinatorial “real-life” domains most often enjoy structural properties such as(condi-
tional) preferential independence between sets of variables. This assumption was central
to the development of several preference representation languages, especiallygraphical
languages such as CP-nets of weighted constraint satisfaction. In these languages, the
input consists of two distinct part: a structural part (an hypergraph in the CSP case, a di-
rected acyclic graph in the CP-net case) over the variables, and a “internal” part consisting
of the local preference relations over the subsets of variables identified by the structural
part.

For instance, letV = {x,y, z, t}, all three being Boolean variables, and assume that
preference of a given agent over2V can be defined by a CP-net whose structural part is
the directed acyclic graphG = {(x, y), (y, z), (y, t), (z, t)}; this means that, for the agent
considered, preference over the values ofx is unconditional, preference over the values of
y is fully defined given the value ofx, and so on.

Now comes the central assumption to the sequential approach to combinatorial vote:
the preferential independence structure is common to all agents. Therefore, for instance,
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if preference obver2V for agent 1 can be described by a CP-net with the structure as
above, then all other agents are assumed to be able to express their preferences within a
CP-net using the same structure. This is a strong assumption; however, in many real-life
domains it can be considered as reasonable.

Let us first consider an example. LetN = 7, V = {x,y} with Dom(x) = {x, x̄}
andDom(y) = {y, ȳ}, and let us consider the following preference relations, where each
agent expresses his preference relation by a CP-net corresponding to the following fixed
preferential structure: preference onx is unconditional (but preference ony may depend
on the value given tox).

3 agents 2 agents 2 agents

x̄ � x
x : ȳ � y
x̄ : y � ȳ

x � x̄
x : y � ȳ
x̄ : ȳ � y

x � x̄
x : ȳ � y
x̄ : y � ȳ

This corresponds to the following preference relations:

3 agents 2 agents 2 agents

x̄y
x̄ȳ
xȳ
xy

xy
xȳ
x̄ȳ
x̄y

xȳ
xy
x̄y
x̄ȳ

Let r be a deterministic ruler. Since for all 7 voters, preference onx is unconditional,
we may consider first the projections of the 7 preference relations onDom(x), namely
〈P x

1 , . . . , P x
n 〉, and start by applyingr to these, which results in a value ofx, denoted

by x∗, called thex-winner2. The value ofx is now fixed tox∗; then, let us consider
the projections of the 7 preference relations onDom(y), givenx = x∗; denote these by
〈P y|x=x∗

1 , . . . , P
y|x=x∗
n 〉; we then applyr to these, which results in a value ofy, denoted by

y∗, called the conditionaly-winner givenx = x∗. Thesequential winner is now obtained
by combining thex-winner and the conditionaly-winner givenx = x∗, namely(x∗, y∗).

Example: letr be the plurality rule (where the plurailty score of a candidate is the
number of voters ranking this candidate in the highest position, the plurality winners then
being those maximizing the plurality score). Because 4 agents out of 7 unconditionally
preferx over x̄, we getx∗ = x; then, givenx = x, 5 agents out of 7 prefer̄y to y, which
leads toy∗ = x. Therefore, the sequential plurality winner is(x, y). However, the direct
plurality winner is(x̄, y).

2In case of ties, we therefore need a deterministic tiebreaking mechanism, for instance using a preder-
minate order over the possible values ofx).
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The above example shows that whenr is the plurality rule, sequential winners (ob-
tained by sequential applications ofr) and direct winners (obtained by a direct application
of r) do not always coincide, which is an argument against the use of the sequential ap-
proach for such a voting rule. Note that more generally, this failure of sequential winners
to coincide with direct winners holds for any scoring rule.

A more general question is the following: are there deterministic rulesr, does the
sequential winner (obtained by sequential applications ofr) and the direct winner (ob-
tained by a direct application ofr) coincide? We do not know any positive answer to this
question in the general case. We first show a second negative result, and lastly we give
a restriction on preferences under which the answer to the above question turns out to be
positive.

Here comes the second negative result. A Condorcet winner is a candidate preferred
to any other candidate by a majority of voters. The notion of Condorcet winner natu-
rally leads to the determination ofsequential Condorcet winners: let X andY being two
subsets of the set of variables; then

• if preference onX is unconditional, then�x ∈ DX is aX-Condorcet winner if and
only if

(∀�y ∈ DX̄)∀�x′ ∈ DX #{i, �x�y �i �x′�y} >
N

2

• if and preference onY givenX is unconditional, then�y ∈ DY is aY -Condorcet
winner givenX = �x if and only if

(∀�z ∈ D ¯X∪Y )∀�y′ ∈ DX #{i, �x�y�z �i �x�y′�z} >
N

2

The sequential Condorcet winner is then the sequential combination of “local” Con-
dorcet winners. The question is now, is a sequential Condorcet winner a direct Condorcet
winner and vice versa? The following example shows that this fails.

2 voters 1 voter 2 voters

xȳ
x̄ȳ
xy
x̄y

xy
xȳ
x̄y
x̄ȳ

x̄y
x̄ȳ
xy
xȳ

x andy are preferentially independent, therefore the sequential Condorcet winner is
the mere combination of the local Condorcet winner for{x} and the local Condorcet win-
ner for{y}, provided that both exist. Since 3 voters unconditionally preferx to x̄, x is
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the {x}-Condorcet winner; similarly, 3 voters unconditionally prefery to ȳ and is the
{y}-Condorcet winner. Therefore,xy is the sequential Condorcet winner –but xy is not
a direct Condorcet winner, because four voters out of seven preferx̄ȳ to xy.

We now give a condition on the preference relations such that direct and sequen-
tial Condorcet winners coincide. We say that a preference relation onDom(x1 × . . . ×
Dom(xp} is lexicographic if and only if there is a total ordering of the variables, say with-
out loss of generalityx1 � x2 � . . . � xp, andp local preference relations onDom(x1),
. . ., Dom(xp), such thatx = (x1, . . . , xp) is preferred toy = (y1, . . . , yp) iff there is an
index j ≤ p such that (a) for everyk ≤ j, xk ∼ yk and (b)xj � yj. Now, assume
that all agents have lexicographic preference relations (with the same variable ordering).
(v1, . . . , vp) ∈ D1 × . . . Dp is a sequential Condorcet winner iff

• v1 ∈ D1 : {x1}-Condorcet winner;

• v2 ∈ D2 : {x2}-Condorcet winner givenx1 = v1;

• . . .

• vp ∈ Dp : {xp}-CW givenx1 = v1, . . . ,xp−1 = vp−1

Thenwe have the following positive result: if there exists a sequential Condorcet win-
ner(v1, . . . , vp) then(v1, . . . , vp) is also the (direct) Condorcet winner for the given pro-
file, andvice versa.

Now, the restriction on lexicographic preference relation is a strong one. Thie leads
to the following questions and problems:

Question 1 are there voting rule such that sequential winners and direct winners always
coincide?

Problem 2 find reasonable restrictions on the preference relations so that the answer to
Question 1 becomes positive;

Problem 3 find good algorithms (using the preferential structure) for determining win-
ners of a combinatorial vote problem.
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