552 research outputs found

    Computer arithmetic based on the Continuous Valued Number System

    Get PDF

    An Analog VLSI Deep Machine Learning Implementation

    Get PDF
    Machine learning systems provide automated data processing and see a wide range of applications. Direct processing of raw high-dimensional data such as images and video by machine learning systems is impractical both due to prohibitive power consumption and the “curse of dimensionality,” which makes learning tasks exponentially more difficult as dimension increases. Deep machine learning (DML) mimics the hierarchical presentation of information in the human brain to achieve robust automated feature extraction, reducing the dimension of such data. However, the computational complexity of DML systems limits large-scale implementations in standard digital computers. Custom analog signal processing (ASP) can yield much higher energy efficiency than digital signal processing (DSP), presenting means of overcoming these limitations. The purpose of this work is to develop an analog implementation of DML system. First, an analog memory is proposed as an essential component of the learning systems. It uses the charge trapped on the floating gate to store analog value in a non-volatile way. The memory is compatible with standard digital CMOS process and allows random-accessible bi-directional updates without the need for on-chip charge pump or high voltage switch. Second, architecture and circuits are developed to realize an online k-means clustering algorithm in analog signal processing. It achieves automatic recognition of underlying data pattern and online extraction of data statistical parameters. This unsupervised learning system constitutes the computation node in the deep machine learning hierarchy. Third, a 3-layer, 7-node analog deep machine learning engine is designed featuring online unsupervised trainability and non-volatile floating-gate analog storage. It utilizes massively parallel reconfigurable current-mode analog architecture to realize efficient computation. And algorithm-level feedback is leveraged to provide robustness to circuit imperfections in analog signal processing. At a processing speed of 8300 input vectors per second, it achieves 1×1012 operation per second per Watt of peak energy efficiency. In addition, an ultra-low-power tunable bump circuit is presented to provide similarity measures in analog signal processing. It incorporates a novel wide-input-range tunable pseudo-differential transconductor. The circuit demonstrates tunability of bump center, width and height with a power consumption significantly lower than previous works

    Providing Bi-Directional, Analog, and Differential Signal Transmission Capability to an Electronic Prototyping Platform

    Get PDF
    RÉSUMÉ Les réseaux d’interconnexions programmables (FPIN) se retrouvent largement utilisés dans plusieurs structures bien connues telles que les FPGA, les plateformes de prototypages ainsi que dans plusieurs architectures de réseaux intégrés. Le but de la présente thèse est d’améliorer la structure actuelle des FPIN ainsi que les plateformes de prototypages se basant sur cette technologie afin d’y intégrer d’autres fonctionnalités telles que des interfaces pour les signaux bidirectionnels de type drain-ouvert, les signaux analogiques ou bien les signaux différentiels. Cette thèse présente trois différents circuits qui ont été implémentés dans cette optique. Les interconnexions de ces trois circuits peuvent être reconfigurées pour supporter une interface de type bidirectionnelle drain-ouvert, de type analogique ou différentielle, le tout au travers un réseau d’interconnexions configurable numérique unidirectionnel, ou FPIN. Le besoin d’une telle interface fut tout d’abord envisagé dans le contexte du WaferBoard, qui consiste en une plateforme reconfigurable de prototypage pour les systèmes électroniques. Le cœur de ce WaferBoard consiste en un circuit intégré à l’échelle d’une tranche entière de silicium, qui est constitué d’une matrice bidimensionnelle de cellules. Une large partie de la surface disponible s’en retrouve déjà utilisée par des plots configurables (CIO), l’aiguillage des multiplexeurs du FPIN, des registres dédiés à la chaine JTAG et d’autres circuiteries de contrôle. De ce fait, il en devient primordial que les interfaces bidirectionnelle drain-ouvert, analogique et différentielle soit les plus compactes possibles. Puisque ces circuits d’interfaces seront dédiés pour une plateforme utilisant une tranche de silicium (wafer-scale), l’architecture de ces derniers doit être robuste en regard des variations de procédé, de la température ainsi que de l’alimentation. La première contribution de cette thèse est l’élaboration et la conception d’une interface de type drain-ouvert ainsi que de son support d’interconnexion bidirectionnel utilisant un réseau numérique unidirectionnel à signalisation asymétrique (à l’opposé de la signalisation différentielle) FPIN. L’interface proposée peut interconnecter plusieurs nœuds d’un FPIN. À l’aide de cette interface, le réseau d’interconnexions peut imiter le comportement et le fonctionnement d’un bus de type drain-ouvert (ou collecteur-ouvert) (tel qu’utilisé par le protocole I2C). De ce fait, plusieurs plots de type drain-ouvert provenant d’une multitude de circuits-intégrés (ICs) différents peuvent y être connectés au travers le FPIN à l’aide de l’interface proposée.----------ABSTRACT Field programmable interconnection networks (FPINs) are ubiquitously found embedded in field-programmable gate arrays (FPGAs), in prototyping platforms, and in many Network-on-Chip architectures. The aim of this research was to augment the application domains of current FPIN-based prototyping and emulation platforms by supporting open-drain bi-directional signals, analog signals or differential signals. Three interface circuits have been elaborated and developed to that end in this thesis. These three interface circuits can support reconfigurable routing of open-drain bi-directional, analog and differential signals through an uni-directional digital FPIN. The need for such interface circuits were originally conceived in the context of the WaferBoard, a system prototyping platform. The core of the WaferBoard is a wafer-scale IC that is composed of a two dimensional array of unit cells. Available area was already over-utilized by the configurable I/O (CIO) buffers, crossbar multiplexers of the FPIN, registers of the JTAG chain, and other control circuits. Thus, the interface circuits for open-drain bi-directional, analog and differential signaling had to be made very compact. As the implementation of these interface circuits target “wafer-scale” integration, these interface circuits had to be very robust to parametric variations (process, temperature, power supply). The first contribution of this thesis is the elaboration and development of an open-drain interface circuit and a corresponding interconnect topology to support bi-directional communication through the uni-directional digital FPIN of prototyping platforms. The proposed interface can interconnect multiple nodes in a FPIN. With that interface, the interconnection network imitates the behavior of open-drain (or open-collector) buses (e.g., those following the I2C protocol). Thus, multiple open-drain I/Os from external integrated circuits (ICs) can be connected together through the FPIN by the proposed interface circuit. The interface that has been fabricated in a 0.13 µm CMOS technology takes 65 µm × 22 µm per pin. Test results show that several instances of this interface can be interconnected through the proposed interconnect topology
    corecore