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Abstract 

Machine learning systems provide automated data processing and see a wide range of 

applications. Direct processing of raw high-dimensional data such as images and videos by 

machine learning systems is impractical both due to prohibitive power consumption and the 

“curse of dimensionality,” which makes learning tasks exponentially more difficult as dimension 

increases. Deep machine learning (DML) mimics the hierarchical presentation of information in 

the human brain to achieve robust automated feature extraction, reducing the dimension of such 

data. However, the computational complexity of DML systems limits large-scale 

implementations in standard digital computers. Custom analog signal processing (ASP) can yield 

much higher energy efficiency than digital signal processing (DSP), presenting a means of 

overcoming these limitations. 

The purpose of this work is to develop an analog implementation of DML system. 

First, an analog memory is proposed as an essential component of the learning systems.  It 

uses the charge trapped on the floating gate to store analog value in a non-volatile way. The 

memory is compatible with standard digital CMOS process and allows random-accessible bi-

directional updates without the need for on-chip charge pump or high voltage switch. 

Second, architecture and circuits are developed to realize an online k-means clustering 

algorithm in analog signal processing. It achieves automatic recognition of underlying data 

pattern and online extraction of data statistical parameters. This unsupervised learning system 

constitutes the computation node in the deep machine learning hierarchy. 

Third, a 3-layer, 7-node analog deep machine learning engine is designed featuring online 

unsupervised trainability and non-volatile floating-gate analog storage. It utilizes massively 

parallel reconfigurable current-mode analog architecture to realize efficient computation. And 
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algorithm-level feedback is leveraged to provide robustness to circuit imperfections in analog 

signal processing. At a processing speed of 8300 input vectors per second, it achieves 1×10
12

 

operation per second per Watt of peak energy efficiency. 

In addition, an ultra-low-power tunable bump circuit is presented to provide similarity 

measures in analog signal processing. It incorporates a novel wide-input-range tunable pseudo-

differential transconductor. The circuit demonstrates tunability of bump center, width and height 

with a power consumption significantly lower than previous works. 

 

Keywords: analog signal processing, deep machine learning, floating gate memory, current 

mode computation, k-means clustering, power efficiency 
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Chapter 1 Introduction 

This chapter introduces the background and motivation of this work. It first discusses some 

basic ideas of machine learning and deep machine learning systems. Then the advantages of 

analog signal processing are analyzed, justifying the purpose of the analog deep machine 

learning implementation. The structure and organization of the dissertation is given in the last 

part. 

1.1 Introduction to Machine Learning 

1.1.1 Machine Learning: Concepts and Applications 

Learning covers a broad range of activity and process and therefore is difficult to define 

precisely. In general, it involves acquiring new, or modifying and reinforcing existing 

knowledge, behaviors, skills, values, or preferences and may involve synthesizing different types 

of information [1]. Learning is first studied as a subject of psychologists and zoologists on 

humans and animals. And it is arguable that many techniques in machine learning are derived 

from the learning process of human or animals.  

Machine learning is generally concerned with a machine that automatically changes its 

structure, program, or data based on its inputs or in response to external information to improve 

its performance. The “changes” might be either enhancements to already performing systems or 

synthesis of new functions or systems.  

In the past, machines are programmed to perform a certain task in the first place. The 

reasons behind the need for a “learning machine” are manifold.  
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First, the environments in which the machines are used are often hard to define at the time of 

programming and changes over time. Machine learning methods can be used for on-the-job 

improvement of existing design and adaptation to a changing environment, therefore reduce the 

need for constant redesign.  

Second, machine learning provides means of automated data analysis, which is especially 

important in the face of the deluge of data in our era. It is possible that hidden among large piles 

of data are important relationships and correlations. For example, Wal-Mart handles more than 

1M transactions per hour and has databases containing more than 2.5 petabytes (2.5×10
15

) of 

information [2]. From it, a machine learning algorithm can extract purchase patterns of people 

from different demographics profiles and make customized buying recommendation to them [3]. 

Machine learning methods used to extract these relationships are called “data mining”. 

Another reason is that new knowledge about tasks is constantly being discovered. There is a 

constant stream of new events in the world and it is impractical to continuously redesign the 

systems to accommodate new knowledge. However, machine learning methods are able to keep 

track of these new trends. Since the methods are data-driven, the learning-based algorithms are 

often more accurate than the stationary algorithm when facing the ever-changing world. 

Apart from the above mentioned reasons, there are many more reasons why machine 

learning has become a heated area of research in recent years. Moreover, it is not merely a 

research topic, but has penetrated to the people’s lives and become a powerful and indispensable 

tool in a wide variety of applications: 

• To predict if patient will respond to particular drug/therapy based on microarray 

profiles in bioinformatics 

• To categorize text to filter out spam emails. 
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• In banking and credit card institution to detect fraud. 

• Optical character recognition 

• Machine vision, face detection and recognition 

• Natural language processing in automatic translation 

• Market segmentation 

• Robot control 

• Classification of stars and galaxies 

• Weather or stock market price forecast 

• Electric power load prediction 

1.1.2 Three Types of Machine Learning 

Machine learning is usually divided into three main types [2].  

In the supervised learning approach, an output or label is given to each input in the training 

data set, and the machine learning system learns the mapping from inputs to outputs. The 

simplest training input can be a multi-dimensional vector of numbers, representing the feature of 

the data being learned. In general, however, the input can have a complex structure, representing 

an image, a sentence, a time sequence, etc. The output of the system can be either a categorical 

label or a real-valued variable. When the output is a label, the problem is referred to as 

classification or pattern recognition. And when the output is a real-valued scalar, the problem is 

called regression. 

The second type of machine learning is the unsupervised learning, where only the inputs are 

given and the learning system finds underlying patterns in the data. The problem of unsupervised 

learning is less well-defined compared to supervised learning, because the system is free to look 
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for any patterns, and there is no obvious error metric to correct the current perception. However, 

it is arguably more typical of human and animal learning, because we got most of our knowledge 

without being told what the right answers are. Unsupervised learning is also more widely 

applicable because it does not require a human expert to manually label the data. 

There is a third type of machine learning, known as reinforcement learning. The machine 

learns how to act or behave based on occasional external signals. In some applications, the 

output of the system is a sequence of actions. The machine is given occasional reward or 

punishment signals based on the goodness of the actions, and the goal is to learn how to act or 

behave to maximize the award and minimize the punishment. Reinforced learning is employed in 

applications where a single move is not so important as the rule or policy of the behavior, for 

example, game playing or robot navigating. 

1.1.3 DeSTIN - A Deep Learning Architecture 

1.1.3.1 The Curse of Dimensionality 

A machine learning system usually processes observations in a multi-dimensional space. 

When the dimension of the observations is large, such as that from an image or video, a 

phenomenon called “curse of dimensionality” [4] arises. This phenomenon stems from the fact 

that as the dimensionality increases, the volume of the space increases exponentially and as a 

result, the available data become sparse. This sparsity reduces the predictive power of machine 

learning systems. In order to obtain a statistical sound and reliable result, the amount of data and 

computational power needed to support the result often grows exponentially with the 

dimensionality. 
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1.1.3.2 Deep Machine Learning 

When dealing with high dimensional data such as images or videos, it is often necessary to 

pre-process the data to reduce its dimensionality to what can be efficiently processed, while still 

preserving the “essence” of the data. Such dimensionality reduction schemes are often referred to 

as feature extraction techniques.  

The most effective feature extraction engine we know might be our brain. The human brain 

can process information with an efficiency and robustness that no machine can compare with. 

They are exposed to a sea of sensory data every second and able to capture the critical aspects of 

them in a way that allows for future use in a concise manner. Therefore, mimicking the 

performance of the human brain has been a core goal and challenge in machine learning 

research. Recent neuroscience findings have provided insight into information representation in 

the human brain. One of the key findings has been that the sensory signals propagate through a 

complex hierarchy of modules that, over time, learn to represent observations based on the 

regularities they exhibit. This discovery motivated the emergence of the subfield of deep 

machine learning, which focuses on computational models for information representation that 

exhibit similar characteristics to that of the neocortex [5]. 
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1.1.3.3 Deep Spatiotemporal Inference Network (DeSTIN) 

The deep learning architecture adopted in this work is based on the Deep Spatiotemporal 

Inference Network (DeSTIN) architecture, first introduced in [6]. DeSTIN consists of multiple 

instantiations of identical functional unit called cortical circuits (nodes); each node is a 

parameterized models which learns by means of an unsupervised learning process. These nodes 

are arranged in layers and each node is assigned children nodes from the layer below and a 

parent node from the layer above as shown in Figure 1-1. Nodes at the lowest layer receive raw 

sensory data while nodes at all other layers receive the belief states, or outputs, from their 

children nodes as input. Each node attempts to capture the salient spatiotemporal regularities 

contained in its input and continuously update a belief state meant to characterize the input and 

the sequences thereof. The beliefs formed throughout the architecture can then be used as rich 

 

Figure 1-1: The DeSTIN hierarchical architecture [6]. 
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features for a classier that can be trained using supervised learning. Beliefs extracted from the 

lower layers will characterize local features and beliefs from higher layers will characterize 

global features. Thus, DeSTIN can be viewed as an unsupervised feature extraction engine that 

forms features from data based on regularities it observes.  In this framework, a common cortical 

circuit populates the entire hierarchy, and each of these nodes operates independently and in 

parallel to all other nodes. This solution is not constrained to a layer-by-layer training procedure, 

making it highly attractive for implementation on parallel processing platforms. Its simplicity 

and repetitive structure facilitates parallel processing platforms and straightforward training [5]. 

1.2 Analog Deep Machine Learning Engine - the Motivation 

Deep layered architectures offer excellent performance attributes. However, the computation 

requirements involved grow dramatically as the dimensionality of the input space increases. 

Compositional deep layered architectures compose multiple instantiations of a common cell and 

the computation is performed concurrently. In CPU based platforms, however, processing is 

performed sequentially, thereby greatly increasing execution time [7]. Therefore, many recent 

efforts research focus on implementing DML systems on GPUs. While GPUs have advantages 

over CPU-based realizations in computation time and cost/performance ratio, they are power 

hungry, making such schemes impractical in energy-constraint environments and limiting the 

scale of these systems.  

Custom analog circuitry presents a means of overcoming the limitation of digital VLSI 

technology. By fully leveraging the computational power of transistors, exploiting the inherent 

tolerance to inaccuracies of the learning algorithm and performing computation in a slow but 

massively parallel fashion, the proposed analog deep machine learning engine promises to 
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largely improve the power efficiency of digital DML systems to take full advantage the scaling 

potential of DeSTIN. 

1.2.1 Analog versus Digital - the Neuromorphic Arguments 

It is meaningful to compare the energy efficiency between the brain and the digital 

computer.  The human brain is estimated to perform roughly 10
15

 synapse operations at about 

10 impulse/sec. The total energy consumption of our brain is about 25 watts [8]. This yields an 

energy consumption of about 10
15

 operation per joule. Today’s super computer can perform 8.2 

billion megaflops with a power consumption of 9.9 million watts, enough to power 10000 houses 

[9]. Its energy efficiency is thus about 8.3×10
9
 operation per joule, more than 6 orders of 

magnitude lower than the human brain.  

The great discrepancy in energy efficiencies of neurobiology and electronics suggests that 

there are fundamental differences in the ways they do computation. One significant difference is 

the state variables they use. Digital computers employ only two state variables while ignoring all 

the values in the middle to achieve noise immunity at the expense of dynamic range. The 

neurons, on the other hand, present and process information in analog domain: the firing rates are 

continuous variables; and each neuron resembles a lossy integrator with the leakage controlled 

by fluctuating number of ion channels. Analog signaling allows a single wire to carry multi-bit 

information, therefore largely increasing power and area efficiency. It also interfaces naturally 

with the analog computation primitives, as discussed below. 

The other important trait leading to enormous efficiency of neurological systems is their 

clever exploitation of the physics they are built with. The nervous system does basic aggregation 

of information using the conservation of charge. Kirchhoff’s current law implements current 

summing, and this current is integrated with respect to the time by the node capacitance. In the 
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neuron tissue, ions are in thermal equilibrium and their energies are Boltzmann distributed. If an 

energy barrier exists and is modulated with the applied voltage, the current through the barrier 

will be an exponential function of that applied voltage [10]. This principle is used to create active 

devices and compute complex nonlinear functions in neural computation. The principle of 

operation of the transistors in the integrated circuit can be surprisingly similar to that of the 

nervous operation: in weak inversion, the energy barrier for the carrier to travel from source to 

drain is modulated by the gate voltage; therefore the drain current is exponentially dependent on 

the gate voltage. However, digital computers completely disregard these inherent computation 

primitives in the device physics, and only use two extremes of the operation points: on and off 

states, therefore represent the information with 0 or 1 only. This also confines us to a set of very 

limited elementary operations: NOT, NOR, OR or their equivalences. This is in contrast with 

how the neuron does computation and can cause a factor of 10
4
 efficiency penalty [10]. Analog 

circuits provide a means to reclaim this efficiency loss: by exploiting the computational 

primitives inherent in the device and physics like our brains do, operations can be naturally 

carried out with much higher efficiency. 

The scaling of CMOS technology reduces the power of digital systems. However, this 

scaling trend is slowing down and seeing its end due to physical limitations such as the thickness 

of gate oxide [11]. In addition, the power in digital system does not scale as fast as the feature 

size due to the saturation of threshold and supply voltage scaling in order to keep down 

subthreshold leakage [12]. On the other hand, analog system can also benefit from the 

technology scaling. The improved subthreshold slop in FinFET improves the transconductance 

efficiency in weak inversion, and improves the computation efficiency [13]. And the reduced 

wiring parasitic capacitance improves computation throughput. 
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1.2.2 Analog Advantages  

Analog signal processing makes use of the physics of the devices: physical relations of 

transistors, capacitors, resistors, Kirchhoff’s current and voltage laws and so on. It also 

represents the information with multi-bit encoding. Therefore it can be far more efficient than 

digital signal processing. For example, addition of two numbers takes only one wire in analog 

circuit by using Kirchhoff’s current law, whereas it takes about 240 transistors in static CMOS 

digital circuits to implement an 8-bit adder. Similarly, an 8-bit multiplication in the analog 

domain using current-mode operation takes 4 to 8 transistors, whereas a parallel 8-bit digital 

multiplier has approximately 3000 transistors [14]. Another example is the bump circuit, shown 

in Figure 1-2, which computes the derivative of tanh(·). The bump circuit simultaneously 

provides a measure of similarity between two inputs and the tanh(·) of their difference. The 

bump function can also be used as a probability distribution, as it peaks with zero difference and 

saturates to zero for large differences. The bump circuit illustrates the power advantage that 

analog computation holds over digital methods. A bump circuit, biased at 200 fA, can evaluate 

the similarity between a stored value at about 200 observations per second, according to 

simulations using 0.24 µm transistors. A single inverter consumes about four times that much 

when switching at 200 Hz, and about half that much statically, without switching at all. To 

perform a comparable computation digitally would require dozens more transistors and one to 

two orders of magnitude more current [15]. 
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1.2.3 Inaccuracies in Analog Computation 

However, the analog computation does have some disadvantages when compared to digital, 

and they are caused by the very same reasons that make it more efficient. The analog systems are 

much more sensitive to noise and offset than digital systems. While the digital systems use 

restoring logic at every computational step to obtain good noise immunity, the use of continuous 

signal variables prevents analog systems from having any restoring mechanism. Thus, the noise 

accumulation in analog systems becomes severe as the system scales up. It is found in [14] that 

the cost for precision for analog system increases faster than digital: the power consumption is a 

polynomial function of the required signal to noise ratio (SNR) in analog system; in digital 

system, however, it is a logarithm function. Therefore, analog computation is cheaper at low 

values of accuracy but more expensive at high accuracy.  

However, in certain cases the feedback inherent to the learning algorithms naturally 

compensates for inaccuracies introduced by the analog circuits. Similarly, this lack of accuracy 

in analog signal processing can also be found in neural computers. The brain is known to be built 

from noisy, inaccurate neurons. For example, many behavioral responses, such as a fly making a 

course correction after a disturbance, occur over a period of around 30 ms [16]. Neural signals 

   

Figure 1-2: Bump circuit, which computes tanh(V1−V2) and its derivative simultaneously [15]. 
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integrated over comparable time windows typically exhibit a signal-noise ratio (SNR) in the 

range of 1-10 [16], [17], [18], much lower than what can be easily achieved in moderate 

precision analog electronics. Comparisons between the noise and power tradeoffs in analog and 

digital circuits and biological systems have also been explored in [14]. The low SNR and 

outstanding power efficiency of neural systems suggests that relaxed accuracy requirements for 

electronic computational primitives could allow aggressive optimization for area and power 

consumption.  

1.2.4 Analog versus Digital – Parallel Computation 

The power efficiency of a computational system can be expressed by its delay-power 

product. The delay-power product of a single stage can be approximated to be 

 /
d D DD P D m

t P V C I g⋅ =  (1.1) 

where VDD is the supply voltage, CP is the equivalent parasitic capacitances associated with the 

internal nodes, ID is the current consumption, and the gm is the equivalent trans-conductance of 

the transistors. The VDD and CP can be scaled down with the technology, and ID/ gm is minimized 

when the transistors are biased in weak inversion. Therefore (1.1) indicates that an efficient 

computational system can be built by slow but massively parallel computational elements biased 

in weak inversion (or sub-threshold).  

Subthreshold digital designs are difficult in that the high susceptibility to process variability 

in subthreshold region causes timing errors [19]. For high performance applications low-

threshold devices must be used and leakage becomes a significant problem [20]. In a massively 

paralleled system, the subthreshold leakage can consume a large portion of total power without 

any contribution to the computation throughput. 
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The error in analog systems behaves more benignly than that in digital systems: an error in 

digital causes the complete loss of information (unless error correction is implemented), while 

the errors in analog has much smaller magnitude and cause graceful degradation of performance 

and if static, can be compensated by the feedback inherent to the learning algorithms. Moreover, 

the leakage is no longer a problem: the subthreshold channel current in analog circuit is used to 

carry information and perform operation, instead of being deemed as wasted in digital computer. 

1.3 Original Contributions 

In this work, an analog signal processing system implementing DeSTIN, a state-of-art deep 

machine learning algorithm is proposed. The original contribution of this work is summarized 

below: 

• Characterized a floating gate device in 0.13 µm standard digital CMOS process. 

• Designed and tested a novel floating gate analog memory with random-accessible 

bidirectional sigmoid updates in 0.13 µm standard digital CMOS. 

• Proposed novel architecture and circuits to realize an analog online k-means clustering 

circuit with non-volatile storage, first reported in the literature. 

• Designed an analog deep machine learning engine to implement DeSTIN, first 

reported in the literature. Proposed techniques to greatly increase power and area 

efficiency. 

• Presented an ultra-low-power tunable bump circuit to provide similarity measures 

widely applicable in analog signal processing, incorporating a novel wide-input-range 

tunable pseudo-differential transconductor. 
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1.4 Dissertation Organization 

The remaining chapters of this proposal will cover the design of components, circuits and 

architectures to implement the analog deep machine learning engine, in a bottom-up way.  

Chapter 2 provides the implementation of the analog non-volatile memory, which is an 

essential component in the learning system.  

Chapter 3 describes the design of an analog k-means clustering circuit, the key building 

block in the deep machine learning engine.  

Chapter 4 presents the proposed analog deep machine learning engine, including its 

architecture and circuit designs. And the techniques to greatly improve the energy and area 

efficiency are presented.  

Chapter 5 develops the ultra-low-power tunable bump circuit, which can have wide 

application in analog signal processing systems. 

Chapter 6 concludes the dissertation and proposes potential future works. 

 



15 

 

Chapter 2 A Floating-Gate Analog Memory with 

Random-Accessible Bidirectional Sigmoid Updates 

Memory is an essential component in a computation system. Modern digital memory can 

afford very high read/write speed and density [21].  However, most digital memories are volatile: 

DRAM requires constant refreshing, and SRAM requires a minimum VDD for state retention. 

This volatility precludes their use in intermittently powered devices such as those utilizing 

harvested energy.  

Non-volatile digital memories such as flash memory [22] require special process. FRAM 

(Ferroelectric RAM) is reported to be embeddable using two additional mask steps during 

conventional CMOS process [23], and has been proven to be commercially viable [24]. Recent 

researches in this area have proposed other types of memory such as ReRAM (Resistive RAM) 

[25], and MRAM (Magnetoresistive RAM) [26]. However, these technologies are still new and 

not commercially available, and all require special processing. 

Another major challenge using digital memory in analog signal processing systems is that 

A/D/A conversion is needed to interface the memories to other circuits. This is especially 

problematic in distributed-memory architectures, where the A/D/A cannot be shared among the 

memory cells, and this leads to prohibitive area and power overhead. 

In this work, I propose a floating-gate current-output analog memory which interfaces 

naturally with the current-mode analog computation system, and allows random-accessible 

control of bidirectional updates, described in [27]. The update scheme avoids the use of charge 

pump, minimizes interconnection and pin count, and is compatible with standard digital process. 

The update rule is sigmoid-shaped, which is a smooth, monotonic and bounded function. 

Implemented in a commercially available 0.13µm single-poly digital CMOS process using thick-
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oxide IO FETs, the memory cell achieves small area and low power consumption, and is suitable 

for integration into systems that exploit the high-density digital logic available in modern CMOS 

technology. 

2.1 Overview of Floating Gate Device 

2.1.1 Principles of Operation 

Floating gate (FG) device utilizes the charge trapped on the isolated gate to store analog or 

digital values in a non-volatile way. The cross-section of a typical FG NFET in a bulk CMOS 

process is shown in Figure 2-1 [28]; note that a double-poly process is used to obtain the control 

gate. The earliest research on this device can be dated back to the 1960's [29], and the modern 

EEPROM and Flash memory are both based on FG devices. Due to the excellent insulation from 

the thermally-grown SiO2 surrounding the floating gate, the electron trapped on the gate can 

have a retention time of more than 10 years [30]. And the memory can be programmed by two 

mechanisms: Fowler–Nordheim tunneling and hot-electron injection. 

 

Figure 2-1: Cross-section of a typical FG NFET in a bulk CMOS process [28]. 
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2.1.2 Fowler–Nordheim Tunneling 

Fowler–Nordheim (FN) tunneling is used to remove electrons from the floating gate. The 

potential difference applied across the poly-SiO2-Si structure reduces the effective thickness of 

the gate-oxide barrier, facilitating electron tunneling from the floating gate, through the SiO2 

barrier, into the oxide conduction band. This is illustrated by Figure 2-2, showing the energy 

band diagrams of the Si/SiO2 interface with and without applied field [31]. At sufficiently high 

field, the width of the barrier becomes small enough for electrons to tunnel through the silicon 

conduction band into the oxide conduction band. This phenomenon is first described by Fowler 

and Nordheim in electrons tunneling through the vacuum barrier, and the FN-tunneling is found 

in SiO2 in 1969 [32].  

2.1.3 Hot Electron Injection 

Hot electron injection is used to add electrons to the floating gate. In a PFET, the carrier 

holes are accelerated by the lateral field applied between its drain and source. Near the drain 

 

Figure 2-2: Energy band diagram of Si/SiO2 interface (a) with and (b) without applied field [31]. 
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terminal, the kinetic energy of the holes is large enough to liberate electron-hole pairs (ehp) 

when they collide with the silicon lattice. Electrons scattered upwards with energy larger than 

3.2 eV will be able to go over the Si–SiO2 work-function barrier into the oxide conduction band. 

These electrons are then swept over to the floating gate by the oxide electric field. This process is 

illustrated in Figure 2-3. 

2.2 Literature Review on Floating Gate Analog Memory 

Although FG devices are usually associated with digital memories such as EEPROM or 

Flash memory to store binary values, they are intrinsically an analog device, because the charge 

on the FG can be modified in a continuous way. A floating-gate analog memory uses the charge 

trapped on the isolated gate to store analog variables in a non-volatile way. It has been widely 

used in analog reconfigurable, adaptive and neuromorphic systems, such as electronic 

potentiometer [33], precision voltage reference [34], offset-trimmed opamp [30], pattern 

classifier [35], silicon learning networks [36], and adaptive filter [37].  

Without direct electrical connections, the stored value of the memory is updated by 

depositing electrons to the floating gate by hot-electron injection, or removing them by Fowler–

Nordheim tunneling. Compared to injection, tunneling selectivity is harder to obtain because it 

 

Figure 2-3: Hot electron injection in PFET. 
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often involves controlling a high voltage (HV) on chip. Therefore, many previous works [35], 

[36] use tunneling as the global erase, and injection to program individual memory to its target 

value. However, in an online adaptive system as this work, a bidirectional update is preferable 

because the stored values need to vary with the inputs. Previous works have proposed 

approaches to achieve selective tunneling. In [38], the selected memory is tunneled by pulling up 

the tunneling voltage and pulling down the control gate voltage simultaneously. This approach 

requires a number of tunneling control pins equal to the number of rows in the memory array, 

which is not desirable for large-scale systems. In [33], a HV switch is built with lightly-doped-

drain nFETs. This device is not compatible with standard digital processes and consumes static 

power because it cannot be completely turned off. In [37], a charge pump is used to generate a 

local HV for the selected memory. A simple charge pump provides limited voltage boost, while a 

more complex one consumes larger area and/or requires multi-phase clocks.  

Another important performance metric of analog memory is the update rule. The dynamic of 

the single-transistor FG memory [38] leads to exponential and value-dependent update, which, in 

general, affects the stability of the adaptation [37]. A linear update can be obtained by fixing the 

FG node voltage during update with a capacitive feedback loop around a differential [33] or 

single-ended amplifier [37]. 
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2.3 Proposed Floating Gate Analog Memory 

2.3.1 Floating-Gate Analog Memory Cell 

2.3.1.1 Circuit Description 

The schematic of the proposed FG analog memory cell is shown in Figure 2-4. The gate of 

MP1-MP3 and the top plate of Cf form the FG. The stored charge can be modified by the 

injection transistor MP2 and the tunneling transistor MP3. The two MUXs at the sources of MP1 

and MP2 control the tunneling and injection of the FG, which will be discussed later. The 

transconductor gm converts voltage Vout to output current Iout. Vref determines the nominal 

voltage of Vout during operation.  

The negative feedback loop comprising the inverting amplifier MP1/MN1 and Cf keeps the 

FG voltage Vfg constant, ensuring a linear update of Vout. Tunneling or injection to the FG node 

changes the charge stored in Cf, therefore changes the output of the amplifier by ∆Vout = ∆Q / Cf.  

The transconductor is implemented with a differential pair MN2/MN3 and a cascode current 

mirror MP4-MP7, depicted in Figure 2-5(a). Biased in deep sub-threshold region, the 

 

 Figure 2-4: Schematic of the proposed floating-gate analog memory cell. 
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transconductor exhibits a transfer curve resembling a tanh function, plotted in Figure 2-5(b). The 

mild nonlinearity is smooth, monotonic and bounded. From Figure 2-5(b), a ∆Vin of 0.2 V is 

enough to cause a change of Iout from 0.1IB to 0.9IB, this reduced swing requirement further 

improves the update linearity, and enables the selective tunneling. 

2.3.1.2 Floating Gate Charge Modification Modeling 

The proposed analog memory uses Fowler–Nordheim tunneling to remove the electrons 

from the FG and decrease the memory value. The tunneling current Itun can be expressed by the 

empirical model [39] as  

 

(a)      (b) 

Figure 2-5: (a) Schematic of the transconductor and (b) its transfer function. 

 

(a)      (b) 

Figure 2-6: (a) Tunneling current versus oxide voltage Vox. (b) Injection current versus drain-to-source 

voltage of the injection transistor. 
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where Vox is the voltage across the tunneling transistor gate oxide, Itun0 and Vf are process 

dependent constants determined by measurements. Figure 2-6(a) shows the measured tunneling 

current Itun versus the oxide voltage Vox, and the fitted model. 

Hot-electron injection is employed to increase the stored value of the memory. The injection 

current Iinj depends on the source current and the drain-to-source voltage of MP2. A simplified 

empirical model derived from [39] approximates Iinj as 

 
( )2

exp ,inj s

sd

I I
V

β
α

δ
=

+
  (2.2) 

where Is is the injection transistor’s source current, Vsd is the drain-to-source voltage, and α, β, δ  

are fit constants. In our memory cell, Is is set by the biasing current and the aspect ratios between 

MP1 and MP2. Figure 2-6(b) shows the measured Iinj versus Vsd, and the fitted model. 

The extracted models above can be used in the future designs as well as to improve 

programming convergence, as will be described in Section 2.3.3. 

2.3.1.3 Selective and Value-Independent Update Scheme 

The proposed tunneling scheme exploits the steep change of tunneling current with regard to 

Vox to achieve a good isolation between selected and unselected memories. The operation of this 

scheme can be described by Figure 2-7, showing the memory cell omitting components 

irrelevant to tunneling process. To show how Vox is changed, typical nodal voltages are 

annotated. The negative feedback keeps the FG voltage at 

 
, 0.4,fg SG PV Vdd V Vdd= − ≈ −   (2.3) 
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where VSG,P is the source to gate voltage of MP1. Therefore, reducing supply voltage of the 

selected memory effectively reduces Vfg and increases Vox. In our design, the power supply is 

switched from 3 V Vdd to a 1 V Vddt, resulting in isolation over 7 orders of magnitude according 

to (2.1). In practice, the leakage at lower Vox may be degraded by direct tunneling, which is a 

weaker function of the applied field [40], and parasitic coupling. Isolation of 83.54 dB is 

observed in measurement. The condition that MN1 stays in saturation during tunneling can be 

satisfied by choosing a proper Vref and using the proposed transconductor to reduce the Vout 

swing.  

Injection selectivity is achieved by switching the source voltage of the injection transistor 

MP2. The source of MP2 in the unselected memory is connected to ground while the one in the 

selected cell is connected to Vdd, enabling injection. Therefore, the injection is also selective and 

value-independent. 

 

 

 

Figure 2-7: Simplified schematics and typical nodal voltages of memory cells (a) not selected. (b) selected for 

tunneling. 
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2.3.2 Floating Gate Memory Array 

32 proposed FG analog memory cells are connected to form a memory array. They are 

organized in two dimensions and can be randomly accessed (selected) for read and write 

operations by setting both column and row inputs to high. The block diagram is shown in Figure 

2-8 with the cell symbolized. The cells are augmented by digital logics controlling their 

operation modes. The list of digital control combinations and their corresponding operation 

modes is shown in Figure 2-8.  

Once selected, a transmission gate connects the output of that cell to off-chip through 

Iout_bus for read-out during programming. The ���/�������� signal sets the direction of memory 

writing.  The magnitude of writing is controlled by the pulse width of Update signal. When a cell 

is not selected, it maintains its value and can be read or written by on-chip circuits to implement 

Selected Update Inj/tun Mode

No − − On-chip Adaptation

Yes 0 − Read

Yes 1 0 Tunneling

Yes 1 1 Injection
 

Figure 2-8: Block diagram of the FG analog memory array, and a table showing control signal settings for 

different operation modes of the cells. 
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adaptive algorithms. The proposed architecture is scalable because all signals and inter-

connections are shared among the cells, and the pin count does not increase with the size of the 

array. 

2.3.3 Measurement Results 

The proposed FG memory array has been fabricated in a 0.13µm single-poly standard digital 

CMOS process using thick-oxide IO FETs. The die micrograph is shown in Figure 2-9. Due to 

extensive metal fills in this process, details of the circuits cannot be seen. So the Virtuoso layout 

view is also presented. 

The area of a single memory cell is 35×14 µm
2
. It operates at 3 V power supply and 

 

Figure 2-9: (a) Chip micrograph of the memory array together with on-chip adaptation circuitry and (b) 

layout view of a single memory cell. 

 

 Figure 2-10: Analog memory programming accuracy of 30 linearly spaced values. 
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consumes 15 nA with an output range of 0-10 nA. The biasing current is tunable and allows the 

designer to balance between range, speed and power consumption.  

The test setup is built around a National Instruments data acquisition (DAQ) card and a host 

PC. The programming procedure is controlled by a Labview program in the host PC and based 

on the models in Section 2.3.1.2 to achieve fast convergence. The average number of iterations 

required to achieve a 0.5% error is 5-6. Figure 2-10 demonstrates 30 memory cells programmed 

to values between 1 and 9 nA. The standard deviation of programming error is 76 pA, limited by 

the external circuits and equipment, indicating a 7-bit programming resolution. The memory 

output noise is 20.5 pArms over 10 KHz bandwidth from simulation, indicating a 53.8 dB 

dynamic range.  

To show the update rule, a memory is first ramped up then ramped down with fixed pulse 

width of 1 ms. The corresponding Vout and Iout are plotted in Figure 2-11. Both injection and 

tunneling is linear to Vout, and the current output has a smooth sigmoid update rule. During the 

same test, the stored values of the other 31 unselected cells are monitored to measure the writing 

crosstalk. The crosstalk from the injection and tunneling of the selected cell to the unselected 

ones are plotted in Figure 2-12. There is no observable injection crosstalk. Tunneling crosstalk is 
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Figure 2-11: Ramping of the memory value, showing the update rules. 
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very small, comparable to the noise floor of the measurement system. By averaging the values 

among 31 cells, a 471 fA tunneling crosstalk is approximated with a 10 nA writing magnitude in 

the selected cell, corresponding to an 86.5 dB isolation. The retention of the proposed memory 

cells were tested by continuously monitoring their outputs for 2 days at room temperature. 

During these 48 hours, no observable leakage was seen after the initial relaxation period during 

which the electrons trapped in the oxide are released. This is sufficient for general adaptive and 

neuromorphic applications. The measured performance is summarized in Table I. 
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Figure 2-12: Crosstalk among the 31 unselected cells when a selected cell is injected or tunneled with a 

magnitude of 10 nA. 

 

TABLE I. PERFORMANCES SUMMARY OF THE FLOATING GATE MEMORY 

Parameter Value 

Technology 1P8M 0.13-µm CMOS 

Area 35×14 µm
2
 

Power supply 3 V 

Power consumption 

Output range 

45 nW 

0 - 10 nA 

Programming resolution 7  bits 

Dynamic range 

Programming isolation 

53.8  dB 

86.5 dB
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Chapter 3 An Analog Online Clustering Circuit in 

0.13 µm CMOS 

As described in Chapter 1, the nodes in the DML architecture learn by an unsupervised 

online clustering algorithm. In this chapter, an analog online clustering circuit is presented [41]. 

It is capable of inferring the underlying patterns and extracting the statistical parameters from the 

input vectors, as well as providing measures of similarity based on both mean and variance. 

An 8-dimension 4-centroid prototype was fabricated in a 0.13 µm standard CMOS process. 

Measurement results demonstrate vector classification at 16 kHz, and unsupervised online 

clustering at 4 kHz with a power consumption of 15 µW. 

3.1 Introduction and Literature Review of Clustering Circuit 

 This chapter describes the implementation of an analog signal processing (ASP) system 

realizing an online k-means clustering algorithm, widely-used in feature extraction, pattern 

recognition, data compression, and other applications. It infers the underlying data patterns by 

capturing the regularity of it [42]. A vector quantizer (VQ) searches a set of stored centroids 

(templates) for the one nearest to the input vector. The proposed system enhances VQ with 

online construction and adaptation of templates to yield optimal performance under changing 

input statistics. While this algorithm is expensive in digital domain, it can be realized in ASP 

with relatively low cost in terms of power and area by exploiting the inherent computational 

primitives [14]. Analog or mixed-mode VQ processors have been developed in [43], [44]. The 

lack of learning capability requires explicit programming. VQs with learning capability are 

presented in [45], [46], the centroids are stored in volatile capacitors or digital memories. The 
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non-volatile memory used in this work enables intermittent powering, and the fully analog 

operation avoids the power and area overhead of internal A/D/A conversion. 

I present a novel analog online k-means clustering circuit which performs unsupervised 

learning in real time. Parameters are stored in non-volatile analog memories compatible with 

standard digital CMOS. Confidence scores are constructed and passed to the higher hierarchical 

layers in the deep learning architecture. The architecture and circuit design are optimized for 

scalable low-power fully-autonomous computation applications.  

3.2 Architecture and Algorithm 

The architecture of the clustering circuit is shown in Figure 3-1. The signal processing is 

implemented in current mode to allow efficient arithmetic operations and wide linear range. The 

 

Figure 3-1: The architecture of the proposed analog online clustering circuit, with the details of the memory 

and distance computation cell. 
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core of the prototype is an array of memory and distance computation cells (MDCs). The 4 

columns form 4 centroids, each with 8 dimensions. The MDC consists of two analog memories 

(FGMs) and a distance computation block (D
3
). The FGM stores the centroid mean and variance, 

and is accessible and programmable from off-chip in test mode. The D
3
 block provides 3 

distance metrics between the input vector and the local centroid, necessary for different operation 

modes. Memory adaptation circuits common to each row and loser-take-all circuits common to 

each column perform memory adaptation and classification, respectively. 

The online k-means clustering algorithm is similar to that used in the training of the analog 

deep learning engine. Therefore, the details of this algorithm will be discussed in Chapter 4. 

3.3 Circuit Implementation 

3.3.1 Floating-Gate Analog Memory 

The design utilizes the proposed floating gate memory for non-volatile analog storage. A 

detailed description is presented in Chapter 2. 

3.3.2 Distance Computation (D
3
) Block 

The schematic of the D
3
 block is depicted in Figure 3-2. The output devices of the preceding 

stages are shown in grey. A1 is built with a differential pair with current mirror load and the 

comparator with cascade of single-ended amplifiers. Vs biases M8, M9 in saturation. The arrow 

indicates the translinear loop. The two output currents from preceding stages (centroid mean yij
µ
 

and input xi) are summed with opposite polarities at its input node, and then rectified by M1-M4 

and amplifier A1 to yield the unsigned output. The absolute value circuit is modified from [47]. 

Improvement is made by introducing a virtual ground using A1 to mitigate the error due to finite 
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drain resistances, and improve the speed. A comparator provides the polarity of input current, 

Sgn, used in the adaptation phase.  

In the translinear operator circuit M5-M10, M5 copies the current from the absolute value 

circuit to get the Manhattan distance |yij
µ 

- xi|, M9 forces the current into the drain of M8 by 

modulating its source voltage, and M6-8 and M10 form the translinear loop [48]. The translinear 

circuits exploits the exponential relationship between the drain current and gate to source voltage 

of subthreshold transistors to implement efficient arithmetic functions. For transistors M6-M8 

and M10 in Figure 3-2, their gate to source voltages form a loop, and according to Kirchhoff 

Voltage Law:   

 6 7 8 10 ,GS GS GS GSV V V V+ = +   (3.1) 

due to the exponential relationship (neglecting body effect for simplicity): 

 0 ,GSV

D D
I I e=   (3.2) 

where ID0 is the pre-exponential constant, and assuming that M6-8 and M10 are matched, the 

drain current of M10 is given by 

 2

, 10 , 6 , 8 ,

2

8
( .// )

ij id M d M d M d M
I y xI I Iµ== −    (3.3) 

 

Figure 3-2: The schematic of the D
3
 block. 
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The Euclidean distance dij
Euc

 can be obtained by supplying M8 with a unit current Iunit, and 

the Mahalanobis distance dij
Mah

 realized by connecting the variance memory output yij
var

 to M8.  

3.3.3 Time-Domain Loser-Take-All (TD-LTA) Circuit 

The LTA circuit receives the Euclidean distances dj
Euc

, and searches for the centroid with th 

smallest distance. It consists of 4 LTA cells interconnected as shown in Figure 3-3 (a). The LTA 

cell shown in Figure 3-3(b) operates in time domain and exploits the dense digital blocks in 

modern process. The typical timing diagram of the “loser” and a “non-loser” cell is plotted in 

Figure 3-3 (c), where the signals in the loser cell is suffixed with /L, and non-loser cell with /NL. 

The capacitor Cp is initially precharged to Vdd, and is discharged by the input current when Start 

goes high (t0).  For the loser cell, the threshold crossing of the comparator (t2) is the latest among 

the 4 cells, so the data input D of its D-latch is low when Latch goes high. For the “non-loser” 

cell, D is high when Latch goes high (t1). Therefore, the output of the “loser” is latched to low 

 

Figure 3-3: The simplified schematic of (a) the LTA network, (b) one cell of the LTA, (c) typical timing 

diagrams. 
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while those of the others latched to high. At the end of LTA phase, Start latches all the cells 

regardless of VIN. Additional logic, omitted from Figure 3-3 for clarity, prevents the selection of 

multiple losers.  

Compared to a continuous time (CT) implementations similar to [49], the proposed TD-LTA 

can potentially yield lower power-delay product if Cp is realized with the parasitic capacitance at 

the input node.  

3.3.4 Memory Adaptation (MA) Circuit 

The error currents between the input and the best-matching centroids’ memory values are 

passed to the MA circuits. Each row of the MDC cells shares two MA circuits, for mean and 

variance memory respectively. The simplified schematic and timing diagram is shown in Figure 

3-4. The MA circuit utilizes the charging and discharging of a capacitor to realize current-to-

pulse-width conversion. The voltage Vp is first discharged from Vdd by the input current for a 

fixed period of t1, then ramped up by the external voltage VRAMP at the bottom plate of C1, until 

Vp crosses Vdd at t2. The update pulse is defined by t2-t1, and is proportional to the input error 

current, allowing the memory values to adapt to the moving averages.  

 

 

Figure 3-4: (a) The simplified schematic and (b) timing diagram of the MA circuit. 
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3.4 Measurement Results 

The proposed clustering circuit has been fabricated in a 0.13 µm CMOS process using thick-

oxide IO FETs, occupying 0.18 mm
2
 of active area including the programming registers and 

biasing circuits. The prototype has 8 input dimensions and 4 centroids, and consumes 15
 
µW 

with 3 V supply.  

The classification test was performed by programming the centroids to fixed positions and 

disabling memory adaptation. The inputs are equally spaced and randomly presented to the 

circuit. To allow easier visual interpretation, only 2 out of 8 dimensions of input vectors are 

shown. The results are color-coded and the measured decision boundaries show good matching 

with the ideal boundaries, illustrated in Figure 3-5. In this plot, the 4 centroids are shown in 

diamond shapes. The circuit assigns the input data to different centroids based on the Euclidean 

distances. The measured decision boundaries are shown as solid lines and ideal boundaries as 

dashed lines. The prototype circuit runs classification at a speed of 16 kHz, limited by the 
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Figure 3-5: Classification test results. 
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settling time of the input current.  

I demonstrated the full functionality of the prototype by solving a clustering problem. 40000 

8-dimensional vectors were generated as the inputs to the circuit. The dataset contains 4 

underlying clusters, each drawn from Gaussian distributions with different means and variances. 

Initially the centroids were programmed to separate means marked with red stars and equal 

variance. During the test, the centroid means were read out every 0.5 s, plotted with circles 

connected by lines on top of the data scatter in Figure 3-6, and shown together is the learned 

variance values at the end of test plotted with dashed ellipses. The centroids adapt accurately to 

 

Figure 3-6: Clustering test result.  

TABLE II.  PERFORMANCE SUMMARY OF THE CLUSTERING CIRCUIT 

Parameter Value 

Technology 1P8M 0.13 µm CMOS 

Total Area 0.9 × 0.2 mm
2
 (8 × 4 array) 

MDC Cell Area 90 × 30 µm
2
 

Power consumption 

Classification Speed 

15 µW @ 3V  

16 kHz 

Clustering Speed 4 kHz 
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centers of the input data clusters marked with blue crosses despite the clusters’ overlapping, and 

the extracted variances match with the true values, both confirming a robust learning 

performance. The task takes 10 s at 4 kHz; higher speed is possible at the cost of lower learning 

rate. The measured performance is summarized in Table II.  
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Chapter 4 Analog Deep Machine Learning Engine  

In this chapter, the design of an analog deep machine learning engine (ADE) implementing 

DeSTIN is presented. The hierarchical architecture consists of 3 layers of nodes; each is an 

evolved version of the clustering circuit discussed in Chapter 3, with greatly increased power and 

area efficiency and additional functionality. The ADE extensively utilizes the floating gate 

memory described in Chapter 2, with improvement, for distributed non-volatile analog storage. 

The online clustering circuit is a key component in the ADE system. The previous 

implementation in Chapter 3 put more focus on realizing the algorithm for proof of concept. 

Although its power and area consumption is small, a large scale learning system requires even 

 

Figure 4-1: The architecture of the analog deep machine learning engine and possible application scenarios. 
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higher efficiency. Therefore, this chapter will focus on the power and area efficiency and 

propose various design techniques to greatly improve these performances for analog signal 

processing systems.  

4.1 Introduction and Literature Review 

Machine learning systems provide automated data processing. It sees a wide range of 

applications from computer vision, data mining, natural language processing, to economics and 

biology [50]. When a machine learning system is used to process high-dimensional data such as 

raw images and videos, the difficulty of “curse of dimensionality” [4] arises. Therefore, when 

dealing with such high dimensional data, it is often necessary to pre-process the data to reduce its 

dimensionality to what can be efficiently processed, while still preserving the essence of it, a 

technique known as feature extraction. Deep machine learning (DML) architectures have 

recently emerged as a promising bio-inspired framework, which mimics the hierarchical 

presentation of information in the human brain to achieve robust automated feature extraction 

[5].  

While these deep layered architectures offer excellent performance attributes, the 

computation requirements involved grow dramatically as the dimensionality of input increases. 

GPU based platforms have been proposed to provide the required parallel computation [51], but 

they are prohibitively power hungry, making them impractical in power-constrained 

environments and limiting their large-scale implementations. Custom analog circuitry presents a 

means of overcoming the limitation of digital VLSI technology. By exploiting the computational 

primitives inherent in the physics of the devices, and presenting the information with multi-bit 

encoding, analog signal processing (ASP) systems have the potential to achieve much higher 

energy efficiency compared to their digital counterparts [14]. Therefore, analog and mixed-mode 
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signal processing is widely employed in ultra-low-power circuits and systems such as vision 

processors [52], adaptive filters [37], and biomedical sensors [53]. In [54], [55], [56], analog 

circuits are embedded in digital systems to perform efficient non-linear functions. The other 

advantage of ASP is that it interfaces directly with sensors. By performing pre-processing and 

compression of the sensory data at the front-end, the accuracy and bandwidth requirement of 

subsequent blocks can be relaxed, increasing the overall system efficiency [57].  

ASP has been successfully applied to build machine learning systems [35], [43], [45], [46], 

[58]. But many of them do not have on-chip learning capability, and a software emulation 

session is needed to generate the parameters which will then be programmed in the chip [35], 

[43], [58]. This limits the system to the specific task or dataset it was pre-programmed to 

process. An on-chip trainable machine learning system is described in [46]. It is based on 

supervised learning and relies on a human expert to label the input data during training.  An 

unsupervised learning system that is able to learn from the data continuously without any 

external assistance is more desirable in many applications.  

The other important component of a learning system is the memory, which stores the 

previous learned knowledge. Digital memory requires A/D/A conversions to interface with 

analog circuits, consuming area and power headroom [46], [54], [55], [56], especially in a 

system with distributed memories where the data converters cannot be shared. Capacitors can be 

used for analog storage [45], but require constant refreshing and are prone to long-term drift due 

to the leakage current, notably large in deep-sub-micron processes. In addition, both the digital 

and capacitor storage discussed above are volatile, and lose their states without power. This 

precludes their use in intermittently powered devices such as those depending on scavenged 

power, where blackout is common [59]. 



40 

 

The purpose of this work is to develop an analog implementation of a deep machine learning 

system [60]. It features unsupervised online trainability driven by the input data only. 

Unsupervised learning is arguably more difficult than supervised one, as there is no obvious 

error metric to correct the current perception. But it is more widely applicable because it 

eliminates the need for manually labeling the data. This ability to learn from the input data in real 

time without external intervention is essential for fully-autonomous systems. The proposed ADE 

utilizes floating-gate memory to provide non-volatile storage, facilitating the operation with 

harvested energy. The memory has analog current output, interfacing naturally with the rest of 

the system, and is compatible with standard digital CMOS process, And the architecture is 

designed for scaling. To maximize energy efficiency, several strategies are pursued at the system 

level. 1) The architecture adopts massively parallel computation, and the power-delay product is 

minimized by biasing transistors deep in weak inversion. 2) The feedback inherent in the 

learning algorithm is exploited to desensitize the system to inaccuracy such as mismatch, 

allowing aggressive area and bias current scaling-down with negligible performance penalty. 3) 

Current mode circuits are extensively employed to realize efficient arithmetic, such as current 

wire-summing and translinear multiplication/division. 4) Distributed memories are kept local to 

the computational elements, minimizing their access energy. 5) System power management 

applies power gating to the inactive circuits.  

4.2 Architecture and Algorithm 

The analog deep machine learning engine (ADE) implements deep spatiotemporal inference 

network (DesTIN) [61], a state-of-art compositional DML framework, the architecture of which 

is shown in Figure 4-1.  Seven identical cortical circuits (nodes) form a 4-2-1 hierarchy. Each 

node captures the regularities in its inputs through an unsupervised learning process. The lowest 
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layer receives the raw data (e.g. the pixels of an image), and continuously constructs belief states 

that characterize the sequence observed. The inputs of nodes on the 2
nd

 and 3
rd

 layers are the 

belief states of nodes at their respective lower layers. Beliefs extracted from the lower layers 

characterize local features and beliefs from higher layers characterize global features. From 

bottom to top, the abstraction level of the information increases while the dimensionality 

reduces. The beliefs formed at the top layer are then used as rich features for post-processing.  

The node learns through an online k-means clustering algorithm, which extracts the salient 

features of the inputs by recognizing spatial density patterns (clusters) in the input data. Each 

recognized cluster is represented by a centroid, which is characterized by the estimated center of 

mass (centroid mean �̂) and spreads (centroid variance 
��). The architecture of the node is 

shown in Figure 4-2(a). It incorporates an 8×4 array of reconfigurable analog computation cell 

(RAC), grouped into 4 centroids, each with 8-dimensional input. The centroids parameters 
� and 

���are stored in their respective floating gate memories (FGM).  The input to the node is an 8-D 

observation vector sequence ����, presented row-parallel to the RAC array.  

A training cycle begins with the classification phase (Figure 4-2 (b)).  The RAC in the i-th 

element of centroid j calculates the 1-D Euclidean distance from its own centroid mean to the 

input  ���
��� . The Euclidean distance from o to each centroid is obtained by wire-summing all the 

RAC output currents along the column:  

 2ˆD ( ) .EUC EUC

j ij i ij

i i

D o µ= = −∑ ∑   (4.1) 

Then a winner-take-all (WTA) network in the distance processing unit (DPU) searches for the 

best-matching centroid k with the minimum Euclidean distance to o: 

 arg min( )EUC

j
j

k D= ,   (4.2) 
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and selects it by asserting Selk. For robust learning against unfavorable initial conditions, a 

starvation trace (ST) [62] circuit in the DPU monitors and corrects situations wherein some 

centroids are initialized too far away from populated regions of the inputs and never get selected, 

 

Figure 4-2(a): The node architecture. The clustering algorithm implemented by the node is illustrated in (b)-

(e).  
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or “starved”. In the next phase (Figure 4-2(c)), the selected centroid propagates its mean and 

variance error vectors to the training control (TC) block. The i-th elements of the 8-D error 

vectors are given by 

 
( )

2 2 2

ˆ

ˆ ˆ

ik i ik

ik i ik ik

Err o

Err o

µ

σ

µ

µ σ

= −

= − −
 . (4.3) 

The TC is shared across all centroids because only one centroid is selected for training each 

cycle. After the TC loads the errors, it generates memory writing control signals Ctrl for both 

mean and variance memories in the selected centroid, respectively. Ctrl is broadcasted along the 

row, the memory writing logic ensures that only the memories in the selected centroid get 

updated (Figure 4-2 (d)). The magnitudes of update are proportional to the errors in (4.3): 

 
2

2 2

ˆ ˆ[ 1] [ ] Err

ˆ ˆ[ 1] [ ] Err

ik ik ik

ik ik ik

n n

n n

µ

σ

µ µ α

σ σ β

+ = +

+ = +
, (4.4) 

where α and β are the learning rates. The proportional updates cause the centroid means and 

variances to follow exponential moving averages and converge to the true means and variances 

of the data clusters. All the memories are written simultaneously. Finally, the 4-D belief state B 

is constructed, which represents the probability that the input vector belongs to each of the 4 

centroids (Figure 4-2(e)). Simplified 8-D Mahanalobis distances (assuming diagonal covariance 

matrix) from each centroid to the input are calculated in a way similar to (4.1): 

 

2

2

ˆ( )
D

ˆ

i ijMAH MAH

j ij

i i ij

o
D

µ

σ

−
= =∑ ∑  . (4.5) 

Compared to the Euclidean distance, the Mahalanobis distance is a better metric of statistical 

similarity in that it takes both the mean distance and spread of data into account. Then the 

inverse-normalization (IN) block in the DPU converts D
MAH

 to valid probability distribution B 

satisfying: 
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1

j MAH

j

j

j

B
D

B

λ
=

=∑
, (4.6) 

where λ is the normalization constant. A sample and hold (S/H) holds B for the rest of the cycle 

to allow parallel operation across the hierarchy. After the training converges, the ADE can 

operate in recognition mode. In this mode, the memory adaptation is disabled to save power and 

the ADE continuously extracts rich features from the input based on its previously learned model 

parameters. 

Careful considerations at architecture and algorithm level facilitate scaling, and improve 

area and energy efficiency. First, each node is identical, making is easy to scale up the system for 

deeper hierarchy and larger input dimensionality to solve more complex problem. Second, the 

DPU and TC are shared along the columns and rows, respectively, and kept peripheral to the 

computation array, so as that their area and power scales up slower. Third, the similarity metrics 

used in the algorithm (D
EUC

/D
MAH

) allow easier scaling up of input dimension. The distances are 

summed in current to form multivariate distribution: the increased current level reduces the time 

constant at the summing node, and all the 1-D elements can be computed in parallel.  

The ADE goes through four distinct operation phases in each cycle, and in each phase only a 

part of the system is active. Based on this observation, the circuits are partitioned into several 

power domains based on the functions they perform, and power gating is applied whenever 

possible to save biasing power. The resulting timing diagram of the flexible intra-cycle power 

gating is shown in Figure 4-3. Measurement results show a reduction of power consumption by 

22% in training mode and 37% in recognition mode. 
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4.3 Circuit Implementation 

4.3.1 Floating-Gate Analog Memory (FGM) 

The FGM provides non-volatile storage for the centroid parameters. It can be accessed by 

on-chip circuits, as well as from off-chip through scanning registers for initialization. Its 

schematic is shown in Figure 4-4. The design is based on the FG memory in Chapter 2. 

Significant improvement on power and is achieved by replacing the differential pair V-to-I 

converter with a single-ended structure which realizes similar transfer function. The “single-

 

Figure 4-3: Timing diagram of the intra-cycle power gating. 

 

Figure 4-4: The schematic of the improved floating gate analog memory. 
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ended differential pair” design is modified from that in [63]. This structure achieves more than 

50% area reduction, while still providing a sigmoid transfer function and reduced input swing 

required by the FGM. Another attractive feature is that this V-I converter does not consume any 

current other than its own output current. On average, this halves the power consumption 

compared to the constant biasing in normal differential pair. In order to further reduce the area 

and power, the cascode output current mirror is removed. The virtual ground provided by the 

input of the absolute value circuit in the AAE helps to reduce the error caused by the finite 

output resistance.  

The biasing of the floating gate inverting amplifier is as low as 0.5 nA. In normal operation, 

the bandwidth is not strongly affected because the capacitance at the node VOUT is relative small. 

However, during tunneling, the voltage at VOUT needs to slew down by about 2 V. The small 

biasing current makes the slew rate excessively low, prohibiting fast memory writing. To solve 

 

Figure 4-5: The layout of the new FGM. 

 

TABLE III. PERFORMANCES SUMMARY AND COMPARISON OF THE IMPROVED FG MEMORY 

Parameter Proposed FGM Digital Register (8bit) Digital Register2 (20bit) 

Active Area 140 µm
2
 332  µm

2
 830  µm

2
 

Power supply 3 V 1.5 V 1.5 V 

Power consumption 15 nW (avg.) 21.3 nW 53.4 nW 

Output range 0 - 10 nA - - 

Dynamic range 46 dB 48 dB 120 dB 
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this, an additional biasing current source is added to boost the slew rate for the memories being 

tunneled. The power penalty is small because on average, only 1/8 of the total memories are 

tunneled in each cycle.  

The layout of the proposed FGM is shown in Figure 4-5. The performance is listed in Table 

III. Compared to the original FGM in Chapter 2 [27], the proposed FGM occupies only 28.5% of 

the area and consume 66% less current. The FGM has an SNR equivalent to an 8-bit digital 

register, while the minimum fractional update equivalence is estimated to be 20 bits.  Table III 

compares the proposed analog FGM to 8-bit and 20-bit digital registers in the same process 

operating at same speed of 8.3 kHz and shows advantages in both area and power. 

4.3.2 Reconfigurable Analog Computation (RAC) 

The RAC is the most computation-intensive block in the system and utilizes subthreshold 

 

Figure 4-6: The schematic of the reconfigurable analog computation cell and the switch positions for three 

operation modes. 
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current-mode computation to implement efficient arithmetic functions. It performs three different 

operations through reconfigurable current routing. The schematic and the current switch 

configurations for the three modes are shown in Figure 4-6. The input current o and the centroid 

mean �̂ stored in the FGM_µ are added in opposite direction, the difference current � � �̂ is 

rectified by the absolute value circuit Abs. The unidirectional current is then fed into the X
2
/Y 

operator circuit, the Y component can be either the centroid variance 
�� , or a constant C, 

depending on whether D
MAH

 or D
EUC

 is required. In training load phase, the Abs circuit 

duplicates its X input to get Err_µ (the error for mean memory training), and the difference 

current between D
EUC 

and 
�� is used as Err_σ
2
 (the error for variance memory training) because 

the Euclidean distance has the same form as the square error in (4.3). The reconfigurability of the 

RAC allows the computational circuits to be reused for different operations, therefore saving 

area. It reduces the number of error sources in the circuit. In addition, it reduces the system’s 

sensitivity to mismatch errors by having correlated errors for memory training and feature 

extraction. For example, if there is an offset at the input, it has no system level impact because it 

will simply shift the location of the origin of the input space. And since both training and feature 

extraction are concerned with the relative distances, it has no effect on the ultimate belief output. 

Similarly, if there’s offset or gain errors in the memory, this error will be included in the 

feedback loop and the memory output will still adapt to the input statistics. 
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The design of the analog arithmetic element (AAE) is similar to the distance computation 

block in Chapter 3.3.2. The measurement results of the AAE are plotted in Figure 4-7, showing 

variable center and width of the quadratic transfer function by varying �̂ and 
��. 

ASP suffers from circuit imperfections such as noise and mismatch due to its lack of 

restoring mechanisms found in digital logic. Any ASP-based system needs to address these non-

idealities, without excessively affecting the other performances metrics. The current noise power 

of transistors biased in subthreshold is given by 2qID∆f [64], where ∆f is the noise bandwidth, 

proportional to gm of the transistors (the relative contribution of flicker noise is negligible at very 

low current level). As gm/ID ratio is fairly flat in subthreshold region, the computational 

throughput of a current-mode circuit biased in sub-threshold grows roughly linearly with the 

signal current level (or power consumption) while the system SNR remains nearly constant. 

Mismatch and efficiency place two contradictory requirements to the circuit design: device 

matching can be improved by increasing the areas of the devices [65], however, sizing-up 

devices comes with the cost of both area and energy efficiency. Fortunately, the learning 

algorithm provides robustness to mismatch by desensitizing the system to static errors using 

algorithm-level feedback [15]. To take full advantage of this robustness, the behavioral model of 

the RAC is built to include the mismatch errors found in the circuit. In sub-threshold circuits, the 

 

Figure 4-7: The measured transfer functions with the RAC configured to belief construction mode. 
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threshold voltage mismatch is the dominant source of mismatch. Even though the notion of 

threshold voltage is precisely applicable to subthreshold operation, the same variation causes the 

same effect as a shift in the gate voltage. Therefore the drain current of a transistor with a shift in 

threshold voltage can be expressed as  

 0 0 ,

GS GS

T T T

V V V V

U U U

DI I e I e e

−∆ ∆
−

= =   (4.7) 

where I0 is a device-specific constant and UT is the thermal voltage. It can be seen that the e
-∆V/UT

 

term results in gain errors in current-mode circuits. In the model in Figure 4-8(a) (training load 

mode is shown), each gain block Gx corresponds to the gain error introduced by each sub-circuit. 

System simulations were performed with progressively increasing gain errors to evaluate the 

effect of each error on the ADE system performance. The results are plotted in Figure 4-8(b). It 

can be seen that the system performance does not degrade until the errors are quite large, 

showing the robustness of the algorithm. The knowledge of the system sensitivities and 

tolerances allows aggressive reduction of the device sizes to place each gain error around its 

knee point of the performance curve in Figure 4-8(b), improving efficiency with negligible 

performance penalty.  
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In current mode sub-threshold circuit as this work, SNR can be improved by increasing the 

signal current level while keeping the bandwidth constant, or keeping the current level constant 

while reducing the bandwidth, both hurt efficiency. With increased resolution, the advantage of 

analog signal processing will diminish because the cost for analog accuracy grows faster than 

digital. This work was designed for 7 bit resolution, because system simulation indicated 

adequate performance with this resolution. And the measurement results agree well with the 

design target.  

4.3.3 Distance Processing Unit (DPU) 

The distance processing unit (DPU) performs various operations on the 8-D distances from 

the four centroids. It has a modular design with four identical channels interconnected, one for 

each centroid. And it performs collective operations such as IN and WTA with a single 

communication wire along all the channels. Both facilitate scaling of the number of centroids.  

The simplified schematic of one channel is shown in Figure 4-9. In belief construction phase, the 

IN blocks converts Mahalanobis distance D
MAH

 to belief state B. The algorithm requires these 

  

(a)        (b) 

Figure 4-8: Behavioral model of the RAC with gain errors. (b) System's classification error rate as a function 

of each error. 
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two values to follow (4.6), as B represents collectively exhaustive probability measures of the 

input's similarity to each centroid. The translinear loop formed by M1 and M2 (denoted by the 

arrow) causes the product of the two drain currents to be a function of the difference between the 

bias voltage VB and the voltage on the communication wire VC, IIN ⋅ IOUT = f(VC - VB). Since all 

the channels see the same VB and VC, they all have: IIN ⋅ IOUT = λ, where λ is constant across the 

four channels. In addition, the sum of the four output currents is dictated by the normalization 

current INORM, common to all the channels. Thus the inverse normalization function is 

implemented with only 3 transistors per channel without any additional biasing. The output 

belief states are sampled then held for the rest of the cycle to enable parallel operation of all the 

layers. The sampling of B starts from the top layer and propagates to the bottom, opposite to the 

data path; this pipelined processing eliminates the need to wait for the data to settle before 

 

Figure 4-9: The schematic of one channel of the distance processing unit. 
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sampling, improving the throughput, the timing diagram is shown in Figure 4-10. In 

classification phase, reconfigurable current routing allows the IN circuits to be reused together 

with the WTA to yield a loser-take-all operation to find the minimum Euclidean distance. The 

WTA (M4-M7) is based on the design in [49]. The voltage on the common wire is determined by 

the cell with the largest input current (winner). And the entire biasing current IB will flow 

through M5/6 in the winner cell, making its output high. A starvation trace (ST) circuit is 

implemented to inject current into the WTA when the centroid is starved. 

The schematic of the current mode sample and hold (S/H) is shown in Figure 4-11(a). To 

maximize the power efficiency, the holding capacitor CHOLD is realized entirely with the wiring 

parasitic capacitances between nodes. These wires are carefully laid-out to be shielded from 

noisy signals, and a low-charge-injection switch is designed to mitigate the charge injection 

errors exacerbated by low valued CHOLD and current-mode sub-threshold operation. During 

sample mode, S/H is low and the switch M3 is turned-on with near-minimum necessary VGS to 

minimize its channel charge. This VGS is generated by the diode-connected PMOS M1: body 

effect causes it to have slightly higher VTH than M3, ensuring reliable turn-on in worst case 

mismatch situation. The post-layout simulation results are shown in Figure 4-11 (b). The S/H 

 

Figure 4-10: Timing diagram of data sampling across the hierarchy to enable pipelined operation. 
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achieves less than 0.7 mV of charge injection error, and less than 17 µV of droop across a cycle 

with about 80 fF CHOLD. 

The schematic of the starvation trace circuit is shown in Figure 4-12, together with the 

typical timing diagram. C1, D1 and M1 form a charge pump, which removes a certain amount of 

charge from the storage capacitor C2 at every negative edge of the system clock when it is not 

selected, increasing the output current IOUT. Since the ST output adds to the inversed Euclidean 

distance, this current progressively decreases the apparent distance from the starved centroid to 

the input, forcing it to eventually get selected for update and pulling it toward more populated 

areas of the input space. The ST output current is reset once the centroid gets selected (Sel =1). 

 

             

(a)       (b) 

Figure 4-11: (a) The schematic of the sample and hold and (b) simulated charge injection and droop errors. 

 

Figure 4-12: The schematic and timing diagram of the starvation trace circuit. 
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4.3.4 Training Control (TC) 

The training control circuit converts the memory error current to pulse width to control the 

memory adaptation. The design is similar to the memory adaptation circuit in Chapter 3.3.4.  

4.3.5 Biasing and Layout Design 

Like other ASP systems, ADE requires biasing in many blocks, for example, VBP in the 

FGM sets the full scale output; and the amplifier in the Abs circuit requires tail current. 

Distribution of biasing efficiently and accurately is important to the system's performance. A 

 

Figure 4-13: Biasing schemes (a) Voltage distribution. (b) Current distribution.  (c) Proposed hybrid biasing.  

(d) Measured mismatch of biasing. 
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tight tolerance in biasing current allows less safety margin in the system design and operation, 

because the block with lowest biasing current is usually the performance bottleneck. Biasing can 

be distributed across the chip using voltage as in Figure 4-13(a). However this scheme results in 

poor matching performance in large-scale systems due to process, stress and thermal gradients 

[65]. A current distribution scheme as in Figure 4-13(b) achieve better immunity to gradients by 

keeping both sides of current mirror close, but consumes large biasing current and wiring 

overhead. The biasing scheme adopted in this design is a trade-off between the above two: 

current distribution is used for global biasing, and voltage distribution is used for local biasing, 

as shown in Figure 4-13(c). The resulting biasing current accounts for only about 5% of the total 

current consumption, without observable gradient effects, shown in Figure 4-13(d). 

The layout design of the ADE is non-trivial. A high density is required not only due to chip 

area constraint, but also for maximizing computational throughput and reducing mismatch across 

the system. Dense layout is achieved by floor-planning, minimizing the areas of repetitive 

components and running interconnections above the active circuits. Care was exercised to avoid 

noise coupling and component mismatch caused by density. The layout labor can be greatly 

 

Figure 4-14: Conceptual diagram showing how the RAC array is assembled from the RAC cells. 
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reduced by exploiting the regularity of the structure. Figure 4-14 shows conceptually how the 

RAC array is assembled from the RAC cells. 

4.4 Measurement Results 

The ADE was fabricated in a 0.13 µm standard CMOS process, and has an active area of 

0.36 mm
2
, including the biasing circuits and program ming registers, shown in Figure 4-15(a). 

Each RAC cell occupies 792 µm
2
. Thick-oxide IO FETs are used to reduce charge leakage in the 

FGMs. With 3 V power supply, it consumes 27 µW in training mode, and 11.4 µW in 

recognition mode. To characterize the chip, a custom test board is developed with circuits to 

interface with the current mode IO of the chip, shown in Figure 4-15(b). For practical use, the 

design is intended for system-on-chip applications where the inputs and outputs are generated 

and processed on-chip. The data is streamed between the chip and PC through data acquisition 

hardware. And the acquired data is post-processed in MATLAB. 

    

(a)       (b) 

Figure 4-15: (a) Chip micrograph and (b) custom test board. 
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4.4.1 Input Referred Noise 

We use a statistical approach to measure the input referred noise of the non-linear ADE 

system. In the measurement, memory adaptation is disabled and the system is configured into a 

classifier, modeled as an ideal classifier with an input referred current noise (Figure 4-16(a)). 

With two centroids competing, the circuit classifies the inputs to one centroid (class=1) or the 

other (class=0). When the inputs are close to the decision boundary and the classification is 

repeated for multiple times, the noise causes uncertainty in the outcome. Assuming additive 

Gaussian noise, it can be shown that the relative frequency of the event class=1 approaches the 

cumulative density function (c.d.f.) of a normal distribution. The standard deviation σN of this 

distribution is extracted using curve fitting, shown in Figure 4-16(b), and can be interpreted as 

the input-referred rms noise. The measured input referred current noise is 56.23 pArms and with 

an input full scale of 10 nA, we get an SNR of 45dB, or 7.5 bit resolution. 

 

 

 

(a)      (b) 

Figure 4-16: (a) The system model for noise measurement. (b) Measured classification results and extracted 

Gaussian distribution. 
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4.4.2 Clustering Test 

The performance of the node is demonstrated with clustering tests. 40000 8-D input vectors 

are generated, consisting 4 underlying clusters, each drawn from a Gaussian distribution with 

different mean and variance. The centroids are first initialized to separated means and equal 

variance (the initial condition is not critical since the circuit will adaptively adjust to the inputs). 

During the test, the centroid means are read out every 0.5 sec., plotted on top of the data scatter 

in Figure 4-17, and shown together is the learned variance values at the end of test. For easier 

visual interpretation, 2-D results are shown. The extracted cluster means and variances from 

several tests are compared to the true values and show good matching in Figure 4-18. The gain 

error in µ extraction is due to component mismatch; and the deviation of exponent from 2 in σ
2
 

extraction is due to body effect in the X
2
/Y circuit; both can be tolerated by the algorithm.  The 

performance of the starvation trace is verified by presenting the node with an ill-posed clustering 

problem. It can be seen that one of the centroids is initialized too far away from the input data, 

 

Figure 4-17: The clustering test results. 
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therefore never gets updated without the ST enabled. However, with the starvation trace enabled, 

the starved centroid is slowly pulled toward the area populated by the data, achieving a correct 

clustering result, shown in Figure 4-19. 

 

 

 

 

 

 

 

 

 

Figure 4-18: The extracted parameters plotted versus their true values. 

 

Figure 4-19: Clustering results with bad initial condition without and with the starvation trace enabled.  
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4.4.3 Feature Extraction Test 

We demonstrate the full functionality of the chip by doing feature extraction for pattern 

recognition with the setup shown in Figure 4-20. The input patterns are 16×16 symbol bitmaps 

corrupted by random pixel errors. An 8×4 moving window defines the pixels applied to the 

ADE’s 32-D input. First the ADE is trained unsupervised with examples of patterns at 4.5 kHz. 

The training converges after about 30 k samples (7 sec.), as shown in Figure 4-21(a). After the 

training converges, adaptation can be disabled and the circuit operates in recognition mode at 

8.3 kHz. The 4 belief states (Figure 4-21(a)) from the top layer are used as rich features, 

achieving a dimension reduction from 32 to 4. A software neural network then classifies the 

reduced-dimension patterns. Three chips were tested and average recognition accuracies of 100% 

with corruption lower than 10%, and 94% with 20% corruption are obtained, which is 

 

Figure 4-20: The feature extraction test setup. 

 

(a)       (b) 

Figure 4-21: (a) The convergence of centroid during training. (b) Output rich feature from the top layer. 
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comparable to the floating-point software baseline, demonstrating robustness to the non-

idealities of analog computation, as shown in Figure 4-22. The plot on the right shows the mean 

accuracy and 95% confidence interval (2σ) from the three chips tested, compared to the software 

baseline. 

4.4.4 Performance Summary and Comparison 

The measured performance of the ADE is summarized in Table IV. It achieves an energy 

efficiency of 480 GOPS/W in training mode and 1.04 TOPS/W in recognition mode. The 

performance and energy breakdown in the training mode are shown in Figure 4-23, the 

performance pie chart shows the mega operations per second each phase performs, and the 

energy chart shows how much energy each phase consumes per cycle. Table V compares this 

work with state-of-art bio-inspired parallel processors utilizing analog computation. It can be 

seen that this work has very high energy efficiency in both modes. Although it operates relatively 

slow, the ultra-low power consumption, together with the advantages of nonvolatile memory and 

unsupervised online trainability makes it ideal for autonomous sensory applications.  

 

 

Figure 4-22: Measured classification accuracy using the feature extracted by the chip.  
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TABLE IV. PERFORMANCES SUMMARY OF THE ANALOG DEEP LEARNING ENGINE 

 

 

Figure 4-23: The performance and energy breakdown in the training mode. 

 

TABLE V. COMPARISON TO PREVIOUS WORKS 

 

 

Techonology

Power Supply

Active Area

Memory

Memory SNR

Training Algorithm

Input Referred Noise

System SNR

I/O Type

Training Mode 4.5kHz

Recognition Mode 8.3kHz

Training Mode 27µW

Recognition Mode 11.4µW

Training Mode 480GOPS/W

Recognition Mode 1.04TOPS/W
Energy Efficiency

Unsupervised Online Clustering

3V

1P8M  0.13µm CMOS

0.9mm×0.4mm

Non-Volatile Floating Gate

46dB

56.23pArms

45dB

Analog Current

Operating Frequency

Power Consumption

6.426

4.001

2.016

0.504

Performance (MOPS)

2.653

0.489

1.723

1.089

Energy/Cycle (nJ)

Belief Construct Classification Training Load Memory Write

This work JSSC'13 [9] ISSCC'13 [10] JSSC'10 [11]

Process 0.13µm 0.13µm 0.13µm 0.13µm

Purpose DML Feature Extraction Neural-Fuzzy Processor Object Recognition Object Recognition

Non-volatile Memory Floating Gate NA NA NA

Power (W) 11.4µW 57mW 260mW 496mW

Peak Energy Efficiency 1.04TOPS/W 655GOPS/W 646GOPS/W 290GOPS/W
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Chapter 5 A nano-power tunable bump circuit 

An ultra-low-power tunable bump circuit is presented. It incorporates a novel wide-input-

range tunable pseudo-differential transconductor linearized using drain resistances of saturate 

transistors. The circuit is fabricated in a 0.13 µm CMOS process. Measurement results show that 

the proposed transconductor has a 5 V differential input range with less than 20% of linearity 

error. The circuit demonstrates tunability of bump center, width and height with a power 

consumption of 18.9 nW from 3 V supply, occupying 988 µm
2
. 

5.1 Introduction and Literature Review 

Circuitries with bell-shaped transfer functions are widely used to provide similarity 

measures in analog signal processing systems such as pattern classifier [35], [58], support vector 

machine [46], and deep learning engine [60]. This non-linear radial basis function can be realized 

with the classic bump circuit [66]. However, the original implementation lacks the ability to 

change the width of its transfer function. Variable width can be obtained by pre-scaling the input 

voltage before connecting to the bump generator. The pre-scaling circuit using multi-input 

floating gate transistors [35] or digital to analog converter [46] consumes area and power 

overhead. In [58], [67], the widths of bump-like circuits are varied by switching binary sized 

transistors, but the number of possible widths is limited. A Gaussian function can be directly 

synthesized by exponentiating the Euclidean distance [68], however, this approach can lead to 

complex circuit and large area. 
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In this work, we propose to implement a bump circuit by preceding the current correlator 

[66] with a tunable transconductor to achieve variable width and height. The design of linear 

transconductors in subthreshold CMOS is challenging as the linear range of a conventional 

differential pair diminishes with the gate overdrive, and reaches its minimum in subthreshold 

region [69]. Common linearization techniques such as source degeneration [69], bias offset [70], 

source coupling [71] and triode transconductor [72] become either less effective or practical due 

to the nano-amp biasing current and exponential transfer function of the transistors. The novel 

transconductor proposed in this work exploits the drain resistance of saturate transistors to obtain 

wide input range and tunable trans-conductance. And the pseudo-differential structure allows 

operation with low supply voltage. 

5.2 Circuit Design 

The schematic of the proposed bump circuit with wide-input-range pseudo-differential 

transconductor is shown in Figure 5-1. In subthreshold, the current correlator M5-10 [66] 

computes a measure of the correlation of its two inputs (with a current scaling factor of 4): 

  1 2

1 2

4 .
out

I I
I

I I
=

+
  (5.1) 

The tunable transconductor (M1-M4 and IW) converts the differential input Vin1, Vin2 to 

current output I1, I2. The input transistors M1, M2 act as source follower. In subthreshold and 

assuming saturation, their source voltages are given by:  

 1,2

1,2 1,2

0

ln ,
s in T

I
V V U

I
κ

 
= −  

 
  (5.2) 

where κ ≈ 0.7 is the gate coupling factor, UT ≈ 26 mV is the thermal voltage and I0 is the pre-

exponential current factor dependent on process and device dimension. In (5.2), the first term 
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indicates a linear relationship between Vin1,2 and Vs1,2, while the second term causes non-linearity. 

This non-linearity is mild as it is in a logarithm term. M3 (M4) serves as the current source for 

follower M1 (M2), its gate length is intentionally made smaller to exploit its channel length 

modulation. With first order approximation, the drain current in M3 is  

 
0 s1(1 V ),

D D
I I λ= +   (5.3) 

where ID = IW + I1, λ is its channel length modulation coefficient, and ID0 is the drain current 

without channel length modulation, same for both M3 and M4. We utilize this dependence of ID 

to Vs1 to implement a large-value resistor tunable by current IW. A common mode feedback 

(CMFB) circuit M11-M14 controls the gates of M3 and M4 to provide common mode rejection 

for the pseudo-differential structure and ensures that I1 + I2 = IH. Combining this with (5.3), the 

output currents are: 
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  (5.4) 

Assuming a balanced input of Vin1 + Vin2 = 2Vcm, and that the second term in (5.2) can be 

 

Figure 5-1: Schematic of the proposed tunable bump circuit.  
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neglected, the transconductance is given by: 

 1 2

1 2

( ) 1
(2 ), where .

( ) 2 2
m W H

in in cm

d I I
g I I

d V V V
λκδ δ

λκ
−

= = + =
− +

  (5.5) 

It can be seen that the transconductor is controlled by both IW and IH. The Vcm term in δ 

causes slight asymmetry in the bump transfer function, which is tolerable in the application. The 

pseudo-differential structure allows a wide differential input range, and the circuit can operate at 

very low supply voltage of about VGS5 + 6UT.  

When Vin1 = Vin2, I1 = I2 = 0.5IH, and the maximum bump current output (bump height) is 

given by Iout,max = IH. With IH fixed, changing IW varies the transconductance of the 

transconductor, therefore changes the width of the bump. As I1 and I2 are linear related to the 

input voltages, the shape of the bump output is quadratic: 

 2 2 2

1 2

4
(2 ) (1 )(1 ) ( ) .

out W H in in W W H

H

I I I V V I I I
I

λ γ λκ λκ = + + + − +    (5.6) 

5.3 Measurement Result 

The proposed bump circuit is fabricated in a 0.13 µm CMOS process, thick oxide IO FETs 

are used to extend the VDD, therefore the input dynamic range. The active area is 26×38 µm
2
, 

shown in Figure 5-2, shown together is the test setup with data acquisition hardware and the 

        

Figure 5-2: Bump circuit micrograph, layout, and the test setup. 

Bump
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custom-designed test board. Biased at IW = IH = 1 nA and Vin1 = Vin2, it consumes 6.3 nA current 

from the 3 V supply. The circuit is functional with VDD down to 0.5 V, however the input range 

is limited at such low supply.    

The transconductor outputs I1 and I2 are copied offchip by two additional PMOSs at node a 

and b, omitted in Figure 5-1. The differential output current with different IW is plotted in Figure 

5-3(a) with IH = 2 nA, and balanced input voltage with Vcm = 1.5 V. The normalized gm when IW  = 

0 is plotted in Figure 5-3(b), showing an input range of 5 V with gm error below 20%, covering 

almost the entire input common mode range. The nonlinearity can be attributed to the second 

term in (5.2), as well as the second order effects such as the dependence of λ on VDS. It is 

tolerable in bump generator application as the bump output itself is an approximation of a highly 

nonlinear function. The offset of about 100 mV is due to device mismatch and can be calibrated 

out by utilizing floating gate techniques such as that described in Chapter 2. 

The transfer functions of the bump circuit with regard to one input Vin2 are plotted in Figure 

5-4, showing variable center, width and height by varying Vin1, IW, and IH, respectively. Figure 

5-4 also demonstrates that the circuit works properly with unbalanced input.  

    

(a)      (b) 

Figure 5-3: (a) Transconductor output, (b) normalized gm (IW=0). 
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The 1-D bump output can be extended to high dimension to represent multivariate 

probability distribution by cascading multiple bump circuits, i.e., connecting Iout of one circuit to 

the IH input of the next circuit. The measured 2-D bump output is plotted in Figure 5-5. Same as 

the 1-D case, each dimension's parameters are individually tunable. 

To evaluate the computational throughput of the proposed bump circuit, the step response 

time is measured. With IW = IH = 1 nA, the response time for the output current to settle to 95% of 

its final value is 45 µs when the differential input steps from 0 V to 1 V.  

Table VI summarizes the measured performances of the proposed bump circuit. Compared 

to other recently reported works, the proposed circuit occupies smaller area and consumes 

significantly lower power. 
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(a) 

 

(b) 

 

(c) 

Figure 5-4: The measured bump transfer functions showing (a) variable center, (b) variable width, (c) variable height. 
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Figure 5-5: The measured 2-D bump output with different width on x and y dimensions. 

 

 

 

Table VI.  Performance Summary and Comparison of the Bump Circuit 
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Technology 0.13 µm 0.5 µm 0.13 µm 0.18 µm 

Supply voltage 3 V 3.3 V 1.2 V 0.7 V 
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Area 988 µm
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Chapter 6 Conclusions and Future Work 

This chapter summarizes this dissertation and proposes future work in this research area. 

6.1 Conclusions 

This dissertation investigates the implementation of machine learning systems with analog 

signal processing systems. The main conclusions are summarized below. 

First, I presented a floating-gate current-output analog memory in a 0.13 µm standard digital 

CMOS process. The novel update scheme allows random-accessible control of both tunneling 

and injection without the needs for high-voltage switches, charge pumps or complex routing. The 

update dynamics is sigmoid, suitable for many adaptive and neuromorphic applications. FG 

model parameters have been extracted to facilitate predictive programming.  Measurement and 

simulation shows that with 45 nW power consumption, the proposed memory achieves 7-bit 

programming resolution, 53.8 dB dynamic range and 86.5 dB writing isolation. 

Second, I proposed an analog online clustering circuit. It uses the floating-gate memory I 

designed to achieve non-volatile storage. An analog computation block utilizes translinear 

principles to obtain 3 different distance metrics with significantly lower energy consumption 

than an equivalent digital implementation. A TD-LTA is proposed to improve energy efficiency, 

and an MA circuit implements a robust learning algorithm. The prototype circuit fabricated in a 

0.13 µm digital CMOS process demonstrates unsupervised real-time classification, statistical 

parameter extraction and clustering of the input vectors with a power consumption of 15 µW.  

Third, I developed an analog deep machine learning system, first reported in the literature to 

the best of my knowledge. It overcomes the limitations of conventional digital implementations 

by taking the efficiency advantage of analog signal processing. Reconfigurable current-mode 
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arithmetic realizes parallel computation. A floating-gate analog memory compatible with digital 

CMOS technology provides non-volatile storage. Algorithm-level feedback mitigates the effect 

of device mismatch. And system level power management applies power gating to inactive 

circuits. I demonstrated online cluster analysis with accurate parameter learning, and feature 

extraction in pattern recognition with dimension reduction by a factor of 8. In these tests, the 

ADE achieves a peak energy efficiency of 1 TOPS/W and an accuracy in line with the floating-

point software simulation. The system features unsupervised online trainability, nonvolatile 

memory and good efficiency and scalability, making it a general-purpose feature extraction 

engine ideal for autonomous sensory applications or as a building block for large-scale learning 

systems. 

Finally, I designed an ultra-low-power tunable bump circuit to provide similarity measures 

in analog signal processing. It incorporates a novel transconductor linearized using drain 

resistances of saturated transistor. I showed in analysis that the proposed transconductor can 

achieve tunable gm with wide input range. Measurement results demonstrated 5 V differential 

input range of the transconductor with less than 20% of linearity error, and bump transfer 

functions with tunable center position, width and height. I also demonstrated 2-D bump outputs 

by cascading two bump circuits on the same chip. 

6.2 Future Work 

Based on this dissertation, the following can be considered for future research. 

First, the energy efficiency can be further improved. One possible direction is to use lower 

power supply for the circuit. In this work, 3 V supply voltage is used mainly to achieve good 

tunneling isolation for the floating gate memory. For other computation circuits, a lower supply 

voltage can be domain used to save power. To accommodate for low supply, some of the circuits 
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need to be redesign to remove stacked transistors, and thin oxide transistors with lower threshold 

voltage can be used. 

Second, a reconfigurable machine learning chip can be developed. The reconfigurability will 

allow the circuit to implement different machine learning algorithms based on the application 

requirement, making the system more flexible. 

Third, a scaled-up version of the ADE can be implemented. This will help us to understand 

the effect of scaling of the system. And the larger-scale system will be able to solve more 

complex problems. 

Finally, analog signal processing can be applied to other applications. One possible 

application is the analog classifier. It can be used to classify the rich features generated by the 

ADE and achieve a complete analog patter recognition engine. 
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