7,034 research outputs found

    Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland

    Get PDF
    A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles

    Complete characterization of sink-strengths for 1D to 3D mobilities of defect clusters.II. Bridging between limiting cases with effective sink-strengths calculations

    Full text link
    In a companion paper, we proposed new analytical expressions of cluster sink-strengths (CSS) indispensable to any complete parameterization of rate equations cluster dynamics accounting for reaction between defect clusters populations having a 1D-mobility. In this second paper, we first establish simulation setup rules for truly converged estimates of effective CSS by Kinetic Monte-Carlo, and then we grid on a wide set of radii, rotation energies, diffusion coefficients and concentrations of both reaction partners. Symmetric roles of some parameters are used to infer a generic form for a semi-analytical expression of CSS depending on all these interaction parameters: it is composed of the various analytical limiting cases established and fitted transition functions that allow a gradual switching between them. The analysis of the residuals shows that the overall agreement is reasonably good: it is only in the transition zones that discrepancies are located and this is due to the asymmetry of the actual transition functions. The expression can be easily extended to temperatures at least a few hundred degrees around the reference. But further extending the CSS evaluations to much smaller diffusion coefficients ratios, we see that the domain for 1D-1D mobility is very extended: for a 10310^{-3} ratio the computed CSS is still not correctly described by the 1D-CSS with respect to a fixed sink (1D-0), but rather by the established 1D-1D expression. For our typical sets of conditions, it is only when approaching a ratio of 10610^{-6} that the 1D-0 CSS starts to become more relevant. This highlights the counter-intuitive fact that the growth kinetics of moderately trapped 1D mobile loops, whose effective mobility is greatly reduced, may not be described by 1D-0 kinetics but rather by appropriately corrected 1D-1D CSS which have completely different order of magnitude and kinetic orders.Comment: 21 pages, 12 figure

    Level Set Methods for Stochastic Discontinuity Detection in Nonlinear Problems

    Full text link
    Stochastic physical problems governed by nonlinear conservation laws are challenging due to solution discontinuities in stochastic and physical space. In this paper, we present a level set method to track discontinuities in stochastic space by solving a Hamilton-Jacobi equation. By introducing a speed function that vanishes at discontinuities, the iso-zero of the level set problem coincide with the discontinuities of the conservation law. The level set problem is solved on a sequence of successively finer grids in stochastic space. The method is adaptive in the sense that costly evaluations of the conservation law of interest are only performed in the vicinity of the discontinuities during the refinement stage. In regions of stochastic space where the solution is smooth, a surrogate method replaces expensive evaluations of the conservation law. The proposed method is tested in conjunction with different sets of localized orthogonal basis functions on simplex elements, as well as frames based on piecewise polynomials conforming to the level set function. The performance of the proposed method is compared to existing adaptive multi-element generalized polynomial chaos methods

    Low temperature dynamics of kinks on Ising interfaces

    Full text link
    The anisotropic motion of an interface driven by its intrinsic curvature or by an external field is investigated in the context of the kinetic Ising model in both two and three dimensions. We derive in two dimensions (2d) a continuum evolution equation for the density of kinks by a time-dependent and nonlocal mapping to the asymmetric exclusion process. Whereas kinks execute random walks biased by the external field and pile up vertically on the physical 2d lattice, then execute hard-core biased random walks on a transformed 1d lattice. Their density obeys a nonlinear diffusion equation which can be transformed into the standard expression for the interface velocity v = M[(gamma + gamma'')kappa + H]$, where M, gamma + gamma'', and kappa are the interface mobility, stiffness, and curvature, respectively. In 3d, we obtain the velocity of a curved interface near the orientation from an analysis of the self-similar evolution of 2d shrinking terraces. We show that this velocity is consistent with the one predicted from the 3d tensorial generalization of the law for anisotropic curvature-driven motion. In this generalization, both the interface stiffness tensor and the curvature tensor are singular at the orientation. However, their product, which determines the interface velocity, is smooth. In addition, we illustrate how this kink-based kinetic description provides a useful framework for studying more complex situations by modeling the effect of immobile dilute impurities.Comment: 11 pages, 10 figure

    Thermally-activated Non-Schmid Glide of Screw Dislocations in W using Atomistically-informed Kinetic Monte Carlo Simulations

    Full text link
    Thermally-activated \small{\nicefrac{1}{2}} screw dislocation motion is the controlling plastic mechanism at low temperatures in body-centered cubic (bcc) crystals. Motion proceeds by the nucleation and propagation of atomic-sized kink pairs susceptible of being studied using molecular dynamics (MD). However, MD's natural inability to properly sample thermally-activated processes as well as to capture {110}\{110\} screw dislocation glide calls for the development of other methods capable of overcoming these limitations. Here we develop a kinetic Monte Carlo (kMC) approach to study single screw dislocation dynamics from room temperature to 0.5Tm0.5T_m and at stresses 0<σ<0.9σP0<\sigma<0.9\sigma_P, where TmT_m and σP\sigma_P are the melting point and the Peierls stress. The method is entirely parameterized with atomistic simulations using an embedded atom potential for tungsten. To increase the physical fidelity of our simulations, we calculate the deviations from Schmid's law prescribed by the interatomic potential used and we study single dislocation kinetics using both projections. We calculate dislocation velocities as a function of stress, temperature, and dislocation line length. We find that considering non-Schmid effects has a strong influence on both the magnitude of the velocities and the trajectories followed by the dislocation. We finish by condensing all the calculated data into effective stress and temperature dependent mobilities to be used in more homogenized numerical methods

    Urban Swarms: A new approach for autonomous waste management

    Get PDF
    Modern cities are growing ecosystems that face new challenges due to the increasing population demands. One of the many problems they face nowadays is waste management, which has become a pressing issue requiring new solutions. Swarm robotics systems have been attracting an increasing amount of attention in the past years and they are expected to become one of the main driving factors for innovation in the field of robotics. The research presented in this paper explores the feasibility of a swarm robotics system in an urban environment. By using bio-inspired foraging methods such as multi-place foraging and stigmergy-based navigation, a swarm of robots is able to improve the efficiency and autonomy of the urban waste management system in a realistic scenario. To achieve this, a diverse set of simulation experiments was conducted using real-world GIS data and implementing different garbage collection scenarios driven by robot swarms. Results presented in this research show that the proposed system outperforms current approaches. Moreover, results not only show the efficiency of our solution, but also give insights about how to design and customize these systems.Comment: Manuscript accepted for publication in IEEE ICRA 201

    Modeling Radiation Damage to Pixel Sensors in the ATLAS Detector

    Full text link
    Silicon pixel detectors are at the core of the current ATLAS detector and its planned upgrade. As the detectors in closest proximity to the interaction point, they will be exposed to a significant amount of radiation: prior to the HL-LHC, the innermost layers will receive a fluence in excess of 101510^{15} 1 MeV neq/cm2n_\mathrm{eq}/\mathrm{cm}^2 and the HL-LHC detector upgrades must cope with an order of magnitude higher fluence integrated over their lifetimes. This talk presents a digitization model that includes radiation damage effects to the ATLAS Pixel sensors for the first time. After a thorough description of the setup, predictions for basic pixel cluster properties are presented alongside first validation studies with Run 2 collision data.Comment: 12 pages, 13 figures; Talk presented at the APS Division of Particles and Fields Meeting (DPF 2017), July 31-August 4, 2017, Fermilab. C17073

    Agent-Based Modeling of Human-Induced Spread of Invasive Species in Agricultural Landscapes: Insights from the Potato Moth in Ecuador

    Get PDF
    Agent-based models (ABM) are ideal tools to deal with the complexity of pest invasion throughout agricultural socio-ecological systems, yet very few studies have applied them in such context. In this work we developed an ABM that simulates interactions between farmers and an invasive insect pest in an agricultural landscape of the tropical Andes. Our specific aims were to use the model 1) to assess the importance of farmers\' mobility and pest control knowledge on pest expansion and 2) to use it as an educational tool to train farmer communities facing pest risks. Our model combined an ecological sub-model, simulating pest population dynamics driven by a cellular automaton including environmental factors of the landscape, with a social model in which we incorporated agents (farmers) potentially transporting and spreading the pest through displacements among villages. Results of model simulation revealed that both agents\' movements and knowledge had a significant, non-linear, impact on invasion spread, confirming previous works on disease expansion by epidemiologists. However, heterogeneity in knowledge among agents had a low effect on invasion dynamics except at high levels of knowledge. Evaluations of the training sessions using ABM suggest that farmers would be able to better manage their crop after our implementation. Moreover, by providing farmers with evidence that pests propagated through their community not as the result of isolated decisions but rather as the result of repeated interactions between multiple individuals over time, our ABM allowed introducing them with social and psychological issues which are usually neglected in integrated pest management programs.Socio-Ecological Systems, Farmers, Invasive Pest, Long Distance Dispersion, Teaching
    corecore