1,988 research outputs found

    Collective Privacy Recovery: Data-sharing Coordination via Decentralized Artificial Intelligence

    Full text link
    Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for first time attitudinal, intrinsic, rewarded and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win-win for all: remarkable privacy recovery for people with evident costs reduction for service providers.Comment: Contains Supplementary Informatio

    Secure Cloud Controlled Software Defined Radio Network For Bandwidth Allocation

    Get PDF
    The purpose of this research is to investigate the impact of mobility of wireless devices for opportunistic spectrum access and communications using National Instrument Universal Software Radio Peripherals devices. The overall system utilizes software defined radio networks for frequency allocation, cloud connectivity to maintain up-to-date information, and moving target defense as a security mechanism. Each USRP device sends its geolocation to query the spectrum database for idle channels. The cloud cluster was designed for complex data storage and allocation using a smart load balancer to offer ultra-security to users. This project also explores the advantages of data protection and security through moving target defense. To achieve this, the system would use an array of antennas to split the data into different parts and transmit them across separate antennas. This research provides the design to each of the mentioned projects for the implementation of a fully developed system

    Collective privacy recovery: Data-sharing coordination via decentralized artificial intelligence

    Get PDF
    Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here, we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for the first time attitudinal, intrinsic, rewarded, and coordinated data sharing in a rigorous living-lab experiment of high realism involving real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win–win for all: remarkable privacy recovery for people with evident costs reduction for service providers

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    TRIDEnT: Building Decentralized Incentives for Collaborative Security

    Full text link
    Sophisticated mass attacks, especially when exploiting zero-day vulnerabilities, have the potential to cause destructive damage to organizations and critical infrastructure. To timely detect and contain such attacks, collaboration among the defenders is critical. By correlating real-time detection information (alerts) from multiple sources (collaborative intrusion detection), defenders can detect attacks and take the appropriate defensive measures in time. However, although the technical tools to facilitate collaboration exist, real-world adoption of such collaborative security mechanisms is still underwhelming. This is largely due to a lack of trust and participation incentives for companies and organizations. This paper proposes TRIDEnT, a novel collaborative platform that aims to enable and incentivize parties to exchange network alert data, thus increasing their overall detection capabilities. TRIDEnT allows parties that may be in a competitive relationship, to selectively advertise, sell and acquire security alerts in the form of (near) real-time peer-to-peer streams. To validate the basic principles behind TRIDEnT, we present an intuitive game-theoretic model of alert sharing, that is of independent interest, and show that collaboration is bound to take place infinitely often. Furthermore, to demonstrate the feasibility of our approach, we instantiate our design in a decentralized manner using Ethereum smart contracts and provide a fully functional prototype.Comment: 28 page

    Security Threats to 5G Networks for Social Robots in Public Spaces: A Survey

    Get PDF
    This paper surveys security threats to 5G-enabled wireless access networks for social robots in public spaces (SRPS). The use of social robots (SR) in public areas requires specific Quality of Service (QoS) planning to meet its unique requirements. Its 5G threat landscape entails more than cybersecurity threats that most previous studies focus on. This study examines the 5G wireless RAN for SRPS from three perspectives: SR and wireless access points, the ad hoc network link between SR and user devices, and threats to SR and users’ communication equipment. The paper analyses the security threats to confidentiality, integrity, availability, authentication, authorisation, and privacy from the SRPS security objectives perspective. We begin with an overview of SRPS use cases and access network requirements, followed by 5G security standards, requirements, and the need for a more representative threat landscape for SRPS. The findings confirm that the RAN of SRPS is most vulnerable to physical, side-channel, intrusion, injection, manipulation, and natural and malicious threats. The paper presents existing mitigation to the identified attacks and recommends including physical level security (PLS) and post-quantum cryptography in the early design of SRPS. The insights from this survey will provide valuable risk assessment and management input to researchers, industrial practitioners, policymakers, and other stakeholders of SRPS.publishedVersio

    Building the Hyperconnected Society- Internet of Things Research and Innovation Value Chains, Ecosystems and Markets

    Get PDF
    This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening in a global context, building towards intelligent, interconnected decision making as an essential driver for new growth and co-competition across a wider set of markets. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from research to technological innovation, validation and deployment.The book builds on the ideas put forward by the European Research Cluster on the Internet of Things Strategic Research and Innovation Agenda, and presents global views and state of the art results on the challenges facing the research, innovation, development and deployment of IoT in future years. The concept of IoT could disrupt consumer and industrial product markets generating new revenues and serving as a growth driver for semiconductor, networking equipment, and service provider end-markets globally. This will create new application and product end-markets, change the value chain of companies that creates the IoT technology and deploy it in various end sectors, while impacting the business models of semiconductor, software, device, communication and service provider stakeholders. The proliferation of intelligent devices at the edge of the network with the introduction of embedded software and app-driven hardware into manufactured devices, and the ability, through embedded software/hardware developments, to monetize those device functions and features by offering novel solutions, could generate completely new types of revenue streams. Intelligent and IoT devices leverage software, software licensing, entitlement management, and Internet connectivity in ways that address many of the societal challenges that we will face in the next decade
    • …
    corecore