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ABSTRACT

The purpose of this research is to investigate the impact of mobility of wireless devices for 

opportunistic spectrum access and communications using National Instrument Universal 

Software Radio Peripherals devices. The overall system utilizes software defined radio 

networks for frequency allocation, cloud connectivity to maintain up-to-date information, 

and moving target defense as a security mechanism. Each USRP device sends its geolocation 

to query the spectrum database for idle channels. The cloud cluster was designed for complex 

data storage and allocation using a smart load balancer to offer ultra-security to users. This 

project also explores the advantages of data protection and security through moving target 

defense. To achieve this, the system would use an array of antennas to split the data into 

different parts and transmit them across separate antennas. This research provides the design 

to each of the mentioned projects for the implementation of a fully developed system.
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CHAPTER 1

INTRODUCTION

The exponential growth in the availability of lightweight hand-held devices to access wire-

less networks is one of the primary contributors to the increase in wireless traffic, which

leads to severe spectrum shortages for wireless service providers. Opportunistic spectrum

access by unlicensed secondary users (SUs) is regarded as one of the emerging techniques

to utilize scarce spectrum efficiently (Rawat et al., 2015c). For opportunistic spectrum ac-

cess, secondary users can sense idle channels and use those idle channels opportunistically.

However, there are uncertainties in channel sensing by secondary users as wireless channel

suffer by shadowing, multipath, reflection, etc. Recently, spectrum database based oppor-

tunistic spectrum access is regarded as an emerging solution where unlicensed secondary

users search idle bands by sending their request to the database of idle channels. Note that

in database based opportunistic spectrum access secondary users sense the channels and

report their sensing results to the database. Furthermore, when they want to access idle

channels, they query the database for the currently idle channels. While sensing channel by

spectrum sensors, they use signal detection techniques to find idle channels. When energy

detection is used to identify primary user/signal in a given channel using fixed threshold,

signal energy level could be higher than the threshold but that signal spike could be because

of noise. Furthermore, when fixed threshold is used, the signal in low signal to noise ratio

region could not be detected or in case of high noise cases may lead to false alarm. There

are adaptive threshold based spectrum sensing approaches (Rawat & Yan, 2009a), (Yucek
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&Arslan, 2009) where the primary objective of adaptive threshold is to just detect the signal

peak by lower or increasing the threshold but not based on the width of the signal energy

spectra.

Communication can now be done wirelessly from anywhere and anytime. With ad-

vances in robotics and artificial intelligence, engineers are tasked to seamlessly connect all

forms of machinery into networks (Rawat et al., 2015d), (Akyildiz et al., 2006), (Rawat

et al., 2015c). There are already over 6 billion wireless subscriptions and it is increasing

exponentially. This exponential growth results in shortage of wireless spectrum (Akyildiz

et al., 2006), (Rawat et al., 2015c), (Mauri et al., 2014). On one hand, all frequency bands

are already allocated to wireless service providers for exclusive use for long time and vast

geographic area. On the other hand, almost all frequency bands are underutilized or idle

most of the time (Akyildiz et al., 2006), (Rawat et al., 2015c), (Haykin, 2005). Thus,

static frequency allocation policy has resulted in spectrum scarcity. Dynamic Spectrum

Access (DSA) provides a solution to this problem by taking advantage of the ability to be

able to sense whether a frequency is busy or idle and accessing the idle frequencies without

creating any interference to primary users. To replicate this strategy, it is imperative to

obtain a method of identifying idle frequencies. RF spectrum sensing is a method used to

find idle channels using different methods (Rawat et al., 2015c), (Haykin, 2005), (Rawat

& Yan, 2011), (Rawat & Yan, 2009b). For threshold based energy detection method

compares the received signal energy level with the pre-specified threshold and makes the

decision whether the channel is idle or not. However, with this method, for low signal

strength and high threshold, channel will be detected as idle, while in fact it is not. Thus
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adaptive threshold methods can be used as a remedy of this problem so that all channels can

be detected correctly. Furthermore, energy detection method may detect channel as active

when noise spike is present which is a false alarm.

The performance study of opportunistic spectrum access often overlooks the impact

of mobility of unlicensed SU mobility. Many of them assume SUs stationary or with low

mobility (Yan et al., 2010), (Rawat et al., 2015b). First, a geolocation database of idle

spectrum stored in the cloud is created (Rawat et al., 2015c), (Rawat et al., 2015a), (Rawat

et al., 2016). The sensors scan channels within the geographic location that they are in and

then report to the database all channels within the spectrum that are not currently being

used periodically using energy detection technique (Rawat et al., 2015c), (Yucek &Arslan,

2009), (Sharma & Rawat, 2015). For opportunistic spectrum access, each USRP device

sends its geolocation to query the spectrum database for idle channels using dedicated

links and gets a list of idle channels. Once SUs get lists of channels, they find common

communication channels using quorum based rendezvous approach (Bian et al., 2009).

SUs also query the database periodically from their current locations to get updated list

of channels if they are within the acceptable range, and establish the link every time for

opportunistic communications.

The inclusion of a cloud storage system for dynamic spectrum access, allows for the

geolocational data to be stored in large quantities. It also offers the ability to bridge together

different sets of localization data that is taken from the sensor network. This enables a user

to travel from one city to another while maintaining connection to their current location’s

data set. In this part of the project, a complete cloud computing cluster is initialized to



14

handle this data among other sets of data as well. The key concern is the ability to securely

store this data while also maintaining the ability to handle large numbers of requests. The

key concern with the cloud network is the design and implementation of a load balancer

that will effectively handle all the request coming from the sensor network.

Cloud computing is a rapidly growing resource for large data and has spark interest

for innovations in the design and security of this new type of big data architecture. One

of the major concerns with cloud data storage is that the owners of the information give

up the direct control of their information; this leads to significant rise in the need for

technology innovations in cyber security. Multimedia applications such as medical images

and videos, secure video conferencing, and video streaming consume massive amounts of

data requiring significant numbers of servers to provide services for large populations that

use them. It becomes increasingly important that the sensitive data offered through cloud

resources is to be kept confidential to the respective users without violating confidentiality,

integrity and availability of the data. A device which was designed with the sole purpose

of making mobile audio phone calls is now the leading basis for functionality in the social

world. The types of applications widely vary from audio and video calls, internet browsing,

healthcare applications, to mobile games with online connectivity, among many others.

These applications have expanded the original idea of what a mobile device could be,

however, there have been constant drawbacks to these devices, namely short battery life

and limited available storage memory. Other issues that are a current concern with mobile

devices with cloud computing is the higher data consumption when on mobile network

data. Integrating in a mobile cloud system to allocate and store these applications will allow
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for the mobile devices to conserve battery and memory by avoiding large computational

processes.

The last major concern that is taken within this project is the addition of layers to

security. A software defined radio network has several vulnerable areas to be attacked. The

key areas that are considered for protection in this project are the database, transmitters

and the receivers. The system to protect the transmitters and receivers uses the concept

of moving target defense (MTD). MTD increases the difficulty for an attacker to breach

into a network by constantly changing security parameters. The software defined radio

network (SDRN) will help the network in MTD to protect sensitive data, so varying the

system parameters, causing the attacker to lose their trace. Wireless networks have the

advantage of having a very wide attack surface, due to the dynamically changing size of the

network. In mission critical systems, loss or theft of data can become a serious problem

to the users involved. It is possible to increase the level of security offered by the network

through confusing the attacker. The attacker will generally follow an attack process which

starts with eavesdropping the network to discover the system configuration. Then, once

the attacker becomes part of the network, it will begin sniffing packets for either theft or

destructive purposes.

In chapter 2, a literature review of bandwidth allocation is presented. In chapter 3,

an evaluation of an adaptive threshold based RF spectrum sensing approach using USRP

Software Defined Radio (SDR) for real-time opportunistic spectrum access in cloud based

cognitive radio networks (aka ROAR) architecture. The performance of the proposed

approach based on probability ofmisdetection and false alarms is determined. The proposed
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approach is particularized to a scenario with energy based detection or bandwidth based

detection. The proposed approach is validated through numerical results obtained from

both experiments. In chapter 4, an in depth design and implementation for a private cloud

controller is presented with a proposed methodology and system design. In chapter 5 a level

of security is considered in the form of moving target defense. More specifically utilizing

a pseudo-random frequency hopper, controlled by the cloud cluster controller. Chapter 6

concludes the work with overall system design remarks and possible future work that can

be added to the system.
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CHAPTER 2

LITERATURE REVIEW

2.1 Wireless Spectrum Sensing and Sharing

Spectrum sensing is the process of determining whether a wireless channel is active or idle.

It is mainly implemented in dynamic spectrum access in cognitive radio networks which

is a potential solution for spectrum scarcity created by static allocation of RF spectrum for

exclusive use. The goal of the experiment is to use Universal Software Radio Peripheral,

USRP, series 292x andB200 tomake themost effective use of allocated frequency spectrum.

An adaptive threshold based method is used for spectral width and energy detection to find

active channels which should be avoided by the cognitive radio network users. Energy

detection based approach may result in high false alarm since it does not consider the width

of the signal spectra. Thus to avoid this, both width of the signal spectra and energy level

to detect the signal in a given band. Once a cognitive radio identifies the active channels,

it avoids those active channels if it chooses to use them for opportunistic communications

and/or reports the idle channels to a database for other unlicensed secondary users. This

chapter lays out the design and procedures of the Software Defined Radio Network (SDRN)

with a wireless sensor network to determine the available spectrum for secondary users.
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2.2 List of Frequencies

TheFederal CommunicationCommission (FCC) is theUSgovernment agency that regulates

all wireless spectrum and regulation associated to them (FCC, n.d.). The USRP B200

GNU Radio can scan frequency bands or channels specified by the FCC. Thus, the channels

defined/provided by the IARU (International Amateur Radio Union) region I band plan,

which encompasses the Amateur labels provided by the FCC were collected and stored into

a file so that B200 GNU radio can read the list and scan the channels. Then, all channels

from 50MHz to 6 GHz such as FM bands, ISM 2.4 GHz bands, 5 GHz bands, TV bands,

5.9 GHz DSRC bands, etc. are collected. Note that the USRP B200 GNU radio can scan

frequencies from 50 MHz to 6 GHz.

2.3 Global Positioning System for Geolocation

This system model requires the location of the spectrum sensor which becomes the location

of the idle channel if it scans the channel. For geolocation, an external Global Positioning

Systems (GPS) module, i.e. U-blox 4 GPS module was used. This GPS block provides

a simple, manageable method to record the latitude, longitude, altitude, and speed. The

sensors scan channels and report idle channels with their geolocation to spectrum database

of idle channels periodically using dedicated link such as cellular link. Then, SUs who are

seeking opportunistic spectrum access send their geolocation to the cloud controller to find

idle channels available for their location periodically. The period is determined based on

time lapsed after previous query if they are stationary, or a time estimated based on their
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speed if they are moving. If two devices, one receiving and the other transmitting, are

within a common channel area and within range of each other, they communicate as long

as each stay within the communication ranges.

The Haversine function is used for determining the distance between two geographical

locations (location of idle channels and location of the SUs). The Haversine function for

longitude and latitude values is given as (Veness, 2002)

d = 2 ∗ R arcsin[
√

sin(φ2 − φ1
2

+ cos(φ1) cos(φ2) sin2(λ2 − λ1
2

(2.1)

where d is the distance between the two points, R is the radius of the sphere, φ1, φ2:

latitude of an idle spectrum and latitude of a SU. λ1, λ2: longitude of an idle spectrum and

longitude of a SU. The Haversine function was implemented in LabVIEW. This function

is used in twice: first when determining the distance the current location is to the database

location, this determines whether the user is within acceptable range to receive the list of

channels. The second is when creating a timer to check for available channels based on the

speed of the SU, the LabVIEW uses the Haversine function to determine the distance of

the current location compared to the previous location. It is noted that, in the event that a

SU request for active channels at the endpoint of an idle contour, it would then carry those

idle channels into an area where they might be restricted to SUs. At high speed and short

distances this is a very serious problem to be considered as illustrated in Figure 2.1.

This problem can be reduced by frequently querying the database using dedicated radio
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Figure 2.1: Scenario which may Result False Available Channels Outside the Circle

and link. The optimal query interval is determined by

t = min(r − d
v

, tp) (2.2)

where r the radius of idle contour and v is the relative velocity of the mobile device and tp

is the default query interval which can be adapted based on its history.

2.4 Idle Spectrum Database

The data that is acquired using RF spectrum sensor can be stored for other secondary users.

It is important to be able to share data that has been recorded. The most convenient method

of sharing information between devices is creating and updating a database. A database

allows users to store, access, and update information. The information that is to be sent

to the database include the date, time, latitude, longitude, altitude, speed, frequency and

signals energy level.

2.5 Inclusion of GPS and Database in the System

The code was built after the inclusion of the GPS and the database aspects. To provide

assurance that the programwill not timeout due the crowding of information between scans,
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global variables and others measures were put in place.

1. Initialize USRP B200 GNU Radio

2. Read GPS Location

3. Read Wireless Channel/Frequency List from Data File

4. Scan a Given Frequency

5. Display the Spectrum of the Signal for Occupancy Information

6. Report Channel Occupancy Information to the Database

2.6 Adaptive Threshold Based Joint Energy and Bandwidth Detection

Approach

The received signal at the sensor could be just noise or noise plus the signal from primary

users which is represented using two hypotheses as:

r(i) = ni : H0 (2.3)

r(i) = s + ni : H1 (2.4)

where, r(i) is the received signal, ni is the zero-mean additive white Gaussian noise,

and s is the primary signal. Then, the energy of the received signal can be computed as

rE =
1
N

N∑
i=1
[r(i)]2 (2.5)
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where N is sensing duration. Then, energy based detection can be used to detect idle

channels as

rE > λE = 0 i f H0 (2.6)

rE > λE = 1 i f H1 (2.7)

where rE is the received energy amplitude and λE is the predefined energy threshold. It

is noted that the energy based detection may result in false alarm even if there is just a

spike because of noise. Thus, the width of the signal spectrum should be considered while

detecting a signal by adapting the threshold. The adaptive threshold valued for the energy

can be obtained by using the mean (µi) and variance (σi) for a signal’s FFT as

λE = µi + ασi (2.8)

and the threshold for bandwidth detection can be expressed as

λB = .5 ∗ B (2.9)

where B is the bandwidth of the signal. Then, the signal detection using energy and

bandwidth can be expressed as:

rE > λE AND sb > λB = 0 i f H0 (2.10)

rE > λE AND sb > λB = 1 i f H1 (2.11)

where sb received is the signal bandwidth of the received signal.

An important aspect to the accuracy of a sensor is knowing the probability at what

ranges and speeds of a sensor that it will trigger a misdetection or a false alarm. A
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misdetection is the result of a sensor not detecting a known active channel to be within the

threshold power; a false alarm is the result of the sensor detecting a signal within a threshold

amount which is known to be idle. The probabilities of these two events occur based on the

energy sensed can be described as follows:

P f = P(rE > λE AND sb > λB) |H0 (2.12)

Pm = P(rE < λE AND sb < λB) |H1 (2.13)

where P f is the probability of a false alarm and Pm the probability of a misdetection.
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CHAPTER 3

BANDWIDTH ALLOCATION USING SOFTWARE DEFINED RADIO NETWORKS

This chapter is used to go into further detail about the dynamic spectrum access and

bandwidth allocation portion of the project. In this chapter is the proposed methodology

and experimental setup followed by the results obtained (Cushman et al., 2016a), (Cushman

et al., 2016b).

3.1 Experimental Setup

For experiments, LabVIEW was used to program NI USRP devices (USRP 2920, 2921 and

2932). These USRP devices cover wide bands (50 MHz to 6 GHz) by connecting them

together through a MIMO cable. An external GPS unit was used with USRP 2920 and

2921, however the USRP 2932 comes with an internal GPS. The GPS unit helps collect the

geolocation of the spectrum sensor (that is the location of idle channels), speed, time stamp,

etc. A typical RF spectrum sensor diagram is shown in Figure 3.1

Figure 3.2 shows the experimental setup with one pair of transmitter and receiver, and

one RF spectrum sensor using USRPs and LabVIEW. The transmitter-receiver pair were

pretended to be the primary users where theywere communicating in different channels (FM

bands, ISM bands, etc.) using quorum based approach (Sharma et al., 2015). RF spectrum

sensor was scanning the channels and reporting to the database periodically. Note that,

as mentioned, primary network infrastructures are used to get information where spectrum

sensors are not available to sense the channels.
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Figure 3.1: Typical RF Spectrum Sensor Unit

Figure 3.2: Typical experimental setup with USRPs representing a transmitter- receiver Pair

Spectrum bands (50 MHz to 5.9 GHz)
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Figure 3.3: TheGRC interface is used by connecting the blocks into their respected terminals

Once the geolocation (longitude, latitude, and altitude) of idle spectrum is available

in the database, heat map of idle spectrum is generated to visualize the availability of idle

channels

3.2 LabVIEW and GNU Radio Companion

Experimental data was taken by designing programs that would be able to interface with

National Instruments and Ettus Research devices. GNU Radio Companion (GRC) is a

software design program in which functions and methods are represented by blocks, as

shown in Figure 3.3, and they connect together to create a program. It was intended to

be used in this research but circumstances restricted its effectiveness in the task to scan

multiple frequencies. GRC provided an easy to use graphical interface to see the activity

of the desired frequency.

To scan channels in the range 50MHz to 6 GHz, two antennas embedded in B200 GNU

radio are used; VERT2450, with dual band 2.4-2.5 GHz and 4.9-5.9 GHz and a VERT400
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tri-band antenna.

1. Initialize B200 GNU Radio.

2. Read wireless channel/frequency list from data file.

3. Scan a given frequency

4. Display the spectrum of the signal for occupancy information.

The code is made up of 2 functions. The first is the initialize program for the USRP using

B200 GNU Radio, and the last is the main function to scan the channels.

3.3 RF Spectrum Sensing

To demonstrate the spectrum sensing, the first band was the FM Radio frequencies inside

the building and outside the building. The scanned results are plotted in Figure 3.4 and

Figure 3.5. The spectrum sensor caught frequency 91.9 MHz with high energy inside

the building, however outside scan showed a few other FM channels. As expected, with

threshold of -105dBm, there were only 3 FM channels active inside the building and over 6

FM channels outside the building as shown in Figure 3.4 and Figure 3.5.

Next, a controlled experimental setup for 2.4 GHz ISM bands (i.e., 2.412 GHz to 2.46

GHz) using USRP devices was prepared. The experiment was designed in three scenarios.

Scenario 1: no transmitters transmitting in any channels in 2.4 GHz bands, Scenario 2:

one transmitter transmitting in 2.437 GHz (Channel 6) and Scenario 3: two transmitters
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Figure 3.4: Inside the Building

Figure 3.5: Outside the Building

transmitting in two different channels in 2.417 GHz (Channel 2) and 2.457 GHz (Channel

10).

In Figure 3.6, the scanned results of Scenario I for ISM bands and observed a flat

spectrum with a couple of spikes with very small bandwidth are shown. When the energy

based detection with threshold is -105 dBm, there would be false alarm. In Figure 3.7,

the plotted scanned results of Scenario 2 for ISM bands and observed that the 2.437 GHz

(Channel 6) is active. Similarly, for Scenario 3 for ISM bands, the scanned results shown
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Figure 3.6: Spectrum Scan 2.4 GHz: No Channels Active
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Figure 3.7: Spectrum Scan 2.4 GHz: One Channel Active

in Figure 3.8 show two channels 2.417 GHz (Channel 2) and 2.457 GHz (Channel 10) that

were active as expected. Note that the spectrum sensor does not report the active channels

to the database, however it reports the idle channels with its geolocation, time stamp, speed,

etc. Last, was the experiment to scan 5 GHz ISM bands.

Experiments were then designed and implemented where no channel active, one chan-

nel active and two channels active in 5 GHz bands, then scanned the 5 GHz and plotted

the respective scanned results as shown in Figures 3.9, 3.10 and 3.11 respectively. Note
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Figure 3.8: Spectrum Scan: Two Channels Active

that in Figure 3.7 there were very small spikes at around 5.2 GHz which were not active

channels/signal along with one true signal at 5.5 GHz. However, signal energy detection

approach treats the channels with higher energy than threshold (say 90 dBm) as active which

is false alarm in this case. However using adaptive threshold and band-width detection, this

error was eliminated resulting in desired results (i.e., channel at 5.5 GHZ was active and

none others in this case). Similarly in two channels active case in Figure 3.11, there were

only two channels were active, however there are two more channels had spikes with small

bandwidth.

To see the impact of mobility of RF spectrum sensor, transmission range of primary

user and sensing range of the RF spectrum sensor, an experiment was designed where

a fixed USRP device had the RF spectrum sensor and the user walked away and took a

measurement scan for power every 50 meters as shown in Figure 3.12.



31

0.0331126

-109.967

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

Frequency
5.8G5.15G 5.2G 5.25G 5.3G 5.35G 5.4G 5.45G 5.5G 5.55G 5.6G 5.65G 5.7G 5.75G

Amplitude

Figure 3.9: Spectrum Scan 5 GHz: No Channels Active
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Figure 3.10: Spectrum Scan 5 GHz: One Channel Active
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Figure 3.11: Spectrum Scan 5 GHz: Two Channels Active
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Figure 3.12: Experimental scenario with fixed primary location of spectrum sensor with

direction of movement

3.4 Detection Scan for B200 GNU Radio

In this part of the experiment, similar experiments were conducted as in 3.3, except done

with a USRP B200. This is done to showcase to variety of software defined radios that

can use this system. The first scenario, the GRC frequency graph was generated with no

signals transmitted in a list of given channels. In the second scenario, the same graph was

generated, while a signal is being transmitted. These scenarios were tested in the FM bands,

2.4 GHz bands and 5 GHz bands. The USRP B200 was configured as a transmitter while

a NI USRP 292x devices were configured as a transmitter. A VERT 2450 antenna was

used for the 2.4 GHz and 5 GHz channels and a VERT 400 antenna was used for the FM

channels. In the first trial, the detection for the FM channels was tested. The USRP B200

was set to receive a signal at 91.7 MHz while the transmitter is off, and the scanned results

are plotted on Figure 3.13. It is apparent that the receiver cannot see any distinguishable

signals while the transmitter is off, observed by the absence of high power readings, in the
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Figure 3.13: USRP B200 is set to receive signals at 91.7 MHz while corresponding

transmitter is turned off

first scenario. The readings that are displayed, are the unwanted noise that were discussed

in the previous sections which do not have bandwidth greater than the threshold λB. It is

clear that the USRP B200 was able to detect the signal when the transmitter was turned on

as shown in Figure 3.13 where both rE > λE AND bs> λB were satisfied.

By comparing the received signal spectra in Figure 3.13 and Figure 3.14, it can be

easily be determined whether the signal can be determined to be active channel and an

idle channel. The transmitted signal appears exactly where it is being transmitted on the

receiving side and its energy and bandwidth are distinct compared to the unwanted signals.

In the second trial, the receiver and corresponding transmitter are set to frequency

2.412 GHz which is located in the 2.4 GHz ISM bands. This was repeated in two more

scenarios in which the transmitter is on or off. As expected, the unwanted signals appear

when the USRP B200 scans for the frequency as evident in Figure 3.16. This figure displays

the peak that correlates to the transmit frequency. This trend is also demonstrated when the



34

Figure 3.14: USRP B200 is set to receive signals at 91.7 MHz while corresponding

transmitter is turned on

Figure 3.15: USRP B200 is set to receive signals at 2.412 GHz while corresponding

transmitter is turned off
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Figure 3.16: USRP B200 is set to receive signals at 2.412 GHz while corresponding

transmitter is turned on

USRP B200 scans in the 5 GHz range, shown in Figures 3.17 and 3.18.

By observing the past several figures, it is easy to differentiate between idle and active

channels by comparing the signal energy and bandwidth against corresponding threshold

values. For example, if the threshold value is set to -60 dB then the active and idle scenarios

can be distinguished. The same can be stated with a threshold value of -80dB. It can be

concluded that, for these results, any threshold value within the range from -60 dB to - 80dB

is sufficient as appropriate markers to determine a channel status as active or idle.

3.5 Multiple Frequency Scan

It is now evident that the USRP B200 GNU radio can detect frequencies in the FM, 2.4

GHz, 5 GHz and DSRC range. In the next experiments, the USRP B200 is tasked to scan

the frequencies in the aforementioned ranges. It is expected to have considerable peaks in

the readings when signal is present or high noise is present. The energy of received signal



36

Figure 3.17: USRPB200 is set to receive signals at 5.3GHzwhile corresponding transmitter

is turned off

Figure 3.18: USRPB200 is set to receive signals at 5.3GHzwhile corresponding transmitter

is turned on
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Figure 3.19: USRP B200 scanning the 2.4 GHz range 10 times

by the B200 in 2.4 GHz ISM bands, 5 GHz ISM bands and 5.9 GHz DSRC bands is plotted

in Figures 3.19, 3.20 and 3.21 respectively. The DSRC channels show the least amount of

activities as there were no transmitters transmitting any signals. Then, the FM bands are

scanned and plotted in Figure 3.22.

In the next experiment a system model is created in which four transmitters send out a

signal at different times. The test is conducted in the 2.4 and 5 GHz range because those are

the ranges where the results were more apparent. The frequencies that are transmitted in

the 2.4 GHz range were 2.452, 2.422, 2.437, and 2.417 GHz. The 5 GHz frequencies were

5.3, 5.785, 5.54, and 5.24 GHz. These were the channels that were chosen to be transmitted

because they were not in close proximity of each other. The experiment was conducted

in a controlled environment where all the transmitters were set within three meters of the

receiver and set them at 10 gain. The transmitters were turned on in every combination

possible except for them being turned off. Then, 10 trials of scanning each range were
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Figure 3.20: USRP B200 scanning the 5 GHz range 10 times

Figure 3.21: USRP B200 scanning the DSRC range 10 times



39

Figure 3.22: 3 USRP B200 scanning results for FM bands 10 times

done. The results obtained from the scans confirm the responsiveness of the USRP B200.

Keeping a database of all recorded frequncy entries allows for three dimensional plots of

the current high and low peaks of the observed spectrum. Figures 3.23 and 3.24 are good

examples of this monitoring system. The displayed peaks from one to another suggest that

one standard threshold limit would cause either misdetections or false alarms when applied.

This is why an adaptive threshold must be used. Sensing performance as well as the results

from detection scan will provide insight on the optimal threshold value to uphold.

3.6 Experimental Results for Threshold Limiting

As expected, the probability of detecting the signal decreased when sensor move away from

the primary transmitter as shown in Figure 3.25. From this figure, it was observed that

when the sensor was 50 meters away, the power was within threshold 100 percent of the

time. As the device got further away, for instance at 600 meters, it still managed to get a
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Figure 3.23: USRP B200 spectrum sensing the 2.4 GHz range 10 times

Figure 3.24: USRP B200 spectrum sensing the 5 GHz ISM bands 10 times
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Figure 3.25: Probability of detecting signal vs distance of spectrum sensor from transmitter

(meters) where spectrum sensor moved away from transmitter

20 percent chance to be within the threshold. Also in instances like at 300 meters away,

due to problems with localization objects, i.e. trees, people, and buildings, it caused a

lower probability. Then, the probability of misdetection for different threshold values was

plotted in Figure 3.26. As threshold value decreased, the misdetection values decreased.

Furthermore, misdetection decreased with increased gain. It is worth noting that the choice

of the proper threshold is also important for identifying the idle channels.

The false alarm and misdetection probability was plotted in Figure 3.27. It was

observed that the probability of false alarm decreased with increased threshold value or vice

versa and misdetection probability increased with increased threshold value. Furthermore,

it can be noted that the change in threshold value does not result in change in false alarm

whereas there is significant change in misdetection probability as shown in Figure 3.27.

The perfect threshold value considering trade-off would be the value at intersection of two
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Figure 3.26: Probability of misdetection for different threshold values

probability values.

Last the sensing period vs the speed of a sensor for a given transmission range of

primary users, as shown in Figure 3.28 was plotted. It can be observed that higher the speed

of the sensor, the lower the time available to sense demanding faster scanning period.

3.7 Adaptive Threshold Evaluation

The results taken by spectrum sensor and analyzed it with various threshold values (Younis

et al., 2016). From Figure 3.29, it was concluded that the threshold value must be within

the range of -60 and -80 dB based on the results of the detection scan. The factors that must

be considered for the performance of the USRP B200 are the probability of miss detection

and the probability of false alarms. If the threshold value is too low, e.g. -90dB, then it will

increase the chances of false alarms. In contrast, if the threshold is set too high e.g., -50dB,
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Figure 3.27: Probability of misdetection and false alarm vs. the threshold

Figure 3.28: Sensing period vs. the speed of the sensor with lower and upper limit of time

period for given transmission ranges
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Figure 3.29: USRP B200 spectrum sensing the 2.4 GHz range with a threshold of -80 dB

then far more misdetections will occur. The purpose of this section is to further examine

the data from the previous experiments and define the model threshold value.

It can hard to differentiate between the false alarms and the busy frequency. Fig-

ure 3.30, in contrast, shows virtually no false alarms, but the peaks are scarce prompting

the assumption that there are many miss detections. The principle discussed before is now

verified by these results, and better illustrated by Figure 3.31. The threshold being set too

low will cause more false alarms and it being set too high will cause more miss detections.

The same observations were made while viewing the 5 GHz range, Figure 3.32, Figure 3.33.

From these two figures, a graph of the number of misdetections and false alarms is created

and displayed in Figure 3.34.
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Figure 3.30: USRP B200 spectrum sensing the 2.4 GHz range with a threshold of -60 dB

Figure 3.31: The number of occurrences for both misdetections and false alarms in the 24

GHz range
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Figure 3.32: USRP B200 spectrum sensing the 5 GHz range with a threshold of -80 dB

Figure 3.33: USRP B200 spectrum sensing the 5 GHz range with a threshold of -60 dB



47

Figure 3.34: The number of occurrences for both misdetections and false alarms in the 5

GHz range

3.8 Geolocation Mapping for Frequencies

In this section, experiments were done using the system to communicate between two

devices while moving through designated zones. The first experiment was done at walking

speed. This experiment is set up where the secondary user transmitter and secondary user

receiver were carried with typical walking speed (2 mph to 3 mph). The distance between

them was 5 meter where SU transmitter was following SU receiver in a path as shown in

Figure 3.35. This figure shows the two locations of idle Wi-Fi channels for the experiment

that are marked as diamonds. Without loss of generality, it is considered that the radius of

idle channel circle as 20 meters. The red dots are the locations of SU-transmitter and SU-

receiver when they queried the spectrum database. Ideally SUs should get channels only

when they are within these circles and none when they are outside the circles.
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Figure 3.35: Experimental set up for Walking Speed Analysis

In the first communication experiment, secondary user transmitter and secondary user

receiver separated by 10 meter started walking from left side of Figure 3.35 towards the first

circle. A constant speed between secondary user transmitter and secondary user receiver so

that the separation distance remains the same throughout the experiment. Secondary Users

were constantly querying the database using their dedicated links to find idle channels. When

they found idle channels they used the quorum based rendezvous to find common channel.

When the SU transmitter finds list of channel it chose one channel using quorum based

rendezvous and was broadcasting a Hello! message. This process was repeated throughout

the experiment, as long as it was able to obtain channels from spectrum database for its

location. Similarly, SU receiver was doing the same thing that SU transmitter was doing to

get a list of channels. Once SU receiver found a list of channels, it used the quorum based

rendezvous to find communication channel. It can be observed that the receiver received

the Hello! message only when SUs were within the communication range of each other and

within the idle channel locations.

The number of idle channel vs. the time instances (steps) that SU receiver received

in the first plot and SU transmitter received is plotted in Figure 3.36. As receiver leading
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Figure 3.36: Results from Walking Experiment

the transmitter by 5 meters, SU receiver was getting idle channels (4 idle channels when

it was in the first circle and 3 channels when it was in the second circle) little earlier than

the SU transmitter as shown in Figure 3.36. Once the SU transmitter was also inside the

circle of idle channels, it started getting all idle channels (4 channels in the first circle and

3 channels in the second circle). Once both transmitter and receiver got idle channels, they

used quorum based rendezvous method to find a common channel to communicate. Last

plot in Figure 3.36 shows SU transmitter and SU receiver were able to communicate when

they were within the range of each other and within the idle locations. Furthermore, when

SUs were moving away from the center of the circle of idle channels, SU receiver was

getting no channel earlier than the SU-transmitter since SU receiver left the circle earlier

than SU-transmitter as shown in Figure 3.36.
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Figure 3.37: Results from Vehicular Speed Experiment

Experiment with Vehicular Speed: This experiment tested the impact of velocity on

opportunistic spectrum access and communications. The experiment was set up in parking

lot at GSU where both devices were placed inside the car. The lists of channels obtained

by SU transmitter and SU receiver are plotted in Figure 3.37. It can be observed that both

transmitter and receiver were able get the same list of channels at the same time as they

were querying frequently than the previous case. Using those channels SUs were able to

establish the link and communicate as shown in the third plot in Figure 3.37. Note that the

list of channels depends on when it was queried. For instance there are channel for SUs

outside the boundary which is caused by query interval as shown in Figure 3.37. Multiple

trials were conducted each with similar results.
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CHAPTER 4

PRIVATE CLOUD CONTROLLER

Cloud network capabilities find strength in the ability to operate as a service. Cloud

as a service allows users to use its resources dynamically where user demands grow or

shrink on-the-fly depending on their operating environment and user demands. Multimedia

applications, such as video conferencing, require time sensitive processing in order to

maintain a high quality-of-service between any participating parties; in other cases, such

as recorded video streaming, we may consider the information to be non-time sensitive due

to the fact that the video can be stopped and played multiple times. Cloud based networks

operate with the ability to connect to and program virtual operating systems through the

means of the Internet. In some applications this can be Virtual Private Networks (VPN)

where a user can remotely connect to and operate their personal computer through a cloud

based network (CBN). Another application of CBN is the ability to share and write on

documents that others are also connected to at the same time. The information stored in a

publicly or privately owned storage may see problems with accessibility or security when

many users are able to connect to it. This ideology is supported through the concept of Cloud

as a Service (CaaS). This termhas threemajor concepts, Software as a Service, Infrastructure

as a Service and Platform as a Service, or SaaS, IaaS and PaaS, respectively. SaaS is able to

provide users with application based computing without the need of storing the application

on the physical hard disk of their machine (Kulkarni et al., 2012); IaaS can provide the user

with hardware, software and storage through the Internet (Dawoud et al., 2010), and PaaS
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delivers operating system and application development tools over the Internet (Krebs et al.,

2014). The strength that comes with CaaS is that a combination of each of these concepts

can be purchased by the user and provides the ability to run their entire company with little

need of large on-site data centers. However in this scenario privacy and security become a

very essential asset. There are many different options when creating a CBN, and one of the

most widely used is OpenStack. OpenStack (OpenStack.org, 2016) has a large community

that is constantly using, critiquing and updating how the system operates for many different

tasks. Further uses and development of OpenStack is explored later in this paper. Various

proposed solutions to the secure, high traffic demands of cloud computing have already

been implemented by companies such as Amazon, who has employed several techniques in

cloud service, such as elastic load balancer (Amazon, 2016), to maintain availability to their

large servers. Microsoft has also created their own cloud service, Microsoft Azure, which

provides several different services to manage big data and company portfolios managed

through their service (Microsoft, 2016). Other popular techniques have been applied to

allow for portions of a public cloud server to be rented out for private use; however this

raises several concerns, such as the loss of availability if the public cloud is hit with a denial

of service attack, and the private sector would also be inaccessible. In this paper we explore

several techniques that have been used to provide better quality and security to cloud servers

in multimedia access and also relate to how a smart load balancer could be employed to

make current methods better. In this research we propose a hybrid cloud where the Smart

Load Balancer and Bandwidth Shaper (SLBBS) selects the best suited cloud (private or

public) based on sensitiveness and delay requirements of the request.
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By offering a cloud network, the service provider can extend to their user resources on

demand through service packages. At the same time, the concept of Mobile Cloud Com-

puting (MCC) is also evolving. MCC has the potentiality to overcome the constraints of the

performance of mobile entities, such as computational power, storage, bandwidth, hetero-

geneity and scalability (Chalaemwongwan & Kurutach, 2016). The recent mobile standard

Long-Term Evolution (LTE) is supporting the cloud augmentation as new generation mobile

applications are needed to overcome the limitations of computation (Chalaemwongwan &

Kurutach, 2016). Next generation application data are no longer static as there is a lot more

diversity in mobile applications (Selvi et al., 2014). To handle such dynamic data, dynamic

resource management can be used by dynamic resource allocation technique in a virtual

cloud system (Selvi et al., 2014). This concept allows for users to avoid having to purchase

large packages that may include many other pieces of software or too much processing

power for the required use. The driving force behind this is known as as-a-service, where

software, platforms or infrastructures are offered to the user virtually. A new business

owner will be able to maintain their entire business operation on a single machine without

needing the complete knowledge of how to configure and operate their operating systems

and servers as all the backend processes and procedures will take place on the cloud server

side. Resource allocation and data management within mobile clouds have a variety of

challenges that have previously been researched, most critically of which are: heterogeneity

of data, availability to the network, offloading, and security and privacy (Hu et al., 2016).

The inclusion of a cloud storage system for dynamic spectrum access, allows for the

geolocational data to be stored in large quantities. It also offers the ability to bridge together
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different sets of localization data obtained from the sensor network. This enables a user to

travel from one city to another while maintaining connection with their current location’s

data set. In this part of the project, a cloud computing cluster is designed and implemented

in hardware using three servers. The system is designed to handle complex data storage and

access in the form of a smart load balancer.

4.1 Multimedia Access in Cloud Computing

The design of an algorithm that can handle multimedia data, data storage and access

becomes a trying task. The first design concept that needs to be addressed is how to

conform several data types and device communication protocols into a uniform protocol.

Next to address is how to securely store and distribute this data to the intended users upon

request. Multimedia data takes the form of many different types, whether it be photographs,

videos, or sound clips. Along with them are several types of devices with varying security

and communication protocols in which they connect to the Internet. This issues cause a

concern for data analysts and developers with security in mind. It is important to build a

cloud structure that can handle various data types and has the ability to serve the many types

of devices connected to the network. The research in (Chen et al., 2011) proposes one such

method to handling heterogeneity in networks with the IP Multimedia Subsystem (IMS)

framework. The IMS framework uses the three concepts of as-a-service mentioned earlier

in order to build a mechanism that is capable to maintain high quality of service (QoS)

manage computing services and user preferences and allows for users to access specific
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applications in the cloud with IaaS, PaaS and SaaS, respectively.

4.2 Heterogeneity in Cloud Networks

As addressed previously, a major challenge in the storage of a cloud network that provides

user media access is the ability to adapt to the specific users media request, communication

protocols and the actual system requirement that particular type of media requires. It would

also require the overall cloud network to pull data where the network may exist virtually in

very different locations, increasing the cost of transmission of data. It is possible in a cloud

network to provide methods for specific types of data to either be placed in or converted to

appropriate data type tables in order for the computing system to categorize a user request to

maximize efficiency. This ideology is explored in (Korotich & Samaan, 2011) with the use

of applying a virtual service model (VSM) hierarchy. In this method they design the system

to contain a root layer, containing all possible data that could be requested through the cloud.

Then a new layer is introduced for each general type of media. High resolution requests

from users will take a higher precedence in the hierarchy compared to low resolution media

types. Also mentioned in the work is the problem with redundancy in the layers because

each new layer is constructed on the basis of the root; it does however bring to surface a

possible way to distribute data for storage inside a cloud.
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4.3 Confidentiality, Integrity and Accessibility

Security schemes in data storage offer certain levels of confidentiality, integrity and accessi-

bility to a network system; for example a specific scheme may require the user and provider

to share a service level agreement (SLA) which will continually check if what is being

stored is agreed upon by both parties. In cloud computing, this system is more complex and

has many areas where potential malicious users would be able to steal, change or destroy

valuable data. In this section, the framework proposed in (Huang et al., 2011) is explored

in order to generate better data integrity and confidentiality for our multimedia cloud net-

work. For data integrity, the proposed method uses two concepts: a Third Party Auditor

(TPA) and Proofs of Retrievability (PoR). TPA is a mechanism used to gain trust between

the service provider and the user in the network. This mechanism is built by monitoring

the data stored in the cloud and its interaction with the cloud provider. A homomorphic

authenticator is used to audit the data sent by the data owner and generate a corresponding

result. A potential draw back in this system is the possibility of revealing the data owners

identity if a malicious user was to sniff the data audit. This could be fixed, however, by

using data masking techniques and encryption schemes. Figure 4.1 below demonstrates the

typical design of a TPA system.

For obvious reasons it is critically essential to keep multimedia data, either being

streamed from a video conference or stored from medical procedures, confidential to only

the users with the proper authentication. Several proposed works mentioned in (Huang

et al., 2011) cover different schemes to provide confidentiality in cloud networks. One
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Figure 4.1: Third Party Auditor Topology

method is the use of cryptographic algorithms placed on the data blocks with the key given

to the data owners. This ensures that the data stored in the cloud can only be accessed by data

owner. Another method is the use of secure provenance model, recording the ownership

and the process history to increase the trust of the data owner to the network. Additionally,

the use of a fully homomorphic encryption (FHE), was proposed by Craig Gentry. This

encryption technique allows circuit evaluation over encrypted data without being able to

decrypt it, allowing for better confidentiality. However it may restrict the distribution of

data for the data owner trying to access from multiple locations.

4.4 Hybrid Cloud

The idea of renting out small sectors of a cloud to paying subscribers is a viable concept

to cloud service providers. This allows them to allocate portions of their network that may
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Figure 4.2: Cloud in Cloud Model

not have been fully utilized. Having a public and private cloud exist inside the same overall

structure provides significant increases to usability. However it comes with new types of

security risks to consider. The research work in (Zhang et al., 2013) considers the effects

of placing a cloud inside the cloud, otherwise known as a hybrid cloud. Demonstrated in

Figure 4.2, this model allows for a small subsection of the public cloud to be exclusively

owned by an administrator while still keeping data links to other parts of the public cloud.

The private cloud is able to act as both its own structure and still remains connected to

either the entire public cloud or via certain specific data links, depending on the need

and configuration of the private cloud. In this model, it is possible to reduce the cost of

communication between public and private than traditional sense of hybrid cloud where the

two clouds act as separate entities.

The cloud-inside-cloud configuration brings around a new ideology on how to manage

private sectors in cloud based networks. However it does not consider the effects on heavy
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multimedia traffic access that would occur when many private networks call on a public

cloud at the same time. In this scenario, innovating onto the cloud in cloud structure, by

applying methods found in private cloud frameworks to achieve the goal of creating a load

balancer that will distribute data quickly among large cloud networks.

4.5 Private Cloud Infrastructure

One of the main challenges when managing a cloud network for users to store and access

data is the ability to maintain confidentiality, availability and integrity of the system. One

of the key problems comes from the need of a uniform security intrusion and detection

method to be employed over the cloud. A cloud network could not allow for individual

users to access and change security parameters simply because otherwise the availability to

sectors of the network would break. The research in (Krautheim, 2009) establishes several

concepts of private cloud security. First they introduce a private virtual infrastructure (PVI),

where the data owner and cloud operator are in common terms of security protocol while

the virtual data center stays in direct control of the data owner. In this scenario, it is obvious

that role based interactions will control the structure of the cloud where both the operator

and the client would need to establish service level agreements before establishing a secure

connection. The concept of Trusted Platform Module (TPM) is also introduced in their

research. This module stores cryptographic keys in the platform configuration registers

(PCRs) and establish the access of the clients to their configured platform. Based on this

architecture, a certain level of trust is formed in the cloud network as only specific users
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Figure 4.3: Cloud Network Using OpenStack based Topology

will be able to access specific sections of the network. This concept builds a two layer

architecture for private cloud security, the IaaS fabric layer and the PVI layer, establishing

important rule based operations for both vendor and data owner.

4.6 Cloud Virtualization Techniques

OpenStack provides an IaaS for users to develop cloud networks. It uses several com-

ponents in order to design their cloud computing architecture, consisting of the essen-

tial blocks: the cloud controller, compute node, network node and optional storage node

(Docs.OpenStack.org, 2016). Figure 4.3 demonstrates the typical architecture of an Open-

Stack private cloud service (Docs.OpenStack.org, 2016).

The controller runs the virtual machine Identity and Image services, management

portion of compute node and the dashboard. The dashboard is a web-based interface
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that users can use to interact with OpenStack services, such as launching an instance and

assigning IP addresses. It also serves as a means for the data owner to interact with their

data, through queries, entry tracking and utilization of their cloud server. The controller

node is also capable to operate as a storage block and cloud operator, generally used to

access the network and compute node in order to run the cloud server. The compute node is

responsible for the hypervisor that operates tenant virtual machines or instances, connects

network plug-ins and firewall services. It can also contain a third network interface in the

storage to improve system performance. The network node runs the networking plug-in

and several agents to provide switching, routing, Network Address Translation (NAT) and

Dynamic Host Control Protocol (DHCP). OpenStack requires several pieces of software in

the design tomainatian authenticitiy to the users and for storages of data. These services each

have a project name inside OpenStack, which may cause confusion to users configuring the

network for the first time. To avoid such confusion, the core services and their counterparts

are listed in pairs (in the same row) in Table 4.1. This information and the discussions in

the following section are useful in helping us determine the appropriate structure, model,

system, operating system, software and hardware for building our own private cloud in this

research.

4.7 OpenStack Cloud Design

Inmany academic cloud deployments, open source allows the deployment of cloud networks

without the need of expensive licenses. This project uses OpenStack to build and test the
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Core Services Project Name

Dashboard Horizon

Compute Neutron

Object Storage Swift

Block Storage Cinder

Identity Keystone

Image Service Glance

Table 4.1: Common OpenStack Services and their corresponding Related Project Name

cloud network. OpenStack is open source and was selected in this project thanks to its large

community of developers in both industrial and academic cloud deployments. A key strength

that comes with developing a computing network using OpenStack is that the cloud models

can have a variety of configurations to serve a task with excellent flexibility. Some example

uses are public cloud, high throughput computing, web hosting, and video processing and

content delivery, etc. The architecture built for this project requires three components: the

controller, compute and network nodes. The controller node is responsible for running the

virtual machine Identity and Image services, management portion of compute node and

the dashboard. The compute node is responsible for running the hypervisor that operates

tenant virtual machines or instances, and connects network plug-ins and firewall services.

Lastly, the network node is responsible for providing switching, routing, NAT and DHCP

(Docs.OpenStack.org, 2016).
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4.7.1 Troubleshooting OpenStack Cloud Design

OpenStack is opensource software, meaning it is free to use and gives the user developer

abilities. Due to this, there is the potential for errors to occur during the setup phase. The

recommended method, at this time, from OpenStack is to use their Autopilot, however it

requires several extramachines to act as outside controllers in the installation process. When

working with Autopilot, problems can occur when the user is connected to a network where

they are not the network administrator, such as a university. Autopilot requires the ability to

bootstrap the machines and dynamically address IP addresses to it. This causes issues to the

network, because it appears as if a computer in the network is trying to issue IP addresses

using the gateway address. When not going the Autopilot method, it is possible to manually

install and configure each piece of the OpenStack cloud. This method requires much more

time as each ”.conf” file of all the softwaremust be reconfiguredwith the correct IP, database

password, and user authorization. There are several documents from OpenStack that serve

as a guide to this process, however the manual method requires a higher knowledge in

network addressing and administration, however it can be accomplished. The final method

that was explored is to use the ”git clone” command. This method grabs all the required

software and a user generated file for host IP address and database password, and installs

everything to the machine. It is by far the easiest method, however finding the script files to

make adjustments can cause the whole system to stop working. It also became a challenge

to add more software later, due to the fact that stopping the services would often cause one

or more other services to start working improperly.
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4.8 Resource Management, Allocation and Provisioning

Resource allocation within mobile cloud computing networks has been presented in several

different ways, typically generating a cost function per the efficiency of the required request.

The work presented in (Su et al., 2016) presents an adaptation where the overall cloud

network is not localized and requires mobile social users, cloud brokers and a mobile cloud.

When a request from a social user is presented to the broker, a cost for the resources is

determined and the request is sent to the cloud. When the cloud broker negotiates higher or

lower costs, the mobile user would then make the decision to connect. Their work presents a

game theoretic method of resource allocation for better energy efficiency. Another proposal

made by (Wang et al., 2016) aims to reduce the overloading on the cloud by optimizing

user traffic through segmenting the data. In this manner, incoming tasks can be organized

in a more dynamic order to appear as if there is less traffic coming in. Where solutions

developed have aimed to solve specific issues, mobile cloud lacks a common framework

that will dynamically determine the needs of the system based on the user requests.

To determine the ability of a load balancer to efficiently handle these problems, a

measure of QoS is conducted. QoS can be considered as several different measures de-

pendent on the system that is being observed. In mobile cloud computing, the important

factors of QoS are the ability to remain connected to the network and the overall throughput

of the data. Network connectivity and reliability among mobile carriers has significantly

increased, however there are still areas where dead zones exist. Lack of availability in a

system where major computation and storage for a mobile phone takes place becomes a
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major concern. Mobile cloud is a technology supporting online dynamic resource allocation

enabled services. Dynamic Load Balancing (BLD) mechanism can be used to distribute

the resources by maintaining scalable workload among every node in the network. Features

like resource optimization, diminishing of response time and down time, maximizing the

throughput, avoiding of overload can be obtained by Dynamic Load Balancing techniques

(Liu et al., 2013).

4.9 Dynamic Resource Allocation

In resource allocation, one of the challenging parts is to categorize the mobile resources per

its priority factor. The priority factor can be assigned per its requirement, time sensitivity

and the size or space of the data. For example, if there is an application in the mobile device

that is dealt with real time voice data or some real-time gaming data, undoubtedly the data

of this certain application is highly time sensitive. Similarly, sometime certain applications

are required to access and process the data immediately or depending on the time sensitivity

of the data, for example, video broadcasting and streaming. To explain further, a variety

of data that is stored on a mobile device does not require continuous synchronization or

need to be processed immediately when created but they just need to store in mobile cloud

storage. Subsequently, this kind of data can be considered as less prioritized data. Some

applications, such as HD video capturing, may generate large amount of data, hence they

may consume large amount of storage in mobile devices and therefore may affect the overall

performance of these devices. In this case, data from the mobile devices can be sent by



66

sensing the available space in the mobile devices. If the mobile device does not have enough

space, it should send the data to the cloud immediately. Otherwise, when there is enough

space in the mobile device, a certain predefined schedule can be set to transfer the data.

With the context of the origin of the mobile data, data can be categorized as follows:

• User Generated Data: User generated data can be referred by the data generated by

the user according to the requirement of the user, such as contact information, text

messages, captured photos and videos, created personal notes.

• Application data: All mobile application driven data can be classified as application

data, such like email applications data, GPS information, map information, social

networking data, various gaming and application data, etc. Some of the application

data may require frequent access as per user demand basis or application requirement

basis.

• System data: All data associated with the system information, system files, system

configuration belong to this category.

4.10 Smart Load Balancer

In cloud computing, load balancing is defined as the ability for the system to take incoming

application data from the user, measure the computational requirements and determine

which of the availability zones it needs to be stored in. It is also required to handle any

incoming data to an application so that the processing ability of that application is not

overloaded (Tai et al., 2011). The load balancer will have two main functions, finding the



67

best location that information should be stored and finding the best path a request should

take to retrieve the information. In mobile cloud networks, this poses a problem, due to

the heterogeneity of the incoming and outgoing data types and security. In current load

balancing methods, the request from the user is granted based on the current availability in

each of the zones and if the request can be filled without overcoming the system. The overall

basis of how a cloud load balancer is deployed can be categorized as either in software or

in hardware (Heinzl & Metz, 2013). From the related work, it is possible to classify sever

key characteristics that are involved when developing a load balancer for mobile cloud

computing. The first to discuss is the ability to scale up and down in the network. When

many more machines are added to the system, the algorithm for load balancing must adapt

to this change. The next characteristic to observe is time based load balancing. In the work

presented in (Madhumathi & Ganapathy, 2015), the proposed algorithms are round-robin,

equally-spread current execution load algorithm, and active VM load balancing. In the

round-robin algorithm, a randomized list of all the virtual machines is generated and sorted

into a list for processing. The fallback of this method is that certain nodes can be consistently

missed in very large networks. In equally spaced current execution, it was noted that the load

balancer was completely in charge of determining the selection of the VMs. This system

works well in terms of overall execution time, however as addressed in (Madhumathi &

Ganapathy, 2015), a minor fault in the load balancer would cause catastrophic problem to

the entire system. In the active VM load balancing, all the requests made by each of the

VMs would be logged and the least used VM would be placed at the top of the priority

list when resources are allocated. The drawback to this system alone is that users in need
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of using large amounts of data would have less privilege in acquiring resources compared

to users that do not necessarily need access. Each of the methods stated above can serve

as a foundation candidate for load balancing with appropriate modifications. A smart load

balancer will be able to intelligently define the incoming requests by predicting the needs

of the request based on the data type. It will be possible to utilize the discussed methods in

part within the algorithm of the smart load balancer to effectively maintain large networks.

This proposed method of a smart load balancer will establish a set level of need before greed

(NBG) in the system when requests are made. This parameter is used to determine whether

the request from the user should be granted based on total resource capacity required, type

of data, or the priority level of the user. When allocating resources, NBG will consider

priority users that absolutely require the system before any others. Examples of this would

be mobile service providers granting a mass broadcast of emergency information to all

users. The metric of NBG is discussed below. A problem is created on when and how to

evenly distribute available resources to each user. Mobile cloud networks are intrinsically

large with a varying amount of data types. To properly design a load balancer. The idea of

need before greed is a method to establish a protocol where all users will agree that whoever

truly needs to have the most resources will be granted it first. In the event of multiple users

with a need for data, or when one user has constantly needed the resources, the system will

then establish an algorithm for fairness. In many cases, the level of fairness in a system

is dependent on the current usage of one user from another. For example, if the system is

aware that one user has been granted a large amount of the resources for an extended period,

that user may end up at the end of the queue when it sends another request. This proposed
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method aims to solve issues seen from load balancers that allocate resource based on usage

or systems that use timing as a metric by applying this need before greed metric.

4.11 Proposed Methodology

The proposed model presents a new algorithm that will take a users request and generate a

response based on authenticity, trust level and multimedia data type, and correspondingly

grant access to the stored data (Cushman et al., 2017). In the event that the data is open

to the public, such as video streaming applications, the algorithm will call the appropriate

portion of the cloud network where data is stored as not to disrupt any current data being

streamed from a cloud portion with private or higher security level. Figure 4.4 depicts the

proposed model, where a private cloud network for Georgia Southern University contains

secure (multimedia) data for official use by faculty, which is kept separate from the network

where public data, such as information about sports events or academic news, is accessible

by all. An algorithm to be built inside the SLBBS will serve as pathway for all user requests

that wish to have access on the cloud and direct the request to the appropriate network.

Based on the above studies in this research project, the hardware of the proposed

infrastructure requires a minimum of three rack servers: a controller node, a network node,

and a compute node. The controller node runs the virtual machine Identity and Image

services, management portion of Compute, and the dashboard. This server provides service

to both Georgia Southern Security Private Cloud (GSSPC) and SLBBS. The network node

runs the networking plug-in and several agents that provision tenant networks and provides
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Figure 4.4: Proposed Infrastructure includes a Smart Load Balancer and Bandwidth Shaper

(SLBBS) and Georgia Southern Secure Private Cloud

switching, routing, NAT, and DHCP services. This rack server will be configured and

modified to function as the SLBBS. The compute node runs the hypervisor that operates

tenant virtual machines or instances, using Kernel-based Virtual Machine (KVM) as the

hypervisor. The compute node also runs the networking plug-in and an agent that connects

tenant networks to instances and provide firewall (security groups) services. The software

of the proposed infrastructure, including Red Hat Linux, OpenStack with KVM (Kernel-

based Virtual Machine) and Linux-based open source software and tools are free of cost.

OpenStack with KVM solution is one of the most popular open source cloud operating

options with excellent scalability. In addition to the embedded security features provided by

OpenStack, Linux based open source security and forensic software and tools, such as Snort

IDS/IPS, The Sleuth Kit (TSK), and RainbowCrack, are all available free of cost. These

combined advantages provide great potential for future collaborative research in multimedia
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networking and cloud security and digital forensics with the flexibility of growth in scale.

4.12 Chapter Results

Each of the machines runs Ubuntu Server 14.04 and has OpenStack cloud software installed

in order to store and provision virtualmachines. In thismodel, the lead node is the controller,

which maintains the communications between database storage of the users, software and

permissions among the nodes. The main control station uses the Ubuntu Metal as a Service

(MAAS) as a means of software installation and updates. MAAS allows for very easy

scale-up and scale-down of physical machines, thanks to the fact that any server connected

is simply seen as clusters of virtual machines. One cluster contains the nodes and in each

node runs the required software for the cloud.

TheMAAS controller has two network interface cards (NICs) to keep Internet commu-

nication with the university network IP address and to host the private set of IP addresses.

The cloud computing system is hosted on the private network. For each machine to be

added into the cluster, they are each given an IP address and the gateway IP is the same

as the MAAS controller private IP. In this model, the MAAS controller is given a class

A private IP address 10.0.0.41 and the gateway IP for each of the machines is configured

with the same IP address. With each of the nodes on the private gateway, they are each

set to boot from the network connection, such that the MAAS controller will automatically

assign each an IP address while also running a script file to gather the machine information.

Once the boot is successful, each machine will appear in the MAAS controller interface as
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Figure 4.5: Hardware Network Model

shown in Figure 4.5. From this point, the MAAS controller can wake up the machines via

Wake-on-LAN and finish gathering the machines specifications.

TheMAAS controller uses an interface to host each of the machines that are connected

to it. OpenStack Autopilot pulls from the same pool of machines to create the private cloud.

OpenStack cloud allows for the cloud provider to access the overall configurations through

the dashboard login and at the same time allows for users to log in only with their level

of access (least privilege). From the dashboard, the cloud provider can issue resources in

the form of virtual machines to meet the needs of their users. Similarly, the users are able

to log into their designated portion of the cloud in order to access their data, operating

systems and other applications they may have saved. One piece of software that allows

for monitoring how resources are being distributed is the OpenStack Horizon Dashboard
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Figure 4.6: Front View of Hardware used for Mobile Cloud Network

web interface. The physical system hardware of this proposed framework can be observed

in Figure 4.6. The controller, compute and network nodes can be observed as a stack

of three-rack system, each of which has at least 1 terabyte of available hard drive space.

Each of the nodes are connected to a switch, which is connected to the MAAS controller.

From the MAAS controller, the private cloud network can access an Internet connection

through NAT between both network interface cards. The network administrator can log

into OpenStack and provision data.

To test and implement data and resource allocation within a mobile network, it is

possible to sanction portions of the clouds resources to recreate a real mobile network of

multiple users. The mobile cloud framework will then be able to provision resources to sets

of mobile users when needed and the load balancer can then be tested.
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CHAPTER 5

ADDING A LAYER OF SECURITY IN SDRN: MOVING TARGET DEFENSE

The network design for moving target defense can be modeled with a varying number of

available computing clusters, which the attacker will be trying to get into. This array of

computing clusters will have a common controller used to keep synchronization during

transition periods. This network is visualized in Figure 5.1.

The connected computers to the gateway represent any variety of applications that

can exist on a network (physical or virtual machines, software defined radios, or mobile

devices). The attacker represents any computer system that would attempt connection to

any part of the network. Once in, would begin stealing or destroying information. The cloud

cluster controller is tasked with keeping a synchronized connection for the entire network,

which is done by establishing the changing interval, the current IP, port, or frequency, and

what the next hop configurations will be.

5.1 Moving Target Defense Configurations

Two techniques of moving target defense (MTD) are host-based and network-based. In a

network based MTD, network properties are periodically changed to increase difficulty for

the attacker to get into the network, the most common is the IP address (Yeung et al., 2016).

Utilizing IPv6 in MTD provides the network with a wide array of possible IP addresses for

hopping purposes. However, the challenge to using IPv6 is the increase in overhead on the

network as hopping addresses generates network discovery protocol, NDP, and messages.
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Gateway 1
192.168.10.1

Gateway 2
192.168.11.1

Time Based Shuffle

Eavesdrop Attacker

192.168.10.10

192.168.10.11

192.168.10.12

192.168.11.10

192.168.11.11

192.168.11.12

Cloud Cluster Controller

Figure 5.1: Moving Target Defense System with Attacker

IPv6 provides a strong advantage over IPv4 in very large network systems and services

because IPv6 allows for a 128 bit address. A MTD network using IPv6, commonly referred

to as MT6D, uses an encapsulation method to confuse the observer by generating a false

sense of network activity. Using MT6D proposes a defense against an attacker by causing

the attacker to spend a much higher amount of resources on reconnaissance (Yeung et al.,

2016). The moving property can be handled by the DNS server with a short time to live

assigned value, so that IP addresses change frequently. The use of IPv6 is highly sought

after in MTD systems, due to the fact that IPv6 offers a large array of varying IP addresses.

The DNS server can also handle access control by assigning users to a unique portion of

the mapped IP addresses, and revoking them when needed as well. Distinguishability is the

most challenging to deploy in a system because of the ability for an attacker to passively

access a system (Corbett et al., 2014).

The mechanisms that change within an MTD system are categorized based on the



76

mechanisms and the type of pattern it follows. Three of the mechanisms are software

transformations, dynamic platform techniques, and network address shuffling (Cai et al.,

2016). The idea of software transformations is to focus on the applications that are running

on the system. In this case, the software or application will exist in different variants which

will be randomly selected to be the active software version. Dynamic platform techniques

involve dynamically changing properties in the operating system and hardware. Recent

methods of dynamic platform techniques use cloud based systems to store the operating

system variants and load them accordingly. In network address shuffling, the main goal

is to prevent reconnaissance in the system. MTD has three fundamental patterns, hidden,

variation and assisted. In the hidden pattern, the attacker can get into the network for

a variable amount of time, however when repeating the reconnaissance stage again, the

network will have appeared to be no longer active. The variation pattern is comparable to

hidden, however when the attacker makes a second pass, the network will have a different

set of security protocols, preventing access.

5.2 The Attack Process on a Network

The first stage of the attack process on a network is the reconnaissance stage, of which

the focus is to determine the best angle of attack. It is because of this understanding that

defenders of cyber-attacks work to make reconnaissance very difficult. Eavesdropping is

one of the biggest challenges to stop malicious acts in a network system. It is the process

of secretly listening to a network and copying the data as it is sent (Ma et al., 2016).
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Traditionally, encryption and authentication are backbone layer defenses that are passive in

the network. This means that the encryption system does not dynamically change at any

given time. Moving target defense is a new method that will allow for an active defense

to stop eavesdropping (Ma et al., 2016). In a traditional use of MTD, IP addresses or

ports are changed to keep attackers from listening to the network, however little is done to

change network protocols, due to the complexity. Eavesdropping is categorized into two

types of attacks, Session attack and Packet attack. In a session attack, the entirety of the

communication session is grabbed by the attacker and then analyzed based on the network

protocol. In a packet attack, a series of packets from the session are grabbed and analyzed

for their source IP and destination IP, which could be potentially suffiecent for the attacker

to launch a Man in the Middle or Distributed Denial of Service attack (Ma et al., 2016).

One proposed method is to use MTD with Protocol-Oblivious Forwarding (POF).

POF will allow the network to simply forward the packet based on the key associated to

it; otherwise it has to parse the packet first before determining what to do with it. In this

setup, the clients use dynamic message packaging and dynamic routing paths in order to

keep the attacker confused as to what the source and destination IP addresses are. This

proposed method will block both session and packet attacks by continually keeping the

attacker guessing which bits of data fit the right network protocol.
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5.3 Operational Costs

Operational costs of MTD, as mentioned, can be the actual cost in currency of the system,

however it can also affect overall system performance, network stability and effectiveness.

Determining how much a physical system may require in capital is first determined based

on compatibility. The physical hardware requirements for the level of security needed will

increase the cost of the system. The biggest challenge to an efficient MTD system is the

available bandwidth of the system. To have a secure system, the total number of channels

available for the system to "hide" in, directly impact the difficulty of the attacker finding

it. To clarify, if the system is designed so that it only has 10 available channels, then the

attacker has an easy time to scan all channels to find the information, whereas if the system

has 50 possible channels to pick from, the attacker will spend a much greater amount of

time or resources trying to find the information.

Capital restrictions are a major driving force behind the decision to change systems.

The MTD system requires constant synchronization based on CPU cycles and memory in

the network, which could take away from the processing power the company may need

to service their own demand. The effects on the performance metrics may also lead to

a loss in availability in the system. In a CPU system, it is possible to over clock the

synchronization, however it is not necessarily to best practice and can lead to system

failures. Another operational cost of MTD is the effectiveness of the MTD system itself.

Considering anMTD system with many access points and changes happening in the system,

the controller has a very complex role in determining when and how requests should be



79

handled. Deploying a large network to handle minimal security work would be wasteful,

and in contrast would be impossible to secure highly classified data in a small MTD system.

The main approach to determining the right cost functions of deploying an MTD is

by observing possible network parameters. First, classification and value assignment of

the system should be taken care of and then experimental bandwidth consumption can be

handled (Leeuwen et al., 2015). The classification step determined the work factors that

the system requires including: operating expenses, capital expenses, performance in either

network or host based and applications, service impacts and scalability. Depending on the

classification, a metric and unit will be assigned. The metric for operating expenses would

be operator workload and the unit would be in physical man hours. Whereas for scalability,

number of nodes and count would be the metric and unit, respectively. This classification

system leads to a concise requirement and possible prediction of whether a large or small

network can be handled.

Observing the physical and cyber costs of deploying a new system is very crucial

when defending the use of a new technology. There are very clear advantages to studying

these metrics and optimizing where necessary to provide the strongest case as to why this

technology is needed, other than just for more secure data transfer.

5.4 Obfuscation of the Attack Surface

A key advantage to using software defined networks in moving target defense is the ability

to obfuscate the attack surface. Using software defined radios, it is possible to change each
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of the network characteristics to protect the network. Two of the proposed network attacks,

to protect from, are network reconnaissance and OS fingerprinting (Kampanakis et al.,

2014). Using an SDN controller, the traffic coming through a network is monitored. If the

traffic is malicious, the SDN controller will attempt to quarantine that part of the network,

by blocking off that group of devices. The main process of this defense is to open more

possible ports than the ones which are already open. This causes the attacker to search more

possible entries before finding the actual port. In the event that the attacker attempts to

find network configurations through an HTTP GET eavesdropping method, it is possible to

change different operating system information. The httpd service will work with the SDN

controller to create a dummy service version.

The network firewall is normally used to keep out attackers by preventing attacks on

operating system information, however the SDNwill reassemble TCP into a spoofed version

that will exist on the network. Users that have access by presenting the correct key, will

be given the correct information from the SDN controller. In the SDN, route mutation and

host randomization can also provide ideal possibilities to prevent an attacker from finding

the correct path. Route mutation adds problems to the attacker in operational cost, due to

aiming randomly when sniffing packets. If they wanted to be more effective, they would

need more robust machines and algorithms.

Many proposed algorithms attempt to make it harder for an attacker to get into the

network, however there is generally a problem for the network being defended when using

high bandwidth applications (Li et al., 2014). The focus is to make sure that the network

can morph to prevent an attack, while maintaining a time sensitive goal for transmission
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set by the application. Creating a real-time traffic morphing algorithm requires three pieces

that work in the algorithm. The first piece is to create an adaptive packet generation, next is

maintaining deadlines in the packet generation scheduler and last is tominimize redundancy.

The adaptive packet generation is responsible to maintaining uniqueness in the system. The

deadline schedule is responsible for not allowing the first part of the algorithm from taking

too long or from generating packet combinations that will cause overhead. Minimizing

redundancy is a final check that the system overhead does not take too long.

5.4.1 Encrypted Key Exchange

The transmitter and receiver will both require access to a database to keep a constant

synchronization to one another. The transmitter will take the data packet and split into

pieces and assign each to a frequency. This information is sent to the database and given to

the receiver. This process opens a vulnerability in the system if the attackerwas to just ”sniff”

this information as it is passed to or from the database. Several cryptography methods are

considered to solve this issue. The most common example is the ”Bob and Alice” method

as presented in (Taha & Alsusa, 2015). This case presents two devices that will share

information. This case provides that both devices have a preexisting code-book made up

of n-bit matrices. When Bob sends a signal to Alice, Alice responds by generating a key

as an acknowledgment to Bob. The acknowledgement is deciphered by Bob’s code-book

and then the keys are exchanged by both Bob and Alice. This process requires a predefined

encryptionmethod that all devices in the networkwould need to possess, however in a highly

dynamic network, this would case problems. To provide a secure key exchange between
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two parties without a preexisting knowledge to each other by the Diffie-Hellman (D-H) key

exchange (Li, 2010). The D-H key exchange is able to generate the shared secrets only

when needed and only requires some global parameters. Common configurations of D-H

are Message-Digest Algorithm 5 (MD5) and Secure Hash Algortihm 1 (SHA-1). The draw

back to this method is a man in the middle attack. This case, the attacker appears to be a

legitimate user requesting data exchange. LabVIEW offers a cryptography toolkit, similar

to the USRP toolkit, where the encryption method can be selected and the input output can

become the middle ground between when the data message is broken into pieces and when

it is sent to the database.

5.5 Cloud Controller Characteristics

There are many common open source cloud controllers that have been used for synchro-

nization in MTD systems. One of the most used is the OpenFlow API, which can work as

a load balancer, handling requests in a round robin basis. The API works by picking from

the pool and handling each request. The main method of changing network specific charac-

teristics either by using an encrypted pseudorandom sequence between both the transmitter

and receiver continuously or by simply using a look up table to keep track of the network

changes on both ends; the latter being simpler but the table could be eventually broken

into (Corbett et al., 2014).

After the network controller has been setup, the next stage is to determine how packets

will be sent from transmitter to receiver. Cloud based network systems offer a potential
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increase in the effectiveness of a software defined radio. This is the case due to the ability

to run larger applications on the cloud, while the radios can perform smaller but more rapid

actions (Debroy et al., 2016). Utilizing a cloud based system can amplify vulnerability

detection by covering more of the attack surface however it does offer the ability to become

a target to attack.

By combing SDN and cloud, it is possible to add complexity to an attacker’s attempts

by splitting what can be taken away from the system. Realizing a complete network which

will utilize cloud based systems offers challenges in both total resource consumption and

effective performance of the network. The operational cost of a system can greatly influence

the true utilization of a system. If the cost to resource usage ratio is not perfect, there is an

increase to potential lost capital for the service provider. In the presence of an attack, the

controller will attempt to mark the attack path of IP addresses and blocking off the attack

by severing the connection. The controller will either be proactive or reactive based on the

advancement of the attacker in the network.

The goal of the system is to add another layer of complexity to frequency hopping by

means of packet fragmentation, with the intentions to thwart two very popular attack types:

denial of service and packet sniffing. An NxN Multiple Input Multiple Output (MIMO)

system utilizes the ability to transmit and receive large amounts of data at a given time.

Another advantage is the ability to spread the frequency spectrum across the four pairs.

Using coordinated universal time, UTC, all pairs will know exactly when to hop to another

frequency or request an entirely new array of frequencies
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5.6 Packet Fragmentation with Frequency Hopping

The LabVIEW program is used to initialize each Universal Software Radio Peripheral

(USRP) device and transmit each fragment using the algorithm displayed in Figure 5.2.

Each time the program loops, the packet will be split into a pseudorandom order, and

given to the transmitter. Simultaneously, the transmitter is prepped to take the packet by

selecting its frequencies and reporting those frequencies to the database. It is also possible

to have a varying number of total packets being sent from each transmitter. In this case,

the attacker would need to determine what frequency the system is on, the total size of each

packet and the order that it was sent in. At a designated time interval, all three of those

parameters change to a new value. Synchronization between the transmitter and receiver

can be achieved by using the database controller to store the current configuration set by

the transmitter and give it to the receiver. It is also possible to use the cloud controller as

the central source, so both transmitter and reciever are given all parameters. Once ready,

the packet will be continuously transmitted by the USRP until all the frequencies are used.

The program then halts, selects new frequencies, scrambles the packet in a new order and

then continues.

5.7 3x3 MIMO Connection

A 3x3 MIMO system utilizes the ability to transmit and receive large amounts of data at

one given time. Another advantage is the ability to spread the frequency spectrum across

the four pairs. Using coordinated universal time, UTC, all pairs will know exactly when to
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Figure 5.2: Flow Diagram for Transmission of Packet

hop to another frequency or request an entirely new array of frequencies. The system setup

for a 3x3 USRP connection is shown in Figure 5.3.
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Figure 5.3: Structure of the 3x3 MIMO USRP network with Cloud Database Controller



86

5.8 Chapter Results

5.8.1 Experimental Design Specification

Figure 5.4 is the system setup for the Tx/Rx pair. When the experiment begins, a predefined

number of allowed channels is given to the system (10, 25 or 50 channels). The frequencies

are pseudo-randomly mixed and three frequencies are assigned to be transmitted on. A

hopping interval is also predetermined (10, 30, or 60 sec) when the system begins. At the

end of the hopping interval, the next frequency is selected. Once all three frequencies are

used, the system will re-randomize the frequency list and select another three frequencies

to be used.

Figure 5.4: 3x3 MIMO USRP Experimental Setup

The eavesdropper will need to know or guess the possible length of the spectrum and

the packet size that it is looking for. The attacker will then have to scan through the entire

list of frequencies from start to finish, with the goal of trying to find the correct frequency.

As mentioned in previous sections, the packet size influences the attackers hopping speed,

too fast of a speed and it may miss most of the data. In a real world application, the packet
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size would be considered the sufficient if the attacker knew at least how much to expect.

The attack would simply stay connected to the network until it has collected enough data

to estimate a successful attack. The attacker will scan the spectrum frequencies with a

hopping interval of 3 sec in a incremental fashion.

5.8.2 Frequency Hopping WITHOUT Packet Fragmentation

In the first experiment, one transmitter is set up to broadcast a packet on varying frequencies

to one receiver. In this case, the attacker will focus on finding the frequency that both are

currently on and steal the packet. The attacker will sweep the network as quickly as possible

to steal the packet. This experiment is tested on 3 trials, set to varying number of available

channels. In each trial, the hopping interval of the Tx/Rx pair is set to either 10, 30 or

60 seconds. The attacker will scan the entire network 100 times, checking each channel

for the packet. In this case it is a simple Hello World! message that is being sent. The

relative frequency, f , of obtaining a packet is used to model the empirical probability p of

successful eavesdropping using the following model:

f =
nc

N
(5.1)

where nc is the number of captured packets, N is the total number of packets transmitted.

When the total number of packet approach infinity the relative frequency will converge to

model the probability of eavesdropping as follows:
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p = lim
N→∞

f (5.2)

The results from each pair of number of channels and hopping intervals are displayed

in Table 5.1.

Table 5.1: Empirical Probability of Successful Eavesdropping using Various System Pa-

rameters

Hopping Interval 10 25 50

(sec) Channels Channels Channels

60 11.73 × 10−3 4 × 10−3 1.76 × 10−3

30 7.33 × 10−3 3.46 × 10−3 1.68 × 10−3

10 12 × 10−3 2.08 × 10−3 0.8533 × 10−3

The experimental probabilities are determined by the total successful attempts by the

attacker divided by the total number of packets that were sent during the transmission.

5.8.3 Frequency Hopping WITH Packet Fragmentation

The next experiment was design to test the ability of an eavesdropper to steal the entirety

of the data being transmitted when it is sent broken into multiple parts and sent across

three transmitters. For this trial, the network size was chosen to be 25 channels, while the

hopping time intervals stayed the same from the previous experiment. As a brief side note,

25 channels was selected as good common ground. 10 channels would be considered a
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low end system with a poor attack surface, whereas 50 channels potentially sees a larger

cost to efficiency ratio. Therefore, 25 channels poses to be a right fit to prove a significant

amount of security, without the need to span a very large network space. From the results

in Table 5.2, it can be seen that when the packet is split into multiple parts, the probability

of the attacker getting the entirety of the message decreases across all three of the hopping

intervals.

Table 5.2: Empirical Probability of Successful Eavesdropping with/without Fragmentation

for 25 Channel System

Hopping Interval (sec) With Fragmentation Without Fragmentation

60 2.72 × 10−3 4 × 10−3

30 2.187 × 10−3 3.46 × 10−3

10 1.76 × 10−3 2.08 × 10−3
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CHAPTER 6

CONCLUSION AND FUTURE WORK

Although the research that has been presented throughout this document was completed as

seperate entities, it is presented that thework all comes together for a fully operating software

defined radio network for bandwidth allocation. It has been presented that using Universal

Software Defined Radios, availability to a spectrum can be monitored and recoreded to a

cloud database for secondary users to access. The method for storing and accessing this data

has been presented as a three rack server farm that will allocate space for the geolocations

and service the secondary user requests. Lastly, it has been presented that the software

defined radio network will have vulnerabilities to attackers, which can be stopped. The

packet fragmentation system set in the transmitter and receiver pairs aims to stop data from

being stolen from the secondary users that are on the network. Concluding remarks are

made and summarized into three separate parts, which follow respectively to the previous

chapters. In each of the sections, the separate proposed methods are reiterated and the

findings are presented.

6.1 Bandwidth Allocation using Software Defined Radio Networks

Conclusion

An adaptive threshold based RF spectrum sensing approach using USRP Software Defined

Radio (SDR) for real-time opportunistic spectrum access in cloud based cognitive radio

networks where both signal energy and band-width of the signal were taken into account.
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The performance of the proposed approach using probability of misdetection and false

alarms was evaluated. The proposed approach can be particularized to a scenario with

energy based detection or bandwidth based detection. The proposed approach is illustrated

through numerical results obtained from both experiments. Signal energy detection based

approach results in high false alarm since it does not consider the width of the signal spectra.

Thus to avoid this it was considered both width of the signal spectra and energy level of

the received signal to detect whether a given band is active or not. Once cognitive radio

identifies active channels, it avoids those active channels while communicating or reports

idle channels to database or uses the idle channels for opportunistic communications. It

was evaluated the performance of the proposed adaptive approach using B200 GNU radios

through false alarm and misdetection probabilities. By conducting experiments in different

settings (walking speed and vehicular speed), it can be observed that the travelling speed

of the SUs affect the opportunistic spectrum access and communications. Furthermore,

short query interval results in low false list of channels for mobile devices with high speed.

Furthermore, if the SUs were within the contour of idle channels, they got lists of channel,

and transmitter and receiver chose a common channel for communications using quorum

based rendezvous approach for opportunistic communications.

6.2 Private Cloud Cluster Controller Conclusion

Data security over the cloud/Internet is an essential part of sharing multimedia access to

insure that confidential information is not stolen, distributed or destroyed. First presented
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was current status and challenges in technology design and innovation in multimedia data

access and storage in cloud networks. Then the existing cloud technologies and provided

a comparison for potentially the most appropriate solution for implantation. It was also

presented a new framework to for providing security to multimedia access in the cloud

with a smart load balancer and bandwidth shaper. The possibilities for further applications

for the proposed framework and how it will further benefit cloud computing networks and

technology innovations as a whole. It has been shown that mobile devices will need to

access the mobile cloud in order to save processing power and battery life. A simulated

framework was then created in order to describe how the network will handle resources and

a physical system has been implemented. Future work will then bring to use a smart load

balancer to handle large data of varying degrees of security and necessity to help mobile

devices operate more efficiently.

6.3 Adding a Layer of Security in SDRN: Moving Target Defense

Conclusion

Frequency hopping provides a level of security to a network system, however as it is shown

in the results of Table 5.1, it alone is not a full proof method. Eavesdropping has been

shown to generally be an easy and very cheap method to achieve. This method adds

another layer of confusion to the system, causing the attacker to work significantly harder

to steal the information. This has also shown to increase the time and resources of the

attacker. The results from experimentation showed that the difficulty of an eavesdropping



93

attacker to recover the packet increases as the system covers more of the spectrum at random

frequencies.

It is also important to make note that when there are a limited number of channels for

the system to exist on, like seen from the results in Table 5.1, the system pair may end up

hopping too often and actually cross the attacker more frequently. This occurred with this

system, when hopping between 10 channels every 10 seconds. At the same time, having the

system on a very large spectrum may occur larger operational costs than are beneficial. The

proposed method is able to save on spectrum space by fragmenting. The results also showed

the effectiveness of the packet fragmentation method on bandwidth spectrum allocation.

The probability of a successful attack when the system had 50 possible channels was

significantly lower than when at 25 or 10, however to possible occupy that many channels

may cause a very high operational cost. Using the packet fragmentation, the probability

of success while using 25 channels instead of 50, yielded a difference of 0.96 × 10−3,

0.507 × 10−3, and 0.9067 × 10−3 for hopping intervals 60, 30 and 10, respectively. This

showed the ability to be at comparable levels of security while existing on half as much of

the total bandwidth.
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