170 research outputs found

    BLE Beacons for Indoor Positioning at an Interactive IoT-Based Smart Museum

    Full text link
    The Internet of Things (IoT) can enable smart infrastructures to provide advanced services to the users. New technological advancement can improve our everyday life, even simple tasks as a visit to the museum. In this paper, an indoor localization system is presented, to enhance the user experience in a museum. In particular, the proposed system relies on Bluetooth Low Energy (BLE) beacons proximity and localization capabilities to automatically provide the users with cultural contents related to the observed artworks. At the same time, an RSS-based technique is used to estimate the location of the visitor in the museum. An Android application is developed to estimate the distance from the exhibits and collect useful analytics regarding each visit and provide a recommendation to the users. Moreover, the application implements a simple Kalman filter in the smartphone, without the need of the Cloud, to improve localization precision and accuracy. Experimental results on distance estimation, location, and detection accuracy show that BLE beacon is a promising solution for an interactive smart museum. The proposed system has been designed to be easily extensible to the IoT technologies and its effectiveness has been evaluated through experimentation

    Hybrid ToF and RSSI real-time semantic tracking with an adaptive industrial internet of things architecture

    Get PDF
    Real-time asset tracking in indoor mass production manufacturing environments can reduce losses associated with pausing a production line to locate an asset. Complemented by monitored contextual information, e.g. machine power usage, it can provide smart information, such as which components have been machined by a worn or damaged tool. Although sensor based Internet of Things (IoT) positioning has been developed, there are still key challenges when benchmarked approaches concentrate on precision, using computationally expensive filtering and iterative statistical or heuristic algorithms, as a trade-off for timeliness and scalability. Precise but high-cost hardware systems and invasive infrastructures of wired devices also pose implementation issues in the Industrial IoT (IIoT). Wireless, selfpowered sensors are integrated in this paper, using a novel, communication-economical RSSI/ToF ranging method in a proposed semantic IIoT architecture. Annotated data collection ensures accessibility, scalable knowledge discovery and flexibility to changes in consumer and business requirements. Deployed at a working indoor industrial facility the system demonstrated comparable RMS ranging accuracy (ToF 6m and RSSI 5.1m with 40m range) to existing systems tested in non-industrial environments and a 12.6-13.8m mean positioning accuracy

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    CSI-Based Indoor Localization

    Full text link

    Sistemas de posicionamento baseados em comunicação por luz para ambientes interiores

    Get PDF
    The demand for highly precise indoor positioning systems (IPSs) is growing rapidly due to its potential in the increasingly popular techniques of the Internet of Things, smart mobile devices, and artificial intelligence. IPS becomes a promising research domain that is getting wide attention due to its benefits in several working scenarios, such as, industries, indoor public locations, and autonomous navigation. Moreover, IPS has a prominent contribution in day-to-day activities in organizations such as health care centers, airports, shopping malls, manufacturing, underground locations, etc., for safe operating environments. In indoor environments, both radio frequency (RF) and optical wireless communication (OWC) based technologies could be adopted for localization. Although the RF-based global positioning system, such as, Global positioning system offers higher penetration rates with reduced accuracy (i.e., in the range of a few meters), it does not work well in indoor environments (and not at all in certain cases such as tunnels, mines, etc.) due to the very weak signal and no direct access to the satellites. On the other hand, the light-based system known as a visible light positioning (VLP) system, as part of the OWC systems, uses the pre-existing light-emitting diodes (LEDs)-based lighting infrastructure, could be used at low cost and high accuracy compared with the RF-based systems. VLP is an emerging technology promising high accuracy, high security, low deployment cost, shorter time response, and low relative complexity when compared with RFbased positioning. However, in indoor VLP systems, there are some concerns such as, multipath reflection, transmitter tilting, transmitter’s position, and orientation uncertainty, human shadowing/blocking, and noise causing the increase in the positioning error, thereby reducing the positioning accuracy of the system. Therefore, it is imperative to capture the characteristics of different VLP channel and properly model them for the dual purpose of illumination and localization. In this thesis, firstly, the impact of transmitter tilting angles and multipath reflections are studied and for the first time, it is demonstrated that tilting the transmitter can be beneficial in VLP systems considering both line of sight (LOS) and non-line of sight transmission paths. With the transmitters oriented towards the center of the receiving plane, the received power level is maximized due to the LOS components. It is also shown that the proposed scheme offers a significant accuracy improvement of up to ~66% compared with a typical non-tilted transmitter VLP. The effect of tilting the transmitter on the lighting uniformity is also investigated and results proved that the uniformity achieved complies with the European Standard EN 12464-1. After that, the impact of transmitter position and orientation uncertainty on the accuracy of the VLP system based on the received signal strength (RSS) is investigated. Simulation results show that the transmitter uncertainties have a severe impact on the positioning error, which can be leveraged through the usage of more transmitters. Concerning a smaller transmitter’s position epochs, and the size of the training set. It is shown that, the ANN with Bayesian regularization outperforms the traditional RSS technique using the non-linear least square estimation for all values of signal to noise ratio. Furthermore, a novel indoor VLP system is proposed based on support vector machines and polynomial regression considering two different multipath environments of an empty room and a furnished room. The results show that, in an empty room, the positioning accuracy improvement for the positioning error of 2.5 cm are 36.1, 58.3, and 72.2 % for three different scenarios according to the regions’ distribution in the room. For the furnished room, a positioning relative accuracy improvement of 214, 170, and 100 % is observed for positioning error of 0.1, 0.2, and 0.3 m, respectively. Ultimately, an indoor VLP system based on convolutional neural networks (CNN) is proposed and demonstrated experimentally in which LEDs are used as transmitters and a rolling shutter camera is used as receiver. A detection algorithm named single shot detector (SSD) is used which relies on CNN (i.e., MobileNet or ResNet) for classification as well as position estimation of each LED in the image. The system is validated using a real-world size test setup containing eight LED luminaries. The obtained results show that the maximum average root mean square positioning error achieved is 4.67 and 5.27 cm with SSD MobileNet and SSD ResNet models, respectively. The validation results show that the system can process 67 images per second, allowing real-time positioning.A procura por sistemas de posicionamento interior (IPSs) de alta precisão tem crescido rapidamente devido ao seu interesse nas técnicas cada vez mais populares da Internet das Coisas, dispositivos móveis inteligentes e inteligência artificial. O IPS tornou-se um domínio de pesquisa promissor que tem atraído grande atenção devido aos seus benefícios em vários cenários de trabalho, como indústrias, locais públicos e navegação autónoma. Além disso, o IPS tem uma contribuição destacada no dia a dia de organizações, como, centros de saúde, aeroportos, supermercados, fábricas, locais subterrâneos, etc. As tecnologias baseadas em radiofrequência (RF) e comunicação óptica sem fio (OWC) podem ser adotadas para localização em ambientes interiores. Embora o sistema de posicionamento global (GPS) baseado em RF ofereça taxas de penetração mais altas com precisão reduzida (ou seja, na faixa de alguns metros), não funciona bem em ambientes interiores (e não funciona bem em certos casos como túneis, minas, etc.) devido ao sinal muito fraco e falta de acesso direto aos satélites. Por outro lado, o sistema baseado em luz conhecido como sistema de posicionamento de luz visível (VLP), como parte dos sistemas OWC, usa a infraestrutura de iluminação baseada em díodos emissores de luz (LEDs) pré-existentes, é um sistemas de baixo custo e alta precisão quando comprado com os sistemas baseados em RF. O VLP é uma tecnologia emergente que promete alta precisão, alta segurança, baixo custo de implantação, menor tempo de resposta e baixa complexidade relativa quando comparado ao posicionamento baseado em RF. No entanto, os sistemas VLP interiores, exibem algumas limitações, como, a reflexão multicaminho, inclinação do transmissor, posição do transmissor e incerteza de orientação, sombra/bloqueio humano e ruído, que têm como consequência o aumento do erro de posicionamento, e consequente redução da precisão do sistema. Portanto, é imperativo estudar as características dos diferentes canais VLP e modelá-los adequadamente para o duplo propósito de iluminação e localização. Esta tesa aborda, primeiramente, o impacto dos ângulos de inclinação do transmissor e reflexões multipercurso no desempenho do sistema de posicionamento. Demonstra-se que a inclinação do transmissor pode ser benéfica em sistemas VLP considerando tanto a linha de vista (LOS) como as reflexões. Com os transmissores orientados para o centro do plano recetor, o nível de potência recebido é maximizado devido aos componentes LOS. Também é mostrado que o esquema proposto oferece uma melhoria significativa de precisão de até ~66% em comparação com um sistema VLP de transmissor não inclinado típico. O efeito da inclinação do transmissor na uniformidade da iluminação também é investigado e os resultados comprovam que a uniformidade alcançada está de acordo com a Norma Europeia EN 12464-1. O impacto da posição do transmissor e incerteza de orientação na precisão do sistema VLP com base na intensidade do sinal recebido (RSS) foi também investigado. Os resultados da simulação mostram que as incertezas do transmissor têm um impacto severo no erro de posicionamento, que pode ser atenuado com o uso de mais transmissores. Para incertezas de posicionamento dos transmissores menores que 5 cm, os erros médios de posicionamento são 23.3, 15.1 e 13.2 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. Enquanto que, para a incerteza de orientação de um transmissor menor de 5°, os erros médios de posicionamento são 31.9, 20.6 e 17 cm para conjuntos de 4, 9 e 16 transmissores, respetivamente. O trabalho da tese abordou a investigação dos aspetos de projeto de um sistema VLP indoor no qual uma rede neuronal artificial (ANN) é utilizada para estimativa de posicionamento considerando um canal multipercurso. O estudo considerou a influência do ruído como indicador de desempenho para a comparação entre diferentes abordagens de projeto. Três algoritmos de treino de ANNs diferentes foram considerados, a saber, Levenberg-Marquardt, regularização Bayesiana e algoritmos de gradiente conjugado escalonado, para minimizar o erro de posicionamento no sistema VLP. O projeto da ANN foi otimizado com base no número de neurónios nas camadas ocultas, no número de épocas de treino e no tamanho do conjunto de treino. Mostrou-se que, a ANN com regularização Bayesiana superou a técnica RSS tradicional usando a estimação não linear dos mínimos quadrados para todos os valores da relação sinal-ruído. Foi proposto um novo sistema VLP indoor baseado em máquinas de vetores de suporte (SVM) e regressão polinomial considerando dois ambientes interiores diferentes: uma sala vazia e uma sala mobiliada. Os resultados mostraram que, numa sala vazia, a melhoria da precisão de posicionamento para o erro de posicionamento de 2.5 cm são 36.1, 58.3 e 72.2% para três cenários diferentes de acordo com a distribuição das regiões na sala. Para a sala mobiliada, uma melhoria de precisão relativa de posicionamento de 214, 170 e 100% é observada para erro de posicionamento de 0.1, 0.2 e 0.3 m, respetivamente. Finalmente, foi proposto um sistema VLP indoor baseado em redes neurais convolucionais (CNN). O sistema foi demonstrado experimentalmente usando luminárias LED como transmissores e uma camara com obturador rotativo como recetor. O algoritmo de detecção usou um detector de disparo único (SSD) baseado numa CNN pré configurada (ou seja, MobileNet ou ResNet) para classificação. O sistema foi validado usando uma configuração de teste de tamanho real contendo oito luminárias LED. Os resultados obtidos mostraram que o erro de posicionamento quadrático médio alcançado é de 4.67 e 5.27 cm com os modelos SSD MobileNet e SSD ResNet, respetivamente. Os resultados da validação mostram que o sistema pode processar 67 imagens por segundo, permitindo o posicionamento em tempo real.Programa Doutoral em Engenharia Eletrotécnic

    Algorithmes de localisation distribués en intérieur pour les réseaux sans fil avec la technologie IEEE 802.15.4

    Get PDF
    The Internet of Things is finally blooming through diverse applications, from home automation and monitoring to health tracking and quantified-self movement. Consumers deploy more and more low-rate and low-power connected devices that provide complex services. In this scenario, positioning these intelligent objects in their environment is necessary to provide geo-localized services, as well as to optimize the network operation. However, indoor positioning of devices using only their radio interface is still very imprecise. Indoor wireless localization techniques often deduce from the Radio frequency (RF) signal attenuation the distances that separate a mobile node from a set of reference points called landmarks. The received signal strength indicator (RSSI), which reflects this attenuation, is known in the literature to be inaccurate and unreliable when it comes to distance estimation, due to the complexity of indoor radio propagation (shadowing, multi-path fading). However, it is the only metric that will certainly be available in small and inexpensive smart objects. In this thesis, we therefore seek algorithmic solutions to the following problem: is it possible to achieve a fair localization using only the RSSI readings provided by low-quality hardware? To this extent, we first study the behavior of the RSSI, as reported by real hardware like IEEE 802.15.4 sensor nodes, in several indoor environments with different sizes and configurations , including a large scale wireless sensor network. Such experimental results confirm that the relationship between RSSI and distance depends on many factors; even the battery pack attached to the devices increases attenuation. In a second step, we demonstrate that the classical log-normal shadowing propagation model is not well adapted in indoor case, because of the RSSI values dispersion and its lack of obvious correlation with distance. We propose to correct the observed inconsistencies by developing algorithms to filter irrelevant samples. Such correction is performed by biasing the classical log-normal shadowing model to take into account the effects of multipath propagation. These heuristics significantly improved RSSI-based indoor localization accuracy results. We also introduce an RSSI-based positioning approach that uses a maximum likelihood estimator conjointly with a statistical model based on machine learning. In a third step, we propose an accurate distributed and cooperative RSSI-based localization algorithm that refines the set of positions estimated by a wireless node. This algorithm is composed of two on-line steps: a local update of position¿s set based on stochastic gradient descent on each new RSSI measurement at each sensor node. Then an asynchronous communication step allowing each sensor node to merge their common local estimates and obtain the agreement of the refined estimated positions. Such consensus approach is based on both a distributed local gradient step and a pairwise gossip protocol. This enables each sensor node to refine its initial estimated position as well as to build a local map of itself and its neighboring nodes. The proposed algorithm is compared to multilateration, Multi Dimensional Scaling (i.e. MDS) with modern majorization problem and classical MDS. Simulation as well as experimental results obtained on real testbeds lead to a centimeter-level accuracy. Both landmarks and blind nodes communicate in the way that the data processing and computation are performed by each sensor node without any central computation point, tedious calibration or intervention from a human.L¿internet des objets se développe à travers diverses applications telles que la domotique, la surveillance à domicile, etc. Les consommateurs s¿intéressent à ces applications dont les objets interagissent avec des dispositifs de plus en plus petits et connectés. La localisation est une information clé pour plusieurs services ainsi que pour l¿optimisation du fonctionnement du réseau. En environnement intérieur ou confiné, elle a fait l¿objet de nombreuses études. Cependant, l¿obtention d¿une bonne précision de localisation demeure une question difficile, non résolue. Cette thèse étudie le problème de la localisation en environnement intérieur appliqué aux réseaux sans fil avec l¿utilisation unique de l¿atténuation du signal. L¿atténuation est mesurée par l¿indicateur de l¿intensité du signal reçu (RSSI). Le RSSI est connu dans la littérature comme étant imprécis et peu fiable en ce qui concerne l¿estimation de la distance, du fait de la complexité de la propagation radio en intérieur : il s¿agit des multiples trajets, le shadowing, le fading. Cependant, il est la seule métrique directement mesurable par les petits objets communicants et intelligents. Dans nos travaux, nous avons amélioré la précision des mesures du RSSI pour les rendre applicables à l¿environnement interne dans le but d¿obtenir une meilleure localisation. Nous nous sommes également intéressés à l¿implémentation et au déploiement de solutions algorithmiques relatifs au problème suivant : est-il possible d¿obtenir une meilleure précision de la localisation en utilisant uniquement les mesures de RSSI fournies par les n¿uds capteurs sans fil IEEE 802.15.4 ? Dans cette perspective, nous avons d¿abord étudié le comportement du RSSI dans plusieurs environnements intérieurs de différentes tailles et selon plusieurs configurations , y compris un réseau de capteurs sans fil à grande échelle (SensLAB). Pour expliquer les résultats des mesures, nous avons caractérisé les objets communicants que nous utilisons, les n¿uds capteurs Moteiv TMote Sky, par une série d¿expériences en chambre anéchoïque. Les résultats expérimentaux confirment que la relation entre le RSSI et la distance dépend de nombreux facteurs même si la batterie intégrée à chaque n¿ud capteur produit une atténuation. Ensuite, nous avons démontré que le modèle de propagation log-normal shadowing n¿est pas adapté en intérieur, en raison de la dispersion des valeurs de RSSI et du fait que celles-ci ne sont pas toujours dépendantes de la distance. Ces valeurs devraient être considérées séparément en fonction de l¿emplacement de chaque n¿ud capteur émetteur. Nous avons proposé des heuristiques pour corriger ces incohérences observées à savoir les effets de la propagation par trajets multiples et les valeurs aberrantes. Nos résultats expérimentaux ont confirmé que nos algorithmes améliorent significativement la précision de localisation en intérieur avec l¿utilisation unique du RSSI. Enfin, nous avons étudié et proposé un algorithme de localisation distribué, précis et coopératif qui passe à l¿échelle et peu consommateur en termes de temps de calcul. Cet algorithme d¿approximation stochastique utilise la technique du RSSI tout en respectant les caractéristiques de l¿informatique embarquée des réseaux de capteurs sans fil. Il affine l¿ensemble des positions estimées par un n¿ud capteur sans fil. Notre approche a été comparée à d¿autres algorithmes distribués de l¿état de l¿art. Les résultats issus des simulations et des expériences en environnements internes réels ont révélé une meilleure précision de la localisation de notre algorithme distribué. L¿erreur de localisation est de l¿ordre du centimètre sans aucun n¿ud ou unité centrale de traitement, ni de calibration fastidieuse ni d¿intervention humaine

    Positioning algorithms for RFID-based multi-sensor indoor/outdoor positioning techniques

    Get PDF
    Position information has been very important. People need this information almost everywhere all the time. However, it is a challenging task to provide precise positions indoor/outdoor seamlessly. Outdoor positioning has been widely studied and accurate positions can usually be achieved by well developed GPS techniques. However, these techniques are difficult to be used indoor since GPS signals are too weak to be received. The alternative techniques, such as inertial sensors and radio-based pseudolites, can be used for indoor positioning but have limitations. For example, the inertial sensors suffer from drifting problems caused by the accumulating errors of measured acceleration and velocity and the radio-based techniques are prone to the obstructions and multipath effects of the transmitted signals. It is therefore necessary to develop improved methods for minimising the limitations of the current indoor positioning techniques and providing an adequately precise solution of the indoor positioning and seamless indoor/outdoor positioning. The main objectives of this research are to investigate and develop algorithms for the low-cost and portable indoor personal positioning system using Radio Frequency Identification (RFID) based multi-sensor techniques, such as integrating with Micro-Electro-Mechanical Systems (MEMS) Inertial Navigation System (INS) and/or GPS. A RFID probabilistic Cell of Origin (CoO) algorithm is developed, which is superior to the conventional CoO positioning algorithm in its positioning accuracy and continuity. Integration algorithms are also developed for RFID-based multi-sensor positioning techniques, which can provide metre-level positioning accuracy for dynamic personal positioning indoors. In addition, indoor/outdoor seamless positioning algorithms are investigated based on the iterated Reduced Sigma Point Kalman Filter (RSPKF) for RFID/MEMS INS/low-cost GPS integrated technique, which can provide metre-level positioning accuracy for personal positioning. 3-D GIS assisted personal positioning algorithms are also developed, including the map matching algorithm based on the probabilistic maps for personal positioning and the Site Specific (SISP) propagation model for efficiently generating the RFID signal strength distributions in location fingerprinting algorithms. Both static and dynamic indoor positioning experiments have been conducted using the RFID and RFID/MEMS INS integrated techniques. Metre-level positioning accuracy is achieved (e.g. 3.5m in rooms and 1.5m in stairways for static position, 4m for dynamic positioning and 1.7m using the GIS assisted positioning algorithms). Various indoor/outdoor experiments have been conducted using the RFID/MEMS INS/low-cost GPS integrated technique. It indicates that the techniques selected in this study, integrated with the low-cost GPS, can be used to provide continuous indoor/outdoor positions in approximately 4m accuracy with the iterated RSPKF. The results from the above experiments have demonstrated the improvements of integrating multiple sensors with RFID and utilizing the 3-D GIS data for personal positioning. The algorithms developed can be used in a portable RFID based multi-sensor positioning system to achieve metre-level accuracy in the indoor/outdoor environments. The proposed system has potential applications, such as tracking miners underground, monitoring athletes, locating first responders, guiding the disabled and providing other general location based services (LBS)

    Impact of Positioning Technology on Human Navigation

    Get PDF
    In navigation from one place to another, spatial knowledge helps us establish a destination and route while travelling. Therefore, sufficient spatial knowledge is a vital element in successful navigation. To build adequate spatial knowledge, various forms of spatial tools have been introduced to deliver spatial information without direct experience (maps, descriptions, pictures, etc.). An innovation developed in the 1970s and available on many handheld platforms from the early 2000s is the Global Position System (GPS) and related map and text-based navigation support systems. Contemporary technical achievements, such as GPS, have made navigation more effective, efficient, and comfortable in most outdoor environments. Because GPS delivers such accurate information, human navigation can be supported without specific spatial knowledge. Unfortunately, there is no universal and accurate navigation system for indoor environments. Since smartphones have become increasingly popular, we can more frequently and easily access various positioning services that appear to work both indoors and outdoors. The expansion of positioning services and related navigation technology have changed the nature of navigation. For example, routes to destination are progressively determined by a “system,” not the individual. Unfortunately we only have a partial and nascent notion of how such an intervention affects spatial behaviour. The practical purpose of this research is to develop a trustworthy positioning system that functions in indoor environments and identify those aspects those should be considered before deploying Indoor Positioning System (IPS), all towards the goal of maintaining affordable positioning accuracy, quality, and consistency. In the same way that GPS provides worry free directions and navigation support, an IPS would extend such opportunities to many of our built environments. Unfortunately, just as we know little about how GPS, or any real time navigation system, affects human navigation, there is little evidence suggesting how such a system (indoors or outdoors) changes how we find our way. For this reason, in addition to specifying an indoor position system, this research examines the difference in human’s spatial behaviour based on the availability of a navigation system and evaluates the impact of varying the levels of availability of such tools (not available, partially available, or full availability). This research relies on outdoor GPS, but when such systems are available indoors and meet the accuracy and reliability or GPS, the results will be generalizable to such situations

    RSSI based self-adaptive algorithms targeting indoor localisation under complex non-line of sight environments

    Get PDF
    Location Based Services (LBS) are a relatively recent multidisciplinary field which brings together many aspects of the fields of hardware design, digital signal processing (DSP), digital image processing (DIP), algorithm design in mathematics, and systematic implementation. LBS provide indirect location information from a variety of sensors and present these in an understandable and intuitive way to users by employing theories of data science and deep learning. Indoor positioning, which is one of the sub-applications of LBS, has become increasingly important with the development of sensor techniques and smart algorithms. The aim of this thesis is to explore the utilisation of indoor positioning algorithms under complex Non-Line of sight (LOS) environments in order to meet the requirements of both commercial and civil indoor localisation services. This thesis presents specific designs and implementations of solutions for indoor positioning systems from signal processing to positioning algorithms. Recently, with the advent of the protocol for the Bluetooth 4.0 technique, which is also called Bluetooth Low Energy (BLE), researchers have increasingly begun to focus on developing received signal strength (RSS) based indoor localisation systems, as BLE based indoor positioning systems boast the advantages of lower cost and easier deployment condition. At the meantime, information providers of indoor positioning systems are not limited by RSS based sensors. Accelerometer and magnetic field sensors may also being applied for providing positioning information by referring to the users’ motion and orientation. With regards to this, both indoor localisation accuracy and positioning system stability can be increased by using hybrid positioning information sources in which these sensors are utilised in tandem. Whereas both RSS based sensors, such as BLE sensors, and other positioning information providers are limited by the fact that positioning information cannot be observed or acquired directly, which can be summarised into the Hidden Markov Mode (HMM). This work conducts a basic survey of indoor positioning systems, which include localisation platforms, using different hardware and different positioning algorithms based on these positioning platforms. By comparing the advantages of different hardware platforms and their corresponding algorithms, a Received Signal Strength Indicator (RSSI) based positioning technique using BLE is selected as the main carrier of the proposed positioning systems in this research. The transmission characteristics of BLE signals are then introduced, and the basic theory of indoor transmission modes is detailed. Two filters, the smooth filter and the wavelet filter are utilised to de-noise the RSSI sequence in order to increase localisation accuracy. The theory behind these two filter types is introduced, and a set of experiments are conducted to compare the performance of these filters. The utilisation of two positioning systems is then introduced. A novel, off-set centroid core localisation algorithm is proposed firstly and the second one is a modified Monte Carlo localisation (MCL) algorithm based system. The first positioning algorithm utilises BLE as a positioning information provider and is implemented with a weighted framework for increasing localisation accuracy and system stability. The MCL algorithm is tailor-made in order to locate users’ position in an indoor environment using BLE and data received by sensors locating user position in an indoor environment. The key features in these systems are summarised in the following: the capacity of BLE to compute user position and achieve good adaptability in different environmental conditions, and the compatibility of implementing different information sources into these systems is very high. The contributions of this thesis are as follows: Two different filters were tailor-made for de-nosing the RSSI sequence. By applying these two filters, the localisation error caused by small scale fading is reduced significantly. In addition, the implementation for the two proposed are described. By using the proposed centroid core positioning algorithm in combination with a weighted framework, localisation inaccuracy is no greater than 5 metres under most complex indoor environmental conditions. Furthermore, MCL is modified and tailored for use with BLE and other sensor readings in order to compute user positioning in complex indoor environments. By using sensor readings from BLE beacons and other sensors, the stability and accuracy of the MCL based indoor position system is increased further

    Reaaliaikainen sis¨atilapaikannus rakennusty¨omaalla k¨aytt¨aen BLE-majakoiden trilateraatiota

    Get PDF
    A real-time indoor location tracking system prototype for construction site resource tracking was developed in this Master's Thesis. The positioning technology used was Bluetooth Low Energy Beacons and the method was trilateration. The prototype developed in this work is built upon a simpler version of a location tracking system prototype developed in iCONS research project in Aalto University. The contextual purpose of this work was to investigate in which ways a coordinate level indoor positioning system could enhance production control in construction. The lean construction philosophy is the theoretical background of this research topic. The Design Science research method was followed. The process of implementation was documented in detail. The prototype was tested in a construction site to determine the location of a person carrying a BLE beacon. The accuracy turned out to be around 10 meters at best when there was least movement. Various aspects other than accuracy have also been evaluated, and ideas for improvement are presented. The value and the applications of an ideally working coordinate level real-time location tracking system for construction production control was assessed in light of the research literature and the experience gained from creating and testing the prototype. Such a system would have a significantly positive impact on the productivity, transparency, and safety in construction.Tässä diplomityössä kehitettiin reaaliaikainen sisätilapaikannusjärjestelmä rakennustyömaan resurssien seurantaan. Paikannustekniikkana toimi Bluetooth Low Energy (BLE) -majakat ja niiden paikantaminen trilateraation avulla. Työssä kehitetty prototyyppi rakentui Aalto-yliopiston iCONS-tutkimusprojektissa kehitetyn yksinkertaisemman paikannusjärjestelmän päälle. Tässä työssä tutkittiin, millä tavoin koordinaattitason sisätilapaikannusjärjestelmä voisi parantaa tuotannonohjausta rakentamisessa. Lean-rakentaminen on tämän tutkimusaiheen teoreettinen tausta. Design Science -tutkimusmenetelmää sovellettiin tässä työssä. Menetelmän mukaisen artifaktin toteutusprosessi dokumentoitiin yksityiskohtaisesti. Prototyyppiä testattiin oikealla rakennustyömaalla BLE-majakkaa kantavan henkilön sijainnin määrittämiseksi. Tarkkuus ylsi parhaimmillaan noin 10 metriin, kun liikettä oli vähiten. Tarkkuuden lisäksi järjestelmän muita aspekteja on myös arvioitu ja parannusideoita esitetty. Ideaalin reaaliaikaisen paikannusjärjestelmän arvoa ja sovelluksia rakennusalan tuotannonohjauksessa arvioitiin sekä tutkimuskirjallisuuden että prototyypistä saadun tiedon valossa. Tällaisella järjestelmällä olisi merkittävä vaikutus rakentamisen tuottavuuteen, läpinäkyvyyteen ja turvallisuuteen
    corecore