142,137 research outputs found

    Federated-Learning-Assisted Failure-Cause Identification in Microwave Networks

    Get PDF
    Machine Learning (ML) adoption for automated failure management is becoming pervasive in today's communication networks. However, ML-based failure management typically requires that monitoring data is exchanged between network devices, where data is collected, and centralized locations, e.g., servers in data centers, where data is processed. ML algorithms in this centralized location are then trained to learn mappings between collected data and desired outputs, e.g., whether a failure exists, its cause, location, etc. This paradigm poses several challenges to network operators in terms of privacy as well as in terms of computational and communication resource usage, as a massive amount of sensible failure data is transmitted over the network. To overcome such limitations, Federated Learning (FL) can be adopted, which consists of training multiple distributed ML models at multiple decentralized locations (called 'clients') using a limited amount of locally-collected data, and of sharing these trained models to a centralized location (called 'server'), where these models are aggregated and shared again with clients. FL reduces data exchange between clients and a server and improves algorithms' performance thanks to sharing knowledge among different domains (i.e., clients), leveraging different sources of local information in a collaborative environment. In this paper, we focus on applying FL to perform failure-cause identification in microwave networks. The problem is modeled as a multi-class ML classification problem with six pre-defined failure causes. Specifically, using real failure data from an operational microwave network composed of more than 10000 microwave links, we emulate a multi-operator scenario in which one operator has partial knowledge of failure causes during the training phase. Thanks to knowledge sharing, numerical results show that FL achieves up to 72% precision in identifying an unknown particular class concerning traditional ML (non- FL) approaches where training is performed without knowledge sharing

    Adam Smith goes mobile : managing services beyond 3G with the digital marketplace

    Get PDF
    The next generation of mobile communications systems is expected to offer new business opportunities to existing and new market players. A market-based middleware framework has been recently proposed whereby service providers, independent of network operators, are able to tender online service contracts to network operators in a dynamic and competitive manner. This facilitates a seamless service provision over disparate networks in a consumer-centric manner. Service providers select network bearers according to the network operators' ability to meet the QoS target, which in turn is influenced, among other things, by user's price and quality requirements. The benefits of this proposal are the complementarity of numerous network resources, the decoupling of services and networks in a self-organising distributed environment, and increased competition to consumers’ advantag

    System architecture and deployment scenarios for SESAME: small cEllS coordinAtion for Multi-tenancy and Edge services

    Get PDF
    The surge of the Internet traffic with exabytes of data flowing over operators’ mobile networks has created the need to rethink the paradigms behind the design of the mobile network architecture. The inadequacy of the 4G UMTS Long term Evolution (LTE) and even of its advanced version LTE-A is evident, considering that the traffic will be extremely heterogeneous in the near future and ranging from 4K resolution TV to machine-type communications. To keep up with these changes, academia, industries and EU institutions have now engaged in the quest for new 5G technology. In this paper we present the innovative system design, concepts and visions developed by the 5G PPP H2020 project SESAME (Small cEllS coordinAtion for Multi-tenancy and Edge services). The innovation of SESAME is manifold: i) combine the key 5G small cells with cloud technology, ii) promote and develop the concept of Small Cells-as-a-Service (SCaaS), iii) bring computing and storage power at the mobile network edge through the development of non-x86 ARM technology enabled micro-servers, and iv) address a large number of scenarios and use cases applying mobile edge computing

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    SDN/NFV-enabled satellite communications networks: opportunities, scenarios and challenges

    Get PDF
    In the context of next generation 5G networks, the satellite industry is clearly committed to revisit and revamp the role of satellite communications. As major drivers in the evolution of (terrestrial) fixed and mobile networks, Software Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies are also being positioned as central technology enablers towards improved and more flexible integration of satellite and terrestrial segments, providing satellite network further service innovation and business agility by advanced network resources management techniques. Through the analysis of scenarios and use cases, this paper provides a description of the benefits that SDN/NFV technologies can bring into satellite communications towards 5G. Three scenarios are presented and analysed to delineate different potential improvement areas pursued through the introduction of SDN/NFV technologies in the satellite ground segment domain. Within each scenario, a number of use cases are developed to gain further insight into specific capabilities and to identify the technical challenges stemming from them.Peer ReviewedPostprint (author's final draft

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan
    • 

    corecore