200,468 research outputs found

    A Novel Location Free Link Prediction in Multiplex Social Networks

    Full text link
    In recent decades, the emergence of social networks has enabled internet service providers (e.g., Facebook, Twitter and Uber) to achieve great commercial success. Link prediction is recognized as a common practice to build the topology of social networks and keep them evolving. Conventionally, link prediction methods are dependent of location information of users, which suffers from information leakage from time to time. To deal with this problem, companies of smart devices (e.g., Apple Inc.) keeps tightening their privacy policy, impeding internet service providers from acquiring location information. Therefore, it is of great importance to design location free link prediction methods, while the accuracy still preserves. In this study, a novel location free link prediction method is proposed for complex social networks. Experiments on real datasets show that the precision of our location free link prediction method increases by 10 percent

    DeepCity: A Feature Learning Framework for Mining Location Check-ins

    Get PDF
    Online social networks being extended to geographical space has resulted in large amount of user check-in data. Understanding check-ins can help to build appealing applications, such as location recommendation. In this paper, we propose DeepCity, a feature learning framework based on deep learning, to profile users and locations, with respect to user demographic and location category prediction. Both of the predictions are essential for social network companies to increase user engagement. The key contribution of DeepCity is the proposal of task-specific random walk which uses the location and user properties to guide the feature learning to be specific to each prediction task. Experiments conducted on 42M check-ins in three cities collected from Instagram have shown that DeepCity achieves a superior performance and outperforms other baseline models significantly

    Exploiting Social and Mobility Patterns for Friendship Prediction in Location-Based Social Networks

    Get PDF
    International audienceLink prediction is a " hot topic " in network analysis and has been largely used for friendship recommendation in social networks. With the increased use of location-based services, it is possible to improve the accuracy of link prediction methods by using the mobility of users. The majority of the link prediction methods focus on the importance of location for their visitors, disregarding the strength of relationships existing between these visitors. We, therefore, propose three new methods for friendship prediction by combining, efficiently, social and mobility patterns of users in location-based social networks (LBSNs). Experiments conducted on real-world datasets demonstrate that our proposals achieve a competitive performance with methods from the literature and, in most of the cases, outperform them. Moreover, our proposals use less computational resources by reducing considerably the number of irrelevant predictions, making the link prediction task more efficient and applicable for real world applications

    Hidden location prediction using check-in patterns in location based social networks

    Get PDF
    Check-in facility in a Location Based Social Network (LBSN) enables people to share location information as well as real life activities. Analysing these historical series of check-ins to predict the future locations to be visited has been very popular in the research community. However, it has been found that people do not intend to share the privately visited locations and activities in a LBSN. Research into extrapolating unchecked locations from historical data is limited. Knowledge of hidden locations can have a wide range of benefits to society. It may help the investigating agencies in identifying possible places visited by a suspect, a marketing company in selecting potential customers for targeted marketing, for medical representatives in identifying areas for disease prevention and containment, etc. In this paper, we propose an Associative Location Prediction Model (ALPM), which infers privately visited unchecked locations from a published user trajectory. The proposed ALPM explores the association between a user's checked-in data, the Hidden Markov Model and proximal locations around a published check-in for predicting the unchecked or hidden locations. We evaluate ALPM on real-world Gowalla LBSN dataset for the users residing in Beijing, China. Experimental results show that the proposed model outperforms the existing state of the art work in literature

    Latent Space Model for Multi-Modal Social Data

    Full text link
    With the emergence of social networking services, researchers enjoy the increasing availability of large-scale heterogenous datasets capturing online user interactions and behaviors. Traditional analysis of techno-social systems data has focused mainly on describing either the dynamics of social interactions, or the attributes and behaviors of the users. However, overwhelming empirical evidence suggests that the two dimensions affect one another, and therefore they should be jointly modeled and analyzed in a multi-modal framework. The benefits of such an approach include the ability to build better predictive models, leveraging social network information as well as user behavioral signals. To this purpose, here we propose the Constrained Latent Space Model (CLSM), a generalized framework that combines Mixed Membership Stochastic Blockmodels (MMSB) and Latent Dirichlet Allocation (LDA) incorporating a constraint that forces the latent space to concurrently describe the multiple data modalities. We derive an efficient inference algorithm based on Variational Expectation Maximization that has a computational cost linear in the size of the network, thus making it feasible to analyze massive social datasets. We validate the proposed framework on two problems: prediction of social interactions from user attributes and behaviors, and behavior prediction exploiting network information. We perform experiments with a variety of multi-modal social systems, spanning location-based social networks (Gowalla), social media services (Instagram, Orkut), e-commerce and review sites (Amazon, Ciao), and finally citation networks (Cora). The results indicate significant improvement in prediction accuracy over state of the art methods, and demonstrate the flexibility of the proposed approach for addressing a variety of different learning problems commonly occurring with multi-modal social data.Comment: 12 pages, 7 figures, 2 table

    Deep Collaborative Filtering Approaches for Context-Aware Venue Recommendation

    Get PDF
    In recent years, vast amounts of user-generated data have being created on Location-Based Social Networks (LBSNs) such as Yelp and Foursquare. Making effective personalised venue suggestions to users based on their preferences and surrounding context is a challenging task. Context-Aware Venue Recommendation (CAVR) is an emerging topic that has gained a lot of attention from researchers, where context can be the user's current location for example. Matrix Factorisation (MF) is one of the most popular collaborative filtering-based techniques, which can be used to predict a user's rating on venues by exploiting explicit feedback (e.g. users' ratings on venues). However, such explicit feedback may not be available, particularly for inactive users, while implicit feedback is easier to obtain from LBSNs as it does not require the users to explicitly express their satisfaction with the venues. In addition, the MF-based approaches usually suffer from the sparsity problem where users/venues have very few rating, hindering the prediction accuracy. Although previous works on user-venue rating prediction have proposed to alleviate the sparsity problem by leveraging user-generated data such as social information from LBSNs, research that investigates the usefulness of Deep Neural Network algorithms (DNN) in alleviating the sparsity problem for CAVR remains untouched or partially studied
    • …
    corecore