841 research outputs found

    An Architecture for Global Distributed SIP Network Using IPv4 Anycast

    Get PDF
    Tato diplomová práce se zabývá metodami pro výběr nejbližší RTP proxy k VoIP klientům s použitím IP anycastu. RTP proxy servery jsou umístěny v síti Internetu a přeposílají RTP data pro VoIP klienty za síťovými překladači adres(NAT). Bez zeměpisně rozmístěných RTP proxy serverů a metod pro nalezení nejbližšího RTP proxy serveru by došlo ke zbytečnému poklesu kvality přenosu médialních dat a velkému zpoždení. Tento dokument navrhuje 4 metody a jejich porovnání s podrobnějšími rozbory metod s využitím DNS resolvování a přímo SIP protokolu. Tento dokument také obsahuje měření chování IP anycastu v porovnání mezi metrikami směrování a metrikami časovými. Nakonec dokumentu je také uvedena implemetace na SIP Express Router platformě.This thesis is about using IP anycast-based methods for locating RTP proxy servers close to VoIP clients. The RTP proxy servers are hosts on the public Internet that relay RTP media between VoIP clients in a way that accomplishes traversal over Network Address Translators (NATs). Without geographically-dispersed RTP proxy servers and methods to find one in client's proximity, voice latency may be unbearably long and dramatically reduce perceived voice quality. This document proposes four methods their comparison with further design of DNS-based and SIP-based methods. It includes IP anycast measurements that provides an overview of IP anycast behaviour in terms of routing metrics and latency metrics. It also includes implementation on SIP Express Router platform.

    Mining Network Events using Traceroute Empathy

    Full text link
    In the never-ending quest for tools that enable an ISP to smooth troubleshooting and improve awareness of network behavior, very much effort has been devoted in the collection of data by active and passive measurement at the data plane and at the control plane level. Exploitation of collected data has been mostly focused on anomaly detection and on root-cause analysis. Our objective is somewhat in the middle. We consider traceroutes collected by a network of probes and aim at introducing a practically applicable methodology to quickly spot measurements that are related to high-impact events happened in the network. Such filtering process eases further in- depth human-based analysis, for example with visual tools which are effective only when handling a limited amount of data. We introduce the empathy relation between traceroutes as the cornerstone of our formal characterization of the traceroutes related to a network event. Based on this model, we describe an algorithm that finds traceroutes related to high-impact events in an arbitrary set of measurements. Evidence of the effectiveness of our approach is given by experimental results produced on real-world data.Comment: 8 pages, 7 figures, extended version of Discovering High-Impact Routing Events using Traceroutes, in Proc. 20th International Symposium on Computers and Communications (ISCC 2015

    A Churn for the Better: Localizing Censorship using Network-level Path Churn and Network Tomography

    Get PDF
    Recent years have seen the Internet become a key vehicle for citizens around the globe to express political opinions and organize protests. This fact has not gone unnoticed, with countries around the world repurposing network management tools (e.g., URL filtering products) and protocols (e.g., BGP, DNS) for censorship. However, repurposing these products can have unintended international impact, which we refer to as "censorship leakage". While there have been anecdotal reports of censorship leakage, there has yet to be a systematic study of censorship leakage at a global scale. In this paper, we combine a global censorship measurement platform (ICLab) with a general-purpose technique -- boolean network tomography -- to identify which AS on a network path is performing censorship. At a high-level, our approach exploits BGP churn to narrow down the set of potential censoring ASes by over 95%. We exactly identify 65 censoring ASes and find that the anomalies introduced by 24 of the 65 censoring ASes have an impact on users located in regions outside the jurisdiction of the censoring AS, resulting in the leaking of regional censorship policies

    CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP

    Full text link
    The Internet routing protocol BGP expresses topological reachability and policy-based decisions simultaneously in path vectors. A complete view on the Internet backbone routing is given by the collection of all valid routes, which is infeasible to obtain due to information hiding of BGP, the lack of omnipresent collection points, and data complexity. Commonly, graph-based data models are used to represent the Internet topology from a given set of BGP routing tables but fall short of explaining policy contexts. As a consequence, routing anomalies such as route leaks and interception attacks cannot be explained with graphs. In this paper, we use formal languages to represent the global routing system in a rigorous model. Our CAIR framework translates BGP announcements into a finite route language that allows for the incremental construction of minimal route automata. CAIR preserves route diversity, is highly efficient, and well-suited to monitor BGP path changes in real-time. We formally derive implementable search patterns for route leaks and interception attacks. In contrast to the state-of-the-art, we can detect these incidents. In practical experiments, we analyze public BGP data over the last seven years

    Secure entity authentication

    Get PDF
    According to Wikipedia, authentication is the act of confirming the truth of an attribute of a single piece of a datum claimed true by an entity. Specifically, entity authentication is the process by which an agent in a distributed system gains confidence in the identity of a communicating partner (Bellare et al.). Legacy password authentication is still the most popular one, however, it suffers from many limitations, such as hacking through social engineering techniques, dictionary attack or database leak. To address the security concerns in legacy password-based authentication, many new authentication factors are introduced, such as PINs (Personal Identification Numbers) delivered through out-of-band channels, human biometrics and hardware tokens. However, each of these authentication factors has its own inherent weaknesses and security limitations. For example, phishing is still effective even when using out-of-band-channels to deliver PINs (Personal Identification Numbers). In this dissertation, three types of secure entity authentication schemes are developed to alleviate the weaknesses and limitations of existing authentication mechanisms: (1) End user authentication scheme based on Network Round-Trip Time (NRTT) to complement location based authentication mechanisms; (2) Apache Hadoop authentication mechanism based on Trusted Platform Module (TPM) technology; and (3) Web server authentication mechanism for phishing detection with a new detection factor NRTT. In the first work, a new authentication factor based on NRTT is presented. Two research challenges (i.e., the secure measurement of NRTT and the network instabilities) are addressed to show that NRTT can be used to uniquely and securely identify login locations and hence can support location-based web authentication mechanisms. The experiments and analysis show that NRTT has superior usability, deploy-ability, security, and performance properties compared to the state-of-the-art web authentication factors. In the second work, departing from the Kerb eros-centric approach, an authentication framework for Hadoop that utilizes Trusted Platform Module (TPM) technology is proposed. It is proven that pushing the security down to the hardware level in conjunction with software techniques provides better protection over software only solutions. The proposed approach provides significant security guarantees against insider threats, which manipulate the execution environment without the consent of legitimate clients. Extensive experiments are conducted to validate the performance and the security properties of the proposed approach. Moreover, the correctness and the security guarantees are formally proved via Burrows-Abadi-Needham (BAN) logic. In the third work, together with a phishing victim identification algorithm, NRTT is used as a new phishing detection feature to improve the detection accuracy of existing phishing detection approaches. The state-of-art phishing detection methods fall into two categories: heuristics and blacklist. The experiments show that the combination of NRTT with existing heuristics can improve the overall detection accuracy while maintaining a low false positive rate. In the future, to develop a more robust and efficient phishing detection scheme, it is paramount for phishing detection approaches to carefully select the features that strike the right balance between detection accuracy and robustness in the face of potential manipulations. In addition, leveraging Deep Learning (DL) algorithms to improve the performance of phishing detection schemes could be a viable alternative to traditional machine learning algorithms (e.g., SVM, LR), especially when handling complex and large scale datasets

    Networking - A Statistical Physics Perspective

    Get PDF
    Efficient networking has a substantial economic and societal impact in a broad range of areas including transportation systems, wired and wireless communications and a range of Internet applications. As transportation and communication networks become increasingly more complex, the ever increasing demand for congestion control, higher traffic capacity, quality of service, robustness and reduced energy consumption require new tools and methods to meet these conflicting requirements. The new methodology should serve for gaining better understanding of the properties of networking systems at the macroscopic level, as well as for the development of new principled optimization and management algorithms at the microscopic level. Methods of statistical physics seem best placed to provide new approaches as they have been developed specifically to deal with non-linear large scale systems. This paper aims at presenting an overview of tools and methods that have been developed within the statistical physics community and that can be readily applied to address the emerging problems in networking. These include diffusion processes, methods from disordered systems and polymer physics, probabilistic inference, which have direct relevance to network routing, file and frequency distribution, the exploration of network structures and vulnerability, and various other practical networking applications.Comment: (Review article) 71 pages, 14 figure

    SWIFT: Predictive Fast Reroute

    Get PDF
    Network operators often face the problem of remote outages in transit networks leading to significant (sometimes on the order of minutes) downtimes. The issue is that BGP, the Internet routing protocol, often converges slowly upon such outages, as large bursts of messages have to be processed and propagated router by router. In this paper, we present SWIFT, a fast-reroute framework which enables routers to restore connectivity in few seconds upon remote outages. SWIFT is based on two novel techniques. First, SWIFT deals with slow outage notification by predicting the overall extent of a remote failure out of few control-plane (BGP) messages. The key insight is that significant inference speed can be gained at the price of some accuracy. Second, SWIFT introduces a new data-plane encoding scheme, which enables quick and flexible update of the affected forwarding entries. SWIFT is deployable on existing devices, without modifying BGP. We present a complete implementation of SWIFT and demonstrate that it is both fast and accurate. In our experiments with real BGP traces, SWIFT predicts the extent of a remote outage in few seconds with an accuracy of ~90% and can restore connectivity for 99% of the affected destinations
    corecore