
SWIFT: Predictive Fast Reroute∗

Thomas Holterbach

ETH Zürich; CAIDA, UC San Diego

thomahol@ethz.ch

Stefano Vissicchio

University College London

s.vissicchio@cs.ucl.ac.uk

Alberto Dainotti

CAIDA, UC San Diego

alberto@caida.org

Laurent Vanbever

ETH Zürich

lvanbever@ethz.ch

ABSTRACT
Network operators often face the problem of remote outages in

transit networks leading to significant (sometimes on the order of

minutes) downtimes. The issue is that BGP, the Internet routing

protocol, often converges slowly upon such outages, as large bursts

of messages have to be processed and propagated router by router.

In this paper, we present SWIFT, a fast-reroute framework which

enables routers to restore connectivity in few seconds upon remote

outages. SWIFT is based on two novel techniques. First, SWIFT
deals with slow outage notification by predicting the overall extent

of a remote failure out of few control-plane (BGP) messages. The

key insight is that significant inference speed can be gained at

the price of some accuracy. Second, SWIFT introduces a new data-

plane encoding scheme, which enables quick and flexible update of

the affected forwarding entries. SWIFT is deployable on existing

devices, without modifying BGP.

We present a complete implementation of SWIFT and demon-

strate that it is both fast and accurate. In our experiments with real

BGP traces, SWIFT predicts the extent of a remote outage in few
seconds with an accuracy of ∼90% and can restore connectivity for

99% of the affected destinations.

CCS CONCEPTS
•Networks→Networkperformance analysis;Networkmea-
surement; Network reliability;

KEYWORDS
BGP; Convergence; Fast Reroute; Root Cause Analysis

ACM Reference format:
Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Van-

bever. 2017. SWIFT: Predictive Fast Reroute. In Proceedings of SIGCOMM
’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098856

∗
https://swift.ethz.ch

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00

https://doi.org/10.1145/3098822.3098856

1 INTRODUCTION
Many applications nowadays require continuous Internet connec-

tivity, where even the slightest downtime can cause large financial

and reputational loss. For example, the cost of one minute of down-

time for Amazon or Google easily reaches a 6-digit number [2]

and almost any outage that they experience makes the news [4, 8].

Smaller Internet players are not better off. Across the networking

industry, the average cost of downtime is estimated to be about

$8,000 per minute [55].

Unfortunately, guaranteeing always-on connectivity Internet-

wide is a big challenge for network operators. Even if their network

is perfectly resilient, they still face the problem of remote outages in
transit networks, i.e., connectivity disruptions in external networks

forwarding their traffic. These disruptions are frequent: large net-

works routinely see tens of failures or configuration changes in any

single day [12, 26, 28, 35, 65], each potentially disrupting transit

traffic for thousands of destinations.

Problem. BGP, the Internet routing protocol, converges slowly

upon remote outages. This can result in long data-plane downtime

for many destinations, including popular ones. Our measurements

on real BGP traces and recent router platforms (§2) show that:

– large bursts of BGP withdrawals (>1.5k prefixes) regularly hap-

pen in the Internet: 53% (resp. 86%) of ≈200 BGP sessions dis-

tributed worldwide see at least one large burst per week (resp.

month). Since single routers in transit networks routinely main-

tain tens to hundreds of such BGP sessions [27], the probability

of receiving a burst is important. 9.5% of these bursts involve

more than 20k prefixes, and some involve up to 560k prefixes.

Nearly all the biggest (hence slowest) bursts include prefixes for

popular destinations (Google, Akamai, Netflix, etc.).

– similarly to what prior studies have shown (e.g., [18, 37, 43, 45, 53,
62, 63, 66]), BGP slow convergence can cause dozens of seconds
of data-plane downtime, during which packets towards many

destinations are lost. We confirmed data-plane losses with both

testbed experiments on commercial routers and private conver-

sations with operators.

To further substantiate the problem, we conducted a survey with

72 operators. Our survey indicates that slow BGP convergence

is a widespread concern. According to the operators monitoring

convergence time (47% of them), BGP takes more than 30 seconds to
converge upon remote outages, on average.

Local fast-reroute upon remote outages. We present SWIFT, a
fast-reroute framework that enables a router to restore connectivity

in few seconds upon remote outages. SWIFT is based on two main

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/132225809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3098822.3098856
https://swift.ethz.ch
https://doi.org/10.1145/3098822.3098856

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

ingredients. Immediately after receiving the first BGP messages of a

burst, a SWIFTED router runs an inference algorithm to localize

the outage and predict which prefixes will be affected—a sort of

time-bound Root Cause Analysis (RCA). Based on this inference,

the SWIFTED router reroutes the potentially affected prefixes on

paths unaffected by the inferred failure. As many prefixes may

have to be rerouted at once, SWIFT also includes a data-plane

encoding scheme that enables the router to flexibly match and

reroute all prefixes affected by a remote failure with few data-plane

rule updates.

Balancing inference accuracy & speed, with correctness &
performance in mind. SWIFT restores connectivity within few

seconds by inferring the failure from a single vantage point. This

contrasts to prior RCA studies (e.g., [15, 19, 23, 36, 39, 40, 68–70]),
which aim at finding causes of outages within minutes, hence can
benefit from more flexibility in terms of inference algorithms and

input sources (e.g., active probing from multiple vantage points).

The key insight behind SWIFT inference algorithm is that some

accuracy can be traded for a significant gain in speed. Identify-

ing the topological region where an outage is happening is indeed

much faster than precisely locating the outage within that region.

By rerouting traffic around the region, a SWIFTED router immedi-

ately restores connectivity for the affected prefixes at the cost of

temporarily forwarding few (according to our results) unaffected

prefixes on alternate working paths.

SWIFTmakes sure that the effect of diverting non-affected traffic

does not trump the benefit of saving traffic towards the affected

prefixes. First of all, we prove that rerouting non-affected traffic is

safe: SWIFT does not lead to forwarding anomalies, even if multiple

routers and ASes deploy it. Second, SWIFT selects the alternate

paths taking into account the operator’s policies (e.g., type of peers,
cost model) and performance criteria (e.g., by preventing to reroute

large amount of traffic to low-bandwidth paths).

Deployment. SWIFT is deployable on a per-router basis and does

not require cooperation between ASes, nor changes to BGP. SWIFT
can be deployed with a simple software update, since the only

hardware requirement, a two-stage forwarding table, is readily

available in recent router platforms [3].

Whenever a SWIFTED router fast-reroutes upon an outage, it

guarantees connectivity to all the traffic sources passing through

it. Hence, deploying SWIFT in a few central ASes would bene-

fit the entire Internet, since these ASes would also protect their

(non-SWIFTED) customers. The same applies within a network:

deploying few SWIFTED routers at the edge boosts convergence

network-wide. A full Internet SWIFT deployment would achieve

the utmost advantages of our scheme, as it guarantees ASes to

reroute quickly, independently, and consistently with their policies.

Performance. We implemented SWIFT and used our implementa-

tion to perform extensive experiments using both real and synthetic

BGP traces. Across all our experiments, SWIFT correctly identified

90% of the affected prefixes within 2 seconds. Moreover, a SWIFTED
router can fast reroute 99% of the predicted prefixes with few data-

plane rule updates, i.e., in milliseconds. Finally, we show that our

implementation is practical by using it to reduce the convergence

time of a recent Cisco router by more than 98%.

6

10k

10k

7

8

1k

51 2

4

3

1k

1k

(a) Initial forwarding paths

6

7

8

51 2

4

3

(b) Post-failure paths

Figure 1: Example of slow convergence upon a remote out-
age: routing policies and absence of information about phys-
ical connectivity force AS 1 towait for 11k BGPwithdrawals,
one per prefix owned by AS 6 or AS 8.

Contributions. Our main contributions are:

• A thorough analysis of the problem of slow BGP convergence

upon remote outages, including a survey with 72 operators and

measurements on real BGP traces and routers (§2);

• A framework, SWIFT, which enables existing routers to quickly

restore connectivity upon such outages (§3);

• Algorithms for quickly inferring disrupted resources from few

BGP updates (§4) and enabling fast data-plane rerouting (§5);

• An open-source implementation of SWIFT,1 together with a

thorough evaluation (§6) based on real-world BGP traces along

with simulations. Among others, we show that SWIFT achieves

a prediction accuracy and an encoding efficiency above 90%;

• A case study showing that SWIFT can reduce the convergence

time of recent Cisco routers by 98% (§7).

2 THE CASE FOR SWIFT
In this section, we show that slow BGP convergence upon remote

outages is practically relevant. We first discuss the causes for slow

BGP convergence and its effects on data-plane connectivity in a

controlled environment (§2.1). We then present measurements on

real BGP traces and feedback from operators: they demonstrate

that slow convergence problems occur in the Internet and can lead

to significant traffic losses, even for popular destinations (§2.2).

2.1 Slow BGP convergence can cause
significant data-plane losses

We describe an example of slow BGP convergence using the net-

work in Fig. 1(a). Each AS i originates a distinct set of prefixes Si .
We focus on the 21k prefixes of S6, S7 and S8, before and after the

failure of the link (5, 6). Contrary to what happens in the current

Internet (see §2.2.3), we assume that all ASes deploy existing fast-

reroute technologies [11, 25, 38, 61]. Those technologies allow each

AS to quickly restore connectivity upon a local outage, provided
they have a backup path available.

Fig. 1(a) and Fig. 1(b) respectively show pre- and post-failure

AS paths. AS 5 knows an alternate path for S7 (via AS 3) before

the failure. However, because of inter-domain policies (e.g., partial

1
https://github.com/nsg-ethz/swift

https://github.com/nsg-ethz/swift

SWIFT: Predictive Fast Reroute SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

transit [60]), it does not know any backup path for S6 and S8: for
those prefixes, AS 5 recovers connectivity after the failure via AS 2.

After the failure of (5, 6), AS 5 restores connectivity for S7 almost

immediately by rerouting traffic to its alternate path (through AS 3).

Since AS 5 does not have backup paths for S6 and S8, a blackhole is
created for any flow directed to the corresponding 11k prefixes. In

the control plane, the failure causes AS 5 to send 10k path updates

to notify that it now uses new paths to reach S7, along with 11k path
withdrawals to communicate the unavailability of path (5, 6, 8).

2.1.1 BGP information hiding slows down convergence.

For AS 1 and AS 2, the failure of (5,6) is a remote outage, which

comes with loss of traffic towards S6 and S8. Convergence is inher-
ently slow, since AS 1 and AS 2 only have information about the

best paths used by their neighbors and not all the available ones.

Upon the failure, AS 1 and AS 2 are indeed forced to wait for the

propagation of a large stream of path updates and withdrawals,

potentially arriving one prefix at the time. BGP update packing [58]

can reduce the number of messages by grouping updates together.

However, this mechanism only works if identical BGP attributes are

attached to the prefixes to group – which is often not the case due to

the widespread use of BGP communities [21]. The absolute number

of messages is not the only causes of slow BGP convergence: other

reasons include slow table transfer [13], timers [49, 54] and TCP

stack implementation [1].

Slow convergence is a fundamental feature of inter-domain rout-

ing. Two factors contribute to it. First, routing information must be

propagated on a per-prefix basis, because any single AS can apply

distinct routing policies, hence use different paths, on a per-prefix

basis. Second, routing messages cannot specify network resources

that failed, because AS topologies and policies are hidden by the

routing system (mainly for scalability and AS-level privacy).

2.1.2 Effect on data-plane connectivity.

To quantify how badly slow control-plane convergence can affect

data-plane connectivity, we reproduced the network in Fig. 1 with

recent Cisco routers (Cisco Nexus 7000 C7018, running NX-OS

v6.2). We then measured the downtime experienced by the AS 1

router upon the failure of (5, 6). In successive experiments, we

configured AS 6 to advertise a growing number of prefixes up to

290,000 (roughly half of the current full Internet routing table [5]).

As in [26], we injected traffic towards 100 IP addresses randomly

selected among prefixes advertised by AS 6, and measured the time

taken by AS 1 to retrieve connectivity for all of the probed prefixes.

This methodology provided us with a lower bound estimation of

the downtime that any prefix in the burst could experience.

Recent routers can lose traffic for dozens of seconds upon
remote outages. Table 1 reports the downtime seen by the AS 1

router. Immediately after the link failure, the router starts to drop

packets for all monitored IPs. Connectivity is gradually recovered

as withdrawals are received from AS 2 and traffic is redirected to

AS 3. The evolution of the downtime is roughly linear: for 290k

prefixes, the router takes 109 s to fully converge.

Withdrawals Downtime (sec)

10k 3.8

50k 19.0

100k 37.9

290k 109.0

Table 1: Data-plane downtime experienced by AS 1 in Fig. 1
as a function of the burst size. Even for relatively small
bursts, traffic is lost for tens of seconds.

2.2 Slow BGP convergence in the Internet
We now report evidence of slow BGP convergence in the Internet,

along with a discussion on its data-plane impact and on the network

operators’ perspectives.

2.2.1 Bursts of withdrawals propagate slowly.

We measured the duration of bursts of BGP withdrawals ex-

tracted from 213 RouteViews [51] and RIPE RIS [9] peering ses-

sions during November 2016. We extracted the bursts using a 10 s

sliding window: a burst starts (resp. stops) when the number of

withdrawals contained in the window is above (resp. below) a given

threshold. We choose 1,500 and 9 withdrawals for the start and

stop threshold respectively, which correspond to the 99.99
th
and

the 90
th

percentile of the number of withdrawals received over any

10 s period. Overall, we found a total of 3,335 bursts; 16% of them

(525) contained more than 10,000 withdrawals, and 1.5% of them

(49) contained more than 100,000 withdrawals. Our measurements

expose four major observations.

BGP routers often see bursts ofwithdrawals.We computed the

number of bursts that would be observed by a router maintaining

a growing number of peering sessions randomly selected amongst

the 213 RouteViews and RIPE RIS peering sessions. Fig. 2(a) shows

our results. The line in the box represents the median value, while

the whiskers map to the 5th and the 95th percentile. In the median

case, a router maintaining 30 peering sessions would see 104 (resp.

33) bursts of at least 5k (resp. 25k) withdrawals over a month. Even

if a router maintains a single session, it would likely see a few large

bursts each month. Indeed, 62% of the individual BGP sessions we

considered saw between 1 and 10 bursts of withdrawals, 24% saw

more than 10 bursts. Only 14% of the sessions did not see any. As a

comparison, single routers in transit networks routinely maintain

tens to hundreds of sessions [27] – even if not all those sessions

might carry the same number of prefixes as the ones in our dataset.

Learning the full extent of an outage is slow. While most of

the bursts arrived within 10 s, 37% (1,239) of them lasted more than

10 s, and 9.7% (314) lasted more than 30 s (see Fig. 2(b)). This also

means that withdrawals within bursts tend to take a long time to

be received. In the median case (resp. 75
th
percentile), BGP takes

13 s (resp. 32 s) to receive a withdrawal.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

1 5 15 30

Number of peering sessions

0

50

100

150

200

250

300

350

400

N
um

be
r o

f b
ur

st
s

in
 a

 m
on

th min burst size = 5000
min burst size = 10000
min burst size = 25000

(a) Bursts of withdrawals are frequent

and involve a high number of prefixes,

including popular ones.

20 40 60 80

Burst duration (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Bursts lower than 10k
Bursts greater than 10k

(b) Bursts take a long time to propagate;

longer bursts even more.

Figure 2: Size and duration of bursts captured from 213 BGP
vantage points in November 2016.

Large bursts take more time to be learned. Unsurprisingly,
large bursts take more time to propagate than smaller ones (see

Fig. 2(b)). Overall, we found that 98 bursts took more than 1min to

arrive, with an average size of ≈81k withdrawals.

A significant portion of the withdrawals arrive at the end of
the bursts. We took the bursts lasting 10 s or more and divided

each of them in three periods of equal duration: the head, the middle

and the tail. We found that although most of the withdrawals tend

to be in the head of a burst, 50% of the bursts have at least 26% (resp.

10%) of their withdrawals in the middle (resp. in the tail). For 25%

of the bursts, at least 32% of the withdrawals are in the tail.

84% of the bursts includewithdrawals of prefixes announced
by “popular” ASes.We examined the Cisco “Umbrella 1 Million”

dataset [6] which lists the top 1 million most popular DNS domains.

From there, we extracted the organizations responsible for the top

100 domains: Google, Akamai, Amazon, Apple, Microsoft, Facebook,

etc. (15 in total). 84% of the bursts we observed included at least

one withdrawal of a prefix announced by these organizations.

2.2.2 Slow BGP convergence lead to significant traffic losses.

While countless studies have shown that BGP convergence can

cause long downtime on data-plane connectivity [18, 37, 43, 45,

53, 62, 63, 66], we confirmed the data-plane impact of a few bursts

of withdrawals propagated by a national ISP (with more than 50

routers). Specifically, we analyzed the bursts sent by the ISP to its

BGP neighbors over a period of three months. Among them, we

selected three bursts which included more than 10k withdrawals

and which matched with an event logged by the ISP. By checking

their logs, the operators identified the root causes of the bursts:

two maintenance operations and a peering failure at one of their

Internet eXchange Points (IXPs). At least two of these three bursts

induced downtime for transit traffic towards up to 68k prefixes,

including popular destinations.

2.2.3 Operators care: a 72-operators survey.

To substantiate the effect of slow convergence on operational

practices, we performed an anonymous survey among 72 operators

coming from a broad variety of networks (ISPs, CDNs, IXPs, etc.)

and providing services to a large customer base: 33% of them con-

nect >1 million users, and 66% connect 10k users or more (see [33]

for details). The survey contained 17 questions grouped in three

topics: (i) the operators’ experiences with slow convergence; (ii)
the induced downtime; and (iii) their opinions on speeding up

convergence upon remote outages.

Operators care about slow convergence: 78% of the respondents

care about slow BGP convergence and actively aim at decreasing

their local convergence time by tweaking the various BGP timers (27

of them) or tuning the underlying TCP parameters (21); 41 respon-

dents use fast-detection mechanisms (BFD) and 21 of them deployed

fast-reroute techniques (BGP PIC [25] or MPLS fast-reroute [52]).

When considering transit networks (33 respondents), 67% of them

rely on fast-detection mechanisms, and 45% on fast-reroute.

Operators often observe slow convergence upon remote out-
ages: Among the 17 respondents who collect statistics about BGP

convergence (9 of which are transit ISPs), 52% observe an average
BGP convergence time upon remote outages above 30 s. Only 4 of

them experience average convergence time below 10 s. In addition,

87% of the respondents observe a worst convergence time above

1min, and 35% above 5min.

The vast majority of the operators would be interested in a
solution for remote outages like SWIFT: Namely, 95% of our

respondents indicated that they would consider adopting a fast-

reroute solution to speed up convergence upon remote outages.

3 OVERVIEW
Fig. 3 shows the workflow implemented by a SWIFTED router. We

now describe the result of implementing such workflow on the BGP

border router
2
of AS 1 in Fig. 1.

Before the outage. The SWIFTED router in AS 1 continuously

pre-computes backup next-hops (consistently with BGP routes)

to use upon remote outages. This computation is done for each

prefix and considering any link on the corresponding AS path. For

example, the AS 1 router chooses AS 3 or AS 4 as backup next-hop

for rerouting the 20k prefixes advertised by AS 7 and AS 8 upon the

failure of link (1, 2). In contrast, it can only use AS 3 as backup to

protect against the failure of link (5, 6) for the same set of prefixes,

since AS 4 also uses (5, 6) prior to the failure. SWIFT then embeds a

data-plane tag into each incoming packet. Each SWIFT tag contains

the list of AS links to be traversed by the packet, along with the

backup next-hop to use in the case of any link failure.

Upon the outage. After receiving a few BGP withdrawals caused

by the failure of (5, 6), the SWIFTED router in AS 1 runs an inference

algorithm that quickly identifies a set of possibly disrupted AS links

and affected prefixes. The router then redirects the traffic for all

the affected prefixes to the pre-computed backup next-hops. To do

so, it uses a single forwarding rule matching the data-plane tags

installed on the packets. As a result, AS 1 reroutes the affected

traffic in less than 2 s (independently from the number of affected

prefixes), a small fraction of the time needed by BGP (see Table 1).

When rerouting, SWIFT does not propagate any message in BGP.

We proved that this is safe provided that the SWIFT inference is

sufficiently accurate (§3.3). When BGP has converged, i.e., the burst

2
Without loss of generality, we assume that a single router in AS 1 maintains all the

BGP sessions with AS 2, AS 3 and AS 4.

SWIFT: Predictive Fast Reroute SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

of withdrawals has been fully received and BGP routes have been

installed in the forwarding table, the router removes the forwarding

rules installed by SWIFT and falls back to the BGP ones.

In the following, we provide more details about the main compo-

nents of SWIFT. In §3.1, we overview the inference algorithm (fully

described in §4) and how its output is used in a SWIFTED router.

In §3.2, we illustrate how SWIFT quickly reroutes data-plane pack-

ets on the basis of tags pre-computed by the encoding algorithm

detailed in §5. We finally report about SWIFT guarantees in §3.3.

3.1 Inferring outages from few BGP messages
The SWIFT inference algorithm looks for peaks of activity in the

incoming stream of BGP messages. Each detected burst triggers

an analysis of its root cause. To identify the set of links with the

highest probability of being affected by an outage, the algorithm

combines the implicit and explicit information carried by BGP

messages about active and inactive paths. For example, the failure

of (5, 6) in Fig. 1 may cause BGP withdrawals indicating the un-

availability of paths (1, 2, 5, 6) and (1, 2, 5, 6, 8) for all the prefixes

originated by AS 6 and 8. Receiving these withdrawals makes the

algorithm assign a progressively higher failure probability to links

in {(1, 2), (2, 5), (5, 6), (6, 8)}. Over time, the algorithm decreases

the probability of links (1, 2) and (2, 5), because prefixes originated

by ASes 2 and 5 are not affected, and the probability of link (6, 8),

because not all the withdrawn paths traverse (6, 8).

SWIFT aims at inferring failures quickly, yet keeping an eye
on accuracy. Inference accuracy and speed are conflicting objec-

tives. Indeed, precisely inferring the set of affected AS links might

be impossible with few BGP messages, as they might not carry

enough information. For instance, SWIFT cannot reduce the set

of likely failed links any further than the entire path (1, 2, 5, 6, 8)

until it receives other messages than withdrawals for that path.

Rerouting based on partial information can unnecessarily shift non-

affected traffic, e.g., all the prefixes originated by ASes 2 and 5. In

contrast, waiting for BGP messages takes precious time (§2) during

which traffic towards actually-affected prefixes can be dropped.

To avoid unnecessary traffic shifts, SWIFT evaluates the like-

lihood that its inferences are realistic (e.g., using historical data).

For instance, SWIFT evaluates the probability that a burst includ-

ing withdrawals for all the prefixes originated by ASes 6, 7 and 8

happens. If a burst of similar size is unlikely, SWIFT waits for the

reception of more messages to confirm its inference. Given that

withdrawals for prefixes from AS 7 and 8 will likely be interleaved

with path updates for AS 6, this strategy quickly converges to an

accurate inference, as we show in §6.

SWIFT uses a conservative approach to translate inferences
into predictions of affected prefixes. Remote failures are often

partial, that is, an outage can cause traffic loss for a subset of the

prefixes traversing the affected link(s). For instance, a subset of the

prefixes traversing the failed link (5, 6) in Fig. 1 can remain active

because of physical link redundancy between AS 5 and 6, or be

rerouted by intermediate ASes (e.g., 5) to a known backup path (like

the prefixes originated by AS 7). As BGP messages do not contain

enough information to pinpoint the set of prefixes affected by an

outage, SWIFT reroutes all the prefixes traversing the inferred links.

Doing so minimizes downtime at the potential cost of short-lived

path sub-optimality (for a few minutes at most).

SWIFT inference works well in practice. Our experiments on

real BGP traces (see §6) show that SWIFT enables to reroute 90%

(median) of the affected prefixes after having received a small frac-

tion of the burst, and less than 0.60% of the non-affected prefixes.

3.2 Fast data-plane updates independently of
the number of affected destinations

Upon an inference, a SWIFTED router might need to update for-

warding rules for thousands of prefixes. In general, routers are slow

to perform such large rerouting operations as they update their

data-plane rules on a per-prefix basis.
3
Previous studies [24, 64] re-

port median update time per-prefix between 128 and 282 µs. Hence,
current routers would take between 2.7 and 5.9 seconds to reroute

21k prefixes (as the router in AS 1 has to do in Fig. 1), and more
than 1 minute for the full Internet table (650k prefixes) – even if

BGP could converge instantaneously.

SWIFT speeds up data-plane updates by rerouting according
to packet tags instead of prefixes. A SWIFTED router relies on

a two-stage forwarding table to speed up data-plane updates. The

first stage contains rules for tagging traversing packets. SWIFT
tags carry two pieces of information: (i) the AS paths along which

they are currently forwarded; and (ii) the next-hops to use in the

absence (primary next-hops) or presence (backup next-hops) of any

AS-link failure. The second stage contains rules for forwarding the

packets according to these tags. By matching on portions of the

tags, a SWIFTED router can quickly select packets passing through

any given AS link(s), and reroute them to a pre-computed next-hop.

Since tags are only used within the SWIFTED router, they have local

meaning and are not propagated in the Internet (they are removed

at the egress of the SWIFTED router).

Using again Fig. 1, we now describe the rules in the forwarding

table of the SWIFTED router in AS 1. Fig. 3 shows the tags returned

by the SWIFT encoding algorithm. The first stage of the forwarding

table contains rules to add tags consistently with the used BGP

paths. Since prefixes in AS 8 are forwarded on path (2, 5, 6, 8), it

contains the following rule.

match(dst_prefix:in AS8) >> set(tag:00111 10011)

The first part of the tag identifies the AS path. It maps specific

subsets of bits to AS links in a given position of the AS path. The

first two bits represent the first link in the AS path, which is link

(2, 5). Consistently with Fig. 3, those bits are therefore set to 00.

Similarly the second and third bits represent link (5, 6) when it is

the second link in the AS path, etc.

The second part of the tag (in green) encodes the primary and

backup next-hops. Namely, the first bit identifies the primary next-

hop, the second bit indicates the backup next-hop to use if link (1, 2)

fails, etc. This part of the tag enables SWIFT to match on traffic

that may have to be redirected to potentially different next-hops

depending on the link that fails and the destination prefix.

3
Since the outage affects remote AS links, local fast-rerouting techniques [25] cannot

be applied.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

00101

00111

(2,5,*,*,*)

(*,5,6,*,*)
(*,*,5,6,*) 10010

00101
00111type

Inference
Algorithm (§4)

 CONTROL PLANE DATA PLANE

10k

10k
1k

5 6
2

Encoding
Algorithm (§5)

p1
p10k
p1
p10k

primary
next-hop

2
2
2
2

AS paths

prefix

7

8

AS links {(5,6)}
suffer from outage

partially received
burst a single rule reroutes

21k prefixes

packets using path (*,5,6,*,*)
share this part of the tag

inference
in <2 sec

operators
policies

mask

00***

 B
EF

O
RE

 O
UT

AG
E

 U
PO

N
O

UT
AG

E

next-hop
2 primary

4
3

backup for (2,5)

4

AS links

Next-hops

AS path
tag

next-hop
tag

10010

10011
10011

1

and use this backup next-hop

1****

0
***1*
****0

mask

…

*01**
**01*

…

backup for (5,6)
backup for (6,7)

3 ****1backup for (6,8)

4 backup for (1,2) *0***

match(tag:*01** ***1*) >> fwd(3)

Figure 3: SWIFT workflow.

Before the failure of (5, 6), the second stage only contains the

forwarding rules consistent with BGP. Specifically,

match(tag:***** 1****) >> fwd(2)

Upon the failure of (5, 6), SWIFT adds a single high-priority rule to

the second stage – while not modifying at all the first stage.

match(tag:*01** ***1*) >> fwd(3)

The added rule exploits the structure of SWIFT tags to reroute traffic

for all the affected 21k prefixes, at once. The regular expression in

it matches all the packets such that: (5, 6) appears as the second

link in their AS path (i.e., the tag starts with *01**); and the backup

next-hop is 3 (i.e., the tag ends with ***1*). This includes traffic

for prefixes in AS 6, 7 and 8. Note that one rule is sufficient in our

example, because the SWIFTED router does not use any AS path

where (5, 6) appears in other positions before the failure (otherwise,

one rule per position would have been needed).

SWIFT compresses tags efficiently. Assigning subsets of bits for
any AS link and possible position in the AS path does not scale

for the Internet AS graph that currently includes >220,000 AS

links. SWIFT encoding algorithm squeezes such graph in few bits

by leveraging two insights. First, many links in the AS graph are

crossed by few prefixes, and their failure does not lead to bursts

large enough to even require SWIFT fast-rerouting. SWIFT therefore
does not encode those links at all. Second, the AS paths used by a

single router at any given time tend to exhibit a limited number of

AS links per position. SWIFT therefore only encodes AS links and

positions that are present in the used BGP paths.

SWIFT supports rerouting policies. When computing backup

next-hops, SWIFT complies with rerouting policies specified by

the operators. Indeed, rerouting to a safe path may not always be

desirable in practice – e.g., because economically disadvantageous.

Rerouting policies express the preferences between backup next-

hops, or forbid the usage of specific ones—i.e., to mimic business

and peering agreements. For example, operators can prevent SWIFT

from: (i) using an expensive link with a provider rather than a more

convenient one with a customer; (ii) rerouting to a link where free

traffic is close to depletion (e.g., according to the 95
th

percentile

rule [50]); or (iii) moving high volumes of traffic to geographically

distant regions (e.g., by sending to a remote egress point).

SWIFT supports both local and remote backup next-hops. In
addition to reroute locally to a directly connected next-hop an-

nouncing an alternate route, a SWIFTED router can also fast-reroute

to remote next-hops, potentially at the other side of the network,

by using tunnels (e.g., IP or MPLS ones). Remote backup next-hops

are learned via plain iBGP sessions.

SWIFT is easy to deploy. Only a software update is required to

deploy SWIFT since recent router platforms readily support a two-

stage forwarding table [3]. In §7 we show that SWIFT can also be

deployed on any existing router by interposing a SWIFT controller

and an SDN switch between the SWIFTED router and its peers. The

two-stage forwarding table in that case spans two devices, similarly

to an SDX platform [30, 31].

3.3 Guarantees and limitations
We prove that SWIFT rerouting strictly improves Internet-wide con-

nectivity, proportionally to the number of SWIFTED routers. This

translates into incentives for both partial and long-term Internet-

scale deployment (e.g., on all AS border routers).

Theorem 3.1. The number of disrupted paths is decreased by every
SWIFTED router which is on a path affected by an outage.

Theorem 3.2. SWIFT rerouting causes no forwarding loop, irre-
spective of the set of SWIFTED routers.

Both theorems are based on the following lemma.

Lemma 3.3. When any SWIFTED router fast-reroutes, it sends
packets over paths with no blackhole and loops.

SWIFT: Predictive Fast Reroute SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Proof sketch. Upon a remote outage, any SWIFTED router r
reroutes traffic to an AS path that was offered to r by one of its BGP
neighbors before the outage (by definition of SWIFT). This path
must have been free from blackholes and loops before the outage

(by definition of BGP). Also, it contains no failed links—provided

that the inference is accurate enough. Hence, the path remains valid

and used by all ASes in it, which directly yields the statement. □

As evident from the proof sketch, the lemma and consequently the

theorems hold under the following two assumptions (see [33]).

Assumption 1:During an outage, routers only change inter-domain

forwarding paths that are affected by the outage. If this assumption

is violated, then inter-domain loops can be generated. Let s be a
SWIFTED router and n the next-hop to which s fast-reroutes to
avoid a certain outage. If n switches path for some fast-rerouted

prefixes (e.g., to reflect a policy change uncorrelated with the out-

age), it may choose the BGP path used by s before the outage (not
updated by SWIFT): this would lead to a loop between n and s .

Nevertheless, SWIFT can quickly detect and mitigate such a loop:

s can monitor whether n stops offering the BGP path to which it

has fast-rerouted, and select another backup next-hop.

Assumption 2: SWIFT inferences enable the SWIFTED routers to

avoid paths affected by an outage. The SWIFT inference algorithm

implements a conservative approach for inferring links and select-

ing backup paths. Still, we cannot guarantee the validity of such

assumption, since SWIFT inferences are based on the partial and

potentially noisy information provided by BGP (and withdrawals

that reach different ASes at different times). Inferences that cause

SWIFT not to rule out all paths affected by an outage might induce

packet loss: in these cases, a SWIFTED router could reroute traffic

to a disrupted backup, and multiple SWIFTED routers could create

an inter-domain loop (if the selected backup next-hop actually uses

exactly one of the disrupted paths missed by the inference). In both

cases, packets will be dropped, as it would have happened for the

affected prefixes without SWIFT (i.e., using vanilla BGP). However,

our evaluation with both real BGP traces and controlled simulations

(§6), suggests that very few SWIFT inferences lead to the selection

of disrupted backup next-hops.

4 SWIFT INFERENCE ALGORITHM
We now detail the SWIFT inference algorithm, its basics (§4.1)

and how it accounts for real-world factors (§4.2). Because of space

constraints, we include the pseudo-code of the algorithm along

with the full proof of its correctness (Theorem 4.1) in [33].

4.1 Fast and sound inference
In the following, we consider the stream of messages received on a

single BGP session since the algorithm run on a per-session basis

(enabling parallelism). We also initially assume that the algorithm

aims at inferring an outage produced by a single failed link.

Burst detection. SWIFT monitors the received input stream of

BGP messages, looking for significant increases in the frequency

of withdrawals. It classifies a set of messages as the beginning of

a burst when such frequency (say, number of withdrawals per 10

6

7

8

51 2

4

3

10k

10k

1k
1k

1k

11k WITHDRAWs

10k UPDATES

(1,2)

(2,5)

(5,6)

WS PS

11/11 11/13

11/11 11/12

11/11 11/11

link

(6,7)

(6,8)

0/10 0/10

10/11 10/10

Figure 4: WS and PS metrics at the end of the burst of with-
drawals caused by the failure of (5,6).

seconds) in the input stream is higher than the 99.99th percentile

recorded in the recent history (e.g., during the previous month).

Failure localization. When detecting a burst, SWIFT infers the

corresponding failed link as the one maximizing a metric called Fit
Score (FS). Let t be the time at which this inference is done. For any

link l , the value of FS for l is the weighted geometric mean of the

Withdrawal Share (WS) and Path Share (PS):

FS(l , t) = (WS(l , t)wWS ∗ PS(l , t)wPS)1/(wWS+wPS)

WS is the fraction of prefixes forwarded over l that have been

withdrawn at t over all the received withdrawals. PS is the fraction

of withdrawn prefixes with a path via l at t over the prefixes with
a path via l at t . More precisely,

WS(l , t) =
W (l , t)

W (t)
PS(l , t) =

W (l , t)

W (l , t) + P(l , t)

whereW (l , t) is the number of prefixes whose paths include l and
have been withdrawn at t ;W (t) is the total number of withdrawals

received as of t ; P(l , t) is the number of prefixes whose paths still

traverse l at t . wWS and wPS are the weights we assign to WS

and PS. By relying on WS and PS, the fit score aims at quantifying

the relative probability that a link is responsible for the received

withdrawals while being robust to real-world factors such as BGP

noise (§4.2).

Example. Fig. 4 reports the WS and PS values at the end of the burst

of withdrawals generated by the failure of (5, 6) in Fig. 1. Link (5, 6)

is the only one with both WS and PS equal to 1, since all the AS

paths traversing it have been either withdrawn or changed with

another path not crossing (5, 6). In contrast, the PS values for links

(1, 2) and (2, 5) are smaller than 1 (11k/13k and 11k/12k), because

paths for the prefixes of AS 2 and AS 5 have not been modified

by the burst. The WS of (6, 8) is smaller than 1 because not all

the withdrawals pertain to that link. At the end, (5, 6) is therefore

correctly inferred as failed.

SWIFT inference is sound. By soundness, we mean that the in-

ference algorithm is always correct under ideal conditions. The

following theorem holds.

Theorem 4.1. If all ASes inject at least one prefix on every adjacent
link, SWIFT inference returns a set of links including the failed link if
run at the end of the corresponding stream of BGP messages.

Proof sketch. Let f be the failed link and t the time at which

all the BGP messages triggered by the failure of f are received.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

All prefixes that have been withdrawn were previously forwarded

over the f , hence WS(f ,t) = 1. Also, all the prefixes previously

forwarded over f have been withdrawn (PS(f ,t) = 1). This means

that the fit score of f has the maximum possible value, hence the

SWIFT inference algorithm returns it in the set of inferred links. □

4.2 Robustness to real-world factors
While actual streams of BGP messages do not always match the

ideal conditions assumed in Theorem 4.1, SWIFT inferences are

good in practice (see §6). We now explain why.

SWIFTmakes accurate inferences during the burst. Contrary
to the assumptions of Theorem 4.1, SWIFT runs its inference algo-

rithm at the beginning of a burst. Lack of information (i.e., carried by
not yet received withdrawals) can therefore affect its accuracy. Be-

ing aware of this lack of information, SWIFT uses different weights

for WS and PS in the geometric mean calculated in the fit score FS

(see §4.1). The key intuition is that early on during the burst, a large

number prefixes are not yet withdrawn and are still using the failed

link. As a result, the PS for that link may not be the highest one.

The PS for the failed link actually increases when SWIFT runs the

inference later in the burst. However, the WS for the failed link will

always be greater or equal than the WS of any other link, provided

that SWIFT does not receive unrelated withdrawals and that the

outage is produced by a single link failure. SWIFT thus performs

better whenwWS > wPS .

By performing a calibration study on real BGP data, we found

that SWIFT performed better when wWS was three times higher

than wPS (see details in [33]). We therefore use this weight for

SWIFT, including in the evaluation (§6).

SWIFTminimizes the risk of inferring awrong link by being
adaptive. As discussed in §3, the accuracy of SWIFT inferences

depends on the amount of information in its input.

SWIFT uses the number of withdrawals in an ongoing burst as an

estimation of the carried information. It launches a first inference

after a fixed number of withdrawals, which we call triggering thresh-
old. If the likelihood of seeing an inferred burst of that size is high

enough with respect to historical data, then it returns the inferred

link. Otherwise, it waits for another fixed number of withdrawals,

and iterates. Using real BGP bursts as baseline (see [33]), we set

the default values of the triggering threshold to 2.5k withdrawals.

Also, SWIFT returns the inferred link if the number of predicted

withdrawals is less than 10k for 2.5k received withdrawals, 20k for

5k received, 50k for 7.5k received, and 100k for 10k received. After

having received 20k withdrawals, SWIFT returns the inferred link

regardless of the number of predicted prefixes.

SWIFT applies a conservative strategy if failed links cannot
be univocally determined. It may happen that SWIFT cannot

distinguish precisely which link has failed. For example, in Fig. 4,

assuming that the 1k prefixes from AS 6 are updated and not with-

drawn, SWIFT cannot distinguish if (5, 6) or (6, 8) failed. Whenever

a failed link cannot be univocally determined, SWIFT inference

returns all the links with maximum FS, i.e., both (5, 6) and (6, 8) in

the previous example.

SWIFT quantitativemetrics mitigate the effect of BGP noise.
Some received BGP messages may be unrelated to the outage caus-

ing a burst but due to contingent factors (e.g., misconfiguration,

router bugs). They constitute noise that can negatively affect the

accuracy of any inference algorithm. In SWIFT, noise can distort FS

values. In Fig. 4, for instance, withdrawals for prefixes originated

by AS 5 can be received by AS 1 during the depicted burst. This

would increase the likelihood that the FS of (2, 5) is higher than the

one of (5, 6), especially at the beginning of the burst.

In practice, SWIFT is robust to realistic noise as the level of

BGP noise is usually much lower than a burst. Hence, its effect

on quantitative metrics like FS, WS, and PS, tends to rapidly drop.

This feature distinguishes our inference algorithm from simpler

approaches, e.g., based on AS-path intersection, which are much

more sensible to single unrelated withdrawals.

SWIFT can infer concurrent link failures. To cover cases like

router failures that affect multiple links at the same time, the in-

ference algorithm computes the FS value for sets of links sharing

one endpoint. More precisely, the algorithm aggregates greedily

links with a common endpoint (from links with the highest FS to

those with the lowest one), until the FS for all the aggregated links

does not increase anymore. The fit score FS for any set S of links is

computed by extending the definition of WS and PS as follows.

WS(S, t) =

∑
l ∈S

W (l , t)

W (t)
PS(S, t) =

∑
l ∈S

W (l , t)∑
l ∈S

W (l , t) + P(l , t)

The set of links (potentially, with a single element) with the highest

FS is returned. To ensure safety (see §3.3), for each link inferred,

SWIFT must choose a backup route that does not traverse the

common endpoint of the links.
4
This prevents SWIFT to reroute a

prefix to a backup next-hop that uses another inferred link (because

all the inferred links have a common endpoint). By choosing backup

paths bypassing a superset of the inferred links, SWIFT also ensures
safety in case the inference algorithm correctly localizes the ASes

involved in the outage instead of the precise links.

5 SWIFT ENCODING ALGORITHM
In this section, we describe how SWIFT tags are computed. Recall

that these tags are embedded onto the incoming packets in the

first stage of the forwarding table and are split in two parts: one

which encodes the AS links used by the packet, and another which

encodes the next-hops to reroute to should any of these links fail.

Thanks to these embedded tags, a SWIFTED router can reroute

traffic efficiently upon an inference, independently on the number

of prefixes impacted.

In section 7, and similarly to [30, 31], we show how SWIFT
can leverage the destination MAC to tag incoming traffic. The

destination MAC is indeed a good “tag carrier” as it provides a

significant number of bits (48), and can easily be removed in the

second stage of the forwarding table by rewriting it to the MAC

address of the actual next-hop, as any IP router would do.

4
This is enough to ensure safety. However, SWIFT computes the backup next-hops in

advance, i.e., before the failure (see §3.2). As SWIFT does not know which endpoint of a

link will be the common endpoint, it chooses backup paths (for the prefixes traversing

this link) avoiding both endpoints of the link.

SWIFT: Predictive Fast Reroute SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

best AS paths

R
IB (2 5 6), (4 5 6), (3 6)

primary
2

primary
NH

AS
position 2

AS
position 3

AS
position 4

backup

3

backup
depth 1

4

2

backup
depth 2

…

backup
3

4

(3 2 5 8), (2 5 8), (4 8)

P1

Pn

Part 2: per AS-link backup Part 1: AS-links traversed

free bits

3 2 5 8

2 5 6

P1

prefix AS-paths (order by pref)

Pe
r-

pr
efi

x
D

at
a-

pl
an

e
Ta

g Pn

link depth 2 link depth 3

…

…

backup
depth 3

backup

4

link depth 1

translation to
AS identifiers

Figure 5: A SWIFTED router embeds a tag into incoming
packets. The tag encodes the links traversed by the packet
(Part 1) alongwith backupnext-hops for each of the encoded
links (Part 2).

Encoding AS links. The first part of the tag (right side of Fig. 5)
encodes the AS path along which each packet will flow. For each

prefix, we consider the AS path associated with the best route for it,

and we store the position of ASes in that path. Namely, we definem
sets, withm being the length of the longest AS path, and we call the

i-th set position i . For any AS path (u0 u1 . . .uk), with k ≤ m, we

then add the AS identifier of ui to position i , for every i = 1, . . . ,k .
Note that the first hop in any AS path is already represented as

primary next-hop (see Part 2 of Fig. 5). Hence, we do not model

position 1, and we have a different AS-path encoding for every

SWIFT’s neighbor. At the end of this process, AS paths can be

encoded by selecting specific AS identifiers for every position.

Encoding all used AS paths may not be possible. Not only can

thousands of distinct ASes be seen for each position, but also the AS

paths may be very long (>10 hops). Fortunately, two observations

enable SWIFT to considerably reduce the required number of bits.

First, from the perspective of one router, many AS links carry few

prefixes. A failure of these links will therefore produce small bursts

(if any), which allows for per-prefix update. Thus, we ignore any

link that carries less than 1,500 prefixes in our SWIFT encoding.

Second, links that are far away from the SWIFTED node are less

likely to produce bursts of withdrawals than closer ones. Indeed,

for distant links, it is likely that intermediate nodes know a backup

path. Our measurements (§6) confirm this. Consequently, we only

encode the first few hops of the AS paths (up to position 5).

For the remaining AS links, SWIFT encodes first the links with

the highest number of prefixes traversing them. To do that, SWIFT
uses an adaptive number of bits for each AS position: each position

is implemented by a different bit group, whose length depends

on the number of ASes in this position. For each position P , we
map all the ASes in P to a specific value (the AS identifier) of the

corresponding bit group. Hence, the size of this group is equal to

the number of bits needed to represent all the values in P .

Encoding backup next-hops. The second part of the tag (left

side of Fig. 5) identifies the primary next-hop as well as backup

next-hops for each encoded AS link. For each prefix p, the pri-

mary next-hop is directly extracted as the first hop in the AS path

for p. For instance, the primary next-hop for prefix p1 in Fig. 1(a)

is 2. Backup next-hops are explicitly represented to both reflect

rerouting policies and prevent rerouting to disrupted backup paths.

Consider again p1. The primary path is (2, 5, 6). To protect against

a failure of the first AS link (2, 5), we can select AS 3 or 4, since

neither of the two uses (2, 5) to reach p1. In contrast, for (5, 6), only

AS 3 can be used as a backup next-hop, since the AS paths received

from AS 4 also uses (5, 6).

Partitioning bits across the two parts of the tag. A fundamen-

tal tradeoff exists between the amount of paths and the number of

backup next-hops that any SWIFT router can encode. On the one

hand, allocating more bits to represent AS links (first part of the

tag) allows a SWIFTED router to cover more remote failures. On the

other hand, allocating more bits to represent (backup) next-hops

(second part of the tag) allows a SWIFTED router to reroute traffic

to a higher number of backup paths.

In §6.4, we show that allocating 18 bits to AS paths encoding is

sufficient to reroute more than 98% of the prefixes. Assuming 48-

bits tags (i.e., , using the destination MAC), 30 bits are left to encode

backup next-hops. If we configure SWIFT to support remote failures

up to depth 4, the bits allocated for the backup next-hops needs

to be divided by 5 (1 primary + 4 backup next-hops). As a result,

30/5 = 6 bits are reserved for each depth, which translates into

2
6 = 64 possible next-hops. If one wants to consider remote failures

only up to depth 3, then the number of next-hops is 2
7 = 128 and

two more bits can be allocated to the AS links encoding. Operators

can fine-tune such decision, e.g., based on the (expected) number

of backup next-hops reachable by each SWIFTED router.

6 EVALUATION
We now evaluate our Python-based implementation (≈ 3,000 lines

of code) of the SWIFT inference algorithm (§4) and the encoding

scheme (§5). We first describe our datasets (§6.1). We then evaluate

the accuracy of the inference algorithm, both in terms of failure

localization (§6.2) and withdrawals prediction (§6.3). We also eval-

uate the efficiency of SWIFT data-plane encoding (§6.4). Finally,

we show that the combination of the inference algorithm and the

encoding scheme leads to much faster convergence than BGP (§6.5).

6.1 Datasets
We evaluate SWIFT using two sources of bursts of BGP withdrawals.

Bursts from real BGP data, without outage ground truth. To
evaluate how SWIFT would work in the wild, we use sets of actual

bursts extracted from the same dataset used in §2. It consists of

BGP messages dumped by 10 RouteViews [51] and 5 RIPE RIS [9]

collectors during the full month of November 2016. These collectors

received BGP messages from 213 peers.
5
Our evaluation is based

on 1,802 bursts with more than 1,500 withdrawals. Amongst them,

942 (resp. 339) have more than 2,500 (resp. 15,000) withdrawals.

5
We found 5 routers peering with these collectors that exhibit a flapping behavior,

with an anomalous large number of bursts of similar pattern; when including them, we

obtain a minimal change in overall results (≈2%), but since SWIFT performs uniformly

on similar bursts, their large number (≈500 bursts) causes a significant skew in the

population of bursts. We therefore omit these peers from our analysis.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

Bursts from simulations, with outage ground truth. To vali-

date the accuracy and the robustness of our inference algorithm,

we use bursts extracted from control-plane simulations conducted

with C-BGP [56]. We created a topology composed of 1,000 ASes

using the Hyperbolic Graph Generator [10]. We set the average

node degree to 8.4, which is the value observed in the CAIDA AS-

level topology [16] in October 2016, and use as degree distribution a

power law with exponent 2.1 [42]. We defined the AS relationships

as follows. The three ASes with highest degree are Tier1 ASes and

are fully-meshed. ASes directly connected to a Tier1 are Tier2s.

ASes directly connected to a Tier2 but not to a Tier1 are Tier3s,

etc. Two connected ASes have a peer-to-peer relationship if they

are on the same level, otherwise they have a customer-provider

relationship. We configured each AS to originate 20 prefixes, for

a total of 20k prefixes. Using C-BGP, we simulated random link

failures, and recorded the BGP messages seen on each BGP session

in the network. We collected a total of 2,183 bursts of at least 1k

withdrawals. The median (resp. max) size of the bursts is 2,184 (resp.

19,215) withdrawals.

6.2 Failure localization accuracy
In the following, we evaluate the accuracy of the SWIFT inference

algorithm on both datasets.

6.2.1 Validation on real BGP data.

Since real BGP traces do not provide the ground truth on burst

root causes, we estimate the accuracy of the inference algorithm

indirectly: we evaluate the match between the prefixes withdrawn

in the entire burstW and the prefixesW
′

whose path traversed

the links inferred by SWIFT as failed. This can be formalized as a

binary classification problem, in which the true and false positives

are the prefixes inW
′

∩W andW
′

−W , respectively. We therefore

evaluate the accuracy of SWIFT inference in terms of True Positive

Rate (TPR) and False Positive Rate (FPR).
6

Fig. 6 shows the TPR and FPR on a per-burst basis. It is divided

into quadrants. The top left quadrant corresponds to very good

inferences, i.e., for each burst, the links that SWIFT infers as failed

are traversed by most of the withdrawn prefixes (high TPR) and

few of the non-affected prefixes (low FPR). The top right quadrant

contains inferences that overestimate the extent of a failure (high

TPR and FPR): rerouting upon such inferences is still beneficial as

the TPR is high (i.e., connectivity is restored for many prefixes actu-

ally disrupted). The bottom left quadrant corresponds to inferences

that underestimate the extent of a burst. Finally, the bottom right

quadrant includes bad inferences (with low TPR and high FPR).

We evaluate two scenarios for SWIFT. In the first one (Fig. 6(a)),

the inference algorithm runs only once, after 2.5k withdrawals—as it

would do without a history model (e.g., after the first installation on

a router). In the second scenario (Fig. 6(b)), the inference algorithm

runs every 2.5k withdrawals while following the simple historical

model we described in §4.2. When considering history, SWIFTwaits
for more withdrawals to arrive before rerouting large numbers of

prefixes early on in the burst.

6T PR = T P/(T P + FN), F PR = F P/(F P +T N); The negatives are all the prefixes

announced in the session before the burst starts and not withdrawn during the burst.

0 20 40 60 80 100
False Positives Rate (FPR)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

11.9%75.8%

12.3% 0%

85%

2% 3% 8% 2%

3%

7%

6%

11%

70%

(a) Without history

0 20 40 60 80 100
False Positives Rate (FPR)

0

20

40

60

80

100

Tr
ue

 P
os

iti
ve

 R
at

e
(T

P
R

)

5.3%85.1%

9.6% 0%

94%

1% 0% 4% 1%

3%

5%

6%

12%

71%

(b) With history

Figure 6: Despite having little information, SWIFT inference
is accurate. The vast majority of prefixes are correctly in-
ferred as failed (top half quadrants). While some affected
prefixes are missed (bottom left), no prediction is signifi-
cantly inaccurate (bottom right).

SWIFTmakes accurate inferences in themajority of the cases,
and never makes bad inferences. Even when using only 2.5k

withdrawals (Fig. 6(a)), SWIFT makes accurate inferences in the

vast majority of the cases: TPR is more than 60% for more than 81%

of the bursts. However, it also overestimates the extent of the burst

(FPR is higher than 50%) for about 12% of the bursts. SWIFT infer-

ence algorithm performs sensibly better when relying on history

(Fig. 6(b)). Better performance comes at the price of missing some

bursts because of the extra delay. Specifically, it missed a total of 256

bursts (53% of them smaller than 5k) compared to the history-less

version. Despite this, the history-based version of the inference

algorithm still completes the inference at the lowest threshold (2.5k)

for the majority of the bursts (65%). The increased density of the top

left quadrant in Fig. 6(b) is a clear indication of the gain obtained

by trading a bit of speed for better accuracy. Finally, we stress that

SWIFT never falls into the bottom right quadrant, irrespective of

whether the historical model is used or not.

6.2.2 Validation through simulation.

We now describe the results obtained by SWIFT inference algo-

rithm when run on the bursts generated in C-BGP (see §6.1).

Under ideal conditions, SWIFT inference is always correct.
We ran our inference algorithm at the end of each burst and found

that the inference is always correct, consistently with Theorem 4.1.

SWIFT inference is accurate enough to ensure safety, even
early on during the bursts.Whenwe ran the inference algorithm

after only 200 withdrawals (1% of the total number of prefixes

advertised, see §6.1), SWIFT identified a superset of the failed link

for 9% of the bursts. For the remaining 91%, it returned a set of links

adjacent to the failed one. Nevertheless, for all the 2,183 bursts but
one, SWIFT selected a backup path that bypasses the actual failed

link. This is because SWIFT chooses a backup route that does not

traverse the common endpoint of the inferred links (see §4.2).

SWIFT: Predictive Fast Reroute SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

percentile of bursts

10
th

20
th

30
th

50
th

70
th

80
th

90
th

Burst size between 2.5k and 15k
CPR 24.6% 48.9% 72.6% 89.5% 98.5% 99.7% 99.9%

FPR 0% 0.03% 0.07% 0.22% 0.50% 0.81% 1.8%

CP 47 178 349 901 2.1k 3.0k 4.3k

FP 24 125 301 802 2.2k 3.1k 5.0k

Burst size greater than 15k
CPR 5.6% 39.3% 80.4% 93.0% 98.1% 99.7% 99.9%

FPR 0% 0% 0.04% 0.60% 5.42% 13.9% 74.9%

CP 1.7k 5.7k 11.0k 19.6k 53.2k 78.1k 193k

FP 0 6 110 2.4k 19.8k 50k 402k

Table 2: Inference algorithm with history model: perfor-
mance of the prediction of future withdrawals.

SWIFT inference is robust to noise.We simulated BGP noise by

adding, in each burst, 1,000 withdrawals of prefixes that are not

affected by the failure. This number is much greater than what we

observe in real BGP data, both in absolute terms (9 withdrawals

only in the 90th percentile, see §2.2) and as a percentage (since we

only advertise 20k prefixes in C-BGP, whereas there are more than

600k prefixes advertised in the real world [5]). When we triggered

the inference at the end of the burst, SWIFT identified the failed link
for 91% of the bursts (1991), a superset for 9% bursts (188), a set of

links adjacent to the failed one for 1 burst and did a wrong inference

for 3 bursts. When we triggered the inference after 200 withdrawals,

SWIFT still selected backup paths that bypass the actual failed link

for all the bursts but one. SWIFT identified a superset of the failed

link for 12% of the bursts, while for the remaining 88%, it returned

a set of links adjacent to the failed one.

6.3 Withdrawals prediction accuracy
In the previous section (§6.2), we showed that SWIFT inference

algorithm is indeed able to identify the failed link, even with limited

information. In this section, we evaluate the ability of SWIFT to pre-
dict withdrawals, we also give the absolute number of prefixes fast

rerouted upon such inference, enabling us to quantify the benefit

of SWIFT, as well as the possible under/overshooting induced.
Differently from the previous section, in order to evaluate specif-

ically the prediction, we consider as “positives” only the prefixes

withdrawn after the inference was made. This change affects the

definition of TP (and TPR) but leaves FP (FPR) unaltered. Since we

already used TPR in §6.2, we denote with CPR (for Correctly Pre-

dicted Rate) the true positive rate of the prediction. We also denote

with CP and FP, the total numbers of prefixes correctly predicted

or not, respectively.

6.3.1 Validation on real BGP data.

Table 2 shows results obtained by running the SWIFT inference

algorithm with the history model. Results for small (≤15k) and

large (>15k) bursts are shown separately.

SWIFT correctly fast-reroutes a large number of affected pre-
fixes. For half (resp. 80%) of the small bursts, SWIFT correctly pre-

dicts at least 89.5% (resp. 48.9%) of the future prefix withdrawals.

For half (resp. 80%) of the large bursts, SWIFT correctly predicts at

least 93% (resp. 39.3%) of the future prefix withdrawals. In terms

of absolute numbers, we see that SWIFT correctly fast-reroutes a

significant amount of prefixes, especially for larger (>15k) bursts,

where the number of prefixes predicted is in the order of tens of

thousands for 60% of the bursts and in the order of hundreds of

thousands for more than 10%.

SWIFT only reroutes a small number of non-affected pre-
fixes. Both for small and large bursts, the fraction of fast-rerouted

prefixes that were not affected by the failure is small in most of the

cases. In few cases (e.g., 90-th percentile of the large bursts) however,
the algorithm significantly overestimates the number of prefixes

to be rerouted (FP). This is because we deliberately designed and

tuned the algorithm to not minimize incorrectly rerouted prefixes in

order to avoid missing prefixes that should be rerouted. Incorrectly

rerouted prefixes are indeed forwarded to a backup path which

is sub-optimal but not disrupted, just for the few minutes needed

for BGP to reconverge. Consistently, we note that less aggressive

weights do reduce the FPR (see [33]).

6.3.2 Validation through simulation.

We now evaluate the accuracy of the prefixes prediction on the

bursts generated by C-BGP.

SWIFT accurately predicts prefix withdrawals, even when
considering noise.When inferring the affected prefixes after only

200 withdrawals, the FPR is equal to 0% for 98% of the bursts. The

highest FPR observed is only 13%. In the median case (resp. 25th

percentile), the CPR is equal to 88% (resp. 84%). The lowest CPR

observed is 37%.

To consider the impact of BGP noise on these numbers, we added,

to each burst, 1,000withdrawals unrelated to the failure (as in §6.2.2).

We found that, for 53% of the bursts, the FPR is still 0%. The FPR

is greater than 9% for only 1% of the bursts. In the median case

(resp. 25th percentile), the CPR is 53% (resp. 50%). The CPR is far

from 100% because the withdrawals unrelated to the failure count

as positives. In practice, we observe that the CPR is less affected by

BGP noise, as the level of noise is usually much lower (see §2.2).

6.4 Encoding effectiveness
We now experimentally evaluate SWIFT encoding scheme (§5) by

quantifying how many prefixes can effectively be rerouted in the

data-plane by matching on the pre-provisioned tags. For each burst,

we define the encoding performance, as the fraction of predicted

prefixes that can be rerouted by the encoding scheme. The perfor-

mance depends on the number of bits allocated to the AS path part

of the tag (see §5). For this part of the evaluation, we rely on the

inference algorithm with the history model and consider the bursts

obtained from the real BGP data.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

13 18 23 28

Number of bits available

0

20

40

60

80

100
E

nc
od

in
g

pe
rfo

rm
an

ce
 (%

)
all bursts
min burst size = 10000

Figure 7: With only 18 bits available for the AS paths encod-
ing, SWIFT can reroutemore than 98.7% of the predicted pre-
fixes in the median case.

Allocating 18 bits to the AS-path part of the tag enables to
reroute 98.7% of the predicted prefixes. Fig. 7 shows the encod-
ing performance (over all bursts) as a function of the number of

bits reserved for the AS-path part of the tag. Each box shows the

inter-quartile range of the encoding performance: the line in the

box depicts the median value; the dot depicts the mean; and the

whiskers show the 5th and 95th percentiles. As the number of bits

allocated to the AS paths encoded increases, so does the encoding

performance. We see that 18 bits are already sufficient to reroute

98.7% of the predicted prefixes in the median case (73.9% in average).

These results illustrate that the compression done by the encoding

algorithm is efficient and manages to encode the vast majority of

the relevant AS links. In addition, Fig. 7 shows that for the large

bursts of at least 10k withdrawals, the encoding performance is bet-

ter (84.0% on average with 18 bits). This is explained by the design

of our encoding algorithm, which encodes with highest priority the

AS links with the largest number of prefixes traversing them (and

which may cause large bursts in case of a failure).

Assuming a tag of 48 bits (e.g., using the destination MAC), the

remaining 30 bits can be used to encode the backup next-hops. If

SWIFT encodes up to depth 4 (i.e., position 5 in the AS path), 64

different next-hops can therefore be used. This suggests that SWIFT
encoding can work well even if the SWIFTED device is connected to

a large number of external neighbors, like in IXPs [47]. The number

of backup next-hops can even be increased by reducing the number

of AS hops encoded (e.g., up to depth 3 instead of 4).

6.5 Rerouting speed
In this section, we show that the combination of the SWIFT infer-

ence algorithm and the encoding scheme enables fast convergence

in practice (within 2 s) by quantifying: (i) the learning time required

for a prediction; and (ii) the number of rules updates to perform in

the data plane. Our results are computed on the bursts in the real

BGP data.

SWIFT learns enough information to converge within 2 sec-
onds (median). Compared to vanilla BGP, SWIFT converges much

faster than a BGP router working at the per-prefix level. Fig. 8

shows the CDF of the time elapsed between the beginning of the

burst and the actual time at which every withdrawal in the burst is

learned. For BGP, the learning time corresponds to the withdrawal

0 20 40 60 80 100 120 140

Learning time (s)

0

20

40

60

80

100

C
D

F
(%

)

SWIFT
BGP

Figure 8: SWIFT quickly learns about remote outages. In 2
(resp. 9) seconds, SWIFT learns more than 50% (resp. 75%) of
the withdrawals, BGP needs 13 seconds (resp. 32 seconds).

timestamp. For SWIFT, it corresponds to the prediction time if the

withdrawal is predicted, otherwise the withdrawal timestamp. The

plot highlights that, in the median case, SWIFT learns a withdrawal

within 2 s, while BGP needs 13 s. We can observe a shift at 41 s in

the SWIFT curve. After investigation, we found that this is due to

a very large burst of 570k withdrawals which took a total of 105 s

to arrive. The first 20k withdrawals (needed for SWIFT to launch

the prediction) took 41 s to arrive. Observe that, even in such a

case, SWIFT was still able to shave off more than 1min of potential

downtime.

SWIFT requires few data-plane updates to reroute all the
predicted prefixes. The number of data-plane updates required to

reroute all the predicted prefixes depends on the number of failed

AS links reported by the inference algorithm. When executing the

inference algorithm after 2.5k withdrawals, in 29% of the cases, the

number of links predicted is 1 and the median number (resp. 90th

percentile) is 4 (resp. 29). For each reported link, one data-plane

update is required for each backup next-hop (§5). As a result, in

the median case (resp. 90-th percentile) and with 16 backup next-

hops, 64 (resp. 464) data-plane updates are required. Considering

a median update time per-prefix between 128 and 282 µs [24, 64],
SWIFT can update all the forwarding entries within 130 ms.

7 CASE STUDY
In this section, we showcase the benefits of SWIFT by boosting the

convergence time of a recent Cisco router. As mentioned in §3.2,

SWIFT can be implemented directly on existing routers via a simple

software update, since the only hardware requirement, a two-stage

forwarding table, is readily available in recent platforms [3] (we

confirmed this implementation through discussion with a major

router vendor). Yet, to evaluate SWIFT without waiting for vendors

to implement it, we developed an alternative deployment scheme.

How to SWIFT any existing router. In our alternative deploy-

ment scheme, we interpose a SWIFT controller and an SDN switch

between the SWIFTED router and its peers, respectively at the

control- and data-plane level (as in Fig. 9(b)). The setup is akin to

the SDX platform [30, 31]. It enables to deploy SWIFT on any router

that supports BGP and ARP, that is, virtually any router.

Upon reception of the BGP updates coming from the peers of

the SWIFTED router, the controller assigns 48-bit tags according to

SWIFT: Predictive Fast Reroute SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

0 20 40 60 80 100 120 140
Time (s)

0

20

40

60

80

100

P
ac

ke
t l

os
s

(%
)

Fa
ilu

re

BGP
SWIFT

(a) A SWIFTED Cisco router converge

98% faster.

SWIFT controller

SDN
switch

BGP
controller

…

eBGP
sessions

REST API

peern

peer1

peer2

SDN & ARP
controller

SWIFT
engine

SWIFTED
IP router

SDN APIARP

(b) Alternative SWIFT implementation on

existing router.

Figure 9: While a recent router takes 110 seconds to con-
verge upon a large remote outage (left), the corresponding
SWIFTED router (using the alternative deployment scheme
depicted on the right) converges within 2 seconds.

the SWIFT encoding scheme (see §5). The controller programs the

SWIFTED router to embed the data-plane tags in the destination

MAC field in the header of incoming packets, using the same tech-

nique as in a SDX [31] (i.e.,with BGP and ARP). It also programs the

SDN switch to route the traffic based on the tags, and rewrite the

destination MAC address with the one of the actual next-hop. The

two-stage forwarding table used by SWIFT then spans two devices:

the SWIFTED router (first stage) and the SDN switch (second stage).

Upon the detection of a burst coming from a peer, the SWIFT
controller runs the inference algorithm (§4), and provisions data-

plane rules to the SDN switch for rerouting the traffic. Our SWIFT
controller uses ExaBGP [7] to maintain BGP sessions.

Methodology. We reproduced the topology in Fig. 1(a) with a re-

cent router (Cisco Nexus 7k C7018, running NX-OS v6.2) acting

as AS 1, which we connected to its peers via a laptop running a

(software-based) OpenFlow switch (OpenVSwitch 2.1.3). We con-

figured AS 6 to announce 290k prefixes. Then, we failed the link

(5, 6), and we measured the downtime using the same technique as

in §2 (sending traffic to 100 randomly selected IP addresses).

A 98% speed-up. Fig. 9(a) reports the downtime observed by the

SWIFTED and non-SWIFTED Cisco router. While the vanilla Cisco

router takes 109 s to converge, the SWIFTED Cisco router system-

atically converges within 2 s—a 98% speed-up.

8 RELATEDWORK

RootCauseAnalysis (RCA). Many prior works aim at identifying

the root cause of failures, be it in the Internet [14, 15, 19, 23, 36, 39,

40, 68–70], or within a network [20, 41, 59, 67]. SWIFT inference

algorithm differs from previous works both in objectives and scope.

To enable fast rerouting, SWIFT inference should be extremely

quick (in seconds or sub-seconds), while previous works typically

focus on a much longer timescale (minutes). Moreover, SWIFT deals
with a specific type of failures, those generating large bursts of BGP

withdrawals, and only rely on the BGP messages reaching a single

vantage point (the SWIFTED router). In contrast, previous RCA

efforts typically use active measurements and multiple vantage

points. They also focus on pinpointing different problems such as

per-prefix path changes [36] or failures on the reverse path [39].

Another important difference is that SWIFT actually uses its
fast RCA core to repair Internet connectivity problems (almost in

real time). Doing so goes beyond previous contributions, like [34],

which only show how to detect (not repair) path problems out of

passive packet-level traces collected from a single vantage point.

BGP convergence. Slow BGP convergence is a well-known prob-

lem [17, 22, 29, 44, 45, 48]. Most prior work aimed at reducing BGP

convergence timewithin a single domain, for instance, upon planned
maintenance or internal link failures. For example, LOUP [32] im-

proved internal BGP convergence by ordering external route up-

dates to avoid transient loops. SWIFT complements and generalizes

these approaches by speeding-up local rerouting upon remote fail-
ures. SWIFT goals are similar to R-BGP [44] which enables faster

failover in inter-domain routing by pre-computing and propagating

few disjoint failover paths. Unlike SWIFT though, R-BGP is not

compatible with existing routers: it may also require many paths

to be propagated Internet-wide and stored in routers.

BGP burstiness. Several works [15, 23, 46, 49] focused on bursts of
BGP messages with the goal of studying per-prefix instabilities and

dynamics. They define an update burst as a sequence of messages

pertaining to a single prefix and observed within a given timeout.

Our goal with SWIFT is different, as we focus on events generating

concurrent withdrawals related to distinct prefixes.

Fast data-plane updates. Several techniques can speed up for-

warding rule modification upon local failures. For example, MPLS

fast reroute [52], IP fast reroute [11, 61] and PIC [25] can react in

sub-second to local link failures by pre-provisioning backup entries

and selectively activate them at runtime. SDN approaches, like Fat-

Tire [57], support the same use case in OpenFlow. None of these

works can fast reroute upon remote failures—as SWIFT does.

9 CONCLUSION
We presented SWIFT, the first fast-reroute framework for remote

outages. SWIFT is based on two key contributions: (i) a fast and
accurate inference algorithm; and (ii) a novel encoding scheme.

We performed a thorough evaluation of SWIFT using a fully

functional implementation and real BGP data. Our results indicate

that SWIFT is efficient in practice: it achieves a prediction accuracy

and an encoding efficiency both above 90%, and can boost the

convergence performance of a Cisco router by up to 98%.

Acknowledgements
We are grateful to the SIGCOMM reviewers and our shepherd,

Kun Tan, for their insightful comments and suggestions. We thank

Derk Valenkamp and Paul Stark from the ICT-Networks team at

ETH Zürich for providing us with access (and support) to their

networking gear. Thanks also to Alexander Gall, Chris Welti and

Simon Leinen for giving us access to BGP data and logs. Finally,

we thank Jennifer Rexford and Olivier Bonaventure for their useful

comments on an earlier version of the paper. This workwas partially

supported by the US Department of Homeland Security Science and

Technology Directorate, Cyber Security Division (DHS S&T/CSD),

via contract HHSP 233201600012C.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA T. Holterbach et al.

REFERENCES
[1] TCP Behavior of BGP. (2012). https://archive.psg.com/121009.nag-bgp-tcp.pdf.

[2] 5-minute outage costs Google $545,000 in revenue. (2013). http://venturebeat.

com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/.

[3] Cisco Systems. BGP PIC Edge and Core. (2015). http://www.cisco.com/c/en/us/

td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/BGP.html.

[4] Amazon.com went down for about 20 minutes, and the world freaked out. (2016).

http://mashable.com/2016/03/10/amazon-is-down-2/.

[5] CIDR report. (2016). http://www.cidr-report.org/as2.0/.

[6] Cisco Umbrella 1 Million. (2016). https://blog.opendns.com/2016/12/14/

cisco-umbrella-1-million/.

[7] ExaBGP. (2016). https://github.com/Exa-Networks/exabgp.

[8] Google cloud outage highlights more than just networking failure. (2016). http:

//bit.ly/1MFO2Ye.

[9] RIPE RIS Raw Data. (2016). https://www.ripe.net/data-tools/stats/ris/.

[10] Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. 2015. Hyperbolic graph

generator. Computer Physics Communications (2015).
[11] A. Atlas and A. Zinin. Basic Specification for IP Fast Reroute: Loop-Free Alter-

nates. RFC 5286. (Sept. 2008).

[12] Ritwik Banerjee, Abbas Razaghpanah, Luis Chiang, Akassh Mishra, Vyas Sekar,

Yejin Choi, and Phillipa Gill. 2015. Internet Outages, the Eyewitness Accounts:

Analysis of the Outages Mailing List.

[13] Zied Ben Houidi, Mickael Meulle, and Renata Teixeira. Understanding slow BGP

routing table transfers. In ACM IMC, 2009.
[14] Anat Bremler-Barr, Edith Cohen, Haim Kaplan, and Yishay Mansour. 2002. Pre-

dicting and Bypassing End-to-end Internet Service Degradations. In ACM SIG-
COMM Workshop on Internet Measurment (IMW ’02). ACM, New York, NY, USA.

[15] Matthew Caesar, Lakshminarayanan Subramanian, and Randy H Katz. 2003.

Towards localizing root causes of BGP dynamics. University of California Berkeley.
[16] CAIDA. The CAIDA AS Relationships Dataset. (2016). http://www.caida.org/

data/active/as-relationships/

[17] Jaideep Chandrashekar, Zhenhai Duan, Zhi-Li Zhang, and Jeff Krasky. Limiting

path exploration in BGP. In IEEE INFOCOM, 2005.
[18] Di-Fa Chang, Ramesh Govindan, and John Heidemann. The Temporal and

Topological Characteristics of BGP Path Changes. In ICNP 2003.
[19] Ítalo Cunha, Renata Teixeira, Darryl Veitch, and Christophe Diot. 2014. DTRACK:

a system to predict and track internet path changes. IEEE/ACM TON (2014).

[20] G. Das, D. Papadimitriou, B. Puype, D. Colle, M. Pickavet, and P. Demeester. SRLG

identification from time series analysis of link state data. In COMSNETS, 2011.
[21] Benoit Donnet and Olivier Bonaventure. 2001. On BGP communities. ACM

SIGCOMM CCR (2001).

[22] Nick Feamster, David G. Andersen, Hari Balakrishnan, and M. Frans Kaashoek.

Measuring the Effects of Internet Path Faults on Reactive Routing. In ACM
SIGMETRICS, 2003.

[23] Anja Feldmann, Olaf Maennel, Z Morley Mao, Arthur Berger, and Bruce Maggs.

2004. Locating Internet routing instabilities. ACM SIGCOMM CCR (2004).

[24] Clarence Filsfils. BGP Convergence in much less than a second. (2007). Presen-

tation NANOG 23.

[25] Clarence Filsfils, Pradosh Mohapatra, John Bettink, Pranav Dharwadkar, Peter De

Vriendt, Yuri Tsier, Virginie Van Den Schrieck, Olivier Bonaventure, and Pierre

Francois. 2011. BGP Prefix Independent Convergence. Technical Report. Cisco.
[26] Pierre Francois, Pierre-Alain Coste, Bruno Decraene, and Olivier Bonaventure.

2007. Avoiding disruptions during maintenance operations on BGP sessions.

IEEE Transactions on Network and Service Management (2007).
[27] Lixin Gao. 2001. On inferring autonomous system relationships in the Internet.

IEEE/ACM TON (2001).

[28] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding Network

Failures in Data Centers: Measurement, Analysis, and Implications. In ACM
SIGCOMM 2011.

[29] Timothy G Griffin and Brian J Premore. An experimental analysis of BGP

convergence time. In IEEE ICNP, 2011.
[30] Arpit Gupta, Robert MacDavid, Rüdiger Birkner, Marco Canini, Nick Feamster,

Jennifer Rexford, and Laurent Vanbever. 2016. An industrial-scale software

defined internet exchange point. In USENIX NSDI 2016.
[31] Arpit Gupta, Laurent Vanbever, Muhammad Shahbaz, Sean Donovan, Brandon

Schlinker, Nick Feamster, Jennifer Rexford, Scott Shenker, Russ Clark, and Ethan

Katz-Bassett. SDX: A Software Defined Internet eXchange. In SIGCOMM 2014.
[32] Nikola Gvozdiev, Brad Karp, Mark Handley, and others. LOUP: The Principles

and Practice of Intra-Domain Route Dissemination. In USENIX NSDI 2013.
[33] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.

2017. SWIFT: Predictive Fast Reroute. Tech. Report (2017). https://swift.ethz.ch
[34] Polly Huang, Anja Feldmann, and Walter Willinger. A non-instrusive, wavelet-

based approach to detecting network performance problems. In ACM SIGCOMM
Workshop on Internet Measurement, 2001.

[35] Gianluca Iannaccone, Chen-nee Chuah, Richard Mortier, Supratik Bhattacharyya,

and Christophe Diot. Analysis of link failures in an IP backbone. In ACM SIG-
COMM Workshop on Internet measurement, 2002.

[36] Umar Javed, Italo Cunha, David Choffnes, Ethan Katz-Bassett, Thomas Anderson,

and Arvind Krishnamurthy. PoiRoot: Investigating the Root Cause of Interdomain

Path Changes. In ACM SIGCOMM, 2013.
[37] John P John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas Anderson, and

Arun Venkataramani. Consensus routing: The Internet as a distributed system.

In USENIX, 2008.
[38] D. Katz and D. Ward. Bidirectional Forwarding Detection. RFC 5880. (2010).

[39] Ethan Katz-Bassett, Colin Scott, David R Choffnes, Ítalo Cunha, Vytautas Valan-

cius, Nick Feamster, Harsha V Madhyastha, Thomas Anderson, and Arvind

Krishnamurthy. 2012. LIFEGUARD: practical repair of persistent route failures.

ACM SIGCOMM CCR (2012).

[40] Ravish Khosla, Sonia Fahmy, Y. Charlie Hu, and Jennifer Neville. 2011. Prediction

Models for Long-term Internet Prefix Availability. Computer Networks (2011).
[41] Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, and Alex C Snoeren. IP

fault localization via risk modeling. In NSDI, 2005.
[42] Dmitri V. Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat,

and Marián Boguñá. 2010. Hyperbolic Geometry of Complex Networks. CoRR
abs/1006.5169 (2010). http://arxiv.org/abs/1006.5169

[43] Nate Kushman, Srikanth Kandula, and Dina Katabi. 2007. Can You Hear Me

Now?!: It Must Be BGP. ACM SIGCOMM CCR (2007).

[44] Nate Kushman, Srikanth Kandula, Dina Katabi, and Bruce M Maggs. R-BGP:

Staying connected in a connected world. In USENIX NSDI, 2007.
[45] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. 2000. Delayed

Internet routing convergence. ACM SIGCOMM CCR (2000).

[46] Olaf Maennel and Anja Feldmann. Realistic BGP Traffic for Test Labs. In ACM
SIGCOMM, 2002.

[47] Philipp Mao, Rudiger Birkner, Thomas Holterbach, and Laurent Vanbever. Boost-

ing the BGP convergence in SDXes with SWIFT. In ACM SIGCOMM, 2017 (Demo).
[48] Z Morley Mao, Randy Bush, Timothy G Griffin, and Matthew Roughan. BGP

beacons. In ACM IMC, 2003.
[49] Z Morley Mao, Ramesh Govindan, George Varghese, and Randy H Katz. Route

flap damping exacerbates Internet routing convergence. In SIGCOMM, 2002.
[50] W.B. Norton. 2011. The Internet Peering Playbook: Connecting to the Core of the

Internet. DrPeering Press.
[51] University of Oregon. Route Views Project. (2016). www.routeviews.org/.

[52] P. Pan, G. Swallow, and A. Atlas. Fast Reroute Extensions to RSVP-TE for LSP

Tunnels. RFC 4090. (May 2005).

[53] Vern Paxson. 2006. End-to-end Routing Behavior in the Internet. ACM SIGCOMM
CCR (2006).

[54] Cristel Pelsser, Olaf Maennel, Pradosh Mohapatra, Randy Bush, and Keyur Patel.

Route flap damping made usable. In PAM, 2011.
[55] Ponemon Institute. Cost of Data Center Outages. (2016). http://datacenterfrontier.

com/white-paper/cost-data-center-outages/.

[56] B. Quoitin and S. Uhlig. 2005. Modeling the Routing of an Autonomous System

with C-BGP. IEEE Network Magazine of Global Internetworking (2005).

[57] Mark Reitblatt, Marco Canini, Arjun Guha, and Nate Foster. FatTire: Declarative

Fault Tolerance for Software-defined Networks. In HotSDN, 2013.
[58] Y. Rekhter, T. Li, and S. Hares. 2006. A Border Gateway Protocol 4. RFC 4271.

[59] Matthew Roughan, Tim Griffin, Morley Mao, Albert Greenberg, and Brian Free-

man. Combining Routing and Traffic Data for Detection of IP Forwarding

Anomalies. In SIGMETRICS, 2004.
[60] M. Roughan, W. Willinger, O. Maennel, D. Perouli, and R. Bush. 2011. 10 Lessons

from 10 Years of Measuring and Modeling the Internet’s Autonomous Systems.

IEEE Journal on Selected Areas in Communications (2011).
[61] M. Shand and S. Bryant. IP Fast Reroute Framework. RFC 5714. (Jan. 2010).

[62] Ashwin Sridharan, Sue B. Moon, and Christophe Diot. On the Correlation

Between Route Dynamics and Routing Loops. In ACM IMC, 2003.
[63] Daniel Turner, Kirill Levchenko, Alex C. Snoeren, and Stefan Savage. California

Fault Lines: Understanding the Causes and Impact of Network Failures. In ACM
SIGCOMM, 2010.

[64] Stefano Vissicchio, Olivier Tilmans, Laurent Vanbever, and Jennifer Rexford.

Central control over distributed routing. In ACM SIGCOMM, 2015.
[65] Stefano Vissicchio, Laurent Vanbever, Cristel Pelsser, Luca Cittadini, Pierre Fran-

cois, and Olivier Bonaventure. 2013. Improving Network Agility with Seamless

BGP Reconfigurations. IEEE/ACM TON (2013).

[66] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A

Measurement Study on the Impact of Routing Events on End-to-end Internet

Path Performance. In ACM SIGCOMM, 2006.
[67] Junling Wang and Srihari Nelakuditi. IP fast reroute with failure inferencing. In

ACM SIGCOMM workshop on Internet network management, 2007.
[68] JianWu, Zhuoqing Morley Mao, Jennifer Rexford, and Jia Wang. Finding a needle

in a haystack: Pinpointing significant BGP routing changes in an IP network. In

USENIX NSDI, 2005.
[69] Ying Zhang, Z Morley Mao, and Jia Wang. A framework for measuring and

predicting the impact of routing changes. In IEEE INFOCOM, 2007.
[70] Ying Zhang, Z. Morley Mao, and Ming Zhang. Effective Diagnosis of Routing

Disruptions from End Systems. In USENIX NSDI, 2008.

https://archive.psg.com/121009.nag-bgp-tcp.pdf
http://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
http://venturebeat.com/2013/08/16/3-minute-outage-costs-google-545000-in-revenue/
http://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/BGP.html
http://www.cisco.com/c/en/us/td/docs/routers/7600/ios/15S/configuration/guide/7600_15_0s_book/BGP.html
http://mashable.com/2016/03/10/amazon-is-down-2/
http://www.cidr-report.org/as2.0/
https://blog.opendns.com/2016/12/14/cisco-umbrella-1-million/
https://blog.opendns.com/2016/12/14/cisco-umbrella-1-million/
https://github.com/Exa-Networks/exabgp
http://bit.ly/1MFO2Ye
http://bit.ly/1MFO2Ye
https://www.ripe.net/data-tools/stats/ris/
http://www.caida.org/data/active/as-relationships/
http://www.caida.org/data/active/as-relationships/
https://swift.ethz.ch
http://arxiv.org/abs/1006.5169
www.routeviews.org/
http://datacenterfrontier.com/white-paper/cost-data-center-outages/
http://datacenterfrontier.com/white-paper/cost-data-center-outages/

	Abstract
	1 Introduction
	2 The case for SWIFT
	2.1 Slow BGP convergence can cause significant data-plane losses
	2.2 Slow BGP convergence in the Internet

	3 Overview
	3.1 Inferring outages from few BGP messages
	3.2 Fast data-plane updates independently of the number of affected destinations
	3.3 Guarantees and limitations

	4 SWIFT Inference Algorithm
	4.1 Fast and sound inference
	4.2 Robustness to real-world factors

	5 SWIFT Encoding Algorithm
	6 Evaluation
	6.1 Datasets
	6.2 Failure localization accuracy
	6.3 Withdrawals prediction accuracy
	6.4 Encoding effectiveness
	6.5 Rerouting speed

	7 Case Study
	8 Related Work
	9 Conclusion
	References

