112 research outputs found

    Saliency-weighted graphs for efficient visual content description and their applications in real-time image retrieval systems

    Get PDF
    YesThe exponential growth in the volume of digital image databases is making it increasingly difficult to retrieve relevant information from them. Efficient retrieval systems require distinctive features extracted from visually rich contents, represented semantically in a human perception-oriented manner. This paper presents an efficient framework to model image contents as an undirected attributed relational graph, exploiting color, texture, layout, and saliency information. The proposed method encodes salient features into this rich representative model without requiring any segmentation or clustering procedures, reducing the computational complexity. In addition, an efficient graph-matching procedure implemented on specialized hardware makes it more suitable for real-time retrieval applications. The proposed framework has been tested on three publicly available datasets, and the results prove its superiority in terms of both effectiveness and efficiency in comparison with other state-of-the-art schemes.Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2012904)

    CONTENT BASED IMAGE RETRIEVAL (CBIR) SYSTEM

    Get PDF
    Advancement in hardware and telecommunication technology has boosted up creation and distribution of digital visual content. However this rapid growth of visual content creations has not been matched by the simultaneous emergence of technologies to support efficient image analysis and retrieval. Although there are attempt to solve this problem by using meta-data text annotation but this approach are not practical when it come to the large number of data collection. This system used 7 different feature vectors that are focusing on 3 main low level feature groups (color, shape and texture). This system will use the image that the user feed and search the similar images in the database that had similar feature by considering the threshold value. One of the most important aspects in CBIR is to determine the correct threshold value. Setting the correct threshold value is important in CBIR because setting it too low will result in less image being retrieve that might exclude relevant data. Setting to high threshold value might result in irrelevant data to be retrieved and increase the search time for image retrieval. Result show that this project able to increase the image accuracy to average 70% by combining 7 different feature vector at correct threshold value. ii

    Eye Tracking: A Perceptual Interface for Content Based Image Retrieval

    Get PDF
    In this thesis visual search experiments are devised to explore the feasibility of an eye gaze driven search mechanism. The thesis first explores gaze behaviour on images possessing different levels of saliency. Eye behaviour was predominantly attracted by salient locations, but appears to also require frequent reference to non-salient background regions which indicated that information from scan paths might prove useful for image search. The thesis then specifically investigates the benefits of eye tracking as an image retrieval interface in terms of speed relative to selection by mouse, and in terms of the efficiency of eye tracking mechanisms in the task of retrieving target images. Results are analysed using ANOVA and significant findings are discussed. Results show that eye selection was faster than a computer mouse and experience gained during visual tasks carried out using a mouse would benefit users if they were subsequently transferred to an eye tracking system. Results on the image retrieval experiments show that users are able to navigate to a target image within a database confirming the feasibility of an eye gaze driven search mechanism. Additional histogram analysis of the fixations, saccades and pupil diameters in the human eye movement data revealed a new method of extracting intentions from gaze behaviour for image search, of which the user was not aware and promises even quicker search performances. The research has two implications for Content Based Image Retrieval: (i) improvements in query formulation for visual search and (ii) new methods for visual search using attentional weighting. Futhermore it was demonstrated that users are able to find target images at sufficient speeds indicating that pre-attentive activity is playing a role in visual search. A current review of eye tracking technology, current applications, visual perception research, and models of visual attention is discussed. A review of the potential of the technology for commercial exploitation is also presented

    Next Generation of Product Search and Discovery

    Get PDF
    Online shopping has become an important part of people’s daily life with the rapid development of e-commerce. In some domains such as books, electronics, and CD/DVDs, online shopping has surpassed or even replaced the traditional shopping method. Compared with traditional retailing, e-commerce is information intensive. One of the key factors to succeed in e-business is how to facilitate the consumers’ approaches to discover a product. Conventionally a product search engine based on a keyword search or category browser is provided to help users find the product information they need. The general goal of a product search system is to enable users to quickly locate information of interest and to minimize users’ efforts in search and navigation. In this process human factors play a significant role. Finding product information could be a tricky task and may require an intelligent use of search engines, and a non-trivial navigation of multilayer categories. Searching for useful product information can be frustrating for many users, especially those inexperienced users. This dissertation focuses on developing a new visual product search system that effectively extracts the properties of unstructured products, and presents the possible items of attraction to users so that the users can quickly locate the ones they would be most likely interested in. We designed and developed a feature extraction algorithm that retains product color and local pattern features, and the experimental evaluation on the benchmark dataset demonstrated that it is robust against common geometric and photometric visual distortions. Besides, instead of ignoring product text information, we investigated and developed a ranking model learned via a unified probabilistic hypergraph that is capable of capturing correlations among product visual content and textual content. Moreover, we proposed and designed a fuzzy hierarchical co-clustering algorithm for the collaborative filtering product recommendation. Via this method, users can be automatically grouped into different interest communities based on their behaviors. Then, a customized recommendation can be performed according to these implicitly detected relations. In summary, the developed search system performs much better in a visual unstructured product search when compared with state-of-art approaches. With the comprehensive ranking scheme and the collaborative filtering recommendation module, the user’s overhead in locating the information of value is reduced, and the user’s experience of seeking for useful product information is optimized

    Content-based Image Retrieval of Gigapixel Histopathology Scans: A Comparative Study of Convolution Neural Network, Local Binary Pattern, and Bag of visual Words

    Get PDF
    The state-of-the-art image analysis algorithms offer a unique opportunity to extract semantically meaningful features from medical images. The advantage of this approach is automation in terms of content-based image retrieval (CBIR) of medical images. Such an automation leads to more reliable diagnostic decisions by clinicians as the direct beneficiary of these algorithms. Digital pathology (DP), or whole slide imaging (WSI), is a new avenue for image-based diagnosis in histopathology. WSI technology enables the digitization of traditional glass slides to ultra high-resolution digital images (or digital slides). Digital slides are more commonly used for CBIR research than other modalities of medical images due to their enormous size, increasing adoption among hospitals, and their various benefits offered to pathologists (e.g., digital telepathology). Pathology laboratories are under constant pressure to meet increasingly complex demands from hospitals. Many diseases (such as cancer) continue to grow which creates a pressing need to utilize existing innovative machine learning schemes to harness the knowledge contained in digital slides for more effective and efficient histopathology. This thesis provides a qualitative assessment of three popular image analysis techniques, namely Local Binary Pattern (LBP), Bag of visual Words (BoW), and Convolution Neural Networks (CNN) in their abilities to extract the discriminative features from gigapixel histopathology images. LBP and BoW are well-established techniques used in different image analysis problems. Over the last 5-10 years, CNN has become a frequent research topic in computer vision. CNN offers a domain-agnostic approach for the automatic extraction of discriminative image features, used for either classification or retrieval purposes. Therefore, it is imperative that this thesis gives more emphasis to CNN as a viable approach for the analysis of DP images. A new dataset, Kimia Path24 is specially designed and developed to facilitate the research in classification and CBIR of DP images. Kimia Path24 is used to measure the quality of image features extracted from LBP, BoW, and CNN; resulting in the best accuracy values of 41.33%, 54.67%, and 56.98% respectively. The results are somewhat surprising, suggesting that the handcrafted feature extraction algorithm, i.e., LBP can reach very close to the deep features extracted from CNN. It is unanticipated, considering that CNN requires much more computational resources and efforts for designing and fine-tuning. One of the conclusions is that CNN needs to be trained for the problem with a large number of training images to realize its comprehensive benefits. However, there are many situations where large, balanced, and the labeled dataset is not available; one such area is histopathology at present

    Vehicle make and model recognition for intelligent transportation monitoring and surveillance.

    Get PDF
    Vehicle Make and Model Recognition (VMMR) has evolved into a significant subject of study due to its importance in numerous Intelligent Transportation Systems (ITS), such as autonomous navigation, traffic analysis, traffic surveillance and security systems. A highly accurate and real-time VMMR system significantly reduces the overhead cost of resources otherwise required. The VMMR problem is a multi-class classification task with a peculiar set of issues and challenges like multiplicity, inter- and intra-make ambiguity among various vehicles makes and models, which need to be solved in an efficient and reliable manner to achieve a highly robust VMMR system. In this dissertation, facing the growing importance of make and model recognition of vehicles, we present a VMMR system that provides very high accuracy rates and is robust to several challenges. We demonstrate that the VMMR problem can be addressed by locating discriminative parts where the most significant appearance variations occur in each category, and learning expressive appearance descriptors. Given these insights, we consider two data driven frameworks: a Multiple-Instance Learning-based (MIL) system using hand-crafted features and an extended application of deep neural networks using MIL. Our approach requires only image level class labels, and the discriminative parts of each target class are selected in a fully unsupervised manner without any use of part annotations or segmentation masks, which may be costly to obtain. This advantage makes our system more intelligent, scalable, and applicable to other fine-grained recognition tasks. We constructed a dataset with 291,752 images representing 9,170 different vehicles to validate and evaluate our approach. Experimental results demonstrate that the localization of parts and distinguishing their discriminative powers for categorization improve the performance of fine-grained categorization. Extensive experiments conducted using our approaches yield superior results for images that were occluded, under low illumination, partial camera views, or even non-frontal views, available in our real-world VMMR dataset. The approaches presented herewith provide a highly accurate VMMR system for rea-ltime applications in realistic environments.\\ We also validate our system with a significant application of VMMR to ITS that involves automated vehicular surveillance. We show that our application can provide law inforcement agencies with efficient tools to search for a specific vehicle type, make, or model, and to track the path of a given vehicle using the position of multiple cameras
    • …
    corecore