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Abstract 

 

In this thesis visual search experiments are devised to explore the feasibility of an eye gaze 

driven search mechanism. The thesis first explores gaze behaviour on images possessing 

different levels of saliency. Eye behaviour was predominantly attracted by salient locations, but 

appears to also require frequent reference to non-salient background regions which indicated 

that information from scan paths might prove useful for image search. The thesis then 

specifically investigates the benefits of eye tracking as an image retrieval interface in terms of 

speed relative to selection by mouse, and in terms of the efficiency of eye tracking mechanisms 

in the task of retrieving target images.  Results are analysed using ANOVA and significant 

findings are discussed. Results show that eye selection was faster than a computer mouse and 

experience gained during visual tasks carried out using a mouse would benefit users if they were 

subsequently transferred to an eye tracking system. Results on the image retrieval experiments 

show that users are able to navigate to a target image within a database confirming the 

feasibility of an eye gaze driven search mechanism. Additional histogram analysis of the 

fixations, saccades and pupil diameters in the human eye movement data revealed a new method 

of extracting intentions from gaze behaviour for image search, of which the user was not aware 

and promises even quicker search performances. The research has two implications for Content 

Based Image Retrieval: (i) improvements in query formulation for visual search and (ii) new 

methods for visual search using attentional weighting. Futhermore it was demonstrated that 

users are able to find target images at sufficient speeds indicating that pre-attentive activity is 

playing a role in visual search. A current review of eye tracking technology, current 

applications, visual perception research, and models of visual attention is discussed.  A review 

of the potential of the technology for commercial exploitation is also presented. 
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Chapter 1. Introduction 

1.1. Motivation 

Images play an increasingly important part in the lives of many people. This has prompted 

significant growth in research into techniques of automatic indexing and retrieval of images 

otherwise known as Content Based Image Retrieval (CBIR).  

The problem of adequate visual query formulation and refinement [74] is an outstanding 

problem in CBIR. Indeed lack of high-quality interfaces for query formulation has been a 

longstanding barrier to effective CBIR [76]. Users find it hard to generate a good query because 

of initial vague information [75]. The mouse and the keyboard dominate the types of interfaces 

found in computers today.  Eye tracking offers a an adaptive approach for visual tasks that has 

the potential to capture the user’s current needs from eye movements. Humans are capable of 

making rapid decisions from limited information. The eye movement data arising during these 

decisions can be examined for indications of visual query formulation. This thesis investigates 

the gaze behaviour associated with formulating and refining queries under varying image search 

conditions and time constraints. 

The representation of high level concepts is another problem in CBIR and low-level features 

(such as colour, shape and orientation) do not reflect the user’s high-level perception of the 

image content. Whereas key words form a convenient feature for characterising documents, 

there is no such obvious attribute present in images.  In addition there is no agreement on what 

might constitute a universal syntax for images that could capture the meaning that we all see in 

images.  Every user can possess a different subjective perception of the world and this can be 

measured to some extent using an eye tracker. The research reported in this thesis is concerned 

with exploring information from eye tracking data obtained during the course of visual search 

that may be used to expedite the search. 

1.2. Objectives 

This thesis proposes that eye tracking data provides information relevant for query formulation 

in image retrieval that is not otherwise obtainable through existing conventional interfaces. 

There are four objectives in this thesis. 

Firstly, the relationship between gaze behaviour and a model of visual attention needs to be 

assessed in order to partly validate the model used in the image retrieval framework and to 

assess the validity of the gaze data in visual search. This is necessary to determine whether users 

look at salient regions as determined by the attention model.  
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Secondly, many computer users use a mouse as an interface device. The additional benefits 

of using eye movement in a target image identification task need to be identified. 

Thirdly, experiments must be designed to explore the image retrieval framework proposed. 

The experiments should follow a balanced design where all treatment combinations have the 

same number of observations.  

Finally, analysing gaze parameters obtained from the time sequence of the eye tracking data 

analysis may provide informative measures for a CBIR system and improve image retrieval. 

Exploring the limits of the speed of operation of the eye gaze interface for image retrieval may 

indicate a role of pre-attentive vision in visual search. 

1.3. Contribution 

The literature review provides a comprehensive account of background research in the field. 

The results in this thesis contribute to existing research on models of attentional guidance. The 

speed efficiency of eye selection was confirmed in the context of image identification. A novel 

eye tracking interface was created for image retrieval which enables the extraction of retrieval 

requirements from eye movement data. Finally it was established for the first time that pre-

attentive attention is influenced by top-down guidance during visual search. 

The research is supported by experiments whose results were tested for significance and 

provide a basis for further research in visual attention, visual perception and human computer 

interaction. 

A review of the applications and commercial potential of the technology is also provided. 

1.4. Structure 

The scope of the work involves investigating issues of human computer interaction, visual 

attention and perception. The thesis is structured in the following way: 

• Chapter 2 provides a detailed review of current applications, state of the art in eye tracking 

technology and relevant research in visual perception and attention modelling. A 

commercial review of eye tracking technology is also presented. The outstanding issues and 

the ensuing thesis statement are discussed and presented in this section.  

• Chapter 3 presents the general framework behind the proposed system. An introduction to 

the technical aspects of the eye-movement equipment employed and its operation. Also 

presented is a detailed description of the choice of attention model. 

• Chapter 4 presents the initial experiment, which explores gaze behaviour on images 

possessing different levels of saliency.  
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• Chapter 5 then specifically investigates the benefits of eye tracking as an image retrieval 

interface in terms of speed relative to selection by mouse, followed by the implementation 

of the proposed system in terms of the efficiency of eye tracking mechanisms in the task of 

retrieving target images. Additional analysis of the fixations, saccades and pupil diameters 

is conducted on the human eye movement data collected from the experiment.  

• Chapter 6 describes experiments designed to investigate gaze behaviour on the system using 

alternative target selection criteria derived from the analysis of gaze behaviour from 

preceding empirical findings. Also presented are experimental findings under faster 

selection conditions. 

• In chapter 7 a discussion and a review of thesis objectives are presented, outlining the future 

directions and implications of the research.  

• The appendix presents the technical specifications of current commercial eye tracking 

equipment and additional experimental details (i.e. questionnaires and instructions). 
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Chapter 2. Review of Literature 

2.1. State of the Art 

Research activity in eye tracking and visual attention has increased in the last few years due 

to improvements in performance and reduction in the cost of eye tracking devices as well as 

better understanding of the human visual system. The eye (Figure 2.1) is a complex sensing 

device composed of a series of optical elements: two lenses (cornea and eye lens), an aperture 

(pupil) and a light sensitive transducer in a form of a thin layer of tissue (retina) that transforms 

electromagnetic energy into neural impulses that are further transmitted to the visual cortex via 

the optical nerve.  

 

Figure 2.1: The Eye (adapted from [11]) 

Figure 2.2 illustrates several key characteristics of the eye that makes its gaze direction 

measurable from a video camera image.  Eye pointing is precise because there is a centralized 
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region in the retina called the fovea where there is increasing image resolution towards its 

centre.  

The retina contains receptors sensitive to light (photoreceptors) containing approximately 127 

million cells i.e. 120 million rods that can detect relative small amounts of lights and 7 million 

cones that can capture the colours of the human visible light spectrum. The receptor cells are not 

homogeneously distributed over the retina. There is a region called the fovea (foveola) of high 

receptor density (mostly cones) and therefore high spatial resolution in the centre of the retina. 

Outside this area with a radius of about one degree of visual angle, the density decreases 

exponentially with growing eccentricity. This means that we possess very detailed vision in the 

centre of our visual field and only coarse perception in the peripheral regions.  The foveola is a 

small central region, typically 0.17mm or 0.6o in radius, where the image of the object of 

people’s fixation lies. This physiological phenomenon means that humans have natural and 

precise control of eye motions. The visual axis is the line from the centre of the foveola through 

the centre of the corneal sphere, also known as the optical node point of the eye. By definition, 

the eye’s gaze point lies on the visual axis. The eye’s optic axis is defined as the axis of 

symmetry for the eye’s optical system. The location of the foveola is generally offset from the 

eye’s optic axis, so the optic axis is distinct from the visual axis. The foveola of the eye is 

usually located to the temporal side of the eye, causing the visual axis of the eye to point to the 

nasal side of the optic axis. The angle between the optical and visual axes of the eye, which is 

about 5o has a standard deviation of about 2o over the human population. The surface of the 

cornea is approximately spherical. The corneal sphere is smaller than the eyeball and its surface 

protrudes out of the eyeball sphere by approximately 1.5mm. The typical radius of curvature for 

the cornea is 7.7 +- 2.0mm. 

 

Figure 2.2: Schematic of the Eye (adapted from [37]) 
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Figure 2.3: Colour Schematic of the Eye (adpated from [19]) 

Research literature [11][18] identifies the types of eye movements used to reposition the 

fovea: pursuit, vergence, vestibular, and physiological nystagmus (miniature movements 

associated with fixations), fixations and saccadic movements. Eye pursuits are involuntary 

movements that follow objects in smooth motion. This is slower than a saccade and acts to keep 

a moving object foveated. Vergence movements are voluntary and used to re-focus the pair of 
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each other when looking at nearby objects and a divergence when looking at distant ones. 

Vestibular nystagmus is a pattern of eye movements compensating for the movement of the 

head. Physiological nystagmus is a high frequency movement that continuously shifts the image 

on the retina. This involuntary movement occurs during fixations.  

Two types of movement need be modeled to gain insight into the overt localization of gaze in 

an image retrieval task.  

• Fixations naturally correspond to the desire to maintain one’s gaze on an object of interest. 

Visual perception takes place mainly during fixations, which are motionless phases 

occurring between saccades on static scenes. Fixations are characterized by miniature high 

frequency oscillations (drifts and microsaccades), which stops the image from fading away 

causing the scene becoming blind. Henderson and Hollingworth’s review [22] indicated the 

variability of fixation durations, which range from less than 50ms to more than 1000ms in a 

skewed distribution with a mode of about 230ms. The length of time that it takes to scan 

(i.e. saccaded to locations) and determine the relevance of a fixated location (i.e. fixated 

locations) varies and tends to be dependent on a number of factors. The influence of visual 

perception is discussed further in the latter part of this chapter. 

• Saccades are the expression of the desire to voluntarily change the focus of attention. 

During saccades, the eyes are moved to a different part of the visual scene and occurs in a 

series of fast, sudden jumps rather than continuously. Planning a saccade usually involves 
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peripheral processing in order to determine the saccades landing point, in particular in 

abstract scenarios when only little contextual information is provided. While the saccades 

initialization can be made voluntary, the actual movement is ballistic, i.e. their trajectory 

cannot be modified after initialization. During the saccade, no visual information other than 

a blur can be perceived. 

These are the primary requirements of eye movement analysis: the identification of fixations 

and saccades. It is clear that data from eye tracking systems will inevitably contain series of 

voluntary and involuntary movements however these movements are fixated on those elements 

of an object which carry or may carry essential and useful information [84]. 

2.1.1. Eye Tracking Technology 

A number of eye gaze detection methods have been developed over the years. Direct visual 

observation of the eye gives a general indication of the character of eye movements. In fact 

Yarbus [84] reports that Javal (1879) used a mirror for this purpose. The experimenter could 

only observe large movements, and could not notice the rotation of the eye through one degree 

and corresponding movement of the eyes through 0.2mm. Later, optical instruments (such as 

lenses, microscope or specially devised instruments) were used to detect small movements.  

In the past, several authors also used methods by which the connection between the eye and 

the recording system was mechanical. The movement of the cornea was transmitted by three 

known methods: a lever and balance arm, elastic balloon filled with air (eye movement altered 

pressure) and attachment of a lever or thread to small cups (made of Plaster of Paris or 

aluminium). Low accuracy and a complicated setup meant that this method was outdated very 

quickly. Techniques mostly used in the twentieth century involve the use of: electro-

oculography (EOG), scleral contact lens/search coil [61], and reflected light (limbus tracking, 

video-based combined pupil and/or corneal reflection and dual purkinje tracking). Electro-

oculography, or EOG, relies on (d.c. signal) recordings of the electric potential differences of 

the skin surrounding the ocular cavity. The changes may be detected by a pair of electrodes 

fixed to corresponding points of the skin and then amplified and recorded. The main advantage 

of this method is the non-requirement of a clear view of the eye resulting in a large dynamic 

range. Techniques based on corneal bright spot, and still and motion-picture photography were 

also used in the early part of the 20th century with relatively poor accuracy as reported by 

Yarbus [84].  Methods employed before the 1970s used invasive methods that required 

tampering directly with the eyes.  Such techniques based on contact lenses offer high accuracy 

and large dynamic range but require an insertion into the eye!  Mirror surfaces on the lens [84] 

causing reflection of light beams or employment of a search coil embedded in a scleral contact 

lens coil, which is then measured moving through an electromagnetic field [61], can be used to 

calculate eye positions.  
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The availability of image processing hardware and possible applications of gaze tracking 

system for human computer interaction prompted a revisit to the reflected light techniques due 

to its non-invasive feature. These recent tracking techniques use mainly infra-red light to 

illuminate the eye, causing a reflection and/or sharper images of the eye. The sclera is the tough, 

opaque tissue that serves as the eye's protective outer coat. The iris is the coloured part of the 

eye. It controls light levels inside the eye similar to the aperture on a camera. The exterior of the 

iris, i.e. the border between the iris and the sclera is called the limbus. Limbus tracking requires 

optical detection of the boundary between the normally white sclera and darker iris (Figure 2.3). 

Occasional coverage of the top and bottom part of the limbus by the eyelids is a limitation. A 

similar pupil tracking method can also be applied on the smaller and sharper boundary between 

the pupil and the iris. The shining of infrared light can also lead to several reflections on the 

boundaries of lens and cornea (called purkinje reflections). Four purkinje reflections are created: 

two from the cornea and two from the lens. The first reflection (also called the glint) is 

measured relative to the location of the pupil centre. This forms the basis of most current 

commercial eye tracking systems. The DPI (Dual Purkinje Image) eye tracker [8] tracks this 

first reflection along with the fourth to calculate gaze directions. It requires the head to be 

restricted and is relatively expensive. The weakness of the fourth reflection requires that 

surrounding lightning must be heavily controlled. The video based combined pupil and corneal 

reflection method uses these two ocular features to disambiguate head movement from eye 

rotation, and as a result does not need to have a fixed head unlike the DPI eye tracker.  

Recent advances in imaging sensors, video cameras and image processing systems have 

made the recent eye tracking systems one of the most promising fields for improving human 

computer interaction. However, one of the most pressing issues is simplifying the personal 

calibration procedures. Calibration is normally needed because of individual differences of 

eyeball size and difficulty in measuring the position of the fovea. The FreeGaze System [72] 

also referred to as attention extractor reduces the burden of personal calibration. The eye tracker 

attempts to limit errors arising from calibration and gaze detection by using only two points for 

individual personal calibration. The position of the observed pupil image is used directly to 

compute the gaze direction but this may not be in the right place due to refraction in the surface 

of the cornea. The eyeball model corrects the pupil position for obtaining a more accurate gaze 

direction. An experiment performed to test the equipment had interesting results: 

• Gazing at points on the screen many times often causes burden and fatigue. 

• Increase in the number of calibration points does not affect the accuracy of gaze 

detection. 

• Users move their eyes between the gazing and confirmation periods in the calibration 

session, which causes degradation. 

• Freegaze could not detect the Purkinje image of subjects who wore soft contact lenses. 
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These typical problems highlight some of the challenges for future research. Table 2.1 lists 

some of the recent commercial eye trackers available on the market 

[24][25][26][27][28][29][37] and highlights their characteristics. These improvements in eye 

trackers has led to reductions in price and more importantly a significant increase in sampling 

rates from 50Hz to 1250Hz. The Dual-purkinje trackers have always had an advantage over 

video-based PCR eye trackers due to their high sampling rate (up to 4000Hz) and accuracy. 

However, price and usability issues have made them unlikely candidates for applications in 

human computer interaction. The advances in imaging sensors and software have led to a 

significant increase in research into video-based eye tracking methods. 

Several models of eye trackers deal with specific eye tracking issues in different ways, with 

the same goal of maximising accuracy and processing speed. It is stated that an ideal eye tracker 

must have the following characteristics [66]:  

a. Offer an unobstructed field of view with good access to the face and head. 

b. Make no contact with the subject. 

c. Meet the practical challenge of being capable of artificially stabilising the retinal image 

if necessary. 

d. Possess an accuracy of at least one percent or a few minutes of arc; e.g. not give a 10o 

reading when truly 9o. Accuracy is limited by the cumulative effects of nonlinearity, 

distortion, noise, lag and other sources of error. 

e. Offer a resolution of 1 minute of arc per second; and thus be capable of detecting the 

smallest changes in eye position; resolution is limited only by instrumental noise. 

f. Offer a wide dynamic range of one minute to 45o (= 3000-fold) for eye position and one 

minute arc per second to 800o per second (= 50,000-fold) for eye velocity. 

g. Offer good temporal dynamics and speed of response (e.g. good gain and small phase 

shift to 100Hz, or a good step response).  

h. Possess a real-time response (to allow physiological manoeuvres).  

i. Measure all three degrees of angular rotation and be insensitive to ocular translation. 

j. Be easily extended to binocular recording. 

k. Be compatible with head and body recordings. 

l. Be easy to use on a variety of subjects. 

Though desirable, not all these requirements are prerequisites for acceptable eye tracking 

interfaces. Several methods of improving the accuracy of estimating gaze direction have been 

proposed. The Eye-R system [67] is designed to be battery operated and is mounted on any pair 

of glasses. It measures eye motion using infrared technology by monitoring light fluctuations 

from infrared light and utilizes this as an implicit input channel to a sensor system and 

computer. As a person walks around, information is exchanged between the Eye-R module and 

the exhibit with infrared sensor that the user fixates on. This information is transferred to a 
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server using a computer network. All targets/exhibits are fitted with an infra-red sensor in this 

networked environment. Some commercial manufacturers of eye trackers [25][28] now have a 

head-mounted system that has an attached miniature camera that records the scene being viewed 

by the user. Mulligan [42] uses a low cost approach to track eye movement using compressed 

video images of the fundus on the back surface of the eyeball. It is capable of high performance 

when off-line data analysis is acceptable. More accurate results may be obtained when the 

imagery is analyzed off-line using more complex algorithms implemented in software. A 

technical challenge for these types of trackers is the real time digitization and storage of the 

video stream from the cameras. New video compression technology allows streams of video 

images to be acquired and stored on normal computer system disks; however lossy compression 

can lead to loss of important information. Bhaskar et al [3] propose a method that uses eye blink 

detection to locate an eye which is then tracked using an eye tracker.  Blinking is necessary for 

the tracker to work well and the user has to be aware of this.  

Researchers are now examining the applicability of eye tracking technology in context and 

this has increased the potential of the systems in delivering on accuracy and usability. 

Illumination conditions and physiological differences of the eye have been the main limitations 

with which current hardware has struggled to cope. More recent hardware advances have 

encouraged further research into computer vision and image processing techniques for 

collecting and analysing images of the eye. The resulting data also requires good analysis, 

usable in individual domains.  

Identification and analysis of fixations and saccades in eye tracking data are important in 

understanding visual behaviour. Salvucci [63] classifies algorithms with respect to five spatial 

and temporal characteristics. The spatial criteria divide algorithms in terms of their use of 

velocity, dispersion of fixation points, and areas of interest information. The temporal criteria 

divide algorithms in terms of their use of duration information and their local adaptivity. It was 

concluded that velocity-based and dispersion-based algorithms fared well and provided similar 

performance. 

 

Fixation Identification Algorithms 
Criteria Velocity-

Threshold 
Hidden Markov 

Model 
Dispersion 
Threshold 

Minimum 
Spanning Tree 

Area of 
Interest 

Velocity based X X    

Dispersion-based   X X  

Area-based     X 

Duration sensitive   X  X 

Locally adaptive  X X X  

 

The five fixation identification algorithms are also described and compared in terms of their 

accuracy, speed, robustness, ease of implementation, and parameters. The Hidden Markov 

model uses probabilistic analysis to determine the fixation or saccade state. The Dispersion 
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Threshold iterates through the eye protocol and groups consecutive points that lie within a given 

dispersion. It was observed that Hidden Markov Models and the Dispersion Threshold 

algorithms fared better in terms of their accuracy and robustness. The Minimum Spanning Tree 

uses a minimized connected set of points and provides robust identification of fixation points, 

but runs slower due to the two step approach of construction and search of the minimum 

spanning trees. The Velocity Threshold, which is based on point to point velocity, has the 

simplest algorithm and is thus fast but not robust. Areas of Interest, which identify fixations 

within given rectangular target areas, are found to perform poorly on all fronts. These findings 

are implemented in the Eyetracer system [62], an interactive environment for manipulating, 

viewing, and analyzing eye-movement protocols. Eyetracer facilitates both ‘exploratory 

analysis’ for initial understanding of behaviours and model prototyping and ‘confirmatory 

analysis’ for model comparison and refinement. Eyetracer addresses two main problems: 

fixation/saccade identification and tracing of fixations to its corresponding visual target. It 

identifies fixation using four algorithms based on velocity threshold, hidden markov model, 

dispersion threshold and regions of interest. The output of fixation id is a sequence of <x,y,t,d> 

fixations where x and y is location, t is onset time and d is duration. Three tracing algorithms 

(fixation, target and point) trade off tracing speed and accuracy. The tracing process is said to be 

robust to alleviate problems of equipment noise and individual variability which causes off-

centre or extraneous fixations. The tracing algorithms have three inputs: an eye movement 

protocol (eye tracking data), set of target areas defines rectangular regions where fixations for 

the various possible targets may occur and a cognitive process model expressed as regular 

grammar. Applications include coding of experiment protocol and building of intelligent gaze 

based interface.  

NASA’s Lee Stone [38] focuses on the development and testing of human eye-movement 

control with particular emphasis on search saccades and the response to motion (smooth 

pursuit).  The specific goal is to incorporate recently acquired empirical knowledge of how eye 

movements contribute to information gathering and of the relationship between the eye 

movement behaviour and the associated percept, into computational tools for the design of more 

effective visual displays and interfaces that are matched to human abilities and limitations. 

Much of the focus is on proposing a new control strategy for pursuit eye movement modified 

from an existing model. Stone concludes that current models of pursuit should be modified to 

include visual input that estimates object motion and not merely retinal image motion as in 

current models. 

Duchowski [12] presents a 3D eye movement analysis algorithm for binocular eye tracking 

within Virtual Reality. Its signal analysis techniques can be categorised into three: position-

variance, velocity-based and Region of Interest-based, again using two of Salvucci’s criteria 

[63]. It uses velocity and acceleration filters for eye movement analysis in three-space. This is 



 

- 12 - 

easily adapted to a 2D environment by holding head position and visual angle constant. 

Gazepoints in the virtual environment are calculated by the 2D to 3D mapping of gaze vectors.  

The computed gaze direction vector is used for calculating gaze intersection points. The 

algorithm is then presented showing how issues such as noise and filtering techniques are 

handled. The algorithm is then evaluated using a virtual environment for aircraft visual 

inspection training. It was concluded that cognitive feedback, in the form of visualized scan-

paths, does not appear to be any more effective than performance feedback (search timing). 

Also, the number of fixations decreases following training. 

Deciphering eye movement data in terms of fixations and saccades can vary from simple 

averaging to sophisticated markov models. Additionally, identification of pursuit eye 

movements is needed for video images. Extending the analysis from normal 2D images to a 3D 

environment is a possibility, thus widening the range of applications for eye tracking 

technology. 

2.1.2. Current Applications  

Eye tracking offers a new way of communicating with human thought processes and can be 

used in both active and passive modes in several applications.  

In active ‘control mode’, eye tracking can be used to direct a computer through the motion of 

the eyes as in the case of eye-aware communication programs [4][13][21]. Eye tracking 

equipments are used as interface devices in several diverse applications.  The tracking of eye 

movements has been employed as a pointer and a replacement for a mouse [21] , to vary the 

screen scrolling speed [46] and to assist disabled users [6].  Schnell and Wu [65] apply eye 

tracking as an alternative method for the activation of controls and functions in aircraft. Dasher 

[80] is a method for text entry that relies purely on gaze direction. The user composes text by 

looking at characters as they stream across the screen from right to left.  Dasher presents likely 

characters in sizes according to the probability of their occurrence in that position. The user is 

often able to select rapidly whole words or phrases as their size increases on the screen. In 

comparison with on-screen keyboards, it is not confounded by the problem of interpreting data 

to identify a user’s intention of selection. Nikolov et al [45] propose a system for construction of 

gaze-contingent multi-modality displays of multi-layered geographical maps. Gaze contingent 

multi-resolutional displays (GCMRDs) centre high-resolution information on the user's gaze 

position, matching the user's interest. In this system, different map information is channelled to 

the central and the peripheral vision giving real performance advantage. The Infrared (IR) Eye 

[85] was developed in order to improve the efficiency of airborne search-and-rescue operations. 

The camera views the scene simultaneously through two optical systems, one covering a wide 

area with a wide field of view of 40o at low resolution for search and detection, and the other 

covering a smaller area with a narrow field of view of 10o at high resolution for identification. 
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The small field of view can be steered by the operator's line-of-sight, to investigate any area in 

the larger field. An innovative display system is necessary to present both fields of view 

simultaneously and without discontinuity to the operator. Imperial College Innovation filed a 

patent [104] on a system of knowledge gathering for decision support in image 

understanding/analysis through eye-tracking. A generic image feature extraction library 

comprising an archive of common image features is constructed. Information extracted from the 

dynamics of an expert's saccadic eye movements for a given image type are used to determine 

the visual characteristics of the image features or attributes fixated by the domain experts such 

that the most significant parts of the image type can be identified. Thus, when a specific type of 

image, for example a scan of a particular part of the human body, is analysed by an expert, those 

of the common image attributes, or "feature extractors", from the archive that are most relevant 

to the visual assessment by the expert for that image type are determined automatically from 

tracking the expert’s eye. These attributes are aspects such as the texture of the image at the 

fixated point because these are underlying features rather than the physical location or co-

ordinates of a fixation point, additional information can be inferred. The dynamics of the visual 

search can subsequently be analysed mathematically to provide training information to novices 

on how and where to look for image features. The invention thus captures the encapsulating and 

perceptual factors that are subconsciously applied by experienced radiologists during visual 

assessment. The invention is enhanced by allowing the sequence of fixation points also to be 

analysed and applied in training decision support. 

In passive mode, the eye-tracking device simply monitors eye activities for subsequent 

diagnostic analysis. Marketing researchers can determine what features of product 

advertisement attracts buyer attention. Researchers use it for experimental investigation of eye 

behaviour [32][48][56][57], especially in cases of disabled persons, infants and animals, as they 

cannot use a mouse. It also provides a comprehensive approach to studying interaction 

processes such as the placement of menus within web sites and to influence design guidelines 

more widely [40]. 

Duchowski presents an in-depth review of eye tracking applications and divides them into 

diagnostic and interactive usage [10], based on offline and real-time analysis respectively. 

2.1.3. Usability Studies 

Although eye tracking has not yet been implemented on mobile devices, research is 

underway on how the detection of regions of interest can be used to improve the quality of 

images presented on small screens. Nokia [78] conducted a usability evaluation on two mobile 

Internet sites and discovered the importance of search on mobile phones contrary to the initial 

hypothesis that users would not like to use search because of the effort of keying inputs. The 

research also showed that customers prefer any interface that produces a successful search. This 
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evaluation confirms that users do have a need for information retrieval for mobile usage. Simple 

searches such as a name-search are straightforward processing and are already implemented on 

mobiles. Text messaging has proved to be successful partly because the user can write out texts 

in quiet environments and of the low cost of sending texts. Hence there are a number of other 

factors that may influence image search on mobile phones apart from speed and interface, which 

plays an important part in the determination of the success of mobile search.   

Xin Fan et al [82] propose an image viewing technique based on an adaptive attention-

shifting model, which looks at the issue of browsing large images on limited and heterogeneous 

screen zones of mobile phones. This paper focuses on facilitating image viewing on devices 

with limited display sizes.  

The Collage Machine [35] is an agent of web recombination. It deconstructs web sites and re-

presents them in collage form. It can be taught to bring media of interest to the user on the basis 

of the user’s interactions. The evolving model provides an extremely flexible way of presenting 

relevant visual information to the user on a variety of devices.   

Farid [15] describes the implementation and initial experimentation of systems based on the 

user’s eye gaze behaviour. It was concluded that the systems performed well because of 

minimal latency and obtrusiveness. Examples include user navigation in large images that occur 

in astronomy or medicine. It was noted that reducing the resolution of the visual window for eye 

pointing, affects the efficiency of smaller clickable icon links highlighting  the jittery movement 

of the human eye that limits the window size for eye pointing. It has also been well documented 

over the years that one cannot rely on dwell time to determine link selection. However, the 

implementation presented allows for continual user change of mind, which increases the user 

exploration experience. A zooming technique is adopted with a magnified region of interest and 

multiple video streams.  

2.1.4. Gaze Interfaces 

An approach to visual search should be consistent with the known attributes of the human 

visual system and account should be taken of the perceptual importance of visual material. 

Recent research in human perception of image content [31] suggests the importance of semantic 

cues for efficient retrieval. Relevance feedback mechanisms [7] are often proposed as 

techniques for overcoming many of the problems faced by fully automatic systems by allowing 

the user to interact with the computer to improve retrieval performance. This reduces the burden 

on unskilled users to set quantitative pictorial search parameters or to select images (using a 

mouse) that come closest to meeting their goals.  

Yamato et al [83] conducted an experiment to evaluate two adjustment techniques, in which 

computer users use both their eye and hand in carrying out operations in GUI environments. In 

the first technique the cursor moves to the closest GUI button when the user pushes a mouse 
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button. The second adjustment involves gross movement of cursor by the eye and the user 

makes final adjustments and moves the mouse onto the GUI button. The second adjustment 

performed better because users were able to use the eye tracking device for rough cursor 

movement followed by the mouse for delicate adjustment. In this case the input device is 

switched from the eye tracking device when the user moves the mouse in the manual 

adjustment, so the user has to be careful not to move the mouse until required. Ware and 

Mikaelian [81] evaluated the eye tracker as a device for computer input by investigating three 

types of selection methods (button press, fixation dwell time and screen select button) and the 

effect of target size. Their results showed that an eye tracker can be used as a fast selection 

device providing the target size is not too small.  Eye gaze has also been shown to be faster than 

the mouse for the operation of a menu based interface [47]. Sibert and Jacob [68] performed two 

experiments involving circles and letters respectively. The former required little thought, while 

the latter required comprehension and search effort from participants. Eye gaze interaction was 

found to be faster than the mouse in both experiments. 

The mouse has been a successful pointing device in the decision making process and has 

influenced new research into use of the eye as a faster source of feedback. There has been some 

recent work on document retrieval in which implicit relevance feedback inferred from eye 

movement signals, combined with collaborative filtering (a user rating profile model) has been 

used to refine the accuracy of relevance predictions [58]. Starker and Bolt [69] use eye tracking 

to monitor users’ interests and make inferences about what items or collection of items shown, 

holds most relative interest for the user. Material identified is then zoomed in for a closer look 

and described in more detail via synthesized speech. Three models of user interest were 

implemented for determining the apparent level of user interest in a given object.  

Model One: When the screen coordinate of the gaze point corresponds to an object 

or objects, the tally for that object is incremented by one. The interest level equals 

the tally. 

Model Two: The elapsed time since a given object was seen is multiplied by a 

constant, k2, and subtracted from a constant, k1 times the tally of glances for that 

object: 

interestlevel = k1 * tally – k2 * elapsedtime 

Model Three: In this model, whenever there is a fresh look at an object, the old 

value is decayed by the proper amount and then incremented by a constant (“fresh 

look constant”): 

if (object was just looked at) 

interestlevel=(interestlevel). r

t

e

−

 +FreshLookConstant 

else 
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interestlevel=(interestlevel). r

t

e

−

 

where 

FreshLookConstant = constant 

t= elapsed time since object was last seen 

r= time constant 

Recently, research has been conducted in the use of eye tracking data for image retrieval. The 

Eye-Vision-Bot project was presented by Scherffig [64]. The objective of the project was to 

optimise image retrieval from databases and the internet with the aid of eye tracking and 

adaptive algorithms. The system uses an eye-tracker to measure in real-time the attention 

received by various images displayed on the computer screen. The search process of Eye-

Vision-Bot begins by selecting and presenting a random set of images. While the images are 

watched, viewing times are gathered and stored, and form the basis for displaying new images. 

Searches based on metadata and structure are performed. In the metadata search images 

belonging to the same artist and the same category as those that were most watched are 

searched. In the latter, the Gnu Image Finding Tool (GIFT) is asked to return images that are 

structurally similar to those watched. GIFT is an open source application developed at the 

computer vision laboratory of the University of Geneve. Here two different algorithms defining 

the way GIFT weights the images the query is based on are used each in two separate queries. 

The results of both search methods then are mixed and presented again. This enables an analysis 

of the performance of the system in which the images compete for attention, although no 

experimental analysis was conducted. 

In another similar work, Essig [14] introduces Visual-Based Image Retrieval (VBIR), which 

uses an eye tracker for relevance feedback to determine the importance of different image 

regions for the retrieval process. VBIR aims to improve the retrieval process by increasing the 

weight of the features (colour, shape and texture) in the image regions that attract the most 

fixations. Image regions are equal sized sub-blocks in the image. Initial results show that the 

average number of retrieval steps per image for VBIR was found to be lower than random 

retrieval and conventional CBIR (based on whole image regions rather than sub-blocks). The 

choice of test data was limited to 1000 flower images. Images were indexed using an optimal 

weight combination of colour, shape and texture values with the highest Shannon entropy (a 

measure of the uncertainty associated with a random variable). 

Grecu [19] also proposes a similar approach that attempts to learn on-line from eye-

measurement data. Offline image indexing provides a structured representation of the image 

repository content. The image indexing starts with an automatic detection of the virtual-

fixations (using a saliency measure). Once extracted, each virtual-fixation is associated with a 

set of visual content descriptors, which are stored in the database. Retrieved images are 
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displayed sequentially to the user. The user provides a relevance feedback (relevant/non-

relevant) regarding the currently displayed image(s). The eye tracking system records all the eye 

movements associated with the displayed stimulus, as well as the user's input (relevance tag). 

The relevance feedback learning phase teaches the system to discriminate between fixations that 

are relevant and those that are non-relevant for the current search task. The recorded eye 

movements are analyzed in order to extract the actual fixations of attention and a number of 

additional attention metrics, such as fixation duration, or scan-path length.  For all actual 

fixations, the corresponding visual descriptors are computed with exactly the same approach 

employed for the virtual-fixations. A supervised classifier is trained (using actual fixations) to 

rate the relevance of the fixations (actual or virtual). A relevance score can thus be computed 

and top ranked images can be presented to the user for a further retrieval loop. The proposed 

system was not functional as a fully integrated system, however retrieval experiments were 

simulated offline and results showed that it is possible to monitor and exploit the user’s 

attention while the user is interacting with the image retrieval system. 

The eye interpretation engine [13] was created to adapt in real-time to changes in a user’s 

natural eye-movement behaviours and intentions. It defines three behaviours (knowledgeable 

movement, searching and prolonged searching) and discovered two features of eye movement 

patterns (revisits and significant fixations) that makes easier the recognition of high-level 

patterns in users’ natural movements.   

No apparent strategies have been easily discerned for image viewing but this has not 

hampered research efforts in investigating the feasibility of using gaze behaviour for retrieving 

images.  

2.1.5. Visual Attention and Perception  

Humans cannot attend to all things at once, thus our attention capability is used to focus our 

vision on selected regions of interest. Our capacity for information processing is limited, 

therefore visual scene inspection is performed with particular attention to selected stimuli of 

interest. A good definition of visual attention was given by James [33]: 

"Every one knows what attention is. It is the taking possession by the mind, in 

clear and vivid form, of one out of what seem several simultaneously possible 

objects or trains of thought. Focalization, concentration, of consciousness are 

of its essence. It implies withdrawal from some things in order to deal 

effectively with others". 

This definition implies that visual attention modelling is relevant to the objective of obtaining 

better image content understanding. From a historical perspective, Broadbent [5] proposed the 

filter theory of selective attention, where auditory experiments were performed to demonstrate 

the selective nature of attention. It was concluded that information enters in parallel but is then 
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selectively filtered to sensory channels and that it is important that a good visual attention 

framework must be able to discriminate selectively within an image. This led to the feature 

integration theory of Treisman [87], which was derived from visual search experiments. Based 

on this theory, Koch and Ullman’s framework [36] for simulating human visual attention 

focuses on the idea that the control structure underlying visual attention needs to represent such 

locations within a topographic saliency map, especially given that the purpose of visual 

attention is to focus computational resources on a specific, conspicuous or salient region within 

a scene. Multiple image features such as colour, orientation and intensity are combined to form 

a saliency map that reflects areas of attention. Itti et al [30] builds on the framework for 

interpreting complex scenes and suggest supervised learning as a strategy to bias the relative 

weights of the features in order to tune the system towards specific target detection tasks. 

Wolfe’s Guided Search Model [86] proposes that pre-attentive feature processes could direct the 

deployment of attention in serial attentive searches. In his model, stimuli are divided into two 

pre-attentive processes (a colour process and an orientation process) which are combined into an 

attention-guiding activation map. Reinagel and Zador [59] investigated the eye positions of 

human subjects while they viewed images of natural scenes. Subjects looked at image regions 

that had high spatial contrasts and in these regions, the intensities of nearby image points 

(pixels) were less correlated with each other than in images selected at random. Their important 

assumption is that there is a competition between top-down and bottom-up cues for the control 

of visual attention. 

Privitera et al [57] use 10 image processing algorithms to compare human identified regions 

of interest with regions of interest determined by an eye tracker and defined by a fixation 

algorithm. The comparative approach used a similarity measurement to compare 2 aROIs 

(algorithmically-detected Region of Interests), 2 hROIs (human-identified Region of Interests) 

and an aROI plus hROI. The prediction accuracy was compared in order to identify the best 

matching algorithms. Different algorithms fared better under differing conditions. They 

concluded that aROIs cannot always be expected to be similar to hROIs in the same image 

because 2 hROIs produce different results in separate runs. This means that algorithms are 

unable in general to predict the sequential ordering of fixation points. 

Jaimes, Pelz et al [32] compare eye movement across categories and link category-specific 

eye tracking results to automatic image classification techniques. They hypothesise that the eye 

movements of human observers differ for images of different semantic categories, and that this 

information may be effectively used in automatic content-based classifiers. The eye tracking 

results suggest that similar viewing patterns occur when different subjects view different images 

in the same semantic category. Five different categories are considered: handshakes, crowds, 

landscapes, main object in uncluttered background and miscellaneous images. More consistent 

viewing patterns were found within the handshake and main object categories. Although, it was 
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unclear on how it can be used to influence automatic classification techniques, they suggested 

that it is possible to apply the Privitera’s fixation clustering approach [57] to cluster gaze points. 

Privitera et al [57] used a similarity index to estimate the prediction accuracy of the algorithms 

and presented the figures accordingly. The Visual Apprentice framework [32], which was used 

to illustrate how data can be used to build classifiers, relied on manual clicks from users to 

construct classifiers. The study does show that similar viewing patterns can be category-specific 

hence this factor needs to be considered in future algorithms. 

Pomplun and Ritter [55] present a three-level model, which is able to explain about 98% of 

empirical data collected in six different experiments of comparative visual search. Pairs of 

almost identical items are compared requiring subjects to switch between images several times 

before detecting a possible mismatch. The model consists of the global scan-path strategy 

(upper level), shifts of attention between two visual hemifields (intermediate level) and eye 

movement patterns (lower level). Simulated gaze trajectories obtained from this model are 

compared with experimental data. Results suggest that the model data of most variables presents 

a remarkably good correspondence to the empirical data. 

The strength of a particular feature in an area of the image does not in itself guarantee that 

ones attention will be drawn to that image area. However, detecting parts of an image that are 

most different from the rest of the scene presents a perceptually relevant approach towards 

detecting visual attention. Saliency of an image feature can be defined to be inversely 

proportional to the probability of occurrence of that image feature. That is, the higher the 

saliency or distinction of that feature, the lower the probability of the feature re-occurring within 

the image. Walker et al. [79] uses this basis to present a method for locating salient object 

features due to the low probability of the features being misclassified with any other feature 

within the image. Stentiford’s visual attention model which follows the thinking of Walker et al 

[79] is introduced in [70] and applied to Content Based Image Retrieval in [2][103] and image 

compression in [71]. This model is based upon the dissimilarity between neighbourhoods in an 

image and uses neighbourhood differences to identify uncommon textures and other features in 

an image. This measure can be used to identify regions of interest in many categories of images. 

No a priori guidance is introduced into the scoring mechanism.  

The pre-attentive stage of human vision is followed by a higher-level cognitive process, 

which describe our voluntary intent to attend to other portions of the scene based on our 

interests. This post-attentive stage is evident in Yarbus’ work [84], which demonstrated that 

scan-path characteristics such as their order of progression can be task dependent.  This cannot 

be compared with Privitera’s alternative findings [70] because he did not consider task 

dependency.  People will view a picture differently based on what they are looking for. The eye 

movements recorded demonstrated sequential viewing patterns over particular regions in the 

image. Norton and Stark’s scan-path theory [88] suggested that subjects tend to fixate 
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identifiable regions of interest, containing informative details. Both studies suggest that a 

coherent picture of the visual field is built from serially viewed regions of interests. It is 

however not clear how our brains assemble information obtained from visual scanning to form a 

conceptual image or notion of the scene. A clear depiction of eye movements has been 

particularly helpful in ascertaining whether recognition of the scene is performed by a parallel 

one-step process or serial scanning strategy. Ongoing research has been limited in this respect, 

in comparison with reading [89].  

Human eye movement is characterized by the circumstances in which they arise as depicted 

by Kahneman’s [34] classification of eye movements into three general types of looking. 

Firstly, spontaneous looking occurs when the subject views a scene without any specific task in 

mind (such as free-viewing experiments). The eye is attracted to regions of the scene that 

convey the most important information for scene recognition. Secondly, task-relevant looking is 

performed when the subject views the scene with a particular question or goal in mind. Finally, 

orientation of thought looking occurs when the subject is not paying much attention to where 

he/she is looking but is attending to inner thought (covert attention). The latter poses a big 

problem for eye movement analysis as humans can voluntarily dissociate attention from ocular 

eye movements (foveal direction of gaze). It is difficult to spot when the user does not perceive 

the region fixated, hence it is impossible to obtain meaningful data during this stage.  

The eye is attracted to regions of a scene that convey what is thought at the time to be the 

most important information for scene interpretation. Initially these regions are pre-attentive in 

that no recognition takes place, but moments later in the gaze the fixation points depend more 

upon either our own personal interests and experience or a set task. Humans perceive visual 

scenes differently. We are presented with visual information when we open our eyes and carry 

out non-stop interpretation without difficulty. Research in the extraction of information from 

visual scenes has been explored by Rayner [89], Yarbus [84], Mackworth and Morandi [39], 

and Hendersen and Hollingworth [22]. Mackworth and Morandi [39] found that fixation density 

was related to the measure of informativeness for different regions of a picture and that few 

fixations were made to regions rated as uninformative. The picture was segmented and a 

separate group of observers were asked to grade the informativeness. Henderson and 

Hollingworth [22] described semantic informativeness as the meaning of an image region and 

visual informativeness as the structural information. Fixation positions were more influenced by 

the former compared to the latter. The determination of informativeness and corresponding eye 

movements is influenced by task demands [84]. Underwood [91] was also able to show in a task 

requiring detection of a small target, that the visual saliency of non-targets did not influence 

fixations (viewers were able to ignore visually prominent objects). The failure of low-level 

saliency maps prompted a modification to take task dependency into account in Navalpakkam 

and Itti’s new model [44]. The model determines the task relevance of an entity, biases attention 
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for the low-level visual features of desired targets, recognizes these targets using the same 

features and incrementally builds a visual map of task relevance at every scene location.  

The dominance of a high saliency object in a memory experiment was also not present in 

another search task conducted by Underwood [90]. Four models of eye guidance were evaluated 

with data from two separate memory experiments by Tatler et al [73] and Underwood et al [90].  

The salience divergence model proposes that the balance between top down and bottom up 

control of saccade target selection changes over time. Specifically, the bottom up component is 

more influential early in viewing, but becomes less so as viewing progresses [54]. This 

framework predicts that the difference between saliency at fixated locations and at non-fixated 

locations will be greatest early in viewing. Tatler et al [73] and Underwood et al [90] rejected 

this model, as they did not find variations in the saliency values of fixated and non-fixated 

locations.  

In the salience rank model, locations in the scene are ranked according to their visual 

salience and the oculomotor system selects targets sequentially according to this ranking [30]. 

Sequential selection of targets based upon visual salience rankings would predict large 

differences between saliencies at saccaded to locations and those at non-saccaded to locations 

early in viewing, but smaller differences later on. Again, the data from Tatler et al [73] and 

Underwood et al [90] did not provide support, as there was no change in the discrimination 

between the salience at saccaded to and non-saccaded to locations.  

The random selection with distance weighting model of target selection [41] suggests that 

targets are selected using a proximity-weighted random walk process. Within this model, the 

selection of locations for fixation is essentially random with respect to both bottom-up and top-

down processes. This model predicts the variability of inspection patterns between viewers 

inspecting the same scene, whereas there was consistency in the locations of early fixations in 

the Tatler et al [73] experiment. Underwood found predictable and consistent inspection 

patterns in the inspection of two objects of interest in each picture.  

The fourth model for saccadic targeting considered is strategic divergence [73], where the 

influence of low-level visual feature salience on saccadic targeting does not change during 

viewing, but cognitive influences do vary. This framework is consistent with findings from both 

Tatler et al [73] and Underwood et al’s [90] experiments. Consistency in fixation location 

changes between viewers over time, but the influence of image features does not. Thus the 

strategic divergence account proposes that the strategies chosen by viewers have the same 

bottom up framework for eye movements, but over time viewers use different top-down 

strategies to complete the memory task imposed in these experiments. 

Henderson and Hollingworth [22] review three areas of high-level scene perception research. 

The first concerns the role of eye movements in scene perception, focusing on the influence of 

ongoing cognitive processing on the position and duration of fixations in a scene. They 
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speculate on whether ongoing perceptual and semantic processing accounts for the variability of 

fixation durations, which range from less than 50ms to more than 1000ms in a skewed 

distribution with a mode of about 230ms. The average fixation duration during scene viewing is 

also said to be 330ms, with a significant variability around this mean. Their review of eye 

movement studies during scene viewing suggests that fixation positions are non-random, with 

fixations clustering on both visually and semantically informative regions. They also found that 

the placement of the first few fixations in a scene seems to be controlled by the visual features 

in the scene and the global (not local) semantic characteristics of the scene. As viewing 

progresses and local regions are fixated and semantically analyzed, positions of later fixations 

come to be controlled by both the visual and semantic characteristics of those local regions. The 

length of time the eyes remain in a given region is immediately affected by both characteristics. 

It was noted that a number of factors varied from study to study, including image size, viewing 

time per scene, image content and viewing tasks.  

The second area concerns the nature of the scene representation that is retained across a 

saccade and other brief time intervals during ongoing scene perception. The literature reviewed 

suggests that only a limited amount of information is carried across saccades during complex, 

natural scene viewing and that this information is coded and stored in a relatively abstract (non-

perceptual) format. The change blindness effect [60] suggests that little of the information that 

is latent in the retinal image during a fixation is encoded into an enduring form that can be 

retained across a saccade or other intervening temporal gap. Rensink et al [92] proposed that a 

limited-capacity attentional mechanism must select perceptual information from an iconic store 

during a fixation and transfer it to a more stable and longer-lasting visual short-term memory 

(VSTM) representation if it is to be retained. In this hypothesis, scene regions that are more 

likely to be attended during scene viewing should be more likely to be encoded and stored in a 

stable format. Rensink [92] found that change detection was better when the changing object 

was semantically informative. On the assumption that semantic informativeness holds attention, 

attention is needed to transfer information to a stable medium (e.g. VSTM) if that information is 

to be available to support the detection of changes.  

Thirdly, Henderson et al review research on the relationship between scene and object 

identification, focusing particularly on whether the meaning of a scene influences the 

identification of constituent objects. Research in scene identification has focussed primarily on 

the time course of scene identification and the types of information used to identify a scene. 

Potter’s studies [93] presented a series of photographs of scenes in rapid succession. When a 

verbal description of a target scene was provided prior to presentation of the series, participants 

were able to detect a target scene at a presentation rate of 113ms. This led to the conclusion that 

a scene can be identified in approximately 100ms. Note that scene descriptions did not specify 

the global identity of the scene but instead described individual objects in the scene. Schyns & 



 

- 23 - 

Oliva [94] have demonstrated that a photograph of a scene can be identified as a particular scene 

type from a masked presentation in as short as 45 – 135 ms. These results demonstrate that the 

information necessary to identify a scene can be extracted quickly. Most research has supported 

the idea that early scene processing is based on global scene information rather than local object 

information. Schyns & Oliva [94] demonstrated that scenes can be identified from low-spatial-

frequency images that preserve the spatial relations between large-scale structures in the scene 

but which lack the visual detail needed to identify local objects. In addition, when identifying a 

scene from a very brief view (50ms), participants tend to base their interpretation on low-

frequency information rather than on high-frequency information. Henderson et al conclude that 

scene context facilitates the identification of objects. 

Rayner’s review [89] also concluded that given the existing data, there is fairly good 

evidence that information is abstracted throughout the time course of viewing a scene. While the 

gist of the scene is obtained early in viewing, further information from the scene is obtained 

after the initial fixations.  

2.2. Commercial Review 

The management (storage, retrieval and processing) of digital visual data is becoming more 

important in this information age. Integration of digital devices such as digital cameras, mobile 

phones, PDAs and computers has contributed to the critical need for automated multimedia 

indexing and retrieval of relevant information. Many everyday life activities result in the 

accumulation of huge amounts of data containing different kinds of information (text, pictures, 

audio, videos, etc.). The goal of information retrieval technologies is to allow one to make an 

effective use of such data. Storage devices seem to be growing fast and coping with this demand 

but it has also meant data is sometimes stored and almost never used. Mostly, this is because 

users either forget possessing this data or cannot locate it when it is needed. This is applicable 

especially with digital visual data, where users would like to improve access mechanisms and 

interaction with this data.  

This critical need for good interfaces is leading to exploration of natural or perceptual user 

interfaces that make use of facial expression, gestures, touch, speech and eye movements. 

Nearly all computer applications today operate by some sort of command system (by explicit 

command-line interfaces or direct manipulation interfaces), requiring the user to view the 

computer as a collection of tools that must be activated to solve a required task. As a result, 

information from natural interfaces such as gestures, expressions and/or eyes may be employed 

for issuing commands to solve tasks. The use of these natural interfaces has not been in demand 

because these mediums are presented as a replacement for conventional interfaces (such as the 

mouse and keyboard). The next generation of interactive user interfaces should be able to 
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determine users’ interests from normal user activities. The mouse, keyboard, speech, and touch 

require a thought process before issuing commands. Important information is lost during this 

transfer which may be more effectively captured by eye tracking. It has been shown and widely 

accepted in prior eye tracking studies that determination of relevance and corresponding eye 

movements are influenced by task demands [84][88][91]. This raises the likelihood of 

modelling behaviour based on respective applications or set tasks, prompting an exploration of 

interactive eye tracking applications.  

Understanding human gaze behaviour is critical in obtaining effective interfaces and has been 

the subject of scientific research since the 1800s. The improvement in eye tracking hardware is 

extending its usage beyond the laboratory. Though it is not a widely adopted technology at the 

moment, it is being widely recognised as the most convenient and non-invasive medium for 

understanding human behaviour [11]. This usage ranges from laboratory experiments for 

medical research [109] to the more recent customer and usability research [40]. Historically 

organisations have always been preoccupied with new ways of finding the right customer due to 

increasing competition, which has brought about the need for better advertising.  

In summary, eye tracking technology can enhance access to information and in so doing 

improves efficiency for both individuals and organisations. This information can be in the form 

of where, when and how the user is looking. 

2.2.1. Applications  

This subsection summarises current and potential applications (refer to [10] or [11] for a 

detailed review of eye tracking applications). 

• Eye tracking serves as a viable alternative to conventional input devices (e.g. mouse and 

keyboard) for certain disabled users [6]. This technology will continue to be useful for this 

type of users.  

• Eye tracking can potentially be used as a safety device or early warning system for 

indications of drowsiness or lack of concentration when operating machinery such as motor 

vehicles, power stations and air traffic control systems [16][65]. 

• Eye tracking is increasingly being used by marketing companies to investigate the usability 

of products and effectiveness of advertisements [110]. Conventional usability techniques rely 

on data, which may have been obtained by leading questions that can bias the judgement of 

users and relies heavily on the diligence of the usability researcher. Analysing what potential 

customers may be looking for in an advert through objective data produced by an eye 

tracker, can be used to optimise the effectiveness of the adverts. Advertisements can take the 

form of TV commercials, and printed and website advertisements. It can also be used in 
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investigating catalogue browsing online or in-store product browsing and to test the 

effectiveness of interfaces such as websites [40].  

• Eye tracking serves as a good indication of interest for improving human computer 

interaction. Eye tracking interfaces can aid automatic scrolling function on screens, zooming 

interfaces [69][80], video conferencing [111], etc. The improvement can vary from the 

system automatically issuing a command based on user’s gaze behaviour to smart systems 

that can anticipate the user’s need based on knowledge acquired by the system during real-

time viewing. However, outstanding issues (such as accuracy and interpretation) need further 

research. 

• Historically eye tracking has been used for neurological and psychological research to 

understand the human visual system and its cognitive processes [112]. Numerous findings 

have been useful for understanding certain neurological disorders [109] and improving 

human machine interaction by computer scientists [47][68]. 

• Eye tracking can be used for applications that require visual inspections such as search and 

rescue operations [85], manufacturing defects, x-rays and picture interpretation (art) [113]. 

Tracking eye movement of an expert’s visual inspection may be used to train novice 

inspectors providing a gaze pattern emerges [12]. 

2.2.2. Market Analysis  

It takes a huge effort to develop markets for new technology. The processes of making and 

demonstrating the possibilities of innovation, developing new standards and encouraging 

complementary products and services are often only available to the largest organisations. 

Unless smaller organisations can attract the attention of larger partners, they are often left to fit 

new technology into older standards, and have to wait for changes in complementary 

technologies, infrastructure, regulations, skills and priorities.  

Probably the most obvious trend is the increase in the marketing of eye tracking devices 

(Table 2.1), which has led to a reduction in prices. Limited demand has certainly contributed to 

the high cost of purchase. A typical eye tracker comprises LED (infrared source), hot mirror 

(filter that reflects the infrared into a CCD camera), fibre optic bundle (communicating device), 

CCD camera and framegrabber (for capturing image from camera into the host computer). 

Software development is then required to enable the technology to be used in the application 

domain. 

The greater emphasis in society on quick and reliable access to relevant information will 

drive political and organisational agendas on the need for compact, relatively cheap, non-

intrusive methods of exploration and interaction. An example is the rising public demand and 
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government initiatives for a decrease in road accidents could influence changes in policy to 

accommodate eye trackers in vehicles for monitoring driver awareness. 

In order to see where we are going, we need to see where we are. Eye tracking has experienced 

significant growth since the early laboratory studies at the beginning of the 20th century to the 

video-based reflection methods of the latter decades. Yet eye tracking remains at the very early 

stage of adoption, leaving one to wonder why such a technology has not crossed into the mass 

market. The advances in eye tracking technology occurred mostly as a result of advances in 

computing and imaging technology in the late 80s, which led to the realisation of the interactive 

capability of eye tracking [10]. This has given support to the speculation that eye tracking may 

enter the mass market (i.e. cross the chasm as shown in Figure 2.4) through interactive 

applications. 

The Sony EyeToy™ (Sony Computer Entertainment Inc., http://www.eyetoy.com/) 

introduced a new full body interaction game using a camera to monitor body movements for the 

PlayStation 2. It shows an image of the user inside the game environment. The user is then 

monitored by analysing the video frames. The success of this technology highlights the possible 

future influence of games based on natural interaction such as the eyes. 

The Canon EOS Camera Series and the UC-X1 Hi Video Camera tracks the eye to control 

camera focussing. Canon EOS Elan 7E is the latest in the EOS series and uses the nearest of 7 

eye-selection points in the viewfinder shown through the ocular and the camera adjusts its 

features (e.g. focus) accordingly. 

 

 

Figure 2.4: Potential evolution of the eye tracking market 
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Sharp recently filed a patent in November 2004 (International Application Number: 

PCT/US2004/039085) titled Liquid Crystal Display with Adaptive Colour. It uses a method for 

correcting the colour shift of the gaze location on a display based on viewing angle. The patent 

aims to maximise viewing clarity regardless of the viewing angle of the user (i.e. during off-

centre viewing). 

44 other eye tracking related patents has been filed with the World Intellectual Property 

Organisation [102] since 1998, which are described briefly in Appendix D. The international 

application numbers are provided to allow further investigation on the WIPO website [102]. The 

number of filed patents that utilises this technology also serves to highlight the anticipation of 

eye tracking technology take-up and the need to protect this possible source of future revenue. 

The success of Cannon’s EOS series has been largely due to this automated focus capability, 

which is reliant on eye tracking. Sharp’s patent also serves to highlight the anticipation of 

software based face/eye/gaze tracking on PCs and/or laptops. Eye-toy introduced a new form of 

social gaming that is independent of commands. Its success is thus a good precursor for gaze-

based gaming.  

2.3. Technology 

2.3.1. Comparison of Recent Commercial Eye Trackers 

Table 2.1 lists some of the recent commercial eye trackers available on the market and 

highlights their characteristics. This list is by no means exhaustive and the prices are a reflection 

of the functionality. There has been a significant increase in sampling rates from 50Hz to 

1250Hz, which means that future eye trackers will be able to track fast saccadic movements 

very accurately. 
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Table 2.1: Commercial Video-based Eye Trackers 

Eye trackers Uniqueness 
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SR Research’s Eyelink II 
[28] 

Fast and Binocular 500 Headmount PCR €29,950 (h,s) 

SR Research’s Eyelink 
1000 [28] 

Fast sampling 1000 Chinrest PCR €29,950 (h,s) 

LC Technologies’ Eyegaze 
[27]  

- 60 None PCR 
$17,900 

(h,s,pc,m) 

LC Technologies’ 
EyeFollower [27]  

Binocular, remote 
and free head range 

120 None PCR 
$43,400 

(h,s,pc,m) 

ASL H6 [25]  lightweight 360 Headmount PCR  

ASL R6 [25] 
Remote and optional 

fast sampling 
360 None PCR  

SMI’s iView X Hi-Speed Very fast sampling 1250 Chinrest PCR  

SMI’s iView X HED - 50/60 Headmount PCR  

Seeing Machine’s 
faceLAB4 

Eye and Head 
tracking 

60 None Software £20,000 (-) 

Tobii 1750 
Binocular and 
integrated into 

monitor 
50 None PCR £15,500 (h,m) 

Tobii x50 
Remote scene 

viewing 
50 None PCR £16,800 (h,m) 

CRS Video Eye Tracker Low-cost 50 Chinrest PCR £6000 (h,s) 

CRS High-Speed VET - 250 Chinrest PCR £10,000 (h,s) 

ERT’s Erica System Low-cost 60 None PCR $7,900 (-) 

Smarteye Pro 
Includes face 

tracking 
60 None PCR €25,000 (-) 

Arrington’s Viewpoint 
Quickclamp System 

Low-cost 60 Chinrest PCR 
$6,498 

(h,s,m,pc) 

Arrington’s Remote 
System with precision 
head positioner 

Low-cost 60 None PCR 
$7,998 

(h,s,m,pc) 

Microguide BIRO Lightweight 100 Headmount PCR  

Eyetech Digital’s 
Quickglance 2SH 

Low-cost 15 None PCR €6,000 (h,s) 

ISCAN’s Visiontrak 
Standard 

- 60 Headmount PCR 
$17,100 

(h,s,m,pc) 

ISCAN’s Visiontrak ETL-
300 

- 60 None PCR 
$17,400 

(h,s,m,pc) 

* What is included (h – main hardware; s – basic software; PCR – Pupil Corneal Reflection; pc – host 
system; m – monitor). ‡ Price difference can also be due to other factors such as tracking accuracy.
 † Some manufacturers offer higher sampling rate as an additional option. 
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2.3.2. Threats and Mitigations 

In the early years of eye tracking in interactive applications, the focus was on using the eye as a 

replacement for conventional input devices (mouse and keyboard). While this may be fine for 

disabled users, it was not a good enough reason to expect other types of users to forsake 

conventional devices. Recently research is moving towards using the eye as a continuous 

indication of interest and not just for selection, which could make it a radical innovation and 

thus a worthy competitor for the conventional input device. 

Multimodal interfaces (such as gaze and speech) have been suggested for more effective 

interfaces.  

Eye tracking may not work on a percentage of population (i.e. users wearing thick lens 

spectacles or certain disabled users with spinal cord injuries). The proportion of the population 

that are excluded is not clear but it may not be large. 

Lack of interoperability, lack of standards within and across industries, concerns about the 

stability (permanence) of eye tracking technology, lack of widespread deployment and costs 

have all contributed to the slow take-up but this is expected from an emerging technology. 

The reduction in intrusiveness, the improvements in cost, speed and accuracy are all expected 

to continue. At the Eye Tracking Research and Applications 2006 conference in San Diego, 

California, the I-Prize [100] was launched as a grand challenge for human computer interaction. 

Its aim is to encourage radical innovations in eye tracking. This type of grand challenge has 

been successful in stimulating and initiating commercial space flights, land speed records and 

fully autonomous vehicles. The aim is to revolutionize eye tracking by seeking ‘factors of 10’ 

improvements in the price ($10000 � $100), accuracy (1o � 0.1o), speed (50/100Hz � 500Hz) 

and intrusiveness (remote and calibration-free). 

The demand on user attention required by eye tracking is not an attractive aspect of the 

system. This level of attention may induce long-term stress. Lack of concentration such as user 

looking away or attending to inner thoughts, complicates the real-time analysis of resulting data.  

The feasibility of using eye trackers in an uncontrolled environment is a serious problem. For 

example, the reflections caused by certain eyeglasses have been approached with adaptive 

threshold techniques to differentiate the pupil glint and corneal reflection from the reflection of 

the glass lens. More robust imaging techniques are needed to solve this problem. Most eye 

trackers require limited head movement which is not ideal for real-world applications. Recently 

LC Technologies released EyeFollower which accommodates a wider range of free head 

movement. Such innovations highlight the continuous progress of eye trackers. 

Security and access control may be an issue. The system has to be able to identify which 

user’s eye movement is controlling an eye tracking system.   
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Increased investment is needed for further investigations of adaptive algorithms to improve 

selection or interest prediction models for individual users. 

As with most technologies that are capable of extracting and digitising intimate details about 

individual users, public perception will need to be improved by sufficient consumer education 

and maintenance of ethical standards. 

A recent report [99] identifies several projects and Networks of excellence funded by the 

European Union Framework Programme (FP6), of which COGAIN stands out. COGAIN 

(Communication by Gaze Interaction) is a Network of Excellence which integrates cutting-edge 

expertise on interface technologies for the benefit of users with disabilities with emphasis on 

eye tracking. The European Union presently uses Networks of Excellence (NoE) to strengthen 

the scientific and technological excellence on a particular research topic. A recent report 

deliverable is available in [101]. The project costs 2.72 million euro and received 2.90 million 

euro funding from the EU research budget. The COGAIN NoE is a major step that may lead to 

more eye tracking projects sponsored in future EU research projects. 

2.4. Discussion  

Eye behaviour is a reflection of our interests. Eye tracking systems provide an approach for 

characterizing a computer user's ocular behaviour. Eye tracking equipments have developed 

substantially from the invasive methods employed before the 70’s [8][61] to the current and 

more efficient non-invasive methods using video and/or infrared technology 

[24][25][26][27][28][29][37]. These advances have led to a significant price reduction and 

increases in sampling rates, enabling more efficient tracking of saccades. Two main 

shortcomings have been identified with eye tracking systems and attempts have been made with 

varying success to minimise their effects [42][67]. Firstly, eye tracking hardware systems must 

limit image processing to attain real-time performance in order to achieve maximum accuracy 

of the eye movement measurement [42].  Blinking has been suggested both for rapid eye 

localisation [3] and solving the Midas-touch problem (i.e. recognizing when the user needs to 

make a selection) [13].  Besides, experiments have shown that the eye is relatively faster than 

the mouse as a source of computer inputs in various applications [47][68][81][83]. Secondly, 

even though eye fixations provide some of the best measures of visual interest, they do not 

necessarily provide a measure of cognitive interest. Though eye tracking offers an objective 

view of overt human visual and attention processes, it does not provide a measure of covert 

attention due to the orientation of thought looking [18]. We are confronted with an 

overwhelming amount of visual information whenever we open our eyes. Covert attention 

allows us to select visual information at a cued location, without eye movements, and to grant 

such information priority in processing. The lack of eye tracking data during this attentional 
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state could affect the validity of any conclusions regarding interest however incidences of covert 

attention are reduced when tasks are set.  

Research in eye tracking has become more focused depending on the application and this has 

helped in achieving highly accurate analysis. Indeed, the application ranges from interactive 

usage (i.e. gaze contingent displays [45], assisting disabled users [6], varying screen scrolling 

speed [46], activation of controls in aircrafts [65], improving efficiency of search and rescue 

operations [85]) to passive usage [32][48][55][57], which involves subsequent diagnostic 

analysis. 

The increase in interactive applications has prompted research into usability requirements for 

effective interfaces, mostly motivated by the integration of digital devices. Dasher’s text entry 

interface [80] employs a suggestive zooming interface that may be applicable to images, thus 

presenting a promising interface worthy of further investigation. Xin Fan et al [82] conducted a 

user feedback evaluation on their image viewing technique using the mouse to indicate interest. 

The validity of this approach is confounded by the fact that cognitive feedback at the time of 

viewing and the feedback at the time of evaluation are not necessarily similar. Hence an 

alternative method of conducting such evaluations using real-time systems such as eye trackers 

for validation is a distinct possibility. Nonetheless, Xin Fan’s image viewing technique [82], the 

collage form of web recombination [35], and Farid’s zooming technique [15] provide interface 

methods that may be implemented in future eye tracking interfaces. Nokia’s usability evaluation 

[78] also provides encouraging results with regard to the viability of future implementations of 

image search on digital devices such as mobile phones.  

Eye tracking work has also concentrated upon replacing and extending existing computer 

interface mechanisms rather than creating a new form of interaction.  As gaze reflects our 

attention, intention and desire, it can be used as a natural form of interaction [4][18]. The 

imprecise nature of saccades and fixation points makes it difficult to yield benefits over 

conventional human interfaces. Fixations and saccades are used to analyze eye movements, but 

it is evident that the statistical approaches to interpretation (such as clustering, summation and 

differentiation) are insufficient for identifying salience in an image due to the differences in 

humans’ perception of image content.  

Several eye tracking experiments have been conducted on images, mostly with the aim of 

creating or improving algorithms and/or models that simulate the human visual system 

[32][54][55][56][57][70]. The recent advances in eye tracking technology have played a large 

part in encouraging more research into image analysis.  Eye tracking experiments enable better 

understanding of the human visual system (HVS) from which models are derived as well as 

improved interactive applications. For example, the eye tracking experiments conducted by 

Privitera [57] and Jaimes [32] were used to provide a validation for visual attention models. 

Computational models of visual search have been implemented in CBIR systems such as QBIC 
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[95], MARS [96], PICASSO [97] and Blobworld [98]. CBIR systems normally rank the 

relevance between a query image and target images according to a similarity measure based on 

a set of features (colour, shape, edges). Research in visual attention and perception has 

identified the importance of cognitive influences in determining relevant materials from a 

picture or scene [22][73][91]. The formulation of queries that are both easy and intuitive to 

create whilst at the same time being effective for retrieval is a problem that is common to all 

CBIR systems.  It has been shown that data derived from eye gaze behaviour indicates salience 

and therefore provides a likely source of relevance feedback for query formulation. However, 

there is little published research that carries this belief forward to a retrieval mechanism that 

makes use of this channel of information and CBIR is an application that would benefit from 

positive findings in this field.   

2.5. Thesis Statement 

Different individuals or even the same individual in different situations can perceive the same 

visual content differently. This is clearly a barrier to efficient CBIR that may be overcome with 

more effective interfaces. This adds motivation for the thesis that will be addressed in this 

research, which can be stated as follows:  

“Eye tracking data provides more information relevant for query formulation in image retrieval 

that is not otherwise obtainable through existing conventional interfaces”. 

An eye controlled image retrieval interface will not only provide a more natural mode of 

retrieval but also potentially have the ability to anticipate the user’s requirements of rapidly 

retrieving images with a minimum of thought and manual involvement. To the author’s 

knowledge, there are only three other research groups [14][19][64] where eye tracking has been 

used in related work, however, they lack experimental validity in the context of CBIR. 

2.5.1. Key Research Questions 

To support this thesis statement, key research questions will need to be answered: 

 

1. Is there an informative relationship between gaze behaviour and a computational model of 

visual search? 

2. Can data from gaze behaviour be used to exceed the performance of other interface devices 

for visual tasks? 

3. What methodology should be used to measure subjects’ gaze behaviour? 

4. How can fixations and saccades from eye tracking data provide extra information relevant 

to image retrieval?  

5. Are there any limits to the speed of operation of a gaze driven retrieval interface?  
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6. What software and data frameworks are needed for the human eye to control an image 

retrieval interface? 

 

The literature review has shown the viability of eye tracking as a way of inferring interest. 

Question 1 investigates the relationship between gaze behaviour and a model of visual attention 

in order to partly validate the model and to assess the validity of the gaze data.  

Question 2 is aimed at investigating the effectiveness of an interface controlled by gaze 

behaviour when compared with other interfaces.   

Question 3 establishes the comparative framework within which each experiment is 

conducted to obtain significant results. 

Question 4 goes further by asking how this human visual behaviour can be exploited as 

visual input into a CBIR system and whether the time sequence of the eye tracking data can also 

provide new information relevant to image retrieval. For example, the mouse click is a mode of 

selection that takes place after a thought process. In this case, information from the thought 

process cannot be recorded. However eye tracking data provides a means of recording this 

information which may yield new and relevant information. 

Question 5 investigates the limits of speed of operation of the eye gaze interface for 

controlling image retrieval. 

Question 6 investigates the implementation needed to produce an eye controlled image 

retrieval interface. It defines the types of data and storage requirements as well as the processing 

resources and the timing constraints.  
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Chapter 3. Methodology 

3.1. Proposed System 

In this system it is proposed that the eye movement is used to formulate queries for CBIR 

processing as depicted in Figure 3.1. It is intended that this should provide a rapid and natural 

interface for searching visual digital data in an image database. A pre-computed network of 

similarities (Figure 3.13) between images in an image collection may be traversed very rapidly 

using eye tracking providing the users’ gaze behaviours yield suitable information about their 

intentions. It is reasonable to believe that users will look at the objects in which they are 

interested during a search and this provides the machine with the necessary information to 

retrieve plausible candidate images for the user.  Retrieved images will contain regions that 

possess similarity links with the previously gazed regions, and can be presented to the user in a 

variety of ways.   

As shown in Figure 3.1, the system is composed of four main parts: the eye tracking 

interface, the query formulation process, the image retrieval process and the indexing process. 

Eye tracking systems produce gaze parameters that may be compared and significant gaze 

patterns extracted. Parameters that can be obtained for query formulation include: 

• the duration of time that the user spends looking at an image (fixation),  

• the number of fixations on an image,  

• scan patterns (i.e. which images were viewed before or after other images), and  

• longer term changes in pupil size (e.g. during a session).  

The indexing process uses a similarity measure for the offline computation of similarity 

between images so that images similar to the query image can be successively presented to the 

user in the search process. Relevant images are retrieved using the similarity links generated. 
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Figure 3.1: System Architecture 

3.2. Eye Tracking Apparatus and Setup 

The technical facility employed in the conduct of experiments is the Eyegaze eye tracker 

produced by LC Technologies Inc. [27]. 
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3.2.1. Eye Tracking Equipment 

The Eyegaze system is an eye tracker designed to measure where a person is looking on a 

computer screen. The Eyegaze System tracks the subject's gazepoint on the screen automatically 

and in real time. The experimental setup of the system is shown in Figure 3.2. 

 

Figure 3.2: Experimental Setup 

The Eyegaze System uses the Pupil-Centre/Corneal-Reflection (PCCR) method to determine 

the eye's gaze direction. A video camera located below the computer screen remotely and 

unobtrusively observes the subject's eye. No attachments to the head are required. A small low 

power infrared light emitting diode (LED) located at the centre of the camera lens illuminates 

the eye. The LED generates the corneal reflection and causes the bright pupil effect, which 

enhances the camera's image of the pupil (Figure 3.3). 

 

Figure 3.3: Camera image of eye, illustrating bright image pupil and corneal reflection (adapted 

from [37])  

The accuracy of eye tracking systems depends in large measure on how precisely the image 

processing algorithms can locate the relative positions of pupil centre and the corneal reflection. 

Though it is possible to determine the boundary of the pupil in a normal picture of the eye, early 
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eye tracking systems used the bright-eye effect to enhance the image of the pupil, significantly 

increasing the accuracy of pupil location. To achieve the bright-eye effect, light is shone into the 

eye along the axis of the camera lens. The eye's lens focuses the light that enters the pupil onto a 

point on the retina.  Because the typical retina is highly reflective, a significant portion of that 

light emerges back through the pupil, and the eye's lens serendipitously directs that light back 

along the camera axis right into the camera. Thus the pupil appears to the camera as a bright 

disk, which contrasts very clearly with the surrounding iris. 

Specialized image-processing software in the Eyegaze computer identifies and locates the 

centres of both the pupil and corneal reflection. Trigonometric calculations project the person's 

gazepoint based on the positions of the pupil centre and the corneal reflection within the video 

image. The Eyegaze System generates raw gazepoint location data at the camera field rate of 50 

Hz. 

The procedure to calibrate the Eyegaze System is robust yet fast and easy to perform. The 

calibration procedure takes approximately 15 seconds and is fully automatic; no assistance from 

another person is required. The procedure does not accept full calibration until the overall gaze 

prediction accuracy and consistency exceed desired thresholds. To achieve high gazepoint 

tracking accuracy, the image processing algorithms in the Eyegaze System explicitly 

accommodate several common sources of gazepoint tracking error such as nonlinear gazepoint 

tracking equations, head range variation, pupil diameter variation and glint that straddles the 

pupil edge. A clamp with chin rest (Figure 3.2) provides support for chin and forehead in order 

to minimize the effects of head movements, although the eye tracker does accommodate head 

movement of up to 1.5 inches (3.8cm). It was not essential to use the chin rest, but this removed 

a potential source of error and eliminated any variance in head movement across subjects. A 

chin rest would not be acceptable in a practical CBIR system if it were used over an extended 

period of time. The system generates the eye found flag, gazepoint coordinates, pupil diameter, 

camera field count and location of the eyeball centre within the camera image. 

3.2.2. Pupil Centre Corneal Reflection (PCCR) Method 

The Eyegaze System uses the Pupil Centre Corneal Reflection (PCCR) method to measure the 

direction of the eye's gaze. The theory underlying the PCCR method states that the direction of 

the eye's gaze is directly related to the vector from the corneal reflection to the centre of the 

pupil within the camera image. This vector, often called the glint-pupil vector, is illustrated in 

Figure 3.4. 
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Figure 3.4: Glint-Pupil Vector and Direction of Gaze (PCCR Method) (adapted from [37])  

 

When a person looks directly at the camera, the image of the corneal reflection appears near the 

centre of the pupil image. As the person rotates his gaze upwards away from the camera, the 

pupil centre moves upwards away from the corneal reflection and the glint-pupil vector points 

higher. Similarly, as the person rotates his gaze to the camera's right (which is his left), the pupil 

image moves to the right of the corneal reflection and the glint-pupil vector points further right. 

The PCCR Method applies equally whether using the bright or dark pupil effects. The PCCR 

theory is based on the following assumptions: 

 

1. The eye's optic axis passes through two fixed points within the eye: the centre of the corneal 

sphere and the centre of the pupil. 

2. The orientation of the eye can be inferred from the measurement of these two points. 

3. The locations of these two points can be determined from the camera's image of the eye. 

The centre of the corneal sphere can be determined from the location of the corneal 

reflection, i.e. the reflection of the LED off the corneal surface of the eye. 

4. The pupil centre can be calculated from the observable edges of the pupil image. 

 

Figure 3.5 illustrates the geometric optics of the PCCR method. - The horizontal and vertical 

components of the eye's orientation angle, measured with respect to the line between the centre 
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of the camera lens and the centre of the corneal sphere, can thus be measured from the vector 

distance between the corneal reflection and the pupil centre within the camera image. 

 

Figure 3.5: Geometric Optics of the PCCR Method (adapted from [37])  

3.2.3. Computer Hardware and Software Configuration 

The Eyegaze System can be used in two ways. In the Single Computer configuration, the eye 

tracking application program and the gazepoint calculations run directly on the Eyegaze System 

computer (Figure 3.6). In this case, the Eyegaze camera is mounted below the Eyegaze 

computer's monitor, which then performs the applications functions and drives the application 

display on its monitor, while also performing the Eyegaze image processing functions required 

to track the test subject's gazepoint. The single computer configuration is preferable for offline 

analysis of gaze data as it utilises limited resources. Application processing and gazepoint 

calculation are performed sequentially. The first experiment was performed using the Single 

Computer Configuration. 

 

foveola 
Corneal 
reflection 

point 

Camera 
Z axis 

Centre of corneal 
sphere 

Pupil 
centre 

Visual 
axis 

Optic 
axis 

Pupil 
centre 

ray 

Corneal 
reflection ray 

Camera 
sensor 
plane 

Corneal 
reflection 

image 

Pupil 
centre 
image 

Glint pupil 
vector 

Eye illuminator 
(LED) 

Өo eye’s optic 
orientation angle 

Өg gaze 
angle 

Camera lens 



 

- 40 - 

 

Figure 3.6: Single Computer Configuration (adapted from [37]) 

 

Subsequent experiments used the double computer configuration. In this configuration 

(Figure 3.7), the application program runs on another (client) computer and the Eyegaze 

computer acts as a peripheral eye tracking instrument, becoming a "black box" that transmits 

gazepoint data to the client via an Ethernet or serial communications link. The client computer 

performs the application functions and drives the applications display on its monitor. The 

Eyegaze camera is mounted below the client computer's monitor. The Eyegaze computer 

performs the Eyegaze image processing functions and transfers the measured gazepoint data to 

the client computer via either an Ethernet or a serial communications link in real time. The 

Eyegaze computer's monitor displays the subject's relative gazepoint in real time, allowing the 

application to determine the user’s response online. The system can thus respond accordingly. 

The double computer configuration is preferable if the application code consumes a large 

amount of CPU time (i.e. if there is not enough CPU time to execute both the application and 

Eyegaze image processing code in real time). The Eyegaze System is said to act as a peripheral 

device to a client computer in the Double Computer Configuration. 
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Figure 3.7: Double Computer Configuration (adapted from [37]) 

 

The Eyegaze System is used in the experiments to generate raw gazepoint location data at the 

camera field rate of 50 Hz (units of 20ms). There is a finite delay between the time that a 

subject's eye moves and the time that the Eyegaze System reports the eye movement data. The 

net delay is typically just less two sample intervals i.e. 35 milliseconds. Figure 3.8 illustrates the 

timing of these operations, highlighting the duration for Eyegaze data-collection and image 

processing. The Eyegaze image processing software is driven by interrupts generated from the 

frame grabber card. At each video field interval (20 milliseconds in the 50 Hz system), the 

frame grabber generates an interrupt and the frame-grabber's software drivers call back to the 

Eyegaze image processing software with the latest camera image (still frame) of the eye. The 

Eyegaze image processing software processes the camera image and sends the gaze data to the 

application. The Eyegaze image processing functions are given a high scheduling priority so 

that they can keep pace with the camera images generated in real time. The processing of 

information from the eye tracker is carried out on a 128MB Intel Pentium III system with a 

video frame grabber board. 
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Figure 3.8: Gazepoint Measurement Delay (adapted from [37]) 

3.3. Eyegaze Data Collection  

The eye gaze application converts a series of uniformly sampled (raw) gazepoints into a series 

of variable-duration saccades and fixations that can be extended based on findings from 

empirical data. Currently fixations are detected by looking for sequences of gazepoint 

measurements that remain relatively constant. If a new gazepoint lies within a circular region 

around the running average of an on-going fixation, the fixation is extended to include the new 

gazepoint. The radius of the acceptance circle on a region (Figure 3.9) is dependent on the 

duration of user’s gazepoint on that region.  The distance from average fixation to still be 

considered as part of that fixation (deviation threshold) was 12.7 pixels. 
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Figure 3.9: Fixations and Saccades 

To accommodate noisy Eyegaze measurements, a gazepoint that exceeds the deviation threshold 

is included in an on-going fixation if the subsequent gazepoint returns to a position within the 

threshold. If a gazepoint is not found, during a blink for example, a fixation is extended if the 

next legitimate gazepoint measurement falls within the acceptance circle, and if there are less 

than the minimum fixation samples of successive missed gazepoints. Otherwise the previous 

fixation is considered to end at the last good gazepoint measurement. Zero or negative co-

ordinates caused by blinks, excessive squinting and out of range data, could be significant and 

might be decipherable by careful denoising and analysis of resulting data. The Eyegaze System 

generates the gazepoint co-ordinates, pupil diameter, and fixation and saccade analysis.  

3.4. Visual Attention and Similarity 

It has been shown that attention mechanisms can be directly related to similarity measures [103] 

and affect the strength of those measures.  During a search the human eye is attracted to salient 

regions and those regions probably have most impact and contribute most towards recognition 

and user search strategies.  This work makes use of both aspects; first an attention model [103] 

is used to automatically identify candidate regions of interest for validation against eye tracking 

data where we would expect most fixations to occur; second an attention-based similarity metric 

is used to define visual relationships in a database of images for exploration with an eye 

tracking interface.   

3.4.1. Overview of the Visual Attention Model  

The Visual Attention (VA) model [103] employs an algorithm that assigns high attention scores 

to pixels where neighbouring pixel configurations do not match identical positional 

arrangements in other randomly selected neighbourhoods in the image. This means, for 
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example, that high scores will be associated with anomalous objects, or edges and boundaries, if 

those features do not predominate in the image. A flowchart describing this process is given in 

Figure 3.10.   

   

 

Figure 3.10: Visual Attention Model 

 

The process of computing the attention score for a pixel (x,y) begins by selecting a small 

number of random pixels in the neighbourhood of (x,y). Then another pixel (x’,y’) is selected 

randomly elsewhere in the image. The pixel configuration surrounding (x,y) is then evaluated 

with the same configuration around (x’,y’) and each pixel tested for a mismatch. If a mismatch 

is detected, the score for (x,y) is incremented and the process is repeated for another (x’,y’). If 

the configurations match then the score is not incremented and a new random configuration 

around (x,y) is generated. The process loops for a fixed number of iterations for each (x,y).  

Regions obtain high scores if they possess features not present elsewhere in the image. Low 

scores tend to be assigned to regions that have features that are common in many other parts of 

the image. The VA scores for each pixel are displayed as a map using a continuous spectrum of 

false colours with the scores being marked with a distinctive colour as shown in Figure 3.11 . 
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The green colour represents the region with the highest visual attention scores while the red and 

black regions have lower scores. 

 

  

Figure 3.11: Image with corresponding Visual Attention Map 

3.4.2.  Similarity Model  

Studies in neurobiology and computer vision [9][31] are suggesting that human visual attention 

is enhanced through a process of competing interactions among neurons representing all of the 

stimuli present in the visual field.  The competition results in the selection of a few points of 

attention and the suppression of irrelevant material.  Such a mechanism has been explored [20] 

and extended to apply to the comparison of two images in which attention is drawn to those 

parts that are in common rather than their absence as in the case of saliency detection in a single 

image [1].  

Image retrieval systems normally rank the relevance between a query image and target 

images according to a similarity measure based on a set of features. The similarity measure 

[103] used in this work, termed Cognitive Visual Attention (CVA model) is not dependent upon 

intuitively selected features, but instead upon the notion that the similarity of two patterns is 

determined by the number of features in common.  This means that the measure can make use of 

a virtually unlimited universe of features rather than a tiny manually selected subset that will be 

unable to characterise many unseen classes of images.  Moreover the features are deliberately 

selected from image regions that are salient according to the model and, if validated, reflect 

similarity as judged by a human. The CVA model relies upon the matching of large numbers of 

pairs of pixel groups (forks) taken from patterns A and B under comparison (Figure 3.12).  
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Figure 3.12: Neighbourhood at location x matching at y 

Let a location x in a pattern correspond to a set of measurements a  

x = (x1, x2) and  a = (a1, a2, a3) 

Define a function F such that a = F(x).  

Select a fork of m random points SA in Pattern A (e.g. 3 pixels shown in Figure 3.12) where  

SA = {x1, x2, x3, ..., xm}. (1) 

Likewise select a fork of m random points SB in Pattern B where  

SB = {y1, y2, y3, ..., ym} where (2) 

xi – yi = δδδδ (3) 

The fork SA matches fork SB if  

|Fj(xi) – Fj(yi)| < εj   ∀ i for some displacement δδδδ (4) 

 

In general εεεε is not a constant and will be dependent upon the measurements under comparison  

εj = fj (F(x), F(y)) (5) 

In addition it is required that |Fk(xi) – Fk(xj)| > εk  for some k, i ≠ j  so that some  pixels in SA 

mismatch each other and the similarity measure is taken over regions of high attention and not 

just on areas of sky, for example. 

In effect up to N selections of the displacements δδδδ apply translations to SA to seek a matching 

fork SB. 

The CVA similarity score CAB is produced after generating and applying T forks SA: 

∑
=

=
T

i 1

iAB wC  where wi = 1 if SA matches fork SB  or 0 otherwise. (6) 
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CAB is large when a high number of forks are found to match both patterns A and B and 

represents features that both patterns share. In other words, the CVA similarity score is 

incremented each time one of the set of pixel sets matches a set in pattern B. This means that 

image pairs A, B which possess large numbers of matching forks will obtain high CVA scores 

by virtue of the number of such features they possess in common. It is important to note that if 

CAC also has a high value it does not necessarily follow that CBC is large because patterns B and 

C may still have no features in common. The measure is not constrained by the triangle 

inequality. 

The CVA algorithm was applied to the 1000 images to pre-compute similarity scores for all 

pairs of images to obtain a similarity score matrix (Table 3.1 and Figure 3.13). The scores along 

the diagonal are always the largest as these are the cases where the patterns are being compared 

with themselves.  In this example a query image 3 will produce image 8 as one of the most 

similar images where 241 is the highest score in the column ignoring the diagonal entry, 

followed by image 6 where 96 is the second highest score. 

Table 3.1: Similarity Score Matrix 

Images 1 2 3 4 5 6 7 8 9 10 … 1000 

1 343 0 0 2 16 1 3 2 0 1 … 9 

2 0 479 1 0 0 1 0 0 0 1 … 0 

3 2 2 466 0 18 84 6 179 0 40 … 3 

4 0 0 0 288 1 0 0 0 0 3 … 0 

5 26 1 11 5 416 5 2 8 0 12 … 24 

6 1 2 96 0 6 433 0 28 0 31 … 1 

7 14 0 7 0 3 0 476 8 0 3 … 11 

8 11 4 241 1 9 77 20 487 0 31 … 6 

9 0 1 0 0 0 0 0 0 453 0 … 0 

10 4 3 41 1 11 39 0 19 0 468 … 0 

… … … … … … … … … … … … … 

1000 22 1 9 0 37 0 18 9 0 1 11 444 
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Figure 3.13: Representation of Pre-computed Similarity Links 

The similarity measure is used for the offline computation of similarity between images so that 

images most similar to the query image can be successively presented to the user in the search 

process. The user is able to navigate the similarity links as illustrated by the green arrow/path in 

Figure 3.13. 

Similarity values obtained in this way may be used to drive an image retrieval engine. 

However the computation requirements for the similarity matrix go up as the square of the 

number of images. It is envisaged that larger databases would be divided up into parts before 

analysis and a hierarchy of exemplars generated. Retrieval tasks would make use of such a 

hierarchy to identify clusters likely to contain target images rather than attempt to carry out an 

exhaustive search. It would be expected that as an image collection expands, new classes would 

be introduced and new clusters would emerge based on entirely different sets of features in 

common. This approach is implemented in [2], and identifies clusters within an extremely 

diverse set of images in the context of the identification of photo locations. It is significant that 

despite this diversity, the approach is able to extract visually similar clusters of images that can 

be classified according to location. It should be noted that the similarity metric was selected for 

its relationship to attention in which features are selected according to their attentiveness [103].  

However, it was also selected for experimental expedience and other types of measure could 

have been used. 

3.5. Summary 

Ware and Mikaelian [81] state that the eye can be used as a fast selection device providing the 

target size is not too small.  Eye tracking systems provide an approach for measuring a 

computer user's ocular behaviour, however, for query formulation in a CBIR system a 



 

- 49 - 

computational measure of visual similarity is required to compute relevance scores for each 

selected image.    

The use of a clamp with chin rest is recommended to remove a potential source of error and 

eliminate any variance in head movement across subjects. Calibration of the Eyegaze eye 

tracker is necessary to measure the properties of each subject’s eye before the start of each 

experiment and limits the application of the equipment in the field, but this should not affect the 

results in the laboratory.  

A series of experiments are now described in the following chapters to establish the 

feasibility of an eye gaze driven search mechanism.  

The first experiment investigates whether users look more frequently at salient regions as 

determined by the attention model and whether any other eye behaviour was apparent.  A 

negative result would indicate a potential lack of information in gaze data relevant to image 

retrieval. 

The second experiment investigates the effectiveness of an interface controlled by gaze 

behaviour when compared with other interfaces.  In this experiment the speed of operation was 

compared with that of a mouse interface.  Again a negative result would cast doubt on the 

benefits of employing eye movement in such an interface. 

Finally the proposed system is implemented with the aim of investigating whether eye 

tracking can be used to reach target images in fewer steps than by chance. The effect of the 

intrinsic difficulty of finding specific images and the time allowed for the consideration of 

successive selections is also investigated. Further experiments are conducted to further 

investigate users’ gaze behaviour. 

The effect of processing delays in implementing the proposed system, the choice of stimuli 

and the variables sought are dependent on each experiment design and will be described in 

subsequent sections. Implementations of findings from each experiment will mean that the 

application will require continual development.  
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Chapter 4. Attentional Gaze Behaviour 

4.1. Objective 

The objective of this experiment is to investigate whether there is in fact an informative and 

useful relationship between gaze behaviour and the visual attention model introduced in section 

3.4.1. Stentiford’s VA model [103] uses a neighbourhood matching process that is independent 

of features and possesses some properties that are related to human vision. These include an 

assignment of importance to anomalous objects and a conformance with results obtained by 

Treisman [87] on human behaviour.  The relationship between gaze behaviour and the attention 

model may be used partly to validate the model, and to establish that eye behaviour is affected 

by image content. A negative result at this stage would indicate a lack of information in gaze 

data that is related to salient regions as indicated by the VA model.  

4.2. Experiment Design 

The gaze behaviour of participants is compared with data obtained through a model of Visual 

Attention [103] as shown in Figure 4.1.  Differences in behaviour arising from varying image 

content are detected and the relationship between gaze behaviour and the visual attention model 

are explored. Regions of Interest are identified both by human interaction and prior analysis and 

used to explore aspects of vision that would not otherwise be apparent. Images with and without 

obvious subjects were used in this work to accentuate any behaviour differences that might be 

present. 

 

Figure 4.1: System Framework 

For each image the Visual Attention Algorithm is applied to compute VA scores for each 

pixel. The same image is viewed by a human participant using the Eyegaze eye tracker [27]. 
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The eye tracking data and the VA data are combined and analysed by identifying the 

coordinates of the gaze points on the image and obtaining the corresponding scores from the VA 

data.  

4.2.1. Participants and Procedure 

The Eyegaze system was used with the single computer configuration for this experiment. Over 

the course of the experiment four participants (3 males and 1 female) were presented with a 

series of images. The average age of the participants was 28.3 years. All participants had normal 

or corrected-to-normal vision and had no knowledge of the purpose of the study. All 

participants were encouraged to minimise head movement as no chinrest was used in this 

experiment. The participants were seated ~1m from the monitor.  Over the course of the 

experiment, participants were presented a series of images for 5 seconds each separated by 

displays of a blank screen followed by a central black dot on a white background (Figure 4.2).   

Participants were asked to focus on the dot before each image was loaded. 

 

1sec 3secs 5secs 1sec 3secs 
 

    

Blank 
Screen 

Dot Image 
Blank 

Screen 
Dot 

Figure 4.2: Display Sequence 

4.2.2. Data 

The images were obtained from digital libraries already gathered from various royalty-free 

sources. All images were displayed on a 15" LCD Flat Panel Monitor at a resolution of 

1024x768 pixels.  Image sizes were 1017 x 723 pixels. The images were categorised according 

to whether they had an obvious region of interest or not. Ten images contained obvious regions 

of interest, and the remainder contained unclear or no regions of interests. The images with 

obvious regions of interest could have a single subject on the background while those without 

obvious regions of interest could have many competing distractors. The single-subject could be 

a small subject such as a distant aeroplane in the sky or large subject such as a big bird 

photographed closely. The selection of images was an important factor that affects the output 

and was an aspect of the study.   

4.3. Results 

Results with four participants on six images are shown in Figure 4.3 to Figure 4.8. Three images 

with obvious regions of interest (Figures 4.3 to 4.5), and three images with unclear or no regions 

of interests are presented (Figures 4.6 to 4.8). The corresponding VA maps and graphs of the 
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four participants are also presented.  The VA score that corresponded to the pixel at each 

fixation point was associated with the time of the fixation and plotted as graphs for study in 

units of 20ms.  It was observed that there was considerable variation in behaviour over the four 

participants, but all did not ignore the regions with the highest VA scores early in the display 

period, typically, in the first 2 seconds. 

 

Original Image 

 

Saliency Map 

 

Fixation and Saccade Map (Participant B) 

 

Plots of VA Score against Time (20ms sample intervals) 

Participant A 

 

Participant B 

 

Participant C 

 

Participant D 

 

Figure 4.3: Image 1 with unclear ROI 
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Original Image 

 

Saliency Map 

 

Fixation and Saccade Map (Participant B) 

 

Plots of VA Score against Time (20ms sample intervals) 

Participant A 

 

Participant B 

 

Participant C 

 

Participant D 

 

Figure 4.4: Image 2 with unclear ROI 
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Original Image 

 

Saliency Map 

 

Fixation and Saccade Map (Participant B) 

 

Plots of VA Score against Time (20ms sample intervals) 
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Figure 4.5: Image 3 with unclear ROI 
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Original Image 
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Fixation and Saccade Map (Participant A) 

 

Plots of VA Score against Time (20ms sample intervals) 
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Figure 4.6: Image 4 with obvious ROI 
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Figure 4.7: Image 5 with obvious ROI 
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Fixation and Saccade Map (Participant B) 

 

Plots of VA Score against Time (20ms sample intervals) 
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Figure 4.8: Image 6 with obvious ROI 

The variability of the VA scores (x) over time is illustrated by the variance: 
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where jx  is the VA score at the j+1 fixation point and. 
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The variance ν measures the average spread or variability of the VA scores for the scan-path 

and the image. The variances of the VA scores for the first two seconds of the display period 

over six images for four participants and the variance of all the VA scores for each image are 

presented in Table 4.1 and Figure 4.9. 

Table 3 shows the total length of time in ms. spent fixating on regions of high VA score for 

each participant on each image. This shows that in all cases a larger proportion of the 5 seconds 

exposure time was spent observing the salient regions than the background, if such a salient 

region was present in the image.  Images without obvious subjects did not give such a 

pronounced result.  

Table 4.1: Variance of the VA scores 

Participants 
 

Image 

Variance 1 2 3 4 

Image1 298 325 193 333 532 

Image2 500 479 496 328 629 

U
n

cl
ea

r 

R
O

I 

Image3 175 389 175 365 197 

Image4 443 741 687 1094 857 

Image5 246 1432 1453 1202 1466 

O
b

v
io

u
s 

R
O

I 

Image6 378 1246 1226 862 1497 
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Figure 4.9: Variance histogram 
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Table 4.2: Times (ms.) spent fixating on regions of high VA score 

Participants 
Images 

A B C D 

1 40 60 20 140 

2 580 420 500 400 

U
n

cl
ea

r 

 R
O

I 

3 100 0 40 20 

4 2820 2340 2420 1280 

5 3680 1480 2220 1960 
O

b
v
io

u
s 

R
O

I 
6 4240 980 1620 1240 

 

4.4. Analysis and Discussion 

The results indicate that regions with high VA scores attract eye gaze for the images studied.  

However, it was apparent that individual behaviours varied considerably and it was difficult to 

identify a pattern over such a small amount of data. Nevertheless the results did show that there 

was a significant tendency to spend more time looking at regions of high visual attention when 

these were present.  Also there was a higher variance in VA score over time on images with 

obvious ROIs due to gaze patterns shifting between areas of high visual attention and the 

background. This would seem reasonable in view of a natural inclination to make rapid visual 

comparisons between anomalous material and a relatively predictable background. These 

findings do appear to support the visual attention model, which is also based on comparison of 

pixel regions taken from the whole image. 

A substantial part of the gaze of the participants during the first two seconds of exposure is 

directed at areas of high visual attention as estimated by the model.  The results suggest that 

gaze moves towards the location of salient objects where fixations take place.  The eyes move 

from a prior foveal location, the black dot at the centre of the screen in this experiment, and 

quickly reposition to a salient region in the obvious ROI images which attracted attention. The 

fovea is now directed at the region of interest and attention is now directed at perceiving the 

region under inspection at high resolution if the user so desires. Many of the saccades for 

several participants are characterised by frequent movements to and from the areas of high 

visual attention, which is shown by high variances for images containing salient material.  

Several participants fixated on the region of interest for longer periods of time but still 

periodically scanned background material. This indicated the potential of an attention weighted 

algorithm for image search. 

The salience divergence model by Parkhurst et al [54] proposes that the bottom up 

component is more influential early in viewing, but becomes less so as viewing progresses. 
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Their framework predicts that the difference between saliency at fixated locations and at non-

fixated locations will be greatest early in viewing. Indeed our results are consistent with 

Parkhurst’s, in that participants fixated obvious regions of interests early in the display and it 

became less influential, depending on individual participant, as viewing progressed. Again 

according to Henderson and Hollingworth [22] the visual informativeness of structural 

information appears to influence initial fixation placement, while the meaning of an image 

region influences the overall fixation density. The results in this experiment confirm that the 

initial fixation placement is predominantly on the visually informative region of the image if 

one is present.  

Mackworth and Morandi [39] found that fixation density was related to the rated 

informativeness for different regions of a segmented picture and that few fixations were made to 

regions rated as uninformative. A separate group of observers were asked to grade the rate of 

informativeness of the segmented picture. In this thesis the visual attention model was used 

equivalently to score the level of informativeness in the images.  

Interestingly, the results also show that the variance of VA scores for the gaze path is higher 

than the variance of the VA scores for every pixel in the image (Table 3.1).  The participant may 

be gathering information by scanning between high VA regions and background material. This 

is especially illustrated by the high value of the variance of the VA scores for obvious-ROI 

images. The variance for the whole image, which is similar to the variance for unclear-ROI 

images, is significantly lower than the variance of the scores generated by the scan-path of 

participants on obvious-ROI images. This indicates that eye behaviour is attracted by salient 

locations, but appears to also require frequent reference to non-salient background regions.   

4.5. Lessons Learnt 

During the experiment some participants reported that eye blinking and blur due to continuous 

screen-stare were unavoidable. The eye tracking data corresponding to blinking and off-image 

gaze points were discarded in the analysis. The Eyegaze equipment is sensitive to excessive 

head movement, which disrupts calibration and so a chin rest was used in subsequent 

experiments. 

More work is necessary to obtain statistical significance across more images and 

participants. The participants were not given specific tasks when viewing the images in these 

experiments and this may have introduced some confounding effects.  Future experiments 

should be focused on specific retrieval tasks, which should reduce inter-subject variability. 



 

- 61 - 

4.6. Summary 

The goal of this study was to explore the relationship between gaze behaviour and the Visual 

Attention model and to establish that image content is reflected in eye behaviour. Results show 

that obvious regions of interests are attended early in the display period and that participants 

discriminated within the image by periodically scanning background and foreground in the 

images studied. The identifiable discriminatory pattern of eye movement behaviour indicates 

that eye trackers may yield useful information for use in image retrieval through a suitable 

interface. 

The next section describes experiments carried out to establish some of the benefits of using 

an eye tracking interface that are over and above those of conventional interfaces. 
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Chapter 5. Search Gaze Behaviour 

This chapter investigates search behaviour on images in an eye tracking interface. Firstly, the 

speed efficiency of eye selection is measured.  Secondly, the proposed system was implemented 

with the aim of investigating whether eye tracking can be used as an interface for image 

retrieval. The gaze behaviour is further analysed for additional sourcres of relevance from gaze 

behaviour. 

5.1. Relative Speed of Eye and Mouse Interfaces 

5.1.1. Objective 

The second experiment investigates the effectiveness of an interface controlled by gaze 

behaviour when compared with other interfaces.  In this experiment the speed of operation is 

compared with that of a mouse interface.   

5.1.2. Equipment and Data 

The Eyegaze System was used in this experiment with the double computer configuration. A 

clamp with chin rest provided support for chin and forehead in order to minimize the effects of 

head movements, although the eye tracker does accommodate head movement of up to 1.5 

inches (3.8cm). Calibration was needed to measure the properties of each subject’s eye before 

the start of the experiments. The loading of 25 images in the 5 x 5 grid display took an average 

of 110ms on a Pentium IV 2.4GHz PC with 512MB of RAM. Gaze data collection and 

measurement of variables were suspended while the system loaded the next set of images into 

memory.  During this period the display remained unchanged and was updated instantaneously 

as soon as the contents of the next display had been composed.  

25 images were selected from the Corel image library [105]. The initial screen including the 

target image is shown in Figure 5.1. These images were displayed on a 15" LCD Flat Panel 

Monitor at a resolution of 1024x768 pixels. 

5.1.3. Experiment Design 

A total of 12 participants took part in this experiment. Participants included a mix of students 

and university staff. All participants had normal or corrected-to-normal vision and provided no 

evidence of colour blindness. 

Participants were asked to locate a target image from a series of 50 grid displays of 25 stimuli 

(24 distractors and 1 target image shown in Figure 5.1). On locating the target image, the 
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participants selected the target by clicking with the mouse or fixating on it for longer than 40ms 

with the eye. The grid was then re-displayed with the positions of the images and the target 

randomly re-shuffled. Participants were randomly divided into two groups (Table 5.1), the first 

group used the eye tracking interface first then the mouse, and the second group used the 

interfaces in the reverse order.  This enabled any variance arising from the ordering of the input 

modes to be identified.  Different sequences of the 50 target positions were also employed to 

identify any confounding effects arising from the ordering of the individual search tasks. All 

participants experienced same-sequence of target positions as well as different-sequences while 

using the two input modes. Figure 5.2 describes a typical sequence of display for the images. 

A typical participant in the mouse first group performed four runs: mouse (target sequence 

1), eye (target sequence 1), mouse (target sequence 2) and eye (target sequence 3). There was a 

1 minute rest in between runs. 

  

 

 

Figure 5.1: 25 images arranged in a 5x5 grid used in runs (target image expanded) 

 

D D D D D  D D D D D  D D D D D  D D D D D  D D D D D 

D D D D D  D T2 D D D  D D D D D  D D D D D  D D D D D 

D D D D T1  D D D D D  D D D D D  D D D D D  D D D D D 

D D D D D  D D D D D  D D D D D  D D D D D  D D D T50 D 

D D D D D  D D D D D  D D D T3 D  T4 D D D D … D D D D D 

Figure 5.2: Sequence of displays for a typical target sequence (T1=Target 1; D=Distractors) 
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5.1.4. Results 

Response Time 
Order Target Positions Input Mode 

Mean Standard Deviation 
Mouse 2.33 0.51 

Same-sequence 
Eye 1.79 0.35 
Mouse 2.43 0.38 

Mouse First  
(6 participants) 

Different-sequence 
Eye 1.96 0.42 

Mouse 2.35 0.82 
Same-sequence 

Eye 2.29 0.74 

Mouse 2.59  1.44 

Eye First 
(6 participants) 

Different-sequence 
Eye 2.27  0.73 

Table 5.1: Mean response times for target image identification task 

The length of time it took to find the target image from the grid display was recorded and 50 

response times were obtained for each participant’s run. The mean response times were 

calculated and presented in Table 5.1.  

The 48 means were entered into a mixed design ANOVA with three factors (order of input, 

input mode, and target positions). 

  

INPUT Main Effect

F(1,10) = 8.72; p < 0.0145
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Figure 5.3: Mean response time by input 

 There was a significant main effect of input, F(1,10)=8.72, p=0.015 with faster response times 

when the eye was used as an input (2.08sec.) than when the mouse was used (2.43sec.) as 

shown in Figure 5.3. The main effect of the order was not significant with F(1,10)=0.43, 

p=0.53. The main effect of target positions was not significant, F(1,10)=0.58, p=0.47. All two-

factor and three-factor interactions were not significant. 
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Figure 5.4: Mean response time by input and target position sequence 

Further analysis of the first-order and second-order simple main effects was conducted 

individually on all levels of the three factors. The input modes influenced response times of 

subjects when they were presented with the same-sequence target positions, F(1,10)=14.22, 

p=0.004, with faster eye response times (M=2.04sec, SD=0.61) than the mouse (M=2.34sec, 

SD=0.65) as shown in Figure 5.4. The effect of the input modes on the response times was not 

significant when users were presented with different-sequences, F(1,10)=3.96, p=0.075, despite 

having a larger difference between the input modes. The eye had faster response times 

(M=2.12sec, SD=0.59) than the mouse (M=2.51sec, SD=1.01) as shown in Figure 5.4.  
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Figure 5.5: Mean response time by input and Mouse/Eye order 

 

The input modes influenced the response times of subjects in the Mouse First group, 

F(1,10)=9.09, p=0.013, with faster eye response times (M=1.878sec, SD=0.381) than the mouse 
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(M=2.38sec, SD=0.43). The response time was faster with the eye interface than the mouse 

when the participants used the mouse interface first and no significant difference between the 

eye and mouse interfaces when the eye was used first, p=0.27 (Figure 5.5).  
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Figure 5.6: Mean response time by input, order and same-sequence target position 

The input levels influenced the response times of subjects in the Mouse First group when they 

were presented with the same sequence target positions, F(1,10)=22.81, p=0.001, with faster eye 

response times (M=1.79s, SD=0.345) than the mouse (M=2.33s, SD=0.51). The response time 

was faster with the eye interface when the mouse was used first and participants experienced the 

same-sequence target positions (Figure 5.6). 

There were no other significant simple main effects. A fourth factor of display was included 

in the mixed design ANOVA to investigate the effect of the grid display (Figure 5.1) changes. 

There was a significant main effect of display, F(49,490)=2.39, p<0.0001. This indicated that 

the displays affected the response times, as each display is affected by the contents of previous 

displays. It could also be argued that the effect of display changes might be present in this 

experiment during display changes and so the average response time is preferred in the three-

factor design. 

5.1.5. Analysis and Discussion 

The 25 stimuli presented to each participant and the predetermined choice of image target 

produced a difficult task and the runs required a high cognitive load. The participant had to 

search for the target and then make a selection.  When using the mouse the participant had to 

first locate the cursor and then move the mouse to the item to be selected. This can result in 

slower mouse responses. An eye tracking interface requires a fixation for a fixed period to make 

a selection. The results indicate slower mouse responses and is supported by the main effect of 



 

- 67 - 

input (p=0.015) and is consistent with Ware and Mikaelian’s conclusions [81], who showed that 

fixation dwell time can be a faster selection method than button press and mouse clicks 

providing the target size is not too small.  In addition Sibert and Jacob’s experiments [68] 

involving circles requiring little thought, and letters  that required comprehension and search 

effort, also found faster eye gaze interaction than the mouse in both experiments.  

It could be suggested that some of the skills gained through the use of the mouse in this task 

are passed on and remembered during the subsequent eye gaze task thereby obtaining a large 

difference in response times.  On the other hand any new skills acquired during the use of the 

eye do not make much difference to subsequent mouse performance.  This may help to confirm 

that simple knowledge of target positions from previous tasks is not a major confounding factor 

in the results.   

 Although, there was a simple effect of the input on the same-sequence target positions, the 

differences in the mean response times were similar as shown in Figure 5.4. There was a 

significant variability around the means observed on closer scrutiny of the data. The different-

sequence target positions were not affected by the input and will be the choice for future 

experiments. The significance of both conditions together (Mouse First and same-sequence 

target positions) was also tested. Given that there was a simple effect individually on the Mouse 

First group and same-sequence target positions, the test of significance on both conditions was 

not surprisingly high (p=0.001).  

5.1.6. Lessons Learnt 

The effects of covert attention were minimized by giving users clear and focussed instructions. 

Future work is aimed at devising new interfaces for content based image retrieval that are easier 

and more natural to use and which converge to the targets rapidly through the use of behavioural 

information extracted in real time from eye gaze data. 

5.1.7. Summary 

An image identification task involving searching for a target image from a display of 24 other 

distractor images yielded task completion times for two modes of interface control and two 

experimental conditions. Results indicated faster target identification for the eye interface than 

the mouse for identifying a target image on a display. There were significant simple main 

effects of the eye on the Mouse First group and the same-sequence target positions. This result 

might indicate that skill transfer was taking place when the mouse was used first but not when 

the eye was used first. This could suggest that the experience gained during visual tasks carried 

out using a mouse will benefit users if they are subsequently transferred to an eye tracking 

system.  
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Having shown that useful information is present in eye gaze data, and that selection by gaze 

can be faster than selection by mouse, the next section describes a task-oriented experiment 

using eye gaze data alone to retrieve target images.  The fast selection by eye is used to infer 

relevance and extract and display images from the database that are likely to be closer to the 

target. 

5.2. Image Retrieval 

5.2.1. Objective 

The proposed system (Figure 3.1) is implemented with the aim of investigating whether eye 

tracking can be used to reach target images in fewer steps than by chance selection. The effect 

of the intrinsic difficulty of finding specific images and the time allowed for the consideration 

of successive selections are also investigated. 

5.2.2. Image Database 

As described in methodology chapter, 1000 images were selected from the Corel image library 

[105] to compute similarity links.  Images of 127 kilobytes and 256 x 170 pixel sizes were 

loaded into the database. The categories included boats, landscapes, vehicles, aircrafts, birds, 

animals, buildings, athletes, people and flowers. The initial screen including the target image is 

shown in Figure 5.7. Images were displayed as 229 x 155 pixel sizes in a 4 x 4 grid display.  

5.2.3. Search Task 

Images are presented in a 4 by 4 grid with the target image presented in the top left corner of the 

display (Figure 5.7).  The user is asked to search for the target image and on the basis of the 

gaze behaviour the machine selects the most favoured image.  The next set of 15 images is then 

retrieved from the database and displayed for the next selection. The loading of 16 images in the 

4 x 4 grid display took an average of 100ms on the same system. Gaze data collection and 

measurement of variables were suspended while the system loaded the next set of images into 

memory.  During this period the display remained unchanged and was updated instantaneously 

as soon as the contents of the next display had been composed. 
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Figure 5.7: Initial screen leading to final screen with retrieved target 

5.2.4. Random Selection Strategy 

Searching on displays produces two main problems. Firstly if the target is not similar to any of 

the currently displayed set (e.g. a cluster of visually different images), then it is very difficult for 

the user to direct the search away from the displayed set and towards the target [77]. Secondly 

the user’s selections from successive displays could enter a loop in which the displays lead back 

to each other, and no exit towards the target is possible.  These two problems were explored 

further by using a random selection algorithm. In addition this strategy provided a performance 

base-line which any more intelligent approach would need to exceed. 

The automatic random selection tool randomly selected an image from each successive 

screen holding 15 displayed images rather than by eye gaze. This enabled the following: 

• initial exploration of the structure of the similarity links in the database 

• guidance for the choice of the grid size 

• analysis of the benefits of completely random image retrieval 

• selection of target images 

5.2.4.1.  Similarity Measure Structure 

In Table 3.1 the CVA similarity scores CAB for images 3 and 8 are 179 and 241 where A=3 and 

B=8. The CVA algorithm is such that the number of forks found to match both images A and B 

will not always be the same when implemented at different occasions. The CVA similarity score 

is not a symmetric measure.  For example, an image of one object has a higher score when 

compared to an image of two identical objects than the reverse, because it is easier to find 

features present in the single object image that are also present in the multiple object image than 

it is in the reverse direction. The automatic random selection tool was implemented to 

���� 
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investigate the likelihood of finding targets using either the asymmetric values (CAB) or 

symmetric values computed from the average of CAB and CBA.   

The random selection tool was repeated three times for each of the 1000 images acting as the 

target image.  Table 5.2 shows the frequency distribution of the number of displays or steps to 

target. The values remained relatively similar for all three runs, reflecting a structure within the 

database. Interestingly the asymmetric values yielded fewer steps to target than the symmetric 

values and will be the choice for all subsequent experiments.   This result reveals a potential 

benefit of an asymmetric measure and a possible disadvantage of a symmetric measure such as 

the Euclidean distance. 

Table 5.2: Exploration of similarity matrix 

Steps to target asymmetric symmetric 

  Mean  Mean 

1-25 133 136 132 134 106 104 99 103 

26-50 39 44 46 43 52 37 38 42 

51-75 40 29 36 35 30 36 23 30 

76-100 28 29 30 29 21 20 14 18 

101-125 28 27 19 25 21 12 21 18 

126-150 19 14 12 15 17 21 14 17 

151-175 12 12 14 13 17 10 13 13 

176-200 10 11 6 9 9 14 16 13 

201-225 11 17 17 15 5 12 12 10 

226-250 11 9 13 11 7 8 11 9 

251-275 4 10 10 8 10 9 16 12 

276-300 6 10 10 9 8 8 9 8 

301-325 12 14 12 13 8 10 11 10 

326-350 11 7 6 8 7 8 5 7 

351-375 10 6 11 9 8 11 4 8 

376-400 8 8 4 7 7 5 6 6 

401-425 4 6 8 6 5 4 5 5 

426-450 0 8 8 5 6 9 8 8 

451-475 11 4 4 6 5 4 5 5 

476-499 5 4 10 6 9 5 2 5 

500 or more 598 595 592 595 642 653 668 654 

 

5.2.4.2. Display Grid Size  

A comparison of 5 x 5 and 4 x 4 grids of images was carried out using the random selection 

algorithm.  Table 5.3 indicates that fewer steps to target were needed for the 5 x 5 grid as 
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compared with the 4 x 4 grid. This was mostly due to the greater fan out of 24 for the 5 x 5 grid 

compared with 15 for the 4 x 4 grid.  A 4 x 4 grid was used in all subsequent experiments in 

order to obtain better discrimination between eye gaze and random selection performance over 

the 1000 image database.  Larger grids without increasing the image database size would benefit 

random selection and tend to obscure the relative eye gaze performance. 

Table 5.3: Exploration of display grid size 

Steps to target 4 x 4 grid 5 x 5 grid 

  Mean  Mean 

1-25 133 136 132 134 197 179 179 185 

26-50 39 44 46 43 70 85 84 80 

51-75 40 29 36 35 53 47 49 50 

76-100 28 29 30 29 27 28 47 34 

101-125 28 27 19 25 30 32 28 30 

126-150 19 14 12 15 27 25 16 23 

151-175 12 12 14 13 19 14 24 19 

176-200 10 11 6 9 24 19 19 21 

201-225 11 17 17 15 14 26 23 21 

226-250 11 9 13 11 12 9 13 11 

251-275 4 10 10 8 17 10 12 13 

276-300 6 10 10 9 11 17 15 14 

301-325 12 14 12 13 8 10 8 9 

326-350 11 7 6 8 11 10 7 9 

351-375 10 6 11 9 11 8 3 7 

376-400 8 8 4 7 8 12 7 9 

401-425 4 6 8 6 5 7 8 7 

426-450 0 8 8 5 4 9 8 7 

451-475 11 4 4 6 11 12 8 10 

476-499 5 4 10 6 6 8 3 6 

500 or more 598 595 592 595 435 433 439 436 

5.2.4.3. Random Retrieval 

The random selection tool was applied with each of the 1000 images acting as the target 

image and the number of steps to target recorded.  This was carried out using between 0 and 15 

images in the display retrieved randomly from the database rather than on the basis of the 

highest similarity scores. Results were consistent with a typical run displayed in Table 5.4 and 

Figure 5.8. The first column refers to the case where all 15 images were retrieved on the basis of 

similarity scores. In the second column, where one image is retrieved randomly, the likelihood 

of not finding targets decreased from 723 to 457. As the number of randomly retrieved images 
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was increased, the likelihood of finding the target image in the first 20 displays/steps to target 

also increased. It was felt that the effect on gaze performance of including one randomly-

retrieved image in the retrieved set merited experimental investigation.   

Table 5.4: Results of applying the random selection strategy to the image database (sum of each 

column = 1000 images) 

Frequency Distribution 

Number of randomly-retrieved images 
Steps to 

target 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1-20 112 142 153 164 201 189 201 221 220 237 244 257 251 229 270 225 

21-40 34 76 107 111 138 168 166 190 172 159 173 171 190 198 194 215 

41-60 21 75 100 88 99 87 114 119 142 146 129 142 135 134 139 139 

61-80 21 39 64 91 73 79 92 92 92 101 96 112 113 104 96 111 

81-100 21 47 72 61 74 66 71 70 83 79 75 82 77 84 66 77 

101-120 14 43 41 60 62 59 64 50 53 44 58 52 57 69 54 63 

121-140 12 45 33 46 55 67 56 49 49 43 42 50 36 55 37 37 

141-160 25 20 37 37 34 45 30 38 42 39 39 25 29 35 31 32 

161-180 5 30 22 42 41 28 41 34 32 31 33 24 26 21 28 20 

181-200 12 26 29 26 26 22 29 25 15 20 25 18 29 14 15 23 

Not found 723 457 342 274 197 190 136 112 100 101 86 67 57 57 70 58 
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Figure 5.8: Frequency Distribution of the steps to target for random retrieval of images (15 runs) 

5.2.4.4. Selection of Target Images 

The automatic random selection tool was implemented to investigate the difficulty of the search 

task when using the same start screen (Figure 5.7). This difficulty would be largely dependent 

on the network of pre-computed similarity scores which needed to be evaluated to define 

satisfactory search tasks.  Two strategies were employed to assist in the selection of target 

images of varying difficulty for search experiments. Firstly a plot of the frequency distribution 
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of steps to target for every image in the database revealed those images that were frequently 

found in the fewest and most number of steps.  

Secondly a plot of the frequency distribution of the 15 images with the highest similarity 

scores with each image in the database indicated those images that were similar to most other 

images and were therefore most likely to be found when traversing similarity links during a 

search.  By analysing the search performance and the retrieved image sets, the two strategies 

revealed the easy-to-find and hard-to-find images. Four of the easy-to-find images and four of 

the hard-to-find images were picked as target images for the experiment. These are shown in 

Figure 5.9. 

 

Figure 5.9: Target Images (Four easy-to-find images on the left and four hard-to-find images on the 

right) 

5.2.5. Experiment Design 

5.2.5.1. Criterion for Image Selection by Eye Gaze 

The display automatically changes when the sum of the durations of all fixations of 80ms and 

above on a specific image exceeds a threshold. Fixations of 80ms and above were regarded as 

intentional fixations while all fixations less than 80ms were ignored. In this way the display 

changes relatively quickly if the participant concentrates on a relevant image, but takes longer if 

the gaze was tentative. A red rectangle is briefly flashed around an image if a fixation of 80ms 
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is detected. Successfully found targets are highlighted with a red border as shown on the right of 

Figure 5.7. Two cumulative fixation thresholds of 400ms and 800ms were employed as a factor 

in the experiment. 

5.2.5.2. Participants 

Thirteen unpaid participants took part in this experiment. Participants included a mix of students 

and university staff. All participants had normal or corrected-to-normal vision and provided no 

evidence of colour blindness. 

5.2.5.3. Experimental Procedure 

Four easy-to-find and four hard-to-find target images were used (Figure 5.9). Participants were 

given one practice run to enable a better understanding of the task and to equalise skill levels 

before the experiment. Participants understood that there would be a continuous change of 

display until they found the target but did not know what determined the display change. The 

display included either zero or one randomly retrieved image. Participants performed 8 runs 

using both easy-to-find and hard-to-find image types. Four treatment combinations of the two 

cumulative fixation thresholds (400ms and 800ms) and two random-retrieval levels (0 and 1) 

were applied to each image type.  Any sequence effect was minimised by randomly allocating 

each participant to different sequences of target images. The first four runs were assigned to 

each image type. There was a 1 minute rest in between runs.   The maximum number of steps to 

target was limited to 26 screen changes. 

5.2.6. Results 

Three dependent variables, the number of steps to target, the time to target (F1),  and the number 

of fixations (F2) of 80ms and above were monitored and recorded during the experiment. 24 

dependent variables (8 each) were recorded for each participant. The average figures are 

presented in Table 5.5.  

Table 5.5: Analysis of Human Eye Behaviour on the Interface (rounded-off mean figures) 

Image Type 
Fixation 

Threshold 
Randomly-
retrieved 

Target not found 
(frequency) 

Steps to 
target 

Time to 
target 

(seconds) 

Fixation 
Numbers 

0 38.5% 14 34.944 99 
400ms 

1 53.8% 18 36.766 109 

0 38.5% 14 55.810 153 
Easy-to-find 

800ms 
1 15.4% 11 51.251 140 

0 69.2% 23 52.686 166 
400ms 

1 84.6% 23 50.029 167 

0 92.3% 24 104.999 327 
Hard-to-find 

800ms 
1 69.2% 19 83.535 258 
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104 (= 8x13) figures were entered for each dependent variable into a repeated measures 

ANOVA with three factors (image type, fixation threshold and randomly-retrieved).  

The results of the ANOVA performed on the steps to target revealed a significant main effect 

of image type, F(1,12)=23.90, p<0.0004 with fewer steps to target for easy-to-find images (14 

steps) than the hard-to-find images (22 steps).  

The main effect of the fixation threshold was not significant with F(1,12)=1.50, p<0.25. The 

main effect of randomly-retrieved was also not significant, F(1,12)=0.17, p<0.69. The influence 

of including one randomly retrieved image in each display produced little or no difference in the 

steps to target, time to target and fixation numbers.  This strategy appeared not to assist users to 

traverse the database any quicker than without the inclusion of a random image.  All two-factor 

and three-factor interactions were not significant.  

Further analysis of the first-order and second-order simple main effects was conducted 

individually on all levels of the three factors. The image types influenced the steps to target 

when participants had a set fixation threshold of 400ms F(1,12)=15.41, p=0.002, and 800ms 

F(1,12)=13.39, p=0.003 (Figure 5.10).  The steps to target for easy-to-find images were fewer 

by a significant amount than the hard-to-find images, when the participants experienced a 

fixation threshold of 400ms (mean difference of 7 steps) and 800ms (9 steps).  

 

Figure 5.10: Average steps to target (Y-axis) by image type and fixation threshold 

The analysis of the time to target produced similar results to the analysis of the number of 

fixations. There was a significant main effect of image type, F1(1,12)=24.11, p<0.0004, 
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F2(1,12)=21.93, p<0.0005, with shorter time to target and fewer fixations for easy-to-find 

images (40.468s and 125 fixations) than the hard-to-find images (71.331s and 229 fixations). 

The main effect of the fixation threshold was also similarly significant with F1(1,12)=18.27, 

p<0.001 and F2(1,12)=16.09, p<0.002. There were more fixations and more time was spent 

looking at hard-to-find images than the easy-to-find images.  

The main effect of randomly-retrieved on the time to target and fixation numbers was not 

significant, F1(1,12)=1.49, p<0.25 and F2(1,12)=0.76, p<0.40.  

Image type interacted with the fixation threshold, F1(1,12)=8.04, p<0.015 and F2(1,12)=5.84, 

p<0.032, and an analysis of simple main effects indicated a significant difference in time to 

target and fixation numbers for the fixation thresholds when hard-to-find images were 

presented, F1(1,12)=20.00, p<0.001 and F2(1,12)=16.25, p<0.002, but interestingly, no 

significant difference when easy-to-find images were presented, F1(1,12)=3.62, p<0.08 and 

F2(1,12)=3.57, p<0.08. There was no significant difference in the time to target and fixation 

numbers between the threshold levels for the easy-to-find images as opposed to the hard-to-find 

images where there was a significant difference (Figures 5.11 and 5.12). 

 

Figure 5.11: Average fixation numbers (Y-axis) by image type and fixation threshold 
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Figure 5.12: Average time to target (Y-axis) by image type and fixation threshold 

The same treatment combinations experienced by all participants were applied to the random 

selection tool to obtain 104 dependent variables (steps to target). By combining the variables, 

208 figures were entered into a mixed design multivariate ANOVA with two observations per 

cell and three factors (selection mode, image type and randomly-retrieved). The average figures 

are presented in Table 5.6. 

Table 5.6: Comparison of Eye and Random Selection (rounded-off mean figures) 

Selection Mode Image Type 
Randomly-
retrieved 

Target not found 
(frequency) 

Steps to target 

0 38.5% 14 
Easy-to-find 

1 34.6% 15 

0 80.8% 23 
Eye gaze 

Hard-to-find 
1 76.9% 21 

0 57.7% 20 
Easy-to-find 

1 38.5% 16 

0 96.2% 25 

Random 
selection 

Hard-to-find 
1 92.3% 26 

 

In summary the results of the ANOVA revealed a main effect of the selection mode, 

F(2,23)=3.81, p<0.037, with fewer steps to target when the eye gaze is used (18 steps) than 

when random selection is used (22 steps). Univariate tests on the two fixation threshold levels 

with corresponding random-selection values revealed significant differences between the eye 
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gaze and random selection for the 400ms and 800ms conditions i.e. F(1,24)=5.181, p=0.032 and 

F(1,24)=4.792, p=0.039 respectively (Figure 5.13).  
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Figure 5.13: Comparison of eye gaze and random selection mode 

There was also a main effect of image type, F(2,23)=28.95, p<0.00001 with fewer steps to 

target for easy-to-find images (16 steps) than the hard-to-find images (24 steps). Further 

analysis of simple main effect revealed that there was a significant difference between the 

modes for the hard-to-find images, F(2,23)=3.76, p<0.039 as opposed to the easy-to-find 

images, F(2,23)=2.02, p<0.16 (Figure 5.14). The participants using the eye tracking interface 

found the target in fewer steps than the automated random selection strategy and the analysis of 

simple effect attributed the significant difference to the hard-to-find images. 
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Figure 5.14: Average steps to target (Y-axis) by image type and selection mode 



 

- 79 - 

5.2.7. Experiment Analysis  

The participants using the eye tracking interface found the target in fewer steps than the 

automated random selection strategy and the analysis of simple effect attributed the significant 

difference to the hard-to-find images. This meant that the probability of finding the hard-to-find 

images was significantly increased due to human cognitive abilities as opposed to the 

indiscriminate selection by random selection. This discriminating behaviour shows that the 

system is able to draw useful inference from gaze patterns. 

Easy-to-find target images were found in fewer steps by participants than the hard-to-find 

images as predicted by the evidence obtained using the random selection tool. The random 

selection strategy was used for analysing the similarities within an image collection and was 

able to estimate the search difficulty of target images. Related work [106] describes four 

measures to examine retrieved documents and the documents in their vicinity and also estimate 

the quality of the search. The four measures comprise the following: 

• Clustering tendency examines the hypothesis that documents relevant to a query are 

expected to form a group that is distinct from non-relevant documents and therefore be 

easier to retrieve; 

• Sensitivity to document perturbation attempts to analyze the structure of the retrieved set 

by issuing a perturbed (noisy) version of the document as a pseudo-query and recording 

the new rank that the original document assumes with respect to the search with the 

modified pseudo-query; 

• Sensitivity to query perturbation analyzes the structure of the document collection in the 

vicinity of the perturbed query; and  

• Change in the local intrinsic dimensionality, where documents are considered points in a 

high dimensional space with coordinates corresponding to the distinct terms in the 

collection and the dimensionality of a subspace is occupied by a sub-collection of 

documents.  

The search performance prediction helps to flag queries for which the system has not 

retrieved good search results before the results are presented to the user and may be useful in 

improving the chances of getting to the target. The work reflects the importance of exploring the 

structure of document or image collections. However, although this approach reveals much 

about the effectiveness or otherwise of specific queries, it does not identify specific items that 

are difficult or easy to retrieve whatever queries are employed.  

There were more fixations and more time was spent on hard-to-find images than the easy-to-

find images. This is consistent with the conclusion of Fitts et al [16] that complex information 

leads to longer fixation durations and higher fixation numbers. 
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The influence of including one randomly retrieved image in each display was investigated. 

Generally, there was little or no difference in the steps to target, time to target and fixation 

numbers. Even when compared with the random selection tool, the steps to target did not 

significantly differ. The selection approach used by the random selection tool produced an 

increase in the likelihood of finding a target image (Table 5.4), but did not affect the likelihood 

when used with gaze behaviour. The user probably did not pay any attention to the randomly-

retrieved image in the retrieved set, as the randomly retrieved image was likely to be visually 

irrelevant.  On the other hand attending to the randomly-retrieved image may have led the user 

away from a displayed cluster and decreased the likelihood of finding the target.  

There was no significant difference in the time to target and fixation numbers between the 

threshold levels for the easy-to-find images as opposed to the hard-to-find images. In other 

words, setting a higher threshold did not significantly differ when either 400ms or 800ms was 

used for the easy-to-find images, but it did for the hard-to-find images. However, the steps to 

target did differ for both image types under either of the threshold conditions. A future 

experiment will be needed to investigate whether the thresholds can be reduced further, at least 

for the easy-to-find images.  

Many did not reach the hard target after 26 successive displays. Future experiments could 

concentrate on improving the chances of getting to the target using information extracted from 

the scan path. 

5.2.8. Gaze Parameter Analysis 

There are many parameters that may be extracted from human eye movement data and 

potentially exploited as visual input for an image retrieval system. The hypothesis that users 

display similar patterns of behaviour as they move closer to the target image is tested by 

analysing average parameter values as the search gets closer to the target. This hypothesis, if 

true, would improve the interpretation of gaze behaviour for better image selection. The gaze 

parameters that have been extracted include: 

• Number of fixations on selected images in each display 

• Total number of fixations within each display 

• Number of images with at least one fixation within each display 

• Final duration of fixation on selection of selected image (ms) 

• Saccade duration prior to selection of selected image (in units of 20ms) 

• Saccadic speed prior to selection of selected image (in units of pixels per 20ms) 

• Saccadic speed during scanning (in units of pixels per 20ms) 

• Pupil diameter on selection of selected image 
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In the results below, the gaze parameters are averaged over 8 experimental runs for each 

participant, and in each chart the lines represent the progress of each user towards the target 

image. The gaze parameters are also averaged for all participants. Additionally histogram plots 

of each gaze parameter provide insight into gaze behaviour during the runs. 

5.2.8.1. Fixations 

The number of fixations on the selected image did not produce any obvious trend as the user 

moves towards the target within the image database. However, there were many occasions when 

the fixations returned twice or more to the images that were finally selected as shown in Figure 

5.15.   
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Figure 5.15: Histogram plots of the number of fixations on selected image 
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Table 5.7: Frequency of Revisits on selected image for each display 

Selected Image  
Treatment Levels 

Revisits * Zero revisits †  

Easy-to-find + 400ms 260 (59.2%) 287 (78.4%) 547 

Easy-to-find + 800ms 345 (48.1%) 137 (62.8%) 482 

Hard-to-find + 400ms 430 (59.8%) 310 (74.2%) 740 

Hard-to-find + 800ms 578 (45.2%) 146 (52.1%) 724 

Easy-to-find 605 (52.9%) 424 (73.3%) 1029 

Hard-to-find 1008 (51.4%) 456 (67.1%) 1464 

400ms 690 (59.6%) 597 (76.2%) 1287 

800ms 923 (46.3%) 283 (57.2%) 1206 

 1613 (52.0%) 880 (70.1%) 2493 

* The percentages in bracket represent the occasions where the first revisit occurred on the selected image 
† The percentages in bracket represent the occasions where there were no revisits on any other image 

Altogether in the experiment there were 2493 display changes (i.e. total steps to target) of 

which there were 1613 revisits on the selected images and 880 display changes with no revisits 

(Table 5.7). 52.0% of these revisits occurred first on the selected image within the display. The 

percentage of revisits that occurred first on the selected image increased from 46.3% to 59.6% 

when the cumulative fixation threshold was decreased from 800ms to 400ms. There was a 

decrease in the number of revisits from 923 to 690 and an accompanying increase in single 

fixations (no revisit) from 283 to 597. The users seemed to prefer the revisited image amongst 

the other images on the display as the gaze time was reduced.  

The assumption is that users might be using more of their peripheral vision to make decisions 

under time constraints, since the performance still fared better than random selection. Although 

there were lower incidences of revisits, users still managed to revisit the selected image within a 

lower threshold level and also scan other images in the display. The frequency of revisits may 

be an indication of interest in the image. It should be noted that there were 260 display changes 

when the selected images were not revisited but there were revisits on other images (not 

selected) within the displays. In addition, 900 display changes had revisits on the selected 

images and other images (not selected) within the respective displays. 

There was no obvious trend in either the average number of fixations within the display, or 

the average number of images with at least one fixation, or the average fixation duration at 

display change for each individual user, as the user moves towards the target image within the 

image database. These results highlighted the undiminishing activity in eye movement in all 

subjects when striving to achieve a goal (i.e. complete a search). 
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Two gaze parameters are averaged for all subjects and presented in Figure 5.16. The number 

of images with at least one fixation will be generally lower than the number of fixations within a 

display due to incidences of more than one visit to an image in the display.  
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Figure 5.16: Average number of images with at least one fixation and the average number of 

fixations in each screen as user approaches target image 

Figure 5.16 shows a correlation between the number of images with at least one fixation and the 

number of fixations within a display as the user moves towards the target.  An increase in the 

number of fixations within a display is associated with a corresponding increase in the number 

of images being viewed. The correlation coefficient is used to determine the relationship 

between two data sets given by: 
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A positive correlation coefficient of the two data sets confirmed that the two ranges of data 

move together (ρ = 0.93). This seems reasonable as an increase in the number of fixations is 

likely to be a consequence of the user looking at more images. 

The computation of the image selection criteria requires the cumulation of the fixation 

threshold up to a limit. Therefore a 400ms limit may cause the user to utilise the first 160ms for 

scanning the images within a display followed by a return to the same image for a 240ms 

fixation and selection. Figure 5.17 shows the average fixation duration at the moment of the 
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selection of images. The data shows that with the 400ms threshold the final fixation duration 

stabilised as users moved towards the target.  It is unlikely that this effect is due to any 

deliberate action of the users which tends always to be very diverse and user-dependent.  

However, it may arise as an instinctive or reflexive action in human vision which takes place 

preattentively.  

The number of fixations varied mostly between two and eleven fixations within each display 

(Figure 5.18) while the number of images with at least one fixation varied between two and six 

fixations (Figure 5.19). These results are based on cumulative fixation thresholds of 400ms and 

800ms and may yield different results with other thresholds. 

The data also showed that users employed the high threshold limit of 800ms as an 

opportunity to conduct more revisits to selected images within a display (Table 5.7), given that 

the average fixation duration on selected images (at point of display change) peaked around 

500ms as shown in Figure 5.17 and Figure 5.20. The highest frequency of the final fixation 

duration on selected images of 500ms suggests that participants comfortably made conscious 

decisions after around 500ms. 
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Figure 5.17: Average fixation duration on selected image at point of display change as user 

approaches target image 
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Figure 5.18: Histogram plot of the total number of fixations within each display 
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Figure 5.19: Histogram plot of the number of images with at least one fixation  
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Figure 5.20: Histogram plot of the final fixation duration on selected image at point of display 

change (cumulative threshold of 800ms) 

5.2.8.2. Saccades 

Saccades are quick, simultaneous movements of both eyes in the same direction and serve as a 

mechanism for fixation, refixation and rapid eye movements.  The dynamics of saccadic eye 

motion give insight into the complexity of the mechanism that controls the motion of the eye. 

Accordingly the duration and speed of saccade were analysed. Figure 5.21 show that the 

saccade duration prior to selection of the selected image did not produce any discernible trend 

as the user became closer to the target within the image database. This was the case for each 

user and when averaged across all users (Figure 5.21).  Figure 5.22 indicates that users most 

often spent between 20ms to 60ms duration on the saccade just prior to a selection.  
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Figure 5.21: Average saccade duration across all subjects prior to selection of selected image (in 

units of 20ms) as user approaches target image 
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Figure 5.22: Histogram plot of the saccade duration (units of 20ms) just prior to selection of 

selected image 

Given the display of images that participants have to search through in the experimental runs, it 

is also possible that there may be a variation of saccadic speed between two conditions: 

1. Normal scanning of the display and  

2. Saccadic speed just prior to selection of the selected image in the display.  

The first condition refers to the average saccade speed while searching around the display and 

the second condition refers to the speed just before selection. There was no discernible pattern 

of saccadic speed across participants prior to selections and during normal scanning as they 
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move closer to the target. The saccadic speeds are averaged for all participants and compared in 

Figure 5.23. There was no correlation between the two conditions (correlation value of 0.144). 

This lack of correlation was explored further through a plot of the distribution of saccadic 

speeds under the two conditions (Figure 5.24). Interestingly this shows that saccadic speeds are 

frequently slower just before a selection, with a larger difference when the cumulative fixation 

threshold of 800ms is used (Figure 5.26) than when 400ms threshold is used (Figure 5.25).   

This may indicate a measure of deliberation on the part of the user who may have come to a 

specific decision on an image selection. 
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Figure 5.23: Comparison of average saccadic speeds during scanning and just prior to selection 

(in units of pixels per 20ms) as user approaches target image 
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Figure 5.24: Histogram plot comparing the saccadic speed just prior to image selection with 

normal speeds (in units of pixels per 20ms)    
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Figure 5.25: Histogram plot comparing the saccadic speeds for the 400ms cumulative threshold 
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Figure 5.26: Histogram plot comparing the saccadic speeds for the 800ms cumulative threshold 

5.2.8.3.  Pupil Diameter 

There were considerable variations in pupil diameter across users and no discernible trend as the 

users move towards the target (Figure 5.27). Figure 5.28 shows the frequency distribution of the 

pupil diameters at the moment of selection of selected image. A histogram plot of the pupil 

diameter for easy-to-find and hard-to-find images revealed a peaked distribution when the hard-

to-find images were used. The kurtosis of a data set characterizes the relative peakness or 

flatness of a distribution compared with the normal distribution. Positive kurtosis indicates a 
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relatively peaked distribution. Negative kurtosis indicates a relatively flat distribution. Kurtosis 

is defined as: 
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where s is the standard deviation.  

 

The pupil diameter on the easy-to-find target images revealed a negative kurtosis (-1.45) 

while the hard-to-find showed a positive kurtosis (0.27).   In other words the pupil behaviour of 

more people becomes similar as the search task gets more difficult. Perhaps the increase in 

fixations associated with hard-to-find target images reduced the likelihood of diverse pupil 

behaviour. 
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Figure 5.27: Average pupil diameter per subject on selection of selected image  
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Figure 5.28: Histogram plot of the pupil diameter on selected image (bottom left chart describes the 

easy-to-find images while the bottom right represents the hard-to-find images). 

5.2.9. Discussion  

The design of this experiment was such that users’ behaviour was measured by identifying the 

first image to exceed a designated threshold of fixation durations. Participants were able to 

adapt their viewing behaviour based on speed of screen changes. Images compete for attention 

and user fixations based on users’ attraction to the most similar image in the display. 

 In this work, the display did remain unchanged during the period while the system loaded 

the next set of images into memory and was updated instantaneously as soon as the contents of 

the next display had been composed. However, the eye may still be fixating on a position that is 

no longer relevant to the current screen so the first few milliseconds of fixation on the next 

display should be ignored. There is no reason to believe that this has a confounding influence on 

the result due to the relatively higher cumulative fixation threshold values of 400ms and 800ms. 

In this way data from the first 120ms following screen changes will be ignored in future 

experiments.  

In the image retrieval experiment, fixations of 80ms and above were regarded as intentional 

fixations while all fixations less than 80ms were ignored. Henderson and Hollingworth’s review 

[22] indicated the variability of fixation durations range from less than 50ms to more than 
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1000ms in a skewed distribution with a mode of about 230ms. Schyns & Oliva [94] also 

demonstrated that a photograph of a scene can be identified as a particular scene type from a 

masked presentation in as short as 45 – 135 ms. These results demonstrate that the information 

necessary to identify a scene can be extracted quickly, and it was concluded that scene 

identification from 50ms views were based on low-level information. A fixation threshold of 

80ms was therefore chosen in the experiments. Three minimum gaze samples of 20ms each 

were required to detect a fixation; any fewer samples would have introduced unacceptable 

errors. An investigation of lower thresholds with faster equipment might have yielded better 

results. 

It may be suggested that display change artifacts might influence performance.  However, 

Inhoff et al [108] tested the hypothesis that display changes influence the outcome of eye-

contingent display change studies. The speed of a display change and the refresh rate of the 

display monitor were varied and no evidence was found to suggest that the results of eye-

contingent change experiments were artifacts of the paradigm. 

Three factors (image type, fixation threshold and randomly-retrieved) and three dependent 

variables (steps to target, the time to target, and the number of fixations) were investigated in 

this study. The results are analysed in Section 5.2.7 where the eye tracking interface was shown 

to perform better than the random selection strategy, demonstrating that the eye gaze interface 

expressed the intentions of the user and made use of the structure of the similarity data. Giving 

users longer viewing time did not necessarily yield significantly better results hence shorter 

thresholds need to be investigated in further experiments. A systematic exploration of the spatial 

and temporal distribution of the gaze parameters (fixation, saccade and pupil diameter) on the 

displays was also carried out.  

The hypothesis that users display similar patterns of behaviour as they move closer to the 

target image was tested by analysing average parameter values as the search got closer to the 

target. None of the parameters investigated produced any relationship with the steps to target. 

This may have been a consequence of the complexity of the system and the number of factors 

that were investigated, though it was more likely that this result reflected the diversity of human 

behaviour. Indeed participants’ expectations of the retrieved sets of images as computed by the 

similarity links would have differed and this may have caused a variation within each run. 

Figure 5.17 shows that the fixation durations stabilise near the target for 400ms searches.  

This is probably more dependent upon involuntary vision functionality than conscious action in 

view of the short display times.  This effect is in spite of the diverse behaviour of users.  Given 

that the average fixation duration on selected images peaked around 500ms as shown in Figure 

5.17 and Figure 5.20, this provides circumstantial evidence of unconscious pre-attentive vision 

as gaze time is reduced. 
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The frequency of refixations on images that are subsequently selected even at the faster speed 

of 400ms (Table 5.7) showed that refixation of an image may be an early indication of user 

interest. Gilchrist and Harvey [17] measured refixations in a letter search experiment and found 

that participants were less likely to refixate a rejected item that had been previously fixated than 

would be predicted by chance. Hollingworth and Henderson [23] found that relatively detailed 

visual information is retained in memory from previously attended objects in natural scenes. 

Participants successfully detected changes to a target object when the object had been 

previously attended but was no longer within the focus of attention when the change occurred. 

Change detection was said to be dependent on prior fixation of the target object. Refixation of 

the target object was also found to play an important role in change detection. The vast majority 

of detections came on refixation of the changed object, suggesting that refixation may cue the 

retrieval of stored information about a previously fixated and attended object. Taken together, 

these results lend credence to the belief that refixation may be an indication of interest in image 

search.  

The experiment confirmed that the saccade durations in this experiment mostly ranged from 

20ms to 60ms. Saccades were frequently slower just before a selection. The initiation of 

saccades just prior to selections might have resulted in slower saccades because selected images 

generally attracted revisits. Indeed it is reasonable to believe that the slower saccades before a 

selection were because of deliberate selection by the participant.  Saccade speeds were generally 

higher during scanning of the display as users become aware that the system is time dependent.  

Pupil diameter is regarded as a measure of the cognitive demands of a task [107]. The 

observed change in peakness of the pupil diameter data reflects difficulty levels of the two 

target image types. The peakness of the distribution of pupil diameter is high on the hard-to-find 

images. This pattern may be useful in determining when a user is experiencing difficulty with a 

task.  

Combining these results may produce a more effective method of inferring intentions from 

users in future eye tracking interfaces. 

5.2.10. Summary 

Experiments have shown that an eye tracking interface together with pre-computed similarity 

measures yield a significantly better retrieval performance than random selection using the same 

similarity information.  A significant effect on performance was also observed with hard-to-find 

images.  This was not seen with easy-to-find images where with the current database size a 

random search might be expected to perform well. 

The analysis of the fixations, saccades and pupil diameters yielded useful information that is 

representative of users’ interests and worthy of further investigation. The next section describes 
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experiments designed to investigate gaze behaviour using alternative target selection criteria 

derived from the analysis of gaze behaviour in this section.  
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Chapter 6. Refixation and Pre-Attentive Vision 

in Image Search 

6.1. Objective 

The system implementation from the previous chapter confirms the feasibility of driving an 

image retrieval engine with an eye gaze interface. Analysis of the eye movement data during 

image search in the last section revealed that users frequently revisit images that are 

subsequently selected and do this quite happily at rapid speeds (400ms cumulative fixation 

threshold).  The objective of this experiment is to investigate the likelihood of getting to the 

target image using alternative criteria for improved image selection. The effects of lower 

fixation thresholds and revisits are investigated. 

6.2. Experiment Design 

The same database of images and its pre-computed similarity links were used in this 

experiment. In the previous experiment, participants’ search results matched the structure of the 

similarity links in terms of the ease or difficulty of finding the target image. Hard-to-find 

images were more difficult to find than Easy-to-find images. In order to increase the chance of 

finding target images and enable better exploration of search behaviour, eight easy-to-find target 

images were selected for this experiment. Screens of thumbnail images were displayed as 229 x 

155 pixels in 4 x 4 arrays. The initial screen for each target is shown in Figure 6.1 to Figure 6.8, 

where the target image is located at the top left bordered in red.  Participants begin by viewing 

the initial screen and looking for the target image among the other 15 images.  The system 

computes the selected image based on gaze behaviour. The selected image determines the next 

15 thumbnails to be displayed as indicated by the highest of the pre-computed similarity scores 

for other images in the database.  The display automatically changes once the next sets of 

retrieved images are loaded into memory. The participant is presented with a succession of such 

screens (Figure 5.7) until the target image is retrieved whereupon the run halts and the 

successfully found target is highlighted with a red border as shown on the right of Figure 5.7.   
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Figure 6.1: Target image 1 and its initial screen 

 

Figure 6.2: Target image 2 and its initial screen 
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Figure 6.3: Target image 3 and its initial screen 

 

Figure 6.4: Target image 4 and its initial screen 
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Figure 6.5: Target image 5 and its initial screen 

 

Figure 6.6: Target image 6 and its initial screen 
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Figure 6.7: Target image 7 and its initial screen 

 

Figure 6.8: Target image 8 and its initial screen 
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6.2.1. Refixation and Fixation Threshold Criteria for Image Selection 

The display automatically changes based on gaze behaviour. In this experiment, four treatments 

are used for determining best image selection: 

• a cumulative fixation threshold of 400ms as before 

• a shorter cumulative fixation threshold of 300ms; 

• selection by revisit 

• selection by revisit or cumulative fixation threshold of 400ms 

As in prior experiments, the cumulative fixation threshold is determined by the accumulation 

of all fixations greater than 80ms on a specific image position exceeding a 300ms or 400ms 

threshold. A revisit is determined by the refixation of an item that has been previously fixated. 

In this case the first image to be visited twice is selected as the selected image. Although 

participants were not aware of the criteria for image selections, the Revisits condition had no 

time restriction.  However, it was thought that participants may not refixate an image during 

directed search hence the fourth treatment was determined either by a revisit or the cumulative 

fixation threshold of 400ms whichever occurred first (i.e. the selected image is either 

determined by the first image revisited or the first image to exceed the cumulative threshold of 

400ms). 

6.2.2. Participants 

Twenty-four unpaid participants (18 males and 6 females) took part in this experiment. The 

mean age was 28.8 years with a median of 27 and a mode of 26. Participants included a mix of 

students, university staff and members of the public. All participants had normal or corrected-

to-normal vision and provided no evidence of colour blindness. 

6.2.3. Experimental Procedure 

Results in the previous section showed that the inclusion of random images in successive 

displays does not affect performance.  In this experiment the display used either:  

(a) 15 images with the highest similarity values to the selected image, or  

(b) 15 images with the highest similarity values to the 15th ranked similar image to the 

selected image.   

Theoretically condition b) should allow users to move more freely between clusters, but at the 

risk of moving away from the target.  

Participants performed 8 runs, using easy-to-find image types. There was one practice run to 

enable better understanding of the task and to equalise skill levels before the experiment. 

Participants understood that there would be a continuous change of display until they found the 

target but did not know what determined the display change. Eight treatment combinations of 
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the four fixation thresholds (400ms, 300ms, Revisit and Revisit/400ms) and two ranking levels 

((a) and (b)) were applied.  Any sequence effect was minimised by randomly allocating each 

participant to 24 different sequences of the four fixation thresholds. There was a 1 minute rest in 

between runs.  As before the maximum number of steps to target was limited to 26 screen 

changes. 

6.3. Results 

Three dependent variables, the number of steps to target, the time to target (F1),  and the number 

of fixations (F2) of 80ms and above were monitored and recorded during the experiment. 24 

dependent variables (8 each) were recorded for each participant. The average figures are 

presented in Table 6.1.  

Table 6.1: Analysis of Human Eye Behaviour on the Interface (rounded-off mean figures) 

Fixation 
Threshold 

Target not 
found 

(frequency) 

Steps to 
target 

Time to 
target 

(seconds) 

Average 
Time 
per 

display 

Fixation 
Numbers 

Average 
Fixation 

Numbers per 
display 

300ms 50.0% 17 17.9 1.081 53 3 

400ms 56.3% 18 28.1 1.630 86 5 

Revisit 45.8% 16 37.7 2.352 99 6 

Revisit/400ms 52.1% 17 24.0 1.470 72 4 

 

192 (= 8x24) figures were entered for each dependent variable into a repeated measures 

ANOVA with two factors (fixation threshold and ranking). The main effect of the fixation 

threshold was not significant, F(3,69) = 0.44, p=0.724 with similar steps to target as shown in 

Table 6.1. Paired comparisons of all fixation thresholds also showed no significant difference in 

steps to target. The analysis of the time and fixations per display revealed that there were 

significant differences in the time to target and number of fixations per display for all paired 

comparisons. More importantly Revisit/400ms took significantly less time (p=0.023) and fewer 

fixations (p=0.042) than 400ms threshold for making decisions in each display. Combining 

revisits with a fixation threshold reduced the time spent on each display sequence without 

affecting the search efficiency (i.e. steps to target) compared to 400ms threshold. The time to 

target and fixation numbers for revisits only were significantly higher than the other conditions. 

This was not unexpected as users were not constrained by a cumulative fixation time threshold.  

 Remarkably results also reveal that users are able to locate target images at the 300ms 

fixation threshold level with fewer average steps to target than the 400ms threshold (Table 6.1). 

Although there was no significant difference between the steps to target for the 300ms and 
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400ms (p<0.55), there was a significant difference for the time to target (p<0.0001) and fixation 

numbers (p<0.0001) in each display. 

 

Figure 6.9: Average fixation numbers per display (Y-axis) for each fixation threshold 

 

Figure 6.10: Average time to target per display (Y-axis) for each fixation threshold 
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There was a significant main effect of the ranking factor, F(1,23)=4.59, p=0.042. However, 

on closer scrutiny of the data it was found that the significance could have been a result of the 

variation in the target images used in this experiment. The ranking factor was not properly 

counterbalanced against the target images in the experiment design. In effect, 4 images were 

used for the (a) ranking and a different 4 images were used for the (b) ranking treatment. This 

affects the validity of the significance of the ranking factor, but not the threshold or mode 

factors which were properly counterbalanced. There was no significant interaction between the 

two factors. 

The same treatment combinations experienced by all participants were applied to the random 

selection tool to obtain 192 dependent variables (steps to target). By combining the variables, 

384 figures were entered into a mixed design multivariate ANOVA with four observations per 

cell and two factors (selection mode and ranking). The average figures are presented in Table 

6.2. 

Table 6.2: Comparison of Eye and Random Selection (rounded-off mean figures) 

Selection Mode Target not found (frequency) Steps to target 

Eye gaze 51.0% 17 

Random 
selection 

69.8% 21 

 

In summary the results of the ANOVA revealed a main effect of the selection mode, 

F(4,43)=5.434, p=0.001, with the eye (17) taking significantly fewer steps than random 

selection (21). Conducting univariate tests on all four fixation threshold treatments revealed 

significant differences between the eye gaze and random selection for each fixation threshold 

treatment (Figure 6.11) as follows: 

• 300ms � F(1,46)=5.218, p=0.027 

• 400ms � F(1,46)=4.152, p=0.047 

• Revisit � F(1,46)=8.107, p=0.007 

• Revisit/400ms � F(1,46)=5.730, p=0.021  
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Figure 6.11: Comparison of eye gaze and random selection modes 

6.4. Experiment Analysis 

Two ranking strategies, (a) and (b), were compared for improvements in finding target images.  

Overall the target image was found 110 times for the (b) ranking, while the target image was 

found 108 times for the (a) ranking. However, it was found that when the (b) ranking was used 

whenever a selected image was repeated (391 occurrences out of 1000 tries), it led to the target 

image on just 7 occasions out of the 391.  This means that the (b) strategy would be unlikely to 

effect an improvement despite the inconclusive earlier result. 

An outstanding question is whether there is a limit to the speed of operation of this interface, 

as users appear to obtain good performance at both 300ms and 400ms fixation thresholds.  

Therefore the final experiment was devised to investigate three cumulative fixation threshold 

levels of 300ms, 200ms and 100ms. 

6.5. Extended Experiment 

Three of the easy-to-find target images from the previous experiment were selected for this 

experiment. The choice of targets was based on the target images with the least average steps to 

target. The initial screens for the three targets chosen are shown in Figure 6.3, Figure 6.6 and 

Figure 6.7 where the target image that the participant has to find is located at the top left 

bordered in red. The search task remained the same.  
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6.5.1. Criteria for Image Selection 

The display automatically changes based on gaze behaviour. In this experiment, three treatments 

are used for determining best image selection: 

• a cumulative fixation threshold of 300ms as before 

• a cumulative fixation threshold of 200ms 

• a cumulative fixation threshold of 100ms 

As in prior experiments the cumulative fixation threshold is determined by the accumulation 

of all fixations greater than 80ms on a specific image position exceeding a 100ms, 200ms or 

300ms threshold. The minimum period of 80ms for the gaze to remain on an image position to 

be considered as a fixation means that the 100ms threshold condition can emcompass only one 

fixation and is expected to yield random responses to displays.  However, it serves as a control 

for comparison with the 200ms and 300ms threshold.  

6.5.2. Participants 

Six unpaid participants (4 males and 2 females) took part in this experiment. The average age 

was 36.2 years. Participants included a mix of university and company staffs. All participants 

had normal or corrected-to-normal vision and provided no evidence of colour blindness. 

6.5.3. Experimental Procedure 

Each participant performed three runs using easy-to-find image types. There was one practice 

run to enable better understanding of the task at hand and to equalise skill levels before the 

experiment. Participants understood that there would be a continuous change of display until 

they found the target but did not know what determined the display change.  

Three treatment combinations of the three fixation thresholds (300ms, 200ms and 100ms) 

were applied for each participant. Any sequence effect was minimised by randomly allocating 

each participant to 6 different sequences of the three fixation thresholds. There was a 1 minute 

rest in between runs.  As before, the maximum number of steps to target was limited to 26 

screen changes. 

6.6. Results  

Three dependent variables, the number of steps to target, the time to target (F1),  and the number 

of fixations (F2) of 80ms and above were monitored and recorded during the experiment. 9 

dependent variables (3 each) were recorded for each participant. The average figures are 

presented in Table 6.3.  
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Table 6.3: Analysis of Human Eye Behaviour on the Interface (rounded-off mean figures) 

Fixation 
Threshold 

Steps to 
target 

Time to target 
(seconds) 

Average 
Time per 
Display 

Fixation 
Numbers 

Average Fixation 
Numbers per 

Display 

100ms 20 8.0 0.394 20 1 

200ms 12 7.0 0.634 18 2 

300ms 4 5.2 1.139 17 3 

 

18 (= 3x6) figures were entered for each dependent variable into a single factor ANOVA with 

three levels (300ms, 200ms and 100ms). The results of the ANOVA performed on the steps to 

target revealed a significant main effect of the fixation thresholds, F(2,10)=13.098, p=0.018. A 

paired comparison of 100ms and 300ms attributed the significant difference to a simple main 

effect between these two fixation thresholds (p=0.003). There were no significant difference 

between the 100ms and 200ms paired thresholds (p=0.133) and 200ms and 300ms paired 

threshold (p=0.227) respectively. 

The same treatment combinations experienced by all participants were applied to the random 

selection tool to obtain 18 dependent variables (steps to target). By combining the variables, 36 

figures were entered into a multivariate ANOVA with three observations per cell and one factor 

(selection mode). In summary the results of the ANOVA revealed a main effect of the selection 

mode, F(3,8)=6.348, p=0.016. The eye took significantly fewer steps to the target (=12) than the 

random selection (=21). Univariate tests on all three fixation threshold levels revealed 

significant differences between the eye gaze and random selection for the 300ms and 200ms 

conditions (Figure 6.12) i.e. F(1,10)=10.390, p=0.009 and F(1,10)=9.484, p=0.012 respectively. 

As expected, there was no significant difference between the steps to target for the eye (=20) 

and random selection (=19) at the cumulative threshold level of 100ms, F(1,10)=0.056,p=0.817. 
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Figure 6.12: Comparison of eye gaze and random selection modes 
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6.7. Discussion 

The notion that revisit/refixation may be an indication of interest in image search was 

investigated further. In addition to the cumulative fixation threshold of 400ms and 300ms, the 

new criterion of selection by revisit (i.e. first image to encounter a refixation) for best image 

selection was introduced.  

Participants using the revisits only selection criterion were sometimes puzzled as to why 

there was no screen change during periods of search as reflected in some answers to the 

questionnaire.  The slow and non-intuitive operation of the revisits criterion would probably 

prevent it from forming part of the design of any future interface.  However, combining revisits 

with the 400ms threshold allowed users to make use of refixations and directed search as a 

strategy for searching the display.  

Analysis of the eye movement data revealed that performance was not affected by all four 

selection criteria. Even when all four thresholds were paired and compared, the steps to target 

for each of the selection criteria did not significantly differ. It was found that combining Revisit 

with a 400ms threshold reduced the average time spent on searching each display without 

affecting search performance (i.e. steps to target). Along with previous results, it does seem 

reasonable to conclude that refixations can play an important role in image search and can 

improve search times. 

It was noted that participants were still able to find target images within the cumulative 

fixation threshold of 300ms as well as with the 400ms threshold, although many complained 

that the screen changes were too fast and did not have control. An extended experiment was 

therefore devised to investigate the effect of reducing the cumulative fixation threshold still 

further. In order to increase the likelihood of finding targets, the target images with the least 

steps to target from the previous experiment were reused.  Up to this point search performance 

had not been affected for 800ms, 400ms and 300ms threshold levels. The extended experiment 

confirmed that users were still able to locate target images at the 200ms threshold but not at the 

100ms threshold. It should be noted that search behaviour at 100ms was only coarsely measured 

because fixations less than 80ms were not considered in these experiments. This meant that the 

performance measure at a 100ms was only approximate (Table 6.3). 

The performance at the 300ms threshold and certainly the 200ms threshold indicated that 

rapid pre-attentive vision was being employed by participants to find target images within these 

short display times, thus confirming findings from Tatler et al [73] and Underwood et al [90] 

that the influence of low-level visual feature salience on saccadic targeting does not change 

during viewing, but cognitive influences do vary.  It would also confirm Wolfe’s Guided Search 

Model [86] which proposes that pre-attentive feature processes could direct the deployment of 

attention in serial attentive searches. 



 

- 108 - 

6.8. Summary 

Additional experiments have revealed that refixations or revisits on an image during search are 

an indication of interest in that image. Furthermore participants were able to find target images 

with a 200ms fixation threshold indicating that rapid pre-attentive vision was being employed 

by subjects in the experiments. 

The next section explores some of the possibilities for the exploitation of eye tracking 

technology building on the potential exposed in this research. 
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Chapter 7. Conclusions  

A rapid and natural interface for searching visual digital data in a CBIR system is an outcome of 

the thesis. A pre-computed network of similarities between image regions in an image 

collection was traversed using users’ gaze behaviours obtained from eye tracking data. Eye 

tracking data has been used to direct a search towards information of increasing relevance to the 

user.  

In building this system ideas were taken from human computer interaction, visual attention 

and visual perception during image search and retrieval. Firstly it was shown that the eye is 

attracted to image regions that are predicted to be salient by an attention model and that the eye 

tracking system was able to gather data related to users’ interests.   Secondly the eye tracking 

interface yielded a significantly better speed performance than the mouse in a target location 

task.  Finally in an image retrieval task users were able to successfully navigate their way to 

target images in a database using only eye gaze with significantly better performance than 

randomly generated selections. Further data analysis and experiments led to the extraction of 

relevant information for query formulation in image search and retrieval. In addition 

experiments indicated pre-attentive visual activity in rapid image search. 

7.1. Significant Findings 

A series of experiments was devised to establish the feasibility of an eye gaze driven search 

mechanism.  The first experiment tested whether users looked at regions declared salient by a 

visual attention model.  The results showed that this was the case for the images and participants 

involved.  This results also indicated that users spent a large proportion of the five seconds 

exposure time observing the salient regions rather than the background and that this behaviour 

could be employed to drive a prototype search interface. 

The second experiment went further to explore the speeds of visual processing involved in a 

target image identification task when compared with a conventional input device such as a 

mouse. Results indicated slower mouse responses, with the eye interface having significantly 

faster response times than the mouse interfaces. When using the mouse the participant had to 

spend time locating both the cursor and the item to be selected, and then use the mouse to move 

the cursor to the item. On the other hand the eye tracker interface was quicker because only the 

selected item needed to be located. However, the speed difference was not just dependent on 

extra mouse movement because the eye tracker required the user to fixate on the target for 

longer than 40ms before a screen change. The results also indicated that skills transfer was 

taking place when the mouse was used first but not when the eye was used first.  This suggested 
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that experience gained during visual tasks carried out using a mouse would benefit future users 

if they were subsequently transferred from a mouse based system to an eye tracking system. The 

habituation experienced during the same-sequence target positions showed that prior knowledge 

of target positions can affect results. This was reduced in the image retrieval experiments by 

randomising positions of retrieved images in each display. Any ensuing interface design must 

take into account that prior knowledge of target positions will influence gaze behaviour and will 

affect the accurate analysis of eye tracking data. 

Finally in the image retrieval experiment the participants using the eye tracking interface 

found the target in fewer steps than an automated random selection strategy and the analysis of 

the simple effect attributed the significant difference to the hard-to-find images. This meant that 

the probability of finding the hard-to-find images was significantly increased due to human 

cognitive abilities as opposed to the indiscriminate selection by the simulated random selection 

strategy using the same similarity information.  

The random selection strategy was employed to provide a performance base-line which any 

more intelligent approach would need to exceed. It also enabled the initial exploration of the 

structure of the similarity links in the database, guidance for the choice of the grid size, analysis 

of the benefits of completely random image retrieval, and the choice of target images. 

The asymmetric values of the pre-computed similarity score matrix provided a better chance 

of getting to the target image than the symmetric values.   It is likely that better similarity 

association values would improve the retrieval performance generally. 

Comparison of grid sizes revealed that larger grids for the same image database size would 

benefit random selection and tend to obscure the relative eye gaze performance, hence a smaller 

grid was used in order to obtain better discrimination between eye gaze and random selection 

performance. There was no effect on gaze performance of including one randomly-retrieved 

image in the retrieved set. The user probably did not pay any attention to the randomly-retrieved 

image in the retrieved set, as the randomly retrieved image may have generally been visually 

irrelevant.  

The difficulty of the search task is largely dependent on the network of pre-computed 

similarity scores which needed to be evaluated to define satisfactory search tasks. Two 

approaches were employed (i.e. analysing the search performance and the retrieved image sets) 

to reveal the easy-to-find and hard-to-find images. 

The eye gaze interface expressed the intentions of the user and made use of the structure of 

the similarity data. The additional number of fixations and time spent on hard-to-find images 

confirmed that complex information led to longer fixation durations and higher fixation 

numbers. It was also noted that giving people longer viewing time did not necessarily yield 

significantly better performance.  



 

- 111 - 

The extraction of gaze parameters that may be potentially exploited to improve performance 

revealed that:  

• Refixation or revisit on an image may be an indication of interest in an image;  

• Unconscious pre-attentive vision played a significant role in visual search; 

• Saccade speeds were frequently slower just prior to the selection of images; 

• Saccade durations frequently ranged from 20ms to 60ms; 

• Pupil diameters peaked on the hard-to-find images. 

Additional experiments have revealed that refixation or revisits on an image during a visual 

search of a display of images is an indication of interest in that image. Furthermore participants 

were able to find target images with a 200ms cumulative fixation threshold indicating that rapid 

pre-attentive vision is playing a significant part in visual search.  

7.2. Review of Thesis Objectives 

This thesis conjectured that eye tracking data provides more information relevant for query 

formulation in image retrieval that is not otherwise obtainable through existing conventional 

interfaces. Six key research questions were identified that needed to be answered to support this 

thesis. These questions are reviewed in turn to ascertain the extent to which they have been met 

by the findings identified above. 

 

1. Is there an informative relationship between gaze behaviour and a computational 

model of visual search? 

The results from the first experiment revealed an informative relationship between the gaze 

data and the model that could be employed to drive a prototype search interface.  

2. Can data from gaze behaviour be used to exceed the performance of other interface 

devices for visual tasks? 

The benefit of using eye movement in such a search interface was investigated in the second 

experiment. Indeed gaze behaviour exceeded the performance of a mouse interface device 

for identifying a target image on a display. More importantly experience gained during 

visual tasks carried out using a mouse was benefiting users when they were subsequently 

transferred to an eye tracking system. 

3. What methodology should be used to measure subjects’ gaze behaviour? 

The experiments followed a balanced design where all treatment combinations had the same 

number of observations. The Analysis of Variance (ANOVA) was used in experiments on 

the image retrieval system to analyse the eye gaze data. ANOVA is used to test for 

significant differences between means (2 or more groups) by analyzing variance. 

Multivariate Analysis of Variance (MANOVA) was used when there were several 
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correlated dependent variables, and a single overall statistical test on this set of variables 

was used instead of performing multiple individual tests. More importantly the experiment 

design allowed for a more effective analysis of gaze parameters under the different 

treatment combinations. 

4. How can fixations and saccades from eye tracking data provide extra information 

relevant to image retrieval?  

The findings from the gaze parameter analysis identified potentially informative measures 

for a CBIR system from the time sequence of the eye tracking data. One of the findings 

(refixation) was tested in a further experiment and was shown to be beneficial in driving the 

image retrieval interface. Unlike dwell time, refixation is a more natural gaze behaviour that 

can be used to infer intentions. This thesis has shown that information from users’ thought 

processes can be captured through gaze parameters (such as refixation, saccade speed and 

pupil diameter) which may yield new and relevant information that is not otherwise 

attainable through conventional interfaces.  

5. Are there any limits to the speed of operation of a gaze driven retrieval interface?  

This question investigates the limits of the speed of operation of the eye gaze interface for 

controlling image retrieval. The finding that pre-attentive vision plays a significant part in 

visual search is thought to be a new discovery. 

6. What software and data frameworks are needed for the human eye to control an 

image retrieval interface? 

Section 3 gives a detailed description of the methodology used in building this system. It 

defines the types of data and storage requirements as well as the processing resources and 

the timing constraints. 

 

It is felt that the work has largely met the above objectives. The research is supported by 

experiments whose results were tested for significance and provide a basis for further research 

in visual attention, visual perception and human computer interaction. 

7.3. Limitations and Recommendations 

This section describes areas of further work that might be carried out to extend the functionality 

of the concept demonstrator and resolve outstanding questions. 

7.3.1. Inferring Intentions 

Eye tracking data poses the problem of interpreting a user’s intention. Users occasionally look 

at image regions that are not necessarily of interest to them. A common way of managing this 

problem is by setting a threshold for the dwell time, using zooming [69] [80], or blinking [3] to 
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indicate a selection to the machine. The findings in this thesis may be extended to build a 

system that can determine behavioural patterns that would not require users to assume unnatural 

ways of looking. For example, refixations, saccade speeds and pupil diameter can be monitored 

to infer users’ interests. Detection of peakness in pupil diameter data suggests that the user is 

experiencing difficulty and as such the system could aid the user with suggestions. 

7.3.2. Similarity Measure 

The similarity model that was used to determine successive displays is currently under 

development, but can be varied and tested. For example, the similarity network can be pre-

computed using textual descriptors or any other CBIR algorithm. Retrieved image sets could be 

determined by a combination of conventional visual features (colour, orientation, shape, texture) 

and textual descriptors. 

7.3.3. Usability 

Experiments were conducted in this thesis with a chinrest to minimise possible errors in gaze 

data; this is not practical in a real-world environment.   More advanced eye trackers will require 

less calibration and impose fewer constraints upon the user whilst still obtaining high accuracy. 

7.4. Future Work 

An eye controlled image retrieval interface not only provides a more natural mode of retrieval 

but also has the ability to anticipate the user’s objectives, thereby retrieving images extremely 

rapidly and with a minimum of thought and manual involvement. In future interfaces eye 

tracking will not only be used as a rapid and continuous information gathering tool for query 

formulation, but also to build up a visual behavioural pattern using time series information in 

the data.  

In this thesis attention weighting has been based on the distribution of fixations within a 

display. Better modelling of aspects of gaze behaviour such as refixation, saccade speed, pupil 

diameter and others will provide a more fruitful source of information for image retrieval.  

System constraints meant that a relatively long fixation threshold of 80ms was chosen in the 

experiments. An investigation of lower thresholds (e.g. 60ms, 40ms, 20ms, etc) with faster 

equipment might have yielded better results and is worthy of further investigation. 

Variations in display grid sizes (e.g. 3x3 and 4x4 display grids) may also yield different 

results. Dynamic and adaptable displays will make better use of screen area and should yield 

more intuitive and faster search interfaces.   
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Having confirmed that pre-attentive vision plays a significant part in visual search, new 

experiments are needed to determine the role of this aspect of human vision. The reduction in 

gaze time played a part in exposing the part played by pre-attentive vision in these experiments. 

There is much research to be carried out before eye trackers can become as pervasive as 

keyboards and mice.  The accuracy, cost and usability of equipment must improve before 

laboratory results can be reproduced on PCs, laptops, and even PDAs.  We might expect cheap 

eye trackers to emerge in the games market where “look and shoot” would give faster 

gratification than painful button pressing or joystick pushing.  Small cameras embedded in 

monitors and laptop lids or glasses would be obvious locations for such devices. Gaze 

contingent displays have great potential where additional information may be displayed 

dependent on eye movement.  For example, larger scale maps may be offered at the focus of 

attention or additional details supplied related to an object being studied.  Eye behaviour may 

also be used to drive PTZ cameras in ways that enable people to “see” their way around remote 

locations.  Eye trackers are already a great asset to the disabled, but only as an awkward and 

costly replacement for existing devices, and not as a computer interface to be used just as 

effectively as an able-bodied person.   

The results reported here indicate that eye trackers have the potential for eliciting human 

intentions extremely rapidly and may be applied to certain visual search tasks.  It seems 

reasonable that reducing costs and advancing camera technology will mean that eye trackers 

will appear in many more applications within the next few years. 
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Chapter 10. Appendix A: Experiment 

Questionnaire 

Name (optional):        

Age:     (number of years) 

Sex:       Male □   Female □ 

Are you:      Left-handed □        Right-handed 

□ 

Do you wear glasses or prescribed contact lenses: Yes □   No □ 

If yes, are you:   Short-sighted □ Long-sighted □ Other □ 

Did you wear the glasses during the experiment: Yes □   No □ 

Colour Vision:      Normal □ Colour-blind □ 

Educational level (e.g. GCSE, Degree, post-graduate, etc.)     

Motivation to participate:         

Do you react to flashing light (e.g. epileptic fit): Yes □   No □ 
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I am a computer expert □ □ □ □ □ 

I work on images regularly  □ □ □ □ □ 

I felt under stress during the experiment □ □ □ □ □ 

The experiment application software was easy to use □ □ □ □ □ 

I understood the instructions clearly □ □ □ □ □ 

 

Did you experience any problems during the experiment? If yes, state the problems: 

 

Did you experience any frustrations during your search? If yes, describe: 

 

Did you find that you modified your eye behaviour during the experiment? State why: 

 

 

 

 



 

- 125 - 

Chapter 11. Appendix B: SPSS Data 

11.1. Speed Experiment 

Within-Subjects Factors 
 
Measure: MEASURE_1  

position input 
Dependent 

Variable 

1 Var1 1 

2 Var2 

1 Var3 2 

2 Var4 

 
Between-Subjects Factors 
 

  N 

Eye-Mouse 6 Order 

Mouse-Eye 6 

 
Multivariate Tests(b) 
 

Effect   Value F 
Hypothesis 

df Error df Sig. 
Partial Eta 
Squared 

position Pillai's Trace .055 .577(a) 1.000 10.000 .465 .055 

  Wilks' Lambda .945 .577(a) 1.000 10.000 .465 .055 

  Hotelling's Trace .058 .577(a) 1.000 10.000 .465 .055 

  Roy's Largest Root .058 .577(a) 1.000 10.000 .465 .055 

position * Order Pillai's Trace .001 .007(a) 1.000 10.000 .936 .001 

  Wilks' Lambda .999 .007(a) 1.000 10.000 .936 .001 

  Hotelling's Trace .001 .007(a) 1.000 10.000 .936 .001 

  Roy's Largest Root .001 .007(a) 1.000 10.000 .936 .001 

input Pillai's Trace .466 8.716(a) 1.000 10.000 .014 .466 

  Wilks' Lambda .534 8.716(a) 1.000 10.000 .014 .466 

  Hotelling's Trace .872 8.716(a) 1.000 10.000 .014 .466 

  Roy's Largest Root .872 8.716(a) 1.000 10.000 .014 .466 

input * Order Pillai's Trace .147 1.721(a) 1.000 10.000 .219 .147 

  Wilks' Lambda .853 1.721(a) 1.000 10.000 .219 .147 

  Hotelling's Trace .172 1.721(a) 1.000 10.000 .219 .147 

  Roy's Largest Root .172 1.721(a) 1.000 10.000 .219 .147 

position * input Pillai's Trace .024 .247(a) 1.000 10.000 .630 .024 

  Wilks' Lambda .976 .247(a) 1.000 10.000 .630 .024 

  Hotelling's Trace .025 .247(a) 1.000 10.000 .630 .024 

  Roy's Largest Root .025 .247(a) 1.000 10.000 .630 .024 

position * input * Order Pillai's Trace .071 .768(a) 1.000 10.000 .401 .071 

  Wilks' Lambda .929 .768(a) 1.000 10.000 .401 .071 

  Hotelling's Trace .077 .768(a) 1.000 10.000 .401 .071 

  Roy's Largest Root .077 .768(a) 1.000 10.000 .401 .071 

a  Exact statistic 
b  Design: Intercept+Order  
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 Within Subjects Design: position+input+position*input 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  

Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

position 1.000 .000 0 . 1.000 1.000 1.000 

input 1.000 .000 0 . 1.000 1.000 1.000 

position * input 1.000 .000 0 . 1.000 1.000 1.000 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept+Order  
 Within Subjects Design: position+input+position*input 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

position Sphericity Assumed .185 1 .185 .577 .465 .055 

  Greenhouse-Geisser .185 1.000 .185 .577 .465 .055 

  Huynh-Feldt .185 1.000 .185 .577 .465 .055 

  Lower-bound .185 1.000 .185 .577 .465 .055 

position * Order Sphericity Assumed .002 1 .002 .007 .936 .001 

  Greenhouse-Geisser .002 1.000 .002 .007 .936 .001 

  Huynh-Feldt .002 1.000 .002 .007 .936 .001 

  Lower-bound .002 1.000 .002 .007 .936 .001 

Error(position) Sphericity Assumed 3.207 10 .321       

  Greenhouse-Geisser 3.207 10.000 .321       

  Huynh-Feldt 3.207 10.000 .321       

  Lower-bound 3.207 10.000 .321       

input Sphericity Assumed 1.452 1 1.452 8.716 .014 .466 

  Greenhouse-Geisser 1.452 1.000 1.452 8.716 .014 .466 

  Huynh-Feldt 1.452 1.000 1.452 8.716 .014 .466 

  Lower-bound 1.452 1.000 1.452 8.716 .014 .466 

input * Order Sphericity Assumed .287 1 .287 1.721 .219 .147 

  Greenhouse-Geisser .287 1.000 .287 1.721 .219 .147 

  Huynh-Feldt .287 1.000 .287 1.721 .219 .147 

  Lower-bound .287 1.000 .287 1.721 .219 .147 

Error(input) Sphericity Assumed 1.665 10 .167       

  Greenhouse-Geisser 1.665 10.000 .167       

  Huynh-Feldt 1.665 10.000 .167       

  Lower-bound 1.665 10.000 .167       

position * input Sphericity Assumed .027 1 .027 .247 .630 .024 

  Greenhouse-Geisser .027 1.000 .027 .247 .630 .024 

  Huynh-Feldt .027 1.000 .027 .247 .630 .024 

  Lower-bound .027 1.000 .027 .247 .630 .024 

position * input * 
Order 

Sphericity Assumed 
.083 1 .083 .768 .401 .071 

  Greenhouse-Geisser .083 1.000 .083 .768 .401 .071 

  Huynh-Feldt .083 1.000 .083 .768 .401 .071 
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  Lower-bound .083 1.000 .083 .768 .401 .071 

Error(position*input) Sphericity Assumed 1.081 10 .108       

  Greenhouse-Geisser 1.081 10.000 .108       

  Huynh-Feldt 1.081 10.000 .108       

  Lower-bound 1.081 10.000 .108       

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source position input 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Partial Eta 
Squared 

position Linear   .185 1 .185 .577 .465 .055 

position * Order Linear   .002 1 .002 .007 .936 .001 
Error(position) Linear   3.207 10 .321       
input   Linear 1.452 1 1.452 8.716 .014 .466 
input * Order   Linear .287 1 .287 1.721 .219 .147 

Error(input)   Linear 1.665 10 .167       
position * input Linear Linear .027 1 .027 .247 .630 .024 
position * input * Order Linear Linear .083 1 .083 .768 .401 .071 
Error(position*input) Linear Linear 1.081 10 .108       

 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 243.192 1 243.192 145.150 .000 .936 

Order .715 1 .715 .427 .528 .041 

Error 16.755 10 1.675       

 

Estimated Marginal Means 
 

Order 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Order Mean Std. Error Lower Bound Upper Bound 

Eye-Mouse 2.373 .264 1.784 2.962 

Mouse-Eye 2.129 .264 1.540 2.718 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Order (J) Order 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

Eye-Mouse Mouse-Eye .244 .374 .528 -.588 1.077 
Mouse-Eye Eye-Mouse -.244 .374 .528 -1.077 .588 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Univariate Tests 
 
Measure: MEASURE_1  

  
Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 



 

- 128 - 

Contrast .179 1 .179 .427 .528 .041 

Error 4.189 10 .419       

The F tests the effect of Order. This test is based on the linearly independent pairwise comparisons among the 
estimated marginal means. 
 

Position 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

position Mean Std. Error Lower Bound Upper Bound 

1 2.189 .178 1.792 2.586 

2 2.313 .227 1.808 2.818 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) position (J) position 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -.124 .163 .465 -.488 .240 
2 1 .124 .163 .465 -.240 .488 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .055 .577(a) 1.000 10.000 .465 .055 

Wilks' lambda .945 .577(a) 1.000 10.000 .465 .055 

Hotelling's trace .058 .577(a) 1.000 10.000 .465 .055 

Roy's largest root .058 .577(a) 1.000 10.000 .465 .055 

Each F tests the multivariate effect of position. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Input 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

input Mean Std. Error Lower Bound Upper Bound 

1 2.425 .227 1.919 2.931 

2 2.077 .159 1.723 2.431 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) input (J) input 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 .348(*) .118 .014 .085 .610 
2 1 -.348(*) .118 .014 -.610 -.085 

Based on estimated marginal means 
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*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .466 8.716(a) 1.000 10.000 .014 .466 

Wilks' lambda .534 8.716(a) 1.000 10.000 .014 .466 

Hotelling's trace .872 8.716(a) 1.000 10.000 .014 .466 

Roy's largest root .872 8.716(a) 1.000 10.000 .014 .466 

Each F tests the multivariate effect of input. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 

 
Order * Input 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Order input Mean Std. Error Lower Bound Upper Bound 

1 2.470 .321 1.754 3.185 Eye-Mouse 

2 2.276 .225 1.776 2.777 

1 2.380 .321 1.665 3.095 Mouse-Eye 

2 1.878 .225 1.377 2.378 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

Order (I) input (J) input 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 .193 .167 .273 -.178 .564 Eye-Mouse 
2 1 -.193 .167 .273 -.564 .178 

1 2 .502(*) .167 .013 .131 .874 Mouse-Eye 

2 1 -.502(*) .167 .013 -.874 -.131 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

Order   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .119 1.345(a) 1.000 10.000 .273 .119 

Wilks' lambda .881 1.345(a) 1.000 10.000 .273 .119 

Hotelling's trace .135 1.345(a) 1.000 10.000 .273 .119 

Eye-Mouse 

Roy's largest root .135 1.345(a) 1.000 10.000 .273 .119 

Pillai's trace .476 9.092(a) 1.000 10.000 .013 .476 

Wilks' lambda .524 9.092(a) 1.000 10.000 .013 .476 

Hotelling's trace .909 9.092(a) 1.000 10.000 .013 .476 

Mouse-Eye 

Roy's largest root .909 9.092(a) 1.000 10.000 .013 .476 

Each F tests the multivariate simple effects of input within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
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Position * Input 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

position input Mean Std. Error Lower Bound Upper Bound 

1 2.339 .197 1.901 2.778 1 

2 2.039 .167 1.666 2.411 

1 2.510 .304 1.832 3.189 2 

2 2.115 .173 1.731 2.500 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

position (I) input (J) input 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 .301(*) .080 .004 .123 .478 1 
2 1 -.301(*) .080 .004 -.478 -.123 

1 2 .395 .199 .075 -.047 .837 2 

2 1 -.395 .199 .075 -.837 .047 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

position   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .587 14.223(a) 1.000 10.000 .004 .587 

Wilks' lambda .413 14.223(a) 1.000 10.000 .004 .587 

Hotelling's trace 1.422 14.223(a) 1.000 10.000 .004 .587 

1 

Roy's largest root 1.422 14.223(a) 1.000 10.000 .004 .587 

Pillai's trace .284 3.957(a) 1.000 10.000 .075 .284 

Wilks' lambda .716 3.957(a) 1.000 10.000 .075 .284 

Hotelling's trace .396 3.957(a) 1.000 10.000 .075 .284 

2 

Roy's largest root .396 3.957(a) 1.000 10.000 .075 .284 

Each F tests the multivariate simple effects of input within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Order * Position * Input 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Order position input Mean Std. Error Lower Bound Upper Bound 

1 2.349 .278 1.729 2.969 1 

2 2.286 .237 1.759 2.813 

1 2.590 .431 1.631 3.549 

Eye-Mouse 

2 

2 2.266 .244 1.722 2.811 

1 2.329 .278 1.709 2.949 1 

2 1.791 .237 1.264 2.318 

Mouse-Eye 

2 1 2.431 .431 1.472 3.390 
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    2 1.964 .244 1.420 2.509 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

Order position (I) input (J) input 

Mean 
Difference 

(I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 .063 .113 .589 -.188 .314 1 
2 1 -.063 .113 .589 -.314 .188 

1 2 .324 .281 .276 -.302 .949 

Eye-Mouse 

2 

2 1 -.324 .281 .276 -.949 .302 
1 2 .538(*) .113 .001 .287 .790 1 
2 1 -.538(*) .113 .001 -.790 -.287 

1 2 .466 .281 .128 -.159 1.092 

Mouse-Eye 

2 

2 1 -.466 .281 .128 -1.092 .159 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

Order position   Value F 
Hypothesis 

df Error df Sig. 
Partial Eta 
Squared 

Eye-
Mouse 

1 Pillai's trace 
.030 .311(a) 1.000 10.000 .589 .030 

    Wilks' lambda .970 .311(a) 1.000 10.000 .589 .030 

    Hotelling's trace .031 .311(a) 1.000 10.000 .589 .030 

    Roy's largest root .031 .311(a) 1.000 10.000 .589 .030 

  2 Pillai's trace .117 1.328(a) 1.000 10.000 .276 .117 

    Wilks' lambda .883 1.328(a) 1.000 10.000 .276 .117 

    Hotelling's trace .133 1.328(a) 1.000 10.000 .276 .117 

    Roy's largest root .133 1.328(a) 1.000 10.000 .276 .117 

Mouse-
Eye 

1 Pillai's trace 
.695 22.809(a) 1.000 10.000 .001 .695 

    Wilks' lambda .305 22.809(a) 1.000 10.000 .001 .695 

    Hotelling's trace 2.281 22.809(a) 1.000 10.000 .001 .695 

    Roy's largest root 2.281 22.809(a) 1.000 10.000 .001 .695 

  2 Pillai's trace .216 2.758(a) 1.000 10.000 .128 .216 

    Wilks' lambda .784 2.758(a) 1.000 10.000 .128 .216 

    Hotelling's trace .276 2.758(a) 1.000 10.000 .128 .216 

    Roy's largest root .276 2.758(a) 1.000 10.000 .128 .216 

Each F tests the multivariate simple effects of input within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

11.2. Image Retrieval Experiment 

11.2.1. Steps to Target 

Within-Subjects Factors 
 
Measure: MEASURE_1  

image 
Thresh 
(threshold) random 

Dependent 
Variable 
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1 (Easy) 1 (400ms) 1 (0) VAR00002 

    2 (1) VAR00003 

  2 (800ms) 1 VAR00004 

    2 VAR00005 

2 (Hard) 1 1 VAR00006 

    2 VAR00007 

  2 1 VAR00008 

    2 VAR00009 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 

Pillai's Trace .666 23.897(a) 1.000 12.000 .000 

Wilks' Lambda .334 23.897(a) 1.000 12.000 .000 

Hotelling's Trace 1.991 23.897(a) 1.000 12.000 .000 

image 

Roy's Largest Root 1.991 23.897(a) 1.000 12.000 .000 

Pillai's Trace .111 1.496(a) 1.000 12.000 .245 

Wilks' Lambda .889 1.496(a) 1.000 12.000 .245 

Hotelling's Trace .125 1.496(a) 1.000 12.000 .245 

thresh 

Roy's Largest Root .125 1.496(a) 1.000 12.000 .245 

Pillai's Trace .014 .171(a) 1.000 12.000 .686 

Wilks' Lambda .986 .171(a) 1.000 12.000 .686 

Hotelling's Trace .014 .171(a) 1.000 12.000 .686 

random 

Roy's Largest Root .014 .171(a) 1.000 12.000 .686 

Pillai's Trace .050 .627(a) 1.000 12.000 .444 

Wilks' Lambda .950 .627(a) 1.000 12.000 .444 

Hotelling's Trace .052 .627(a) 1.000 12.000 .444 

image * thresh 

Roy's Largest Root .052 .627(a) 1.000 12.000 .444 

Pillai's Trace .051 .642(a) 1.000 12.000 .439 

Wilks' Lambda .949 .642(a) 1.000 12.000 .439 

Hotelling's Trace .053 .642(a) 1.000 12.000 .439 

image * random 

Roy's Largest Root .053 .642(a) 1.000 12.000 .439 

Pillai's Trace .161 2.298(a) 1.000 12.000 .155 

Wilks' Lambda .839 2.298(a) 1.000 12.000 .155 

Hotelling's Trace .192 2.298(a) 1.000 12.000 .155 

thresh * random 

Roy's Largest Root .192 2.298(a) 1.000 12.000 .155 

Pillai's Trace .001 .015(a) 1.000 12.000 .903 

Wilks' Lambda .999 .015(a) 1.000 12.000 .903 

Hotelling's Trace .001 .015(a) 1.000 12.000 .903 

image * thresh * random 

Roy's Largest Root .001 .015(a) 1.000 12.000 .903 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: image+thresh+random+image*thresh+image*random+thresh*random+image*thresh*random 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 

Sphericity Assumed 1624.240 1 1624.240 23.897 .000 

Greenhouse-
Geisser 1624.240 1.000 1624.240 23.897 .000 

image 

Huynh-Feldt 1624.240 1.000 1624.240 23.897 .000 
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  Lower-bound 1624.240 1.000 1624.240 23.897 .000 

Sphericity Assumed 815.635 12 67.970     

Greenhouse-
Geisser 815.635 12.000 67.970     

Huynh-Feldt 815.635 12.000 67.970     

Error(image) 

Lower-bound 815.635 12.000 67.970     

Sphericity Assumed 106.010 1 106.010 1.496 .245 

Greenhouse-
Geisser 106.010 1.000 106.010 1.496 .245 

Huynh-Feldt 106.010 1.000 106.010 1.496 .245 

thresh 

Lower-bound 106.010 1.000 106.010 1.496 .245 

Sphericity Assumed 850.365 12 70.864     

Greenhouse-
Geisser 850.365 12.000 70.864     

Huynh-Feldt 850.365 12.000 70.864     

Error(thresh) 

Lower-bound 850.365 12.000 70.864     

Sphericity Assumed 23.087 1 23.087 .171 .686 

Greenhouse-
Geisser 23.087 1.000 23.087 .171 .686 

Huynh-Feldt 23.087 1.000 23.087 .171 .686 

random 

Lower-bound 23.087 1.000 23.087 .171 .686 

Sphericity Assumed 1619.788 12 134.982     

Greenhouse-
Geisser 1619.788 12.000 134.982     

Huynh-Feldt 1619.788 12.000 134.982     

Error(random) 

Lower-bound 1619.788 12.000 134.982     

Sphericity Assumed 31.240 1 31.240 .627 .444 

Greenhouse-
Geisser 31.240 1.000 31.240 .627 .444 

Huynh-Feldt 31.240 1.000 31.240 .627 .444 

image * thresh 

Lower-bound 31.240 1.000 31.240 .627 .444 

Sphericity Assumed 597.635 12 49.803     

Greenhouse-
Geisser 597.635 12.000 49.803     

Huynh-Feldt 597.635 12.000 49.803     

Error(image*thresh) 

Lower-bound 597.635 12.000 49.803     

Sphericity Assumed 43.163 1 43.163 .642 .439 

Greenhouse-
Geisser 43.163 1.000 43.163 .642 .439 

Huynh-Feldt 43.163 1.000 43.163 .642 .439 

image * random 

Lower-bound 43.163 1.000 43.163 .642 .439 

Sphericity Assumed 807.212 12 67.268     

Greenhouse-
Geisser 807.212 12.000 67.268     

Huynh-Feldt 807.212 12.000 67.268     

Error(image*random) 

Lower-bound 807.212 12.000 67.268     

Sphericity Assumed 219.240 1 219.240 2.298 .155 

Greenhouse-
Geisser 219.240 1.000 219.240 2.298 .155 

Huynh-Feldt 219.240 1.000 219.240 2.298 .155 

thresh * random 

Lower-bound 219.240 1.000 219.240 2.298 .155 

Error(thresh*random) Sphericity Assumed 1144.635 12 95.386     
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Greenhouse-
Geisser 1144.635 12.000 95.386     

Huynh-Feldt 1144.635 12.000 95.386     

  

Lower-bound 1144.635 12.000 95.386     

Sphericity Assumed 1.163 1 1.163 .015 .903 

Greenhouse-
Geisser 1.163 1.000 1.163 .015 .903 

Huynh-Feldt 1.163 1.000 1.163 .015 .903 

image * thresh * random 

Lower-bound 1.163 1.000 1.163 .015 .903 

Sphericity Assumed 905.212 12 75.434     

Greenhouse-
Geisser 905.212 12.000 75.434     

Huynh-Feldt 905.212 12.000 75.434     

Error(image*thresh*random) 

Lower-bound 905.212 12.000 75.434     

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source image thresh random 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

image Linear     1624.240 1 1624.240 23.897 .000 

Error(image) Linear     815.635 12 67.970     
thresh   Linear   106.010 1 106.010 1.496 .245 
Error(thresh)   Linear   850.365 12 70.864     
random     Linear 23.087 1 23.087 .171 .686 
Error(random)     Linear 1619.788 12 134.982     
image * thresh Linear Linear   31.240 1 31.240 .627 .444 
Error(image*thresh) Linear Linear   597.635 12 49.803     
image * random Linear   Linear 43.163 1 43.163 .642 .439 

Error(image*random) Linear   Linear 807.212 12 67.268     
thresh * random   Linear Linear 219.240 1 219.240 2.298 .155 
Error(thresh*random)   Linear Linear 1144.635 12 95.386     
image * thresh * random Linear Linear Linear 1.163 1 1.163 .015 .903 
Error(image*thresh*random) Linear Linear Linear 905.212 12 75.434     
 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 35041.163 1 35041.163 280.477 .000 

Error 1499.212 12 124.934     

 
 

Estimated Marginal Means 
 
Image 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image Mean Std. Error Lower Bound Upper Bound 

1 14.404 1.565 10.994 17.814 

2 22.308 1.123 19.861 24.754 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  
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95% Confidence Interval for 
Difference(a) 

(I) image (J) image 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -7.904(*) 1.617 .000 -11.427 -4.381 
2 1 7.904(*) 1.617 .000 4.381 11.427 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .666 23.897(a) 1.000 12.000 .000 

Wilks' lambda .334 23.897(a) 1.000 12.000 .000 

Hotelling's trace 1.991 23.897(a) 1.000 12.000 .000 

Roy's largest root 1.991 23.897(a) 1.000 12.000 .000 

Each F tests the multivariate effect of image. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Thresh 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

thresh Mean Std. Error Lower Bound Upper Bound 

1 19.365 1.340 16.447 22.284 

2 17.346 1.404 14.287 20.405 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) thresh (J) thresh 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 2.019 1.651 .245 -1.578 5.616 
2 1 -2.019 1.651 .245 -5.616 1.578 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .111 1.496(a) 1.000 12.000 .245 

Wilks' lambda .889 1.496(a) 1.000 12.000 .245 

Hotelling's trace .125 1.496(a) 1.000 12.000 .245 

Roy's largest root .125 1.496(a) 1.000 12.000 .245 

Each F tests the multivariate effect of thresh. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Random 
 
Estimates 
 
Measure: MEASURE_1  

random Mean Std. Error 95% Confidence Interval 
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      Lower Bound Upper Bound 

1 18.827 1.533 15.488 22.166 

2 17.885 1.628 14.338 21.431 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) random (J) random 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 .942 2.279 .686 -4.022 5.907 
2 1 -.942 2.279 .686 -5.907 4.022 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .014 .171(a) 1.000 12.000 .686 

Wilks' lambda .986 .171(a) 1.000 12.000 .686 

Hotelling's trace .014 .171(a) 1.000 12.000 .686 

Roy's largest root .014 .171(a) 1.000 12.000 .686 

Each F tests the multivariate effect of random. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image thresh Mean Std. Error Lower Bound Upper Bound 

1 15.962 1.830 11.975 19.948 1 

2 12.846 2.135 8.194 17.498 

1 22.769 1.321 19.891 25.648 2 

2 21.846 1.552 18.465 25.227 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

thresh (I) image (J) image 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -6.808(*) 1.734 .002 -10.587 -3.029 1 
2 1 6.808(*) 1.734 .002 3.029 10.587 

1 2 -9.000(*) 2.460 .003 -14.360 -3.640 2 

2 1 9.000(*) 2.460 .003 3.640 14.360 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

thresh   Value F Hypothesis df Error df Sig. 

Pillai's trace .562 15.406(a) 1.000 12.000 .002 1 

Wilks' lambda .438 15.406(a) 1.000 12.000 .002 
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Hotelling's trace 1.284 15.406(a) 1.000 12.000 .002   

Roy's largest root 1.284 15.406(a) 1.000 12.000 .002 

Pillai's trace .527 13.386(a) 1.000 12.000 .003 

Wilks' lambda .473 13.386(a) 1.000 12.000 .003 

Hotelling's trace 1.115 13.386(a) 1.000 12.000 .003 

2 

Roy's largest root 1.115 13.386(a) 1.000 12.000 .003 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh 
 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

image (I) thresh (J) thresh 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 3.115 2.453 .228 -2.229 8.460 1 
2 1 -3.115 2.453 .228 -8.460 2.229 

1 2 .923 1.807 .619 -3.014 4.860 2 

2 1 -.923 1.807 .619 -4.860 3.014 
Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

image   Value F Hypothesis df Error df Sig. 

Pillai's trace .119 1.613(a) 1.000 12.000 .228 

Wilks' lambda .881 1.613(a) 1.000 12.000 .228 

Hotelling's trace .134 1.613(a) 1.000 12.000 .228 

1 

Roy's largest root .134 1.613(a) 1.000 12.000 .228 

Pillai's trace .021 .261(a) 1.000 12.000 .619 

Wilks' lambda .979 .261(a) 1.000 12.000 .619 

Hotelling's trace .022 .261(a) 1.000 12.000 .619 

2 

Roy's largest root .022 .261(a) 1.000 12.000 .619 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 
 

Image * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image random Mean Std. Error Lower Bound Upper Bound 

1 14.231 2.320 9.177 19.285 1 

2 14.577 1.647 10.989 18.164 

1 23.423 1.270 20.657 26.189 2 

2 21.192 2.344 16.085 26.300 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

random (I) image (J) image 
Mean 

Difference (I- Std. Error Sig.(a) 
95% Confidence Interval for 

Difference(a) 
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      J)     

Lower Bound Upper Bound 

1 2 -9.192(*) 2.142 .001 -13.859 -4.525 1 
2 1 9.192(*) 2.142 .001 4.525 13.859 

1 2 -6.615(*) 2.411 .018 -11.869 -1.362 2 

2 1 6.615(*) 2.411 .018 1.362 11.869 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 

Pillai's trace .605 18.416(a) 1.000 12.000 .001 

Wilks' lambda .395 18.416(a) 1.000 12.000 .001 

Hotelling's trace 1.535 18.416(a) 1.000 12.000 .001 

1 

Roy's largest root 1.535 18.416(a) 1.000 12.000 .001 

Pillai's trace .385 7.526(a) 1.000 12.000 .018 

Wilks' lambda .615 7.526(a) 1.000 12.000 .018 

Hotelling's trace .627 7.526(a) 1.000 12.000 .018 

2 

Roy's largest root .627 7.526(a) 1.000 12.000 .018 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 
 

Thresh * Random 
  
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

thresh random Mean Std. Error Lower Bound Upper Bound 

1 18.385 1.933 14.172 22.597 1 

2 20.346 1.942 16.115 24.577 

1 19.269 2.025 14.857 23.682 2 

2 15.423 2.187 10.659 20.187 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

random (I) thresh (J) thresh 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -.885 2.507 .730 -6.346 4.577 1 
2 1 .885 2.507 .730 -4.577 6.346 

1 2 4.923 2.551 .078 -.634 10.481 2 

2 1 -4.923 2.551 .078 -10.481 .634 
Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 

Pillai's trace .010 .125(a) 1.000 12.000 .730 

Wilks' lambda .990 .125(a) 1.000 12.000 .730 

Hotelling's trace .010 .125(a) 1.000 12.000 .730 

1 

Roy's largest root .010 .125(a) 1.000 12.000 .730 
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Pillai's trace .237 3.725(a) 1.000 12.000 .078 

Wilks' lambda .763 3.725(a) 1.000 12.000 .078 

Hotelling's trace .310 3.725(a) 1.000 12.000 .078 

2 

Roy's largest root .310 3.725(a) 1.000 12.000 .078 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image thresh random Mean Std. Error Lower Bound Upper Bound 

1 14.231 2.799 8.132 20.330 1 

2 17.692 2.936 11.295 24.089 

1 14.231 3.132 7.407 21.055 

1 

2 

2 11.462 2.518 5.975 16.948 

1 22.538 2.135 17.886 27.191 1 

2 23.000 2.038 18.559 27.441 

1 24.308 1.692 20.620 27.995 

2 

2 

2 19.385 2.939 12.982 25.787 

 
 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

thresh random (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -8.308(*) 3.137 .021 -15.142 -1.474 1 
2 1 8.308(*) 3.137 .021 1.474 15.142 

1 2 -5.308 3.235 .127 -12.357 1.741 

1 

2 

2 1 5.308 3.235 .127 -1.741 12.357 
1 2 -10.077(*) 2.990 .006 -16.592 -3.562 1 
2 1 10.077(*) 2.990 .006 3.562 16.592 

1 2 -7.923(*) 3.290 .033 -15.092 -.754 

2 

2 

2 1 7.923(*) 3.290 .033 .754 15.092 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

thresh random   Value F Hypothesis df Error df Sig. 

1 1 Pillai's trace .369 7.015(a) 1.000 12.000 .021 

    Wilks' lambda .631 7.015(a) 1.000 12.000 .021 

    Hotelling's trace .585 7.015(a) 1.000 12.000 .021 

    Roy's largest root .585 7.015(a) 1.000 12.000 .021 

  2 Pillai's trace .183 2.692(a) 1.000 12.000 .127 

    Wilks' lambda .817 2.692(a) 1.000 12.000 .127 

    Hotelling's trace .224 2.692(a) 1.000 12.000 .127 

    Roy's largest root .224 2.692(a) 1.000 12.000 .127 

2 1 Pillai's trace .486 11.356(a) 1.000 12.000 .006 

    Wilks' lambda .514 11.356(a) 1.000 12.000 .006 
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    Hotelling's trace .946 11.356(a) 1.000 12.000 .006 

    Roy's largest root .946 11.356(a) 1.000 12.000 .006 

  2 Pillai's trace .326 5.798(a) 1.000 12.000 .033 

    Wilks' lambda .674 5.798(a) 1.000 12.000 .033 

    Hotelling's trace .483 5.798(a) 1.000 12.000 .033 

    Roy's largest root .483 5.798(a) 1.000 12.000 .033 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 

11.2.2. Time to Target 

Within-Subjects Factors 
 
Measure: MEASURE_1  

image thresh random 
Dependent 

Variable 

1 V1 1 

2 V2 

1 V3 

1 

2 

2 V4 

1 V5 1 

2 V6 

1 V7 

2 

2 

2 V8 

 
Multivariate Tests(b) 
 

Effect   Value F 
Hypothesis 

df Error df Sig. 

Partial 
Eta 

Squared 

image Pillai's Trace .625 24.949(a) 1.000 15.000 .000 .625 

  Wilks' Lambda .375 24.949(a) 1.000 15.000 .000 .625 

  Hotelling's Trace 1.663 24.949(a) 1.000 15.000 .000 .625 

  Roy's Largest Root 1.663 24.949(a) 1.000 15.000 .000 .625 

thresh Pillai's Trace .625 25.020(a) 1.000 15.000 .000 .625 

  Wilks' Lambda .375 25.020(a) 1.000 15.000 .000 .625 

  Hotelling's Trace 1.668 25.020(a) 1.000 15.000 .000 .625 

  Roy's Largest Root 1.668 25.020(a) 1.000 15.000 .000 .625 

random Pillai's Trace .093 1.537(a) 1.000 15.000 .234 .093 

  Wilks' Lambda .907 1.537(a) 1.000 15.000 .234 .093 

  Hotelling's Trace .102 1.537(a) 1.000 15.000 .234 .093 

  Roy's Largest Root .102 1.537(a) 1.000 15.000 .234 .093 

image * thresh Pillai's Trace .326 7.266(a) 1.000 15.000 .017 .326 

  Wilks' Lambda .674 7.266(a) 1.000 15.000 .017 .326 

  Hotelling's Trace .484 7.266(a) 1.000 15.000 .017 .326 

  Roy's Largest Root .484 7.266(a) 1.000 15.000 .017 .326 

image * random Pillai's Trace .138 2.404(a) 1.000 15.000 .142 .138 

  Wilks' Lambda .862 2.404(a) 1.000 15.000 .142 .138 

  Hotelling's Trace .160 2.404(a) 1.000 15.000 .142 .138 

  Roy's Largest Root .160 2.404(a) 1.000 15.000 .142 .138 

thresh * random Pillai's Trace .067 1.072(a) 1.000 15.000 .317 .067 

  Wilks' Lambda .933 1.072(a) 1.000 15.000 .317 .067 

  Hotelling's Trace .071 1.072(a) 1.000 15.000 .317 .067 
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  Roy's Largest Root .071 1.072(a) 1.000 15.000 .317 .067 

image * thresh * 
random 

Pillai's Trace 
.022 .333(a) 1.000 15.000 .573 .022 

  Wilks' Lambda .978 .333(a) 1.000 15.000 .573 .022 

  Hotelling's Trace .022 .333(a) 1.000 15.000 .573 .022 

  Roy's Largest Root .022 .333(a) 1.000 15.000 .573 .022 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: image+thresh+random+image*thresh+image*random+thresh*random+image*thresh*random 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

image Sphericity 
Assumed 

25302.573 1 25302.573 24.949 .000 .625 

  Greenhouse-
Geisser 25302.573 1.000 25302.573 24.949 .000 .625 

  Huynh-Feldt 25302.573 1.000 25302.573 24.949 .000 .625 

  Lower-bound 25302.573 1.000 25302.573 24.949 .000 .625 

Error(image) Sphericity 
Assumed 

15212.287 15 1014.152       

  Greenhouse-
Geisser 15212.287 15.000 1014.152       

  Huynh-Feldt 15212.287 15.000 1014.152       

  Lower-bound 15212.287 15.000 1014.152       

thresh Sphericity 
Assumed 

29364.489 1 29364.489 25.020 .000 .625 

  Greenhouse-
Geisser 29364.489 1.000 29364.489 25.020 .000 .625 

  Huynh-Feldt 29364.489 1.000 29364.489 25.020 .000 .625 

  Lower-bound 29364.489 1.000 29364.489 25.020 .000 .625 

Error(thresh) Sphericity 
Assumed 

17604.840 15 1173.656       

  Greenhouse-
Geisser 17604.840 15.000 1173.656       

  Huynh-Feldt 17604.840 15.000 1173.656       

  Lower-bound 17604.840 15.000 1173.656       

random Sphericity 
Assumed 

1442.724 1 1442.724 1.537 .234 .093 

  Greenhouse-
Geisser 1442.724 1.000 1442.724 1.537 .234 .093 

  Huynh-Feldt 1442.724 1.000 1442.724 1.537 .234 .093 

  Lower-bound 1442.724 1.000 1442.724 1.537 .234 .093 

Error(random) Sphericity 
Assumed 

14078.520 15 938.568       

  Greenhouse-
Geisser 14078.520 15.000 938.568       

  Huynh-Feldt 14078.520 15.000 938.568       

  Lower-bound 14078.520 15.000 938.568       

image * thresh Sphericity 
Assumed 

5094.202 1 5094.202 7.266 .017 .326 

  Greenhouse-
Geisser 5094.202 1.000 5094.202 7.266 .017 .326 

  Huynh-Feldt 5094.202 1.000 5094.202 7.266 .017 .326 

  Lower-bound 5094.202 1.000 5094.202 7.266 .017 .326 

Error(image*thresh) Sphericity 
Assumed 

10516.931 15 701.129       
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  Greenhouse-
Geisser 10516.931 15.000 701.129       

  Huynh-Feldt 10516.931 15.000 701.129       

  Lower-bound 10516.931 15.000 701.129       

image * random Sphericity 
Assumed 

914.631 1 914.631 2.404 .142 .138 

  Greenhouse-
Geisser 914.631 1.000 914.631 2.404 .142 .138 

  Huynh-Feldt 914.631 1.000 914.631 2.404 .142 .138 

  Lower-bound 914.631 1.000 914.631 2.404 .142 .138 

Error(image*random) Sphericity 
Assumed 

5705.879 15 380.392       

  Greenhouse-
Geisser 5705.879 15.000 380.392       

  Huynh-Feldt 5705.879 15.000 380.392       

  Lower-bound 5705.879 15.000 380.392       

thresh * random Sphericity 
Assumed 

1268.877 1 1268.877 1.072 .317 .067 

  Greenhouse-
Geisser 1268.877 1.000 1268.877 1.072 .317 .067 

  Huynh-Feldt 1268.877 1.000 1268.877 1.072 .317 .067 

  Lower-bound 1268.877 1.000 1268.877 1.072 .317 .067 

Error(thresh*random) Sphericity 
Assumed 

17756.563 15 1183.771       

  Greenhouse-
Geisser 17756.563 15.000 1183.771       

  Huynh-Feldt 17756.563 15.000 1183.771       

  Lower-bound 17756.563 15.000 1183.771       

image * thresh * random Sphericity 
Assumed 

308.802 1 308.802 .333 .573 .022 

  Greenhouse-
Geisser 308.802 1.000 308.802 .333 .573 .022 

  Huynh-Feldt 308.802 1.000 308.802 .333 .573 .022 

  Lower-bound 308.802 1.000 308.802 .333 .573 .022 

Error(image*thresh*random) Sphericity 
Assumed 

13926.228 15 928.415       

  Greenhouse-
Geisser 13926.228 15.000 928.415       

  Huynh-Feldt 13926.228 15.000 928.415       

  Lower-bound 13926.228 15.000 928.415       

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source image thresh random 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

image Linear     25302.573 1 25302.573 24.949 .000 .625 

Error(image) Linear     15212.287 15 1014.152       
thresh   Linear   29364.489 1 29364.489 25.020 .000 .625 
Error(thresh)   Linear   17604.840 15 1173.656       
random     Linear 1442.724 1 1442.724 1.537 .234 .093 
Error(random)     Linear 14078.520 15 938.568       
image * thresh Linear Linear   5094.202 1 5094.202 7.266 .017 .326 
Error(image*thresh) Linear Linear   10516.931 15 701.129       
image * random Linear   Linear 914.631 1 914.631 2.404 .142 .138 

Error(image*random) Linear   Linear 5705.879 15 380.392       
thresh * random   Linear Linear 1268.877 1 1268.877 1.072 .317 .067 
Error(thresh*random)   Linear Linear 17756.563 15 1183.771       
image * thresh * random Linear Linear Linear 308.802 1 308.802 .333 .573 .022 
Error(image*thresh*random) Linear Linear Linear 13926.228 15 928.415       
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Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 441837.483 1 441837.483 132.202 .000 .898 

Error 50131.902 15 3342.127       

 
 

Estimated Marginal Means 
 

Image 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image Mean Std. Error Lower Bound Upper Bound 

1 44.693 5.382 33.221 56.165 

2 72.812 6.253 59.484 86.140 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) image (J) image 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -28.119(*) 5.630 .000 -40.119 -16.120 
2 1 28.119(*) 5.630 .000 16.120 40.119 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .625 24.949(a) 1.000 15.000 .000 .625 

Wilks' lambda .375 24.949(a) 1.000 15.000 .000 .625 

Hotelling's trace 1.663 24.949(a) 1.000 15.000 .000 .625 

Roy's largest root 1.663 24.949(a) 1.000 15.000 .000 .625 

Each F tests the multivariate effect of image. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Thresh 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

thresh Mean Std. Error Lower Bound Upper Bound 

1 43.606 3.104 36.989 50.223 

2 73.899 7.805 57.262 90.535 

 
 
Pairwise Comparisons 
 
Measure: MEASURE_1  
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95% Confidence Interval for 
Difference(a) 

(I) thresh (J) thresh 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -30.293(*) 6.056 .000 -43.201 -17.384 
2 1 30.293(*) 6.056 .000 17.384 43.201 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .625 25.020(a) 1.000 15.000 .000 .625 

Wilks' lambda .375 25.020(a) 1.000 15.000 .000 .625 

Hotelling's trace 1.668 25.020(a) 1.000 15.000 .000 .625 

Roy's largest root 1.668 25.020(a) 1.000 15.000 .000 .625 

Each F tests the multivariate effect of thresh. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

random Mean Std. Error Lower Bound Upper Bound 

1 62.110 5.961 49.404 74.815 

2 55.395 5.599 43.460 67.330 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) random (J) random 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 6.715 5.416 .234 -4.829 18.258 
2 1 -6.715 5.416 .234 -18.258 4.829 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .093 1.537(a) 1.000 15.000 .234 .093 

Wilks' lambda .907 1.537(a) 1.000 15.000 .234 .093 

Hotelling's trace .102 1.537(a) 1.000 15.000 .234 .093 

Roy's largest root .102 1.537(a) 1.000 15.000 .234 .093 

Each F tests the multivariate effect of random. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh 
 
Estimates 
 
Measure: MEASURE_1  
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95% Confidence Interval 

image thresh Mean Std. Error Lower Bound Upper Bound 

1 35.855 4.122 27.069 44.641 1 

2 53.530 7.761 36.989 70.072 

1 51.357 3.184 44.571 58.144 2 

2 94.267 10.362 72.182 116.352 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

thresh (I) image (J) image 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -15.502(*) 3.963 .001 -23.950 -7.055 1 
2 1 15.502(*) 3.963 .001 7.055 23.950 

1 2 -40.737(*) 9.565 .001 -61.125 -20.349 2 

2 1 40.737(*) 9.565 .001 20.349 61.125 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

thresh   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .505 15.299(a) 1.000 15.000 .001 .505 

Wilks' lambda .495 15.299(a) 1.000 15.000 .001 .505 

Hotelling's trace 1.020 15.299(a) 1.000 15.000 .001 .505 

1 

Roy's largest root 1.020 15.299(a) 1.000 15.000 .001 .505 

Pillai's trace .547 18.137(a) 1.000 15.000 .001 .547 

Wilks' lambda .453 18.137(a) 1.000 15.000 .001 .547 

Hotelling's trace 1.209 18.137(a) 1.000 15.000 .001 .547 

2 

Roy's largest root 1.209 18.137(a) 1.000 15.000 .001 .547 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh 
 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

image (I) thresh (J) thresh 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -17.675(*) 6.210 .012 -30.913 -4.438 1 
2 1 17.675(*) 6.210 .012 4.438 30.913 

1 2 -42.910(*) 8.866 .000 -61.807 -24.013 2 

2 1 42.910(*) 8.866 .000 24.013 61.807 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

image   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 
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Pillai's trace .351 8.100(a) 1.000 15.000 .012 .351 

Wilks' lambda .649 8.100(a) 1.000 15.000 .012 .351 

Hotelling's trace .540 8.100(a) 1.000 15.000 .012 .351 

1 

Roy's largest root .540 8.100(a) 1.000 15.000 .012 .351 

Pillai's trace .610 23.424(a) 1.000 15.000 .000 .610 

Wilks' lambda .390 23.424(a) 1.000 15.000 .000 .610 

Hotelling's trace 1.562 23.424(a) 1.000 15.000 .000 .610 

2 

Roy's largest root 1.562 23.424(a) 1.000 15.000 .000 .610 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image random Mean Std. Error Lower Bound Upper Bound 

1 45.377 6.863 30.749 60.005 1 

2 44.009 4.994 33.364 54.653 

1 78.843 5.975 66.108 91.578 2 

2 66.782 8.343 48.999 84.565 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

random (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -33.466(*) 4.845 .000 -43.792 -23.139 1 
2 1 33.466(*) 4.845 .000 23.139 43.792 

1 2 -22.773(*) 7.980 .012 -39.783 -5.763 2 

2 1 22.773(*) 7.980 .012 5.763 39.783 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .761 47.715(a) 1.000 15.000 .000 .761 

Wilks' lambda .239 47.715(a) 1.000 15.000 .000 .761 

Hotelling's trace 3.181 47.715(a) 1.000 15.000 .000 .761 

1 

Roy's largest root 3.181 47.715(a) 1.000 15.000 .000 .761 

Pillai's trace .352 8.143(a) 1.000 15.000 .012 .352 

Wilks' lambda .648 8.143(a) 1.000 15.000 .012 .352 

Hotelling's trace .543 8.143(a) 1.000 15.000 .012 .352 

2 

Roy's largest root .543 8.143(a) 1.000 15.000 .012 .352 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Thresh * Random 
 
Estimates 
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Measure: MEASURE_1  

95% Confidence Interval 

thresh random Mean Std. Error Lower Bound Upper Bound 

1 43.815 4.787 33.611 54.019 1 

2 43.397 3.053 36.890 49.904 

1 80.405 8.921 61.391 99.418 2 

2 67.393 9.779 46.550 88.236 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

random (I) thresh (J) thresh 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -36.590(*) 7.928 .000 -53.488 -19.691 1 
2 1 36.590(*) 7.928 .000 19.691 53.488 

1 2 -23.996(*) 9.191 .020 -43.587 -4.404 2 

2 1 23.996(*) 9.191 .020 4.404 43.587 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .587 21.300(a) 1.000 15.000 .000 .587 

Wilks' lambda .413 21.300(a) 1.000 15.000 .000 .587 

Hotelling's trace 1.420 21.300(a) 1.000 15.000 .000 .587 

1 

Roy's largest root 1.420 21.300(a) 1.000 15.000 .000 .587 

Pillai's trace .312 6.815(a) 1.000 15.000 .020 .312 

Wilks' lambda .688 6.815(a) 1.000 15.000 .020 .312 

Hotelling's trace .454 6.815(a) 1.000 15.000 .020 .312 

2 

Roy's largest root .454 6.815(a) 1.000 15.000 .020 .312 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image thresh random Mean Std. Error Lower Bound Upper Bound 

1 34.944 7.103 19.804 50.084 1 

2 36.766 4.947 26.221 47.311 

1 55.810 9.790 34.943 76.677 

1 

2 

2 51.251 9.684 30.609 71.893 

1 52.686 4.617 42.845 62.527 1 

2 50.029 4.810 39.776 60.282 

1 104.999 10.852 81.869 128.129 

2 

2 

2 83.535 13.308 55.169 111.901 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  
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95% Confidence Interval for 
Difference(a) 

thresh random (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -17.742(*) 7.202 .026 -33.093 -2.391 1 
2 1 17.742(*) 7.202 .026 2.391 33.093 

1 2 -13.263 7.613 .102 -29.488 2.963 

1 

2 

2 1 13.263 7.613 .102 -2.963 29.488 
1 2 -49.189(*) 10.436 .000 -71.433 -26.945 1 
2 1 49.189(*) 10.436 .000 26.945 71.433 

1 2 -32.284(*) 12.620 .022 -59.184 -5.384 

2 

2 

2 1 32.284(*) 12.620 .022 5.384 59.184 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

thresh random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

1 1 Pillai's trace .288 6.068(a) 1.000 15.000 .026 .288 

    Wilks' lambda .712 6.068(a) 1.000 15.000 .026 .288 

    Hotelling's trace .405 6.068(a) 1.000 15.000 .026 .288 

    Roy's largest 
root 

.405 6.068(a) 1.000 15.000 .026 .288 

  2 Pillai's trace .168 3.035(a) 1.000 15.000 .102 .168 

    Wilks' lambda .832 3.035(a) 1.000 15.000 .102 .168 

    Hotelling's trace .202 3.035(a) 1.000 15.000 .102 .168 

    Roy's largest 
root 

.202 3.035(a) 1.000 15.000 .102 .168 

2 1 Pillai's trace .597 22.216(a) 1.000 15.000 .000 .597 

    Wilks' lambda .403 22.216(a) 1.000 15.000 .000 .597 

    Hotelling's trace 1.481 22.216(a) 1.000 15.000 .000 .597 

    Roy's largest 
root 

1.481 22.216(a) 1.000 15.000 .000 .597 

  2 Pillai's trace .304 6.544(a) 1.000 15.000 .022 .304 

    Wilks' lambda .696 6.544(a) 1.000 15.000 .022 .304 

    Hotelling's trace .436 6.544(a) 1.000 15.000 .022 .304 

    Roy's largest 
root 

.436 6.544(a) 1.000 15.000 .022 .304 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 

11.2.3. Fixation Numbers 

Within-Subjects Factors 
 
Measure: MEASURE_1  

image thresh random 
Dependent 

Variable 

1 VAR00001 1 

2 VAR00002 

1 VAR00003 

1 

2 

2 VAR00004 

1 VAR00005 1 

2 VAR00006 

2 

2 1 VAR00007 
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    2 VAR00008 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

image Pillai's Trace .668 24.114(a) 1.000 12.000 .000 .668 

  Wilks' Lambda .332 24.114(a) 1.000 12.000 .000 .668 

  Hotelling's Trace 2.010 24.114(a) 1.000 12.000 .000 .668 

  Roy's Largest Root 2.010 24.114(a) 1.000 12.000 .000 .668 

thresh Pillai's Trace .573 16.088(a) 1.000 12.000 .002 .573 

  Wilks' Lambda .427 16.088(a) 1.000 12.000 .002 .573 

  Hotelling's Trace 1.341 16.088(a) 1.000 12.000 .002 .573 

  Roy's Largest Root 1.341 16.088(a) 1.000 12.000 .002 .573 

random Pillai's Trace .060 .765(a) 1.000 12.000 .399 .060 

  Wilks' Lambda .940 .765(a) 1.000 12.000 .399 .060 

  Hotelling's Trace .064 .765(a) 1.000 12.000 .399 .060 

  Roy's Largest Root .064 .765(a) 1.000 12.000 .399 .060 

image * thresh Pillai's Trace .327 5.842(a) 1.000 12.000 .032 .327 

  Wilks' Lambda .673 5.842(a) 1.000 12.000 .032 .327 

  Hotelling's Trace .487 5.842(a) 1.000 12.000 .032 .327 

  Roy's Largest Root .487 5.842(a) 1.000 12.000 .032 .327 

image * random Pillai's Trace .115 1.561(a) 1.000 12.000 .235 .115 

  Wilks' Lambda .885 1.561(a) 1.000 12.000 .235 .115 

  Hotelling's Trace .130 1.561(a) 1.000 12.000 .235 .115 

  Roy's Largest Root .130 1.561(a) 1.000 12.000 .235 .115 

thresh * random Pillai's Trace .103 1.378(a) 1.000 12.000 .263 .103 

  Wilks' Lambda .897 1.378(a) 1.000 12.000 .263 .103 

  Hotelling's Trace .115 1.378(a) 1.000 12.000 .263 .103 

  Roy's Largest Root .115 1.378(a) 1.000 12.000 .263 .103 

image * thresh * 
random 

Pillai's Trace 
.022 .274(a) 1.000 12.000 .610 .022 

  Wilks' Lambda .978 .274(a) 1.000 12.000 .610 .022 

  Hotelling's Trace .023 .274(a) 1.000 12.000 .610 .022 

  Roy's Largest Root .023 .274(a) 1.000 12.000 .610 .022 

a  Exact statistic 
b  Design: Intercept  

 Within Subjects Design: 
image+thresh+random+image*thresh+image*random+thresh*random+image*thresh*random 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df Mean Square F Sig. 

Partial 
Eta 

Squared 

image Sphericity 
Assumed 

281736.240 1 281736.240 24.114 .000 .668 

  Greenhouse-
Geisser 281736.240 1.000 281736.240 24.114 .000 .668 

  Huynh-Feldt 281736.240 1.000 281736.240 24.114 .000 .668 

  Lower-bound 281736.240 1.000 281736.240 24.114 .000 .668 

Error(image) Sphericity 
Assumed 

140201.385 12 11683.449       

  Greenhouse-
Geisser 140201.385 12.000 11683.449       

  Huynh-Feldt 140201.385 12.000 11683.449       
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  Lower-bound 140201.385 12.000 11683.449       

thresh Sphericity 
Assumed 

183876.240 1 183876.240 16.088 .002 .573 

  Greenhouse-
Geisser 183876.240 1.000 183876.240 16.088 .002 .573 

  Huynh-Feldt 183876.240 1.000 183876.240 16.088 .002 .573 

  Lower-bound 183876.240 1.000 183876.240 16.088 .002 .573 

Error(thresh) Sphericity 
Assumed 

137153.385 12 11429.449       

  Greenhouse-
Geisser 137153.385 12.000 11429.449       

  Huynh-Feldt 137153.385 12.000 11429.449       

  Lower-bound 137153.385 12.000 11429.449       

random Sphericity 
Assumed 

8370.087 1 8370.087 .765 .399 .060 

  Greenhouse-
Geisser 8370.087 1.000 8370.087 .765 .399 .060 

  Huynh-Feldt 8370.087 1.000 8370.087 .765 .399 .060 

  Lower-bound 8370.087 1.000 8370.087 .765 .399 .060 

Error(random) Sphericity 
Assumed 

131315.038 12 10942.920       

  Greenhouse-
Geisser 131315.038 12.000 10942.920       

  Huynh-Feldt 131315.038 12.000 10942.920       

  Lower-bound 131315.038 12.000 10942.920       

image * thresh Sphericity 
Assumed 

45403.163 1 45403.163 5.842 .032 .327 

  Greenhouse-
Geisser 45403.163 1.000 45403.163 5.842 .032 .327 

  Huynh-Feldt 45403.163 1.000 45403.163 5.842 .032 .327 

  Lower-bound 45403.163 1.000 45403.163 5.842 .032 .327 

Error(image*thresh) Sphericity 
Assumed 

93255.462 12 7771.288       

  Greenhouse-
Geisser 93255.462 12.000 7771.288       

  Huynh-Feldt 93255.462 12.000 7771.288       

  Lower-bound 93255.462 12.000 7771.288       

image * random Sphericity 
Assumed 

7062.010 1 7062.010 1.561 .235 .115 

  Greenhouse-
Geisser 7062.010 1.000 7062.010 1.561 .235 .115 

  Huynh-Feldt 7062.010 1.000 7062.010 1.561 .235 .115 

  Lower-bound 7062.010 1.000 7062.010 1.561 .235 .115 

Error(image*random) Sphericity 
Assumed 

54291.115 12 4524.260       

  Greenhouse-
Geisser 54291.115 12.000 4524.260       

  Huynh-Feldt 54291.115 12.000 4524.260       

  Lower-bound 54291.115 12.000 4524.260       

thresh * random Sphericity 
Assumed 

14241.240 1 14241.240 1.378 .263 .103 

  Greenhouse-
Geisser 14241.240 1.000 14241.240 1.378 .263 .103 

  Huynh-Feldt 14241.240 1.000 14241.240 1.378 .263 .103 

  Lower-bound 14241.240 1.000 14241.240 1.378 .263 .103 

Error(thresh*random) Sphericity 
Assumed 

124001.885 12 10333.490       

  Greenhouse-
Geisser 124001.885 12.000 10333.490       
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  Huynh-Feldt 124001.885 12.000 10333.490       

  Lower-bound 124001.885 12.000 10333.490       

image * thresh * random Sphericity 
Assumed 

3427.010 1 3427.010 .274 .610 .022 

  Greenhouse-
Geisser 3427.010 1.000 3427.010 .274 .610 .022 

  Huynh-Feldt 3427.010 1.000 3427.010 .274 .610 .022 

  Lower-bound 3427.010 1.000 3427.010 .274 .610 .022 

Error(image*thresh*random) Sphericity 
Assumed 

150181.115 12 12515.093       

  Greenhouse-
Geisser 150181.115 12.000 12515.093       

  Huynh-Feldt 150181.115 12.000 12515.093       

  Lower-bound 150181.115 12.000 12515.093       

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source image thresh random 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

image Linear     281736.240 1 281736.240 24.114 .000 .668 

Error(image) Linear     140201.385 12 11683.449       
thresh   Linear   183876.240 1 183876.240 16.088 .002 .573 
Error(thresh)   Linear   137153.385 12 11429.449       
random     Linear 8370.087 1 8370.087 .765 .399 .060 
Error(random)     Linear 131315.038 12 10942.920       
image * thresh Linear Linear   45403.163 1 45403.163 5.842 .032 .327 
Error(image*thresh) Linear Linear   93255.462 12 7771.288       
image * random Linear   Linear 7062.010 1 7062.010 1.561 .235 .115 

Error(image*random) Linear   Linear 54291.115 12 4524.260       
thresh * random   Linear Linear 14241.240 1 14241.240 1.378 .263 .103 
Error(thresh*random)   Linear Linear 124001.885 12 10333.490       
image * thresh * random Linear Linear Linear 3427.010 1 3427.010 .274 .610 .022 
Error(image*thresh*random) Linear Linear Linear 150181.115 12 12515.093       
 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 3265654.240 1 3265654.240 102.267 .000 .895 

Error 383191.385 12 31932.615       

 
 

Estimated Marginal Means 
 

Image 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image Mean Std. Error Lower Bound Upper Bound 

1 125.154 17.764 86.449 163.859 

2 229.250 22.874 179.413 279.087 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

(I) image (J) image 
Mean 

Difference (I-J) Std. Error Sig.(a) 
95% Confidence Interval for 

Difference(a) 
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Lower Bound Upper Bound 

1 2 -104.096(*) 21.198 .000 -150.283 -57.909 
2 1 104.096(*) 21.198 .000 57.909 150.283 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .668 24.114(a) 1.000 12.000 .000 .668 

Wilks' lambda .332 24.114(a) 1.000 12.000 .000 .668 

Hotelling's trace 2.010 24.114(a) 1.000 12.000 .000 .668 

Roy's largest root 2.010 24.114(a) 1.000 12.000 .000 .668 

Each F tests the multivariate effect of image. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Thresh 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

thresh Mean Std. Error Lower Bound Upper Bound 

1 135.154 10.838 111.540 158.768 

2 219.250 26.766 160.932 277.568 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) thresh (J) thresh 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -84.096(*) 20.967 .002 -129.778 -38.414 
2 1 84.096(*) 20.967 .002 38.414 129.778 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .573 16.088(a) 1.000 12.000 .002 .573 

Wilks' lambda .427 16.088(a) 1.000 12.000 .002 .573 

Hotelling's trace 1.341 16.088(a) 1.000 12.000 .002 .573 

Roy's largest root 1.341 16.088(a) 1.000 12.000 .002 .573 

Each F tests the multivariate effect of thresh. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Random 
 
Estimates 
 
Measure: MEASURE_1  

random Mean Std. Error 95% Confidence Interval 
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Lower Bound Upper Bound 

1 186.173 20.890 140.657 231.689 

2 168.231 19.701 125.306 211.155 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) random (J) random 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 17.942 20.515 .399 -26.757 62.642 
2 1 -17.942 20.515 .399 -62.642 26.757 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .060 .765(a) 1.000 12.000 .399 .060 

Wilks' lambda .940 .765(a) 1.000 12.000 .399 .060 

Hotelling's trace .064 .765(a) 1.000 12.000 .399 .060 

Roy's largest root .064 .765(a) 1.000 12.000 .399 .060 

Each F tests the multivariate effect of random. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image thresh Mean Std. Error Lower Bound Upper Bound 

1 104.000 13.930 73.650 134.350 1 

2 146.308 26.228 89.162 203.453 

1 166.308 13.284 137.364 195.251 2 

2 292.192 36.846 211.912 372.473 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

thresh (I) image (J) image 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -62.308(*) 16.467 .003 -98.186 -26.430 1 
2 1 62.308(*) 16.467 .003 26.430 98.186 

1 2 -145.885(*) 35.005 .001 -222.154 -69.615 2 

2 1 145.885(*) 35.005 .001 69.615 222.154 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

thresh   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

1 Pillai's trace .544 14.318(a) 1.000 12.000 .003 .544 
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Wilks' lambda .456 14.318(a) 1.000 12.000 .003 .544 

Hotelling's trace 1.193 14.318(a) 1.000 12.000 .003 .544 

  

Roy's largest root 1.193 14.318(a) 1.000 12.000 .003 .544 

Pillai's trace .591 17.368(a) 1.000 12.000 .001 .591 

Wilks' lambda .409 17.368(a) 1.000 12.000 .001 .591 

Hotelling's trace 1.447 17.368(a) 1.000 12.000 .001 .591 

2 

Roy's largest root 1.447 17.368(a) 1.000 12.000 .001 .591 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh 
 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

image (I) thresh (J) thresh 
Mean 

Difference (I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -42.308 22.397 .083 -91.106 6.490 1 
2 1 42.308 22.397 .083 -6.490 91.106 

1 2 -125.885(*) 31.231 .002 -193.931 -57.838 2 

2 1 125.885(*) 31.231 .002 57.838 193.931 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

image   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .229 3.568(a) 1.000 12.000 .083 .229 

Wilks' lambda .771 3.568(a) 1.000 12.000 .083 .229 

Hotelling's trace .297 3.568(a) 1.000 12.000 .083 .229 

1 

Roy's largest root .297 3.568(a) 1.000 12.000 .083 .229 

Pillai's trace .575 16.247(a) 1.000 12.000 .002 .575 

Wilks' lambda .425 16.247(a) 1.000 12.000 .002 .575 

Hotelling's trace 1.354 16.247(a) 1.000 12.000 .002 .575 

2 

Roy's largest root 1.354 16.247(a) 1.000 12.000 .002 .575 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image random Mean Std. Error Lower Bound Upper Bound 

1 125.885 24.029 73.529 178.240 1 

2 124.423 15.746 90.115 158.731 

1 246.462 21.198 200.275 292.648 2 

2 212.038 31.587 143.217 280.860 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  
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95% Confidence Interval for 
Difference(a) 

random (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -120.577(*) 17.548 .000 -158.811 -82.343 1 
2 1 120.577(*) 17.548 .000 82.343 158.811 

1 2 -87.615(*) 30.640 .014 -154.374 -20.856 2 

2 1 87.615(*) 30.640 .014 20.856 154.374 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .797 47.214(a) 1.000 12.000 .000 .797 

Wilks' lambda .203 47.214(a) 1.000 12.000 .000 .797 

Hotelling's trace 3.934 47.214(a) 1.000 12.000 .000 .797 

1 

Roy's largest root 3.934 47.214(a) 1.000 12.000 .000 .797 

Pillai's trace .405 8.177(a) 1.000 12.000 .014 .405 

Wilks' lambda .595 8.177(a) 1.000 12.000 .014 .405 

Hotelling's trace .681 8.177(a) 1.000 12.000 .014 .405 

2 

Roy's largest root .681 8.177(a) 1.000 12.000 .014 .405 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Thresh * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

thresh random Mean Std. Error Lower Bound Upper Bound 

1 132.423 16.198 97.131 167.715 1 

2 137.885 12.175 111.358 164.411 

1 239.923 31.335 171.650 308.196 2 

2 198.577 33.070 126.523 270.631 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

random (I) thresh (J) thresh 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -107.500(*) 27.255 .002 -166.885 -48.115 1 
2 1 107.500(*) 27.255 .002 48.115 166.885 

1 2 -60.692 30.516 .070 -127.180 5.796 2 

2 1 60.692 30.516 .070 -5.796 127.180 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 
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Pillai's trace .565 15.556(a) 1.000 12.000 .002 .565 

Wilks' lambda .435 15.556(a) 1.000 12.000 .002 .565 

Hotelling's trace 1.296 15.556(a) 1.000 12.000 .002 .565 

1 

Roy's largest root 1.296 15.556(a) 1.000 12.000 .002 .565 

Pillai's trace .248 3.956(a) 1.000 12.000 .070 .248 

Wilks' lambda .752 3.956(a) 1.000 12.000 .070 .248 

Hotelling's trace .330 3.956(a) 1.000 12.000 .070 .248 

2 

Roy's largest root .330 3.956(a) 1.000 12.000 .070 .248 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh * Random 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

image thresh random Mean Std. Error Lower Bound Upper Bound 

1 98.769 23.965 46.553 150.985 1 

2 109.231 18.002 70.008 148.453 

1 153.000 34.033 78.848 227.152 

1 

2 

2 139.615 32.497 68.811 210.420 

1 166.077 18.777 125.166 206.988 1 

2 166.538 21.906 118.808 214.269 

1 326.846 38.461 243.046 410.646 

2 

2 

2 257.538 48.528 151.804 363.273 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

thresh random (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -67.308(*) 28.361 .035 -129.101 -5.514 1 
2 1 67.308(*) 28.361 .035 5.514 129.101 

1 2 -57.308 31.860 .097 -126.724 12.108 

1 

2 

2 1 57.308 31.860 .097 -12.108 126.724 
1 2 -173.846(*) 36.709 .000 -253.829 -93.863 1 
2 1 173.846(*) 36.709 .000 93.863 253.829 

1 2 -117.923(*) 49.472 .035 -225.714 -10.132 

2 

2 

2 1 117.923(*) 49.472 .035 10.132 225.714 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

thresh random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

1 1 Pillai's trace .319 5.632(a) 1.000 12.000 .035 .319 

    Wilks' lambda .681 5.632(a) 1.000 12.000 .035 .319 

    Hotelling's trace .469 5.632(a) 1.000 12.000 .035 .319 

    Roy's largest root .469 5.632(a) 1.000 12.000 .035 .319 

  2 Pillai's trace .212 3.236(a) 1.000 12.000 .097 .212 

    Wilks' lambda .788 3.236(a) 1.000 12.000 .097 .212 
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    Hotelling's trace .270 3.236(a) 1.000 12.000 .097 .212 

    Roy's largest root .270 3.236(a) 1.000 12.000 .097 .212 

2 1 Pillai's trace .651 22.427(a) 1.000 12.000 .000 .651 

    Wilks' lambda .349 22.427(a) 1.000 12.000 .000 .651 

    Hotelling's trace 1.869 22.427(a) 1.000 12.000 .000 .651 

    Roy's largest root 1.869 22.427(a) 1.000 12.000 .000 .651 

  2 Pillai's trace .321 5.682(a) 1.000 12.000 .035 .321 

    Wilks' lambda .679 5.682(a) 1.000 12.000 .035 .321 

    Hotelling's trace .473 5.682(a) 1.000 12.000 .035 .321 

    Roy's largest root .473 5.682(a) 1.000 12.000 .035 .321 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Image * Thresh * Random 
 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

image random (I) thresh (J) thresh 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -54.231 33.993 .137 -128.296 19.834 1 
2 1 54.231 33.993 .137 -19.834 128.296 

1 2 -30.385 42.053 .484 -122.009 61.240 

1 

2 

2 1 30.385 42.053 .484 -61.240 122.009 
1 2 -160.769(*) 43.200 .003 -254.894 -66.645 1 
2 1 160.769(*) 43.200 .003 66.645 254.894 

1 2 -91.000(*) 40.975 .046 -180.276 -1.724 

2 

2 

2 1 91.000(*) 40.975 .046 1.724 180.276 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

image random   Value F Hypothesis df Error df Sig. Partial Eta Squared 

1 1 Pillai's trace .175 2.545(a) 1.000 12.000 .137 .175 

    Wilks' lambda .825 2.545(a) 1.000 12.000 .137 .175 

    Hotelling's trace .212 2.545(a) 1.000 12.000 .137 .175 

    Roy's largest root .212 2.545(a) 1.000 12.000 .137 .175 

  2 Pillai's trace .042 .522(a) 1.000 12.000 .484 .042 

    Wilks' lambda .958 .522(a) 1.000 12.000 .484 .042 

    Hotelling's trace .044 .522(a) 1.000 12.000 .484 .042 

    Roy's largest root .044 .522(a) 1.000 12.000 .484 .042 

Each F tests the multivariate simple effects of thresh within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 

11.2.4. Eye and Random Comparison 

Within-Subjects Factors 
 

Measure image random 
Dependent 

Variable 

t400 1 1 VAR00011 
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  2 VAR00012 

1 VAR00013 

  

2 

2 VAR00014 

1 VAR00015 1 

2 VAR00016 

1 VAR00017 

t800 

2 

2 VAR00018 

 
Between-Subjects Factors 
 

  N 

Eye 13 Mode 

Random 
13 

 
Multivariate Tests(b) 
 

Effect   Value F 
Hypothesis 

df 
Error 

df Sig. 

Partial 
Eta 

Squared 

Between 
Subjects 

Intercept Pillai's Trace 
.977 498.081(a) 2.000 23.000 .000 .977 

    Wilks' Lambda .023 498.081(a) 2.000 23.000 .000 .977 

    Hotelling's Trace 43.311 498.081(a) 2.000 23.000 .000 .977 

    Roy's Largest Root 43.311 498.081(a) 2.000 23.000 .000 .977 

  Mode Pillai's Trace .249 3.813(a) 2.000 23.000 .037 .249 

    Wilks' Lambda .751 3.813(a) 2.000 23.000 .037 .249 

    Hotelling's Trace .332 3.813(a) 2.000 23.000 .037 .249 

    Roy's Largest Root .332 3.813(a) 2.000 23.000 .037 .249 

Within 
Subjects 

image Pillai's Trace 
.716 28.945(a) 2.000 23.000 .000 .716 

    Wilks' Lambda .284 28.945(a) 2.000 23.000 .000 .716 

    Hotelling's Trace 2.517 28.945(a) 2.000 23.000 .000 .716 

    Roy's Largest Root 2.517 28.945(a) 2.000 23.000 .000 .716 

  image * Mode Pillai's Trace .007 .076(a) 2.000 23.000 .927 .007 

    Wilks' Lambda .993 .076(a) 2.000 23.000 .927 .007 

    Hotelling's Trace .007 .076(a) 2.000 23.000 .927 .007 

    Roy's Largest Root .007 .076(a) 2.000 23.000 .927 .007 

  random Pillai's Trace .069 .847(a) 2.000 23.000 .442 .069 

    Wilks' Lambda .931 .847(a) 2.000 23.000 .442 .069 

    Hotelling's Trace .074 .847(a) 2.000 23.000 .442 .069 

    Roy's Largest Root .074 .847(a) 2.000 23.000 .442 .069 

  random * Mode Pillai's Trace .107 1.372(a) 2.000 23.000 .274 .107 

    Wilks' Lambda .893 1.372(a) 2.000 23.000 .274 .107 

    Hotelling's Trace .119 1.372(a) 2.000 23.000 .274 .107 

    Roy's Largest Root .119 1.372(a) 2.000 23.000 .274 .107 

  image * 
random 

Pillai's Trace 
.004 .044(a) 2.000 23.000 .957 .004 

    Wilks' Lambda .996 .044(a) 2.000 23.000 .957 .004 

    Hotelling's Trace .004 .044(a) 2.000 23.000 .957 .004 

    Roy's Largest Root .004 .044(a) 2.000 23.000 .957 .004 

  image * 
random * Mode 

Pillai's Trace 
.080 1.004(a) 2.000 23.000 .382 .080 

    Wilks' Lambda .920 1.004(a) 2.000 23.000 .382 .080 

    Hotelling's Trace .087 1.004(a) 2.000 23.000 .382 .080 

    Roy's Largest Root .087 1.004(a) 2.000 23.000 .382 .080 
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a  Exact statistic 
b  Design: Intercept+Mode  
 Within Subjects Design: image+random+image*random 
 

Tests of Within-Subjects Effects 
 
Multivariate(b,c) 
 

Within Subjects Effect   Value F 
Hypothesis 

df Error df Sig. 
Partial Eta 
Squared 

image Pillai's Trace .716 28.945(a) 2.000 23.000 .000 .716 

  Wilks' Lambda .284 28.945(a) 2.000 23.000 .000 .716 

  Hotelling's Trace 2.517 28.945(a) 2.000 23.000 .000 .716 

  Roy's Largest Root 2.517 28.945(a) 2.000 23.000 .000 .716 

image * Mode Pillai's Trace .007 .076(a) 2.000 23.000 .927 .007 

  Wilks' Lambda .993 .076(a) 2.000 23.000 .927 .007 

  Hotelling's Trace .007 .076(a) 2.000 23.000 .927 .007 

  Roy's Largest Root .007 .076(a) 2.000 23.000 .927 .007 

random Pillai's Trace .069 .847(a) 2.000 23.000 .442 .069 

  Wilks' Lambda .931 .847(a) 2.000 23.000 .442 .069 

  Hotelling's Trace .074 .847(a) 2.000 23.000 .442 .069 

  Roy's Largest Root .074 .847(a) 2.000 23.000 .442 .069 

random * Mode Pillai's Trace .107 1.372(a) 2.000 23.000 .274 .107 

  Wilks' Lambda .893 1.372(a) 2.000 23.000 .274 .107 

  Hotelling's Trace .119 1.372(a) 2.000 23.000 .274 .107 

  Roy's Largest Root .119 1.372(a) 2.000 23.000 .274 .107 

image * random Pillai's Trace .004 .044(a) 2.000 23.000 .957 .004 

  Wilks' Lambda .996 .044(a) 2.000 23.000 .957 .004 

  Hotelling's Trace .004 .044(a) 2.000 23.000 .957 .004 

  Roy's Largest Root .004 .044(a) 2.000 23.000 .957 .004 

image * random * 
Mode 

Pillai's Trace 
.080 1.004(a) 2.000 23.000 .382 .080 

  Wilks' Lambda .920 1.004(a) 2.000 23.000 .382 .080 

  Hotelling's Trace .087 1.004(a) 2.000 23.000 .382 .080 

  Roy's Largest Root .087 1.004(a) 2.000 23.000 .382 .080 

a  Exact statistic 
b  Design: Intercept+Mode  
 Within Subjects Design: image+random+image*random 
c  Tests are based on averaged variables. 
 
Univariate Tests 
 

Source Measure   

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 

Partial 
Eta 

Squared 

image t400 Sphericity 
Assumed 

1098.500 1 1098.500 30.744 .000 .562 

    Greenhouse-
Geisser 1098.500 1.000 1098.500 30.744 .000 .562 

    Huynh-Feldt 1098.500 1.000 1098.500 30.744 .000 .562 

    Lower-bound 1098.500 1.000 1098.500 30.744 .000 .562 

  t800 Sphericity 
Assumed 

1895.538 1 1895.538 35.419 .000 .596 

    Greenhouse-
Geisser 1895.538 1.000 1895.538 35.419 .000 .596 

    Huynh-Feldt 1895.538 1.000 1895.538 35.419 .000 .596 

    Lower-bound 1895.538 1.000 1895.538 35.419 .000 .596 

image * Mode t400 Sphericity 
Assumed 

2.462 1 2.462 .069 .795 .003 
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    Greenhouse-
Geisser 2.462 1.000 2.462 .069 .795 .003 

    Huynh-Feldt 2.462 1.000 2.462 .069 .795 .003 

    Lower-bound 2.462 1.000 2.462 .069 .795 .003 

  t800 Sphericity 
Assumed 

5.538 1 5.538 .103 .750 .004 

    Greenhouse-
Geisser 5.538 1.000 5.538 .103 .750 .004 

    Huynh-Feldt 5.538 1.000 5.538 .103 .750 .004 

    Lower-bound 5.538 1.000 5.538 .103 .750 .004 

Error(image) t400 Sphericity 
Assumed 

857.538 24 35.731       

    Greenhouse-
Geisser 857.538 24.000 35.731       

    Huynh-Feldt 857.538 24.000 35.731       

    Lower-bound 857.538 24.000 35.731       

  t800 Sphericity 
Assumed 

1284.423 24 53.518       

    Greenhouse-
Geisser 1284.423 24.000 53.518       

    Huynh-Feldt 1284.423 24.000 53.518       

    Lower-bound 1284.423 24.000 53.518       

random t400 Sphericity 
Assumed 

.962 1 .962 .015 .903 .001 

    Greenhouse-
Geisser .962 1.000 .962 .015 .903 .001 

    Huynh-Feldt .962 1.000 .962 .015 .903 .001 

    Lower-bound .962 1.000 .962 .015 .903 .001 

  t800 Sphericity 
Assumed 

167.538 1 167.538 1.746 .199 .068 

    Greenhouse-
Geisser 167.538 1.000 167.538 1.746 .199 .068 

    Huynh-Feldt 167.538 1.000 167.538 1.746 .199 .068 

    Lower-bound 167.538 1.000 167.538 1.746 .199 .068 

random * Mode t400 Sphericity 
Assumed 

120.615 1 120.615 1.901 .181 .073 

    Greenhouse-
Geisser 120.615 1.000 120.615 1.901 .181 .073 

    Huynh-Feldt 120.615 1.000 120.615 1.901 .181 .073 

    Lower-bound 120.615 1.000 120.615 1.901 .181 .073 

  t800 Sphericity 
Assumed 

44.462 1 44.462 .463 .503 .019 

    Greenhouse-
Geisser 44.462 1.000 44.462 .463 .503 .019 

    Huynh-Feldt 44.462 1.000 44.462 .463 .503 .019 

    Lower-bound 44.462 1.000 44.462 .463 .503 .019 

Error(random) t400 Sphericity 
Assumed 

1522.923 24 63.455       

    Greenhouse-
Geisser 1522.923 24.000 63.455       

    Huynh-Feldt 1522.923 24.000 63.455       

    Lower-bound 1522.923 24.000 63.455       

  t800 Sphericity 
Assumed 

2303.500 24 95.979       

    Greenhouse-
Geisser 2303.500 24.000 95.979       

    Huynh-Feldt 2303.500 24.000 95.979       

    Lower-bound 2303.500 24.000 95.979       
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image * random t400 Sphericity 
Assumed 

4.654 1 4.654 .079 .781 .003 

    Greenhouse-
Geisser 4.654 1.000 4.654 .079 .781 .003 

    Huynh-Feldt 4.654 1.000 4.654 .079 .781 .003 

    Lower-bound 4.654 1.000 4.654 .079 .781 .003 

  t800 Sphericity 
Assumed 

1.385 1 1.385 .019 .891 .001 

    Greenhouse-
Geisser 1.385 1.000 1.385 .019 .891 .001 

    Huynh-Feldt 1.385 1.000 1.385 .019 .891 .001 

    Lower-bound 1.385 1.000 1.385 .019 .891 .001 

image * random * 
Mode 

t400 Sphericity 
Assumed 

96.154 1 96.154 1.631 .214 .064 

    Greenhouse-
Geisser 96.154 1.000 96.154 1.631 .214 .064 

    Huynh-Feldt 96.154 1.000 96.154 1.631 .214 .064 

    Lower-bound 96.154 1.000 96.154 1.631 .214 .064 

  t800 Sphericity 
Assumed 

44.462 1 44.462 .620 .439 .025 

    Greenhouse-
Geisser 44.462 1.000 44.462 .620 .439 .025 

    Huynh-Feldt 44.462 1.000 44.462 .620 .439 .025 

    Lower-bound 44.462 1.000 44.462 .620 .439 .025 

Error(image*random) t400 Sphericity 
Assumed 

1414.692 24 58.946       

    Greenhouse-
Geisser 1414.692 24.000 58.946       

    Huynh-Feldt 1414.692 24.000 58.946       

    Lower-bound 1414.692 24.000 58.946       

  t800 Sphericity 
Assumed 

1721.654 24 71.736       

    Greenhouse-
Geisser 1721.654 24.000 71.736       

    Huynh-Feldt 1721.654 24.000 71.736       

    Lower-bound 1721.654 24.000 71.736       

 
Tests of Within-Subjects Contrasts 
 

Source Measure image random 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial 
Eta 

Squared 

image t400 Linear   1098.500 1 1098.500 30.744 .000 .562 

  t800 Linear   1895.538 1 1895.538 35.419 .000 .596 
image * Mode t400 Linear   2.462 1 2.462 .069 .795 .003 
  t800 Linear   5.538 1 5.538 .103 .750 .004 
Error(image) t400 Linear   857.538 24 35.731       

  t800 Linear   1284.423 24 53.518       
random t400   Linear .962 1 .962 .015 .903 .001 
  t800   Linear 167.538 1 167.538 1.746 .199 .068 
random * Mode t400   Linear 120.615 1 120.615 1.901 .181 .073 

  t800   Linear 44.462 1 44.462 .463 .503 .019 
Error(random) t400   Linear 1522.923 24 63.455       
  t800   Linear 2303.500 24 95.979       
image * random t400 Linear Linear 4.654 1 4.654 .079 .781 .003 

  t800 Linear Linear 1.385 1 1.385 .019 .891 .001 
image * random * 
Mode 

t400 Linear Linear 
96.154 1 96.154 1.631 .214 .064 

  t800 Linear Linear 44.462 1 44.462 .620 .439 .025 
Error(image*random) t400 Linear Linear 1414.692 24 58.946       

  t800 Linear Linear 1721.654 24 71.736       
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Tests of Between-Subjects Effects 
 
Transformed Variable: Average  

Source Measure 
Type III Sum 
of Squares df Mean Square F Sig. 

Partial Eta 
Squared 

t400 46453.885 1 46453.885 739.281 .000 .969 Intercept 

t800 38001.385 1 38001.385 559.332 .000 .959 

t400 325.538 1 325.538 5.181 .032 .178 Mode 

t800 325.538 1 325.538 4.792 .039 .166 

t400 1508.077 24 62.837       Error 

t800 1630.577 24 67.941       

 
 

Estimated Marginal Means 
 

Mode 
 
Estimates 
 

95% Confidence Interval 

Measure Mode Mean Std. Error Lower Bound Upper Bound 

Eye 19.365 1.099 17.097 21.634 t400 

Random 
22.904 1.099 20.635 25.173 

Eye 17.346 1.143 14.987 19.705 t800 

Random 
20.885 1.143 18.525 23.244 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure (I) Mode (J) Mode 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

Eye Random -3.538(*) 1.555 .032 -6.747 -.330 t400 
Random Eye 3.538(*) 1.555 .032 .330 6.747 

Eye Random -3.538(*) 1.617 .039 -6.875 -.202 t800 

Random Eye 3.538(*) 1.617 .039 .202 6.875 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .249 3.813(a) 2.000 23.000 .037 .249 

Wilks' lambda .751 3.813(a) 2.000 23.000 .037 .249 

Hotelling's trace .332 3.813(a) 2.000 23.000 .037 .249 

Roy's largest root .332 3.813(a) 2.000 23.000 .037 .249 

Each F tests the multivariate effect of Mode. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 
Univariate Tests 
 

Measure   
Sum of 
Squares df Mean Square F Sig. 

Partial Eta 
Squared 

t400 Contrast 81.385 1 81.385 5.181 .032 .178 
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  Error 377.019 24 15.709       

Contrast 81.385 1 81.385 4.792 .039 .166 t800 

Error 407.644 24 16.985       

The F tests the effect of Mode. This test is based on the linearly independent pairwise comparisons among the 
estimated marginal means. 
 

Image 
 
Estimates 
 

95% Confidence Interval 

Measure image Mean Std. Error Lower Bound Upper Bound 

1 17.885 1.208 15.392 20.378 t400 

2 24.385 .661 23.021 25.748 

1 14.846 1.275 12.215 17.478 t800 

2 23.385 .843 21.645 25.124 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -6.500(*) 1.172 .000 -8.919 -4.081 t400 
2 1 6.500(*) 1.172 .000 4.081 8.919 

1 2 -8.538(*) 1.435 .000 -11.500 -5.577 t800 

2 1 8.538(*) 1.435 .000 5.577 11.500 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .716 28.945(a) 2.000 23.000 .000 .716 

Wilks' lambda .284 28.945(a) 2.000 23.000 .000 .716 

Hotelling's trace 2.517 28.945(a) 2.000 23.000 .000 .716 

Roy's largest root 2.517 28.945(a) 2.000 23.000 .000 .716 

Each F tests the multivariate effect of image. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Random 
 
Estimates 
 

95% Confidence Interval 

Measure random Mean Std. Error Lower Bound Upper Bound 

1 21.231 1.049 19.067 23.395 t400 

2 21.038 1.153 18.659 23.418 

1 20.385 1.212 17.883 22.886 t800 

2 17.846 1.297 15.169 20.524 

 
Pairwise Comparisons 
 

Measure (I) random (J) random 
Mean 

Difference (I- Std. Error Sig.(a) 
95% Confidence Interval for 

Difference(a) 
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      J)     

Lower Bound Upper Bound 

1 2 .192 1.562 .903 -3.032 3.417 t400 
2 1 -.192 1.562 .903 -3.417 3.032 

1 2 2.538 1.921 .199 -1.427 6.504 t800 

2 1 -2.538 1.921 .199 -6.504 1.427 
Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .069 .847(a) 2.000 23.000 .442 .069 

Wilks' lambda .931 .847(a) 2.000 23.000 .442 .069 

Hotelling's trace .074 .847(a) 2.000 23.000 .442 .069 

Roy's largest root .074 .847(a) 2.000 23.000 .442 .069 

Each F tests the multivariate effect of random. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 

Mode * image 
 
Estimates 
 

95% Confidence Interval 

Measure Mode image Mean Std. Error Lower Bound Upper Bound 

1 15.962 1.708 12.436 19.487 Eye 

2 22.769 .934 20.841 24.697 

1 19.808 1.708 16.282 23.333 

t400 

Random 

2 
26.000 .934 24.072 27.928 

1 12.846 1.803 9.125 16.568 Eye 

2 21.846 1.192 19.387 24.306 

1 16.846 1.803 13.125 20.568 

t800 

Random 

2 
24.923 1.192 22.463 27.383 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure image (I) Mode (J) Mode 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

Eye Random -3.846 2.416 .124 -8.832 1.140 1 
Random Eye 3.846 2.416 .124 -1.140 8.832 

Eye Random -3.231(*) 1.321 .022 -5.958 -.504 

t400 

2 

Random Eye 3.231(*) 1.321 .022 .504 5.958 
Eye Random -4.000 2.550 .130 -9.263 1.263 1 
Random Eye 4.000 2.550 .130 -1.263 9.263 

Eye Random -3.077 1.685 .080 -6.555 .402 

t800 

2 

Random Eye 3.077 1.685 .080 -.402 6.555 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
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image   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .149 2.017(a) 2.000 23.000 .156 .149 

Wilks' lambda .851 2.017(a) 2.000 23.000 .156 .149 

Hotelling's trace .175 2.017(a) 2.000 23.000 .156 .149 

1 

Roy's largest root .175 2.017(a) 2.000 23.000 .156 .149 

Pillai's trace .246 3.758(a) 2.000 23.000 .039 .246 

Wilks' lambda .754 3.758(a) 2.000 23.000 .039 .246 

Hotelling's trace .327 3.758(a) 2.000 23.000 .039 .246 

2 

Roy's largest root .327 3.758(a) 2.000 23.000 .039 .246 

Each F tests the multivariate simple effects of Mode within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 
Univariate Tests 
 

Measure image   Sum of Squares df Mean Square F Sig. Partial Eta Squared 

t400 1 Contrast 96.154 1 96.154 2.535 .124 .096 

    Error 910.500 24 37.938       

  2 Contrast 67.846 1 67.846 5.980 .022 .199 

    Error 272.308 24 11.346       

t800 1 Contrast 104.000 1 104.000 2.461 .130 .093 

    Error 1014.385 24 42.266       

  2 Contrast 61.538 1 61.538 3.333 .080 .122 

    Error 443.115 24 18.463       

Each F tests the simple effects of Mode within each level combination of the other effects shown. These tests are based 
on the linearly independent pairwise comparisons among the estimated marginal means. 
 

Mode * Image 
 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure Mode (I) image (J) image 

Mean 
Difference 

(I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -6.808(*) 1.658 .000 -10.229 -3.386 Eye 
2 1 6.808(*) 1.658 .000 3.386 10.229 

1 2 -6.192(*) 1.658 .001 -9.614 -2.771 

t400 

Random 

2 1 6.192(*) 1.658 .001 2.771 9.614 
1 2 -9.000(*) 2.029 .000 -13.188 -4.812 Eye 
2 1 9.000(*) 2.029 .000 4.812 13.188 

1 2 -8.077(*) 2.029 .001 -12.265 -3.889 

t800 

Random 

2 1 8.077(*) 2.029 .001 3.889 12.265 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

Mode   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .582 15.985(a) 2.000 23.000 .000 .582 

Wilks' lambda .418 15.985(a) 2.000 23.000 .000 .582 

Hotelling's trace 1.390 15.985(a) 2.000 23.000 .000 .582 

Eye 

Roy's largest root 1.390 15.985(a) 2.000 23.000 .000 .582 

Random Pillai's trace .531 13.035(a) 2.000 23.000 .000 .531 
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Wilks' lambda .469 13.035(a) 2.000 23.000 .000 .531 

Hotelling's trace 1.134 13.035(a) 2.000 23.000 .000 .531 

  

Roy's largest root 1.134 13.035(a) 2.000 23.000 .000 .531 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Mode * Random 
 
Estimates 
 

95% Confidence Interval 

Measure Mode random Mean Std. Error Lower Bound Upper Bound 

1 18.385 1.483 15.324 21.445 Eye 

2 20.346 1.631 16.981 23.711 

1 24.077 1.483 21.017 27.137 

t400 

Random 

2 
21.731 1.631 18.366 25.096 

1 19.269 1.714 15.731 22.807 Eye 

2 15.423 1.835 11.636 19.210 

1 21.500 1.714 17.962 25.038 

t800 

Random 

2 
20.269 1.835 16.483 24.056 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure random (I) Mode (J) Mode 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

Eye Random -5.692(*) 2.097 .012 -10.020 -1.364 1 
Random Eye 5.692(*) 2.097 .012 1.364 10.020 

Eye Random -1.385 2.306 .554 -6.144 3.375 

t400 

2 

Random Eye 1.385 2.306 .554 -3.375 6.144 
Eye Random -2.231 2.424 .367 -7.234 2.773 1 
Random Eye 2.231 2.424 .367 -2.773 7.234 

Eye Random -4.846 2.595 .074 -10.201 .509 

t800 

2 

Random Eye 4.846 2.595 .074 -.509 10.201 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .241 3.642(a) 2.000 23.000 .042 .241 

Wilks' lambda .759 3.642(a) 2.000 23.000 .042 .241 

Hotelling's trace .317 3.642(a) 2.000 23.000 .042 .241 

1 

Roy's largest root .317 3.642(a) 2.000 23.000 .042 .241 

Pillai's trace .127 1.675(a) 2.000 23.000 .209 .127 

Wilks' lambda .873 1.675(a) 2.000 23.000 .209 .127 

Hotelling's trace .146 1.675(a) 2.000 23.000 .209 .127 

2 

Roy's largest root .146 1.675(a) 2.000 23.000 .209 .127 

Each F tests the multivariate simple effects of Mode within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
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Univariate Tests 
 

Measure random   Sum of Squares df Mean Square F Sig. 
Partial Eta 
Squared 

t400 1 Contrast 210.615 1 210.615 7.368 .012 .235 

    Error 686.000 24 28.583       

  2 Contrast 12.462 1 12.462 .361 .554 .015 

    Error 829.500 24 34.563       

t800 1 Contrast 32.346 1 32.346 .847 .367 .034 

    Error 916.808 24 38.200       

  2 Contrast 152.654 1 152.654 3.488 .074 .127 

    Error 1050.231 24 43.760       

Each F tests the simple effects of Mode within each level combination of the other effects shown. These tests are based 
on the linearly independent pairwise comparisons among the estimated marginal means. 
 

Image * Random 
 
 Estimates 
 

95% Confidence Interval 

Measure image random Mean Std. Error Lower Bound Upper Bound 

1 18.192 1.618 14.852 21.532 1 

2 17.577 1.924 13.606 21.548 

1 24.269 1.068 22.066 26.473 

t400 

2 

2 24.500 1.019 22.397 26.603 

1 16.231 2.061 11.977 20.484 1 

2 13.462 1.876 9.589 17.334 

1 24.538 1.046 22.379 26.698 

t800 

2 

2 22.231 1.503 19.128 25.333 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure random (I) image (J) image 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -6.077(*) 1.766 .002 -9.722 -2.432 1 
2 1 6.077(*) 1.766 .002 2.432 9.722 

1 2 -6.923(*) 2.040 .002 -11.134 -2.712 

t400 

2 

2 1 6.923(*) 2.040 .002 2.712 11.134 
1 2 -8.308(*) 2.193 .001 -12.833 -3.782 1 
2 1 8.308(*) 2.193 .001 3.782 12.833 

1 2 -8.769(*) 2.197 .001 -13.304 -4.235 

t800 

2 

2 1 8.769(*) 2.197 .001 4.235 13.304 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .550 14.060(a) 2.000 23.000 .000 .550 

Wilks' lambda .450 14.060(a) 2.000 23.000 .000 .550 

Hotelling's trace 1.223 14.060(a) 2.000 23.000 .000 .550 

1 

Roy's largest root 1.223 14.060(a) 2.000 23.000 .000 .550 

2 Pillai's trace .477 10.485(a) 2.000 23.000 .001 .477 
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Wilks' lambda .523 10.485(a) 2.000 23.000 .001 .477 

Hotelling's trace .912 10.485(a) 2.000 23.000 .001 .477 

  

Roy's largest root .912 10.485(a) 2.000 23.000 .001 .477 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 

Mode * Image * Random 
 
Estimates 
 

95% Confidence Interval 

Measure Mode image random Mean Std. Error Lower Bound Upper Bound 

1 14.231 2.288 9.508 18.954 1 

2 17.692 2.721 12.076 23.308 

1 22.538 1.510 19.422 25.655 

Eye 

2 

2 23.000 1.441 20.026 25.974 

1 22.154 2.288 17.431 26.877 1 

2 17.462 2.721 11.846 23.077 

1 26.000 1.510 22.884 29.116 

t400 

Random 

2 

2 26.000 1.441 23.026 28.974 

1 14.231 2.915 8.215 20.246 1 

2 11.462 2.653 5.985 16.938 

1 24.308 1.480 21.254 27.362 

Eye 

2 

2 19.385 2.126 14.997 23.772 

1 18.231 2.915 12.215 24.246 1 

2 15.462 2.653 9.985 20.938 

1 24.769 1.480 21.715 27.823 

t800 

Random 

2 

2 25.077 2.126 20.689 29.464 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure image random (I) Mode 
(J) 
Mode 

Mean 
Difference 

(I-J) 
Std. 
Error Sig.(a) 

Lower 
Bound 

Upper 
Bound 

Eye Random -7.923(*) 3.236 .022 -14.603 -1.243 1 
Random Eye 7.923(*) 3.236 .022 1.243 14.603 

Eye Random .231 3.848 .953 -7.711 8.173 

1 

2 

Random Eye -.231 3.848 .953 -8.173 7.711 
Eye Random -3.462 2.135 .118 -7.868 .945 1 
Random Eye 3.462 2.135 .118 -.945 7.868 

Eye Random -3.000 2.038 .154 -7.206 1.206 

t400 

2 

2 

Random Eye 3.000 2.038 .154 -1.206 7.206 
Eye Random -4.000 4.122 .342 -12.507 4.507 1 
Random Eye 4.000 4.122 .342 -4.507 12.507 

Eye Random -4.000 3.752 .297 -11.744 3.744 

1 

2 

Random Eye 4.000 3.752 .297 -3.744 11.744 
Eye Random -.462 2.093 .827 -4.780 3.857 1 
Random Eye .462 2.093 .827 -3.857 4.780 

Eye Random -5.692 3.006 .070 -11.897 .513 

t800 

2 

2 

Random Eye 5.692 3.006 .070 -.513 11.897 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
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image random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

1 1 Pillai's trace .214 3.128(a) 2.000 23.000 .063 .214 

    Wilks' lambda .786 3.128(a) 2.000 23.000 .063 .214 

    Hotelling's trace .272 3.128(a) 2.000 23.000 .063 .214 

    Roy's largest root .272 3.128(a) 2.000 23.000 .063 .214 

  2 Pillai's trace .046 .554(a) 2.000 23.000 .582 .046 

    Wilks' lambda .954 .554(a) 2.000 23.000 .582 .046 

    Hotelling's trace .048 .554(a) 2.000 23.000 .582 .046 

    Roy's largest root .048 .554(a) 2.000 23.000 .582 .046 

2 1 Pillai's trace .104 1.336(a) 2.000 23.000 .283 .104 

    Wilks' lambda .896 1.336(a) 2.000 23.000 .283 .104 

    Hotelling's trace .116 1.336(a) 2.000 23.000 .283 .104 

    Roy's largest root .116 1.336(a) 2.000 23.000 .283 .104 

  2 Pillai's trace .130 1.721(a) 2.000 23.000 .201 .130 

    Wilks' lambda .870 1.721(a) 2.000 23.000 .201 .130 

    Hotelling's trace .150 1.721(a) 2.000 23.000 .201 .130 

    Roy's largest root .150 1.721(a) 2.000 23.000 .201 .130 

Each F tests the multivariate simple effects of Mode within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 
 
Univariate Tests 
 

Measure image random   
Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

t400 1 1 Contrast 408.038 1 408.038 5.993 .022 .200 

      Error 1634.000 24 68.083       

    2 Contrast .346 1 .346 .004 .953 .000 

      Error 2310.000 24 96.250       

  2 1 Contrast 77.885 1 77.885 2.628 .118 .099 

      Error 711.231 24 29.635       

    2 Contrast 58.500 1 58.500 2.167 .154 .083 

      Error 648.000 24 27.000       

t800 1 1 Contrast 104.000 1 104.000 .942 .342 .038 

      Error 2650.615 24 110.442       

    2 Contrast 104.000 1 104.000 1.136 .297 .045 

      Error 2196.462 24 91.519       

  2 1 Contrast 1.385 1 1.385 .049 .827 .002 

      Error 683.077 24 28.462       

    2 Contrast 210.615 1 210.615 3.585 .070 .130 

      Error 1410.000 24 58.750       

Each F tests the simple effects of Mode within each level combination of the other effects shown. These tests are based 
on the linearly independent pairwise comparisons among the estimated marginal means. 
 

Mode * Image * Random 
 
Pairwise Comparisons 
 

95% Confidence Interval 
for Difference(a) 

Measure Mode random 
(I) 
image 

(J) 
image 

Mean 
Difference 

(I-J) 
Std. 
Error Sig.(a) 

Lower 
Bound 

Upper 
Bound 

1 2 -8.308(*) 2.498 .003 -13.463 -3.153 t400 Eye 1 
2 1 8.308(*) 2.498 .003 3.153 13.463 
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1 2 -5.308 2.886 .078 -11.263 .648   2 

2 1 5.308 2.886 .078 -.648 11.263 
1 2 -3.846 2.498 .137 -9.001 1.309 1 
2 1 3.846 2.498 .137 -1.309 9.001 

1 2 -8.538(*) 2.886 .007 -14.494 -2.583 

  

Random 

2 

2 1 8.538(*) 2.886 .007 2.583 14.494 
1 2 -10.077(*) 3.101 .003 -16.477 -3.677 1 
2 1 10.077(*) 3.101 .003 3.677 16.477 

1 2 -7.923(*) 3.107 .018 -14.336 -1.510 

Eye 

2 

2 1 7.923(*) 3.107 .018 1.510 14.336 
1 2 -6.538(*) 3.101 .046 -12.939 -.138 1 
2 1 6.538(*) 3.101 .046 .138 12.939 

1 2 -9.615(*) 3.107 .005 -16.028 -3.203 

t800 

Random 

2 

2 1 9.615(*) 3.107 .005 3.203 16.028 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

Mode random   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Eye 1 Pillai's trace .502 11.611(a) 2.000 23.000 .000 .502 

    Wilks' lambda .498 11.611(a) 2.000 23.000 .000 .502 

    Hotelling's trace 1.010 11.611(a) 2.000 23.000 .000 .502 

    Roy's largest root 1.010 11.611(a) 2.000 23.000 .000 .502 

  2 Pillai's trace .250 3.827(a) 2.000 23.000 .037 .250 

    Wilks' lambda .750 3.827(a) 2.000 23.000 .037 .250 

    Hotelling's trace .333 3.827(a) 2.000 23.000 .037 .250 

    Roy's largest root .333 3.827(a) 2.000 23.000 .037 .250 

Random 1 Pillai's trace .241 3.644(a) 2.000 23.000 .042 .241 

    Wilks' lambda .759 3.644(a) 2.000 23.000 .042 .241 

    Hotelling's trace .317 3.644(a) 2.000 23.000 .042 .241 

    Roy's largest root .317 3.644(a) 2.000 23.000 .042 .241 

  2 Pillai's trace .378 6.975(a) 2.000 23.000 .004 .378 

    Wilks' lambda .622 6.975(a) 2.000 23.000 .004 .378 

    Hotelling's trace .606 6.975(a) 2.000 23.000 .004 .378 

    Roy's largest root .606 6.975(a) 2.000 23.000 .004 .378 

Each F tests the multivariate simple effects of image within each level combination of the other effects shown. These 
tests are based on the linearly independent pairwise comparisons among the estimated marginal means. 
a  Exact statistic 

11.3. Experiments on Refixation and Pre-Attentive Activity 

11.3.1. Steps to Target 

Within-Subjects Factors 
 
Measure: MEASURE_1  

Threshold Ranking 
Dependent 

Variable 

1 (300ms) 1 VAR00001 

  2 VAR00002 

2 (400ms) 1 VAR00003 

  2 VAR00004 
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3 (Revisit) 1 VAR00005 

  2 VAR00006 

4 (Revisit/400ms) 1 VAR00007 

  2 VAR00008 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 

Pillai's Trace .049 .358(a) 3.000 21.000 .784 

Wilks' Lambda .951 .358(a) 3.000 21.000 .784 

Hotelling's Trace .051 .358(a) 3.000 21.000 .784 

Threshold 

Roy's Largest Root .051 .358(a) 3.000 21.000 .784 

Pillai's Trace .166 4.593(a) 1.000 23.000 .043 

Wilks' Lambda .834 4.593(a) 1.000 23.000 .043 

Hotelling's Trace .200 4.593(a) 1.000 23.000 .043 

Ranking 

Roy's Largest Root .200 4.593(a) 1.000 23.000 .043 

Pillai's Trace .018 .131(a) 3.000 21.000 .940 

Wilks' Lambda .982 .131(a) 3.000 21.000 .940 

Hotelling's Trace .019 .131(a) 3.000 21.000 .940 

Threshold * Ranking 

Roy's Largest Root .019 .131(a) 3.000 21.000 .940 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: Threshold+Ranking+Threshold*Ranking 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  

Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

Threshold .832 3.993 5 .551 .905 1.000 .333 

Ranking 1.000 .000 0 . 1.000 1.000 1.000 

Threshold * Ranking .963 .823 5 .976 .977 1.000 .333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
 Within Subjects Design: Threshold+Ranking+Threshold*Ranking 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df Mean Square F Sig. 

Sphericity Assumed 97.224 3 32.408 .441 .724 

Greenhouse-Geisser 97.224 2.716 35.793 .441 .705 

Huynh-Feldt 97.224 3.000 32.408 .441 .724 

Threshold 

Lower-bound 97.224 1.000 97.224 .441 .513 

Sphericity Assumed 5070.151 69 73.480     

Greenhouse-Geisser 5070.151 62.475 81.155     

Huynh-Feldt 5070.151 69.000 73.480     

Error(Threshold) 

Lower-bound 5070.151 23.000 220.441     

Sphericity Assumed 453.255 1 453.255 4.593 .043 

Greenhouse-Geisser 453.255 1.000 453.255 4.593 .043 

Ranking 

Huynh-Feldt 453.255 1.000 453.255 4.593 .043 
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  Lower-bound 453.255 1.000 453.255 4.593 .043 

Sphericity Assumed 2269.870 23 98.690     

Greenhouse-Geisser 2269.870 23.000 98.690     

Huynh-Feldt 2269.870 23.000 98.690     

Error(Ranking) 

Lower-bound 2269.870 23.000 98.690     

Sphericity Assumed 63.016 3 21.005 .134 .940 

Greenhouse-Geisser 63.016 2.931 21.501 .134 .937 

Huynh-Feldt 63.016 3.000 21.005 .134 .940 

Threshold * Ranking 

Lower-bound 63.016 1.000 63.016 .134 .718 

Sphericity Assumed 10838.359 69 157.078     

Greenhouse-Geisser 10838.359 67.410 160.783     

Huynh-Feldt 10838.359 69.000 157.078     

Error(Threshold*Ranking) 

Lower-bound 10838.359 23.000 471.233     

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source Threshold Ranking 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Linear   2.926 1 2.926 .048 .829 

Quadratic   1.172 1 1.172 .015 .904 

Threshold 

Cubic   93.126 1 93.126 1.159 .293 

Linear   1407.799 23 61.209     
Quadratic   1814.453 23 78.889     

Error(Threshold) 

Cubic   1847.899 23 80.343     
Ranking   Linear 453.255 1 453.255 4.593 .043 
Error(Ranking)   Linear 2269.870 23 98.690     
Threshold * Ranking Linear Linear 9.401 1 9.401 .054 .818 

Quadratic Linear .880 1 .880 .005 .942   
Cubic Linear 52.734 1 52.734 .395 .536 

Linear Linear 4012.524 23 174.458     
Quadratic Linear 3753.745 23 163.206     

Error(Threshold*Ranking) 

Cubic Linear 3072.091 23 133.569     
 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 53500.130 1 53500.130 401.208 .000 

Error 3066.995 23 133.348     

 
 

Estimated Marginal Means 
 

Threshold 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Threshold Mean Std. Error Lower Bound Upper Bound 

1 16.625 1.239 14.062 19.188 

2 17.604 1.451 14.603 20.606 

3 15.625 1.413 12.702 18.548 

4 16.917 1.317 14.193 19.640 
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Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Threshold (J) Threshold 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

2 -.979 1.610 .549 -4.310 2.351 
3 1.000 1.579 .533 -2.267 4.267 

1 

4 -.292 1.483 .846 -3.359 2.776 

2 1 .979 1.610 .549 -2.351 4.310 

3 1.979 1.923 .314 -1.999 5.958   

4 .688 2.019 .737 -3.490 4.865 
1 -1.000 1.579 .533 -4.267 2.267 

2 -1.979 1.923 .314 -5.958 1.999 

3 

4 -1.292 1.819 .485 -5.055 2.471 

4 1 .292 1.483 .846 -2.776 3.359 

2 -.688 2.019 .737 -4.865 3.490   
3 1.292 1.819 .485 -2.471 5.055 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .049 .358(a) 3.000 21.000 .784 

Wilks' lambda .951 .358(a) 3.000 21.000 .784 

Hotelling's trace .051 .358(a) 3.000 21.000 .784 

Roy's largest root .051 .358(a) 3.000 21.000 .784 

Each F tests the multivariate effect of Threshold. These tests are based on the linearly independent pairwise 
comparisons among the estimated marginal means. 
a  Exact statistic 
 

Ranking 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Ranking Mean Std. Error Lower Bound Upper Bound 

1 18.229 1.145 15.861 20.597 

2 15.156 1.052 12.980 17.333 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Ranking (J) Ranking 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 3.073(*) 1.434 .043 .107 6.039 
2 1 -3.073(*) 1.434 .043 -6.039 -.107 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .166 4.593(a) 1.000 23.000 .043 
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Wilks' lambda .834 4.593(a) 1.000 23.000 .043 

Hotelling's trace .200 4.593(a) 1.000 23.000 .043 

Roy's largest root .200 4.593(a) 1.000 23.000 .043 

Each F tests the multivariate effect of Ranking. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 

11.3.2. Time to Target (Per Display) 

Within-Subjects Factors 
 
Measure: MEASURE_1  

Threshold Ranking 
Dependent 

Variable 

1 VAR00001 1 

2 VAR00002 

1 VAR00003 2 

2 VAR00004 

1 VAR00005 3 

2 VAR00006 

1 VAR00007 4 

2 VAR00008 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 

Pillai's Trace .934 99.477(a) 3.000 21.000 .000 

Wilks' Lambda .066 99.477(a) 3.000 21.000 .000 

Hotelling's Trace 14.211 99.477(a) 3.000 21.000 .000 

Threshold 

Roy's Largest Root 14.211 99.477(a) 3.000 21.000 .000 

Pillai's Trace .034 .804(a) 1.000 23.000 .379 

Wilks' Lambda .966 .804(a) 1.000 23.000 .379 

Hotelling's Trace .035 .804(a) 1.000 23.000 .379 

Ranking 

Roy's Largest Root .035 .804(a) 1.000 23.000 .379 

Pillai's Trace .031 .221(a) 3.000 21.000 .881 

Wilks' Lambda .969 .221(a) 3.000 21.000 .881 

Hotelling's Trace .032 .221(a) 3.000 21.000 .881 

Threshold * Ranking 

Roy's Largest Root .032 .221(a) 3.000 21.000 .881 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: Threshold+Ranking+Threshold*Ranking 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  

Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

Threshold .194 35.654 5 .000 .501 .528 .333 

Ranking 1.000 .000 0 . 1.000 1.000 1.000 

Threshold * Ranking .389 20.496 5 .001 .681 .748 .333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
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 Within Subjects Design: Threshold+Ranking+Threshold*Ranking 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df Mean Square F Sig. 

Sphericity Assumed 40.699 3 13.566 56.560 .000 

Greenhouse-Geisser 40.699 1.503 27.075 56.560 .000 

Huynh-Feldt 40.699 1.585 25.674 56.560 .000 

Threshold 

Lower-bound 40.699 1.000 40.699 56.560 .000 

Sphericity Assumed 16.550 69 .240     

Greenhouse-Geisser 16.550 34.574 .479     

Huynh-Feldt 16.550 36.460 .454     

Error(Threshold) 

Lower-bound 16.550 23.000 .720     

Sphericity Assumed .143 1 .143 .804 .379 

Greenhouse-Geisser .143 1.000 .143 .804 .379 

Huynh-Feldt .143 1.000 .143 .804 .379 

Ranking 

Lower-bound .143 1.000 .143 .804 .379 

Sphericity Assumed 4.086 23 .178     

Greenhouse-Geisser 4.086 23.000 .178     

Huynh-Feldt 4.086 23.000 .178     

Error(Ranking) 

Lower-bound 4.086 23.000 .178     

Sphericity Assumed .055 3 .018 .103 .958 

Greenhouse-Geisser .055 2.043 .027 .103 .906 

Huynh-Feldt .055 2.245 .025 .103 .921 

Threshold * Ranking 

Lower-bound .055 1.000 .055 .103 .751 

Sphericity Assumed 12.277 69 .178     

Greenhouse-Geisser 12.277 46.997 .261     

Huynh-Feldt 12.277 51.628 .238     

Error(Threshold*Ranking) 

Lower-bound 12.277 23.000 .534     

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source Threshold Ranking 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 

Linear   8.546 1 8.546 58.928 .000 

Quadratic   24.580 1 24.580 203.617 .000 

Threshold 

Cubic   7.573 1 7.573 16.687 .000 

Linear   3.335 23 .145     
Quadratic   2.776 23 .121     

Error(Threshold) 

Cubic   10.438 23 .454     
Ranking   Linear .143 1 .143 .804 .379 
Error(Ranking)   Linear 4.086 23 .178     
Threshold * Ranking Linear Linear .016 1 .016 .210 .651 

Quadratic Linear .002 1 .002 .012 .915   
Cubic Linear .037 1 .037 .120 .732 

Linear Linear 1.775 23 .077     
Quadratic Linear 3.335 23 .145     

Error(Threshold*Ranking) 

Cubic Linear 7.167 23 .312     
 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
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Intercept 512.100 1 512.100 1673.725 .000 

Error 7.037 23 .306     

 
 

Estimated Marginal Means 
 

Threshold 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Threshold Mean Std. Error Lower Bound Upper Bound 

1 1.081 .050 .977 1.185 

2 1.630 .070 1.485 1.776 

3 2.352 .109 2.126 2.578 

4 1.470 .045 1.377 1.562 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Threshold (J) Threshold 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

2 -.549(*) .055 .000 -.663 -.435 
3 -1.271(*) .119 .000 -1.517 -1.024 

1 

4 -.388(*) .060 .000 -.513 -.264 

2 1 .549(*) .055 .000 .435 .663 

3 -.722(*) .146 .000 -1.024 -.420   

4 .161(*) .066 .023 .024 .297 
1 1.271(*) .119 .000 1.024 1.517 

2 .722(*) .146 .000 .420 1.024 

3 

4 .882(*) .116 .000 .642 1.122 

4 1 .388(*) .060 .000 .264 .513 

2 -.161(*) .066 .023 -.297 -.024   
3 -.882(*) .116 .000 -1.122 -.642 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .934 99.477(a) 3.000 21.000 .000 

Wilks' lambda .066 99.477(a) 3.000 21.000 .000 

Hotelling's trace 14.211 99.477(a) 3.000 21.000 .000 

Roy's largest root 14.211 99.477(a) 3.000 21.000 .000 

Each F tests the multivariate effect of Threshold. These tests are based on the linearly independent pairwise 
comparisons among the estimated marginal means. 
a  Exact statistic 
 

Ranking 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Ranking Mean Std. Error Lower Bound Upper Bound 
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1 1.606 .044 1.516 1.696 

2 1.660 .056 1.545 1.776 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Ranking (J) Ranking 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -.055 .061 .379 -.180 .071 
2 1 .055 .061 .379 -.071 .180 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .034 .804(a) 1.000 23.000 .379 

Wilks' lambda .966 .804(a) 1.000 23.000 .379 

Hotelling's trace .035 .804(a) 1.000 23.000 .379 

Roy's largest root .035 .804(a) 1.000 23.000 .379 

Each F tests the multivariate effect of Ranking. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 

11.3.3. Fixation Numbers (Per Display) 

Within-Subjects Factors 
 
Measure: MEASURE_1  

Threshold Ranking 
Dependent 

Variable 

1 VAR00001 1 

2 VAR00002 

1 VAR00003 2 

2 VAR00004 

1 VAR00005 3 

2 VAR00006 

1 VAR00007 4 

2 VAR00008 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 

Pillai's Trace .892 58.091(a) 3.000 21.000 .000 

Wilks' Lambda .108 58.091(a) 3.000 21.000 .000 

Hotelling's Trace 8.299 58.091(a) 3.000 21.000 .000 

Threshold 

Roy's Largest Root 8.299 58.091(a) 3.000 21.000 .000 

Pillai's Trace .054 1.310(a) 1.000 23.000 .264 

Wilks' Lambda .946 1.310(a) 1.000 23.000 .264 

Hotelling's Trace .057 1.310(a) 1.000 23.000 .264 

Ranking 

Roy's Largest Root .057 1.310(a) 1.000 23.000 .264 

Pillai's Trace .033 .241(a) 3.000 21.000 .867 

Wilks' Lambda .967 .241(a) 3.000 21.000 .867 

Threshold * Ranking 

Hotelling's Trace .034 .241(a) 3.000 21.000 .867 
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  Roy's Largest Root .034 .241(a) 3.000 21.000 .867 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: Threshold+Ranking+Threshold*Ranking 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  

Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

Threshold .581 11.813 5 .038 .719 .796 .333 

Ranking 1.000 .000 0 . 1.000 1.000 1.000 

Threshold * Ranking .767 5.750 5 .332 .865 .984 .333 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
 Within Subjects Design: Threshold+Ranking+Threshold*Ranking 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   
Type III Sum 
of Squares df Mean Square F Sig. 

Sphericity Assumed 227.167 3 75.722 38.251 .000 

Greenhouse-Geisser 227.167 2.157 105.332 38.251 .000 

Huynh-Feldt 227.167 2.387 95.155 38.251 .000 

Threshold 

Lower-bound 227.167 1.000 227.167 38.251 .000 

Sphericity Assumed 136.594 69 1.980     

Greenhouse-Geisser 136.594 49.604 2.754     

Huynh-Feldt 136.594 54.909 2.488     

Error(Threshold) 

Lower-bound 136.594 23.000 5.939     

Sphericity Assumed 2.382 1 2.382 1.310 .264 

Greenhouse-Geisser 2.382 1.000 2.382 1.310 .264 

Huynh-Feldt 2.382 1.000 2.382 1.310 .264 

Ranking 

Lower-bound 2.382 1.000 2.382 1.310 .264 

Sphericity Assumed 41.832 23 1.819     

Greenhouse-Geisser 41.832 23.000 1.819     

Huynh-Feldt 41.832 23.000 1.819     

Error(Ranking) 

Lower-bound 41.832 23.000 1.819     

Sphericity Assumed 1.467 3 .489 .271 .846 

Greenhouse-Geisser 1.467 2.594 .565 .271 .818 

Huynh-Feldt 1.467 2.953 .497 .271 .843 

Threshold * Ranking 

Lower-bound 1.467 1.000 1.467 .271 .608 

Sphericity Assumed 124.593 69 1.806     

Greenhouse-Geisser 124.593 59.663 2.088     

Huynh-Feldt 124.593 67.917 1.834     

Error(Threshold*Ranking) 

Lower-bound 124.593 23.000 5.417     

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source Threshold Ranking 
Type III Sum 
of Squares df 

Mean 
Square F Sig. 
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Linear   51.420 1 51.420 26.662 .000 

Quadratic   158.520 1 158.520 161.718 .000 

Threshold 

Cubic   17.227 1 17.227 5.685 .026 

Linear   44.357 23 1.929     
Quadratic   22.545 23 .980     

Error(Threshold) 

Cubic   69.692 23 3.030     
Ranking   Linear 2.382 1 2.382 1.310 .264 
Error(Ranking)   Linear 41.832 23 1.819     
Threshold * Ranking Linear Linear .439 1 .439 .454 .507 

Quadratic Linear .057 1 .057 .027 .872   
Cubic Linear .971 1 .971 .418 .524 

Linear Linear 22.234 23 .967     
Quadratic Linear 48.899 23 2.126     

Error(Threshold*Ranking) 

Cubic Linear 53.460 23 2.324     
 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 

Intercept 4271.855 1 4271.855 849.436 .000 

Error 115.668 23 5.029     

 
 

Estimated Marginal Means 
 

Threshold 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Threshold Mean Std. Error Lower Bound Upper Bound 

1 3.248 .210 2.814 3.682 

2 4.992 .307 4.356 5.628 

3 6.259 .230 5.783 6.735 

4 4.369 .192 3.971 4.766 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Threshold (J) Threshold 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

2 -1.744(*) .243 .000 -2.247 -1.241 
3 -3.011(*) .289 .000 -3.608 -2.414 

1 

4 -1.121(*) .239 .000 -1.615 -.627 

2 1 1.744(*) .243 .000 1.241 2.247 

3 -1.267(*) .387 .003 -2.067 -.467   

4 .624(*) .290 .042 .023 1.224 
1 3.011(*) .289 .000 2.414 3.608 

2 1.267(*) .387 .003 .467 2.067 

3 

4 1.890(*) .248 .000 1.377 2.404 

4 1 1.121(*) .239 .000 .627 1.615 

2 -.624(*) .290 .042 -1.224 -.023   
3 -1.890(*) .248 .000 -2.404 -1.377 

Based on estimated marginal means 
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*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .892 58.091(a) 3.000 21.000 .000 

Wilks' lambda .108 58.091(a) 3.000 21.000 .000 

Hotelling's trace 8.299 58.091(a) 3.000 21.000 .000 

Roy's largest root 8.299 58.091(a) 3.000 21.000 .000 

Each F tests the multivariate effect of Threshold. These tests are based on the linearly independent pairwise 
comparisons among the estimated marginal means. 
a  Exact statistic 
 

Ranking 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Ranking Mean Std. Error Lower Bound Upper Bound 

1 4.606 .163 4.269 4.943 

2 4.828 .212 4.390 5.266 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Ranking (J) Ranking 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 -.223 .195 .264 -.625 .180 
2 1 .223 .195 .264 -.180 .625 

Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 

Pillai's trace .054 1.310(a) 1.000 23.000 .264 

Wilks' lambda .946 1.310(a) 1.000 23.000 .264 

Hotelling's trace .057 1.310(a) 1.000 23.000 .264 

Roy's largest root .057 1.310(a) 1.000 23.000 .264 

Each F tests the multivariate effect of Ranking. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 

11.3.4. Eye and Random Comparison 

Within-Subjects Factors 
 

Measure Ranking 
Dependent 

Variable 

run1 (300ms ) 1 VAR00010 

  2 VAR00011 

run2 (400ms) 1 VAR00012 

  2 VAR00013 

run3 (Revisit) 1 VAR00014 

  2 VAR00015 
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run4 (Revisit/400ms) 1 VAR00016 

  2 VAR00017 

 
Between-Subjects Factors 
 

  N 

Eye 24 Mode 

Random 24 

 
Multivariate Tests(b) 
 

Effect   Value F 
Hypothesis 

df 
Error 

df Sig. 

Partial 
Eta 

Squared 

Between 
Subjects 

Intercept Pillai's Trace 
.974 409.943(a) 4.000 43.000 .000 .974 

    Wilks' Lambda .026 409.943(a) 4.000 43.000 .000 .974 

    Hotelling's Trace 38.134 409.943(a) 4.000 43.000 .000 .974 

    Roy's Largest Root 38.134 409.943(a) 4.000 43.000 .000 .974 

  Mode Pillai's Trace .336 5.434(a) 4.000 43.000 .001 .336 

    Wilks' Lambda .664 5.434(a) 4.000 43.000 .001 .336 

    Hotelling's Trace .505 5.434(a) 4.000 43.000 .001 .336 

    Roy's Largest Root .505 5.434(a) 4.000 43.000 .001 .336 

Within 
Subjects 

Ranking Pillai's Trace 
.248 3.547(a) 4.000 43.000 .014 .248 

    Wilks' Lambda .752 3.547(a) 4.000 43.000 .014 .248 

    Hotelling's Trace .330 3.547(a) 4.000 43.000 .014 .248 

    Roy's Largest Root .330 3.547(a) 4.000 43.000 .014 .248 

  Ranking * 
Mode 

Pillai's Trace 
.014 .152(a) 4.000 43.000 .961 .014 

    Wilks' Lambda .986 .152(a) 4.000 43.000 .961 .014 

    Hotelling's Trace .014 .152(a) 4.000 43.000 .961 .014 

    Roy's Largest Root .014 .152(a) 4.000 43.000 .961 .014 

a  Exact statistic 
b  Design: Intercept+Mode  
 Within Subjects Design: Ranking 
 
Tests of Within-Subjects Effects 
 
Multivariate(b,c) 
 

Within Subjects 
Effect   Value F 

Hypothesis 
df Error df Sig. 

Partial Eta 
Squared 

Ranking Pillai's Trace .248 3.547(a) 4.000 43.000 .014 .248 

  Wilks' Lambda .752 3.547(a) 4.000 43.000 .014 .248 

  Hotelling's Trace .330 3.547(a) 4.000 43.000 .014 .248 

  Roy's Largest Root .330 3.547(a) 4.000 43.000 .014 .248 

Ranking * Mode Pillai's Trace .014 .152(a) 4.000 43.000 .961 .014 

  Wilks' Lambda .986 .152(a) 4.000 43.000 .961 .014 

  Hotelling's Trace .014 .152(a) 4.000 43.000 .961 .014 

  Roy's Largest Root .014 .152(a) 4.000 43.000 .961 .014 

a  Exact statistic 
b  Design: Intercept+Mode  
 Within Subjects Design: Ranking 
c  Tests are based on averaged variables. 
 
Univariate Tests 
 

Source Measure   
Type III 
Sum of df 

Mean 
Square F Sig. 

Partial 
Eta 



 

- 182 - 

Squares Squared 

Ranking run1 Sphericity Assumed 442.042 1 442.042 3.652 .062 .074 

    Greenhouse-Geisser 442.042 1.000 442.042 3.652 .062 .074 

    Huynh-Feldt 442.042 1.000 442.042 3.652 .062 .074 

    Lower-bound 442.042 1.000 442.042 3.652 .062 .074 

  run2 Sphericity Assumed 263.344 1 263.344 2.452 .124 .051 

    Greenhouse-Geisser 263.344 1.000 263.344 2.452 .124 .051 

    Huynh-Feldt 263.344 1.000 263.344 2.452 .124 .051 

    Lower-bound 263.344 1.000 263.344 2.452 .124 .051 

  run3 Sphericity Assumed 117.042 1 117.042 1.083 .303 .023 

    Greenhouse-Geisser 117.042 1.000 117.042 1.083 .303 .023 

    Huynh-Feldt 117.042 1.000 117.042 1.083 .303 .023 

    Lower-bound 117.042 1.000 117.042 1.083 .303 .023 

  run4 Sphericity Assumed 337.500 1 337.500 3.226 .079 .066 

    Greenhouse-Geisser 337.500 1.000 337.500 3.226 .079 .066 

    Huynh-Feldt 337.500 1.000 337.500 3.226 .079 .066 

    Lower-bound 337.500 1.000 337.500 3.226 .079 .066 

Ranking * Mode run1 Sphericity Assumed 22.042 1 22.042 .182 .672 .004 

    Greenhouse-Geisser 22.042 1.000 22.042 .182 .672 .004 

    Huynh-Feldt 22.042 1.000 22.042 .182 .672 .004 

    Lower-bound 22.042 1.000 22.042 .182 .672 .004 

  run2 Sphericity Assumed 36.260 1 36.260 .338 .564 .007 

    Greenhouse-Geisser 36.260 1.000 36.260 .338 .564 .007 

    Huynh-Feldt 36.260 1.000 36.260 .338 .564 .007 

    Lower-bound 36.260 1.000 36.260 .338 .564 .007 

  run3 Sphericity Assumed 18.375 1 18.375 .170 .682 .004 

    Greenhouse-Geisser 18.375 1.000 18.375 .170 .682 .004 

    Huynh-Feldt 18.375 1.000 18.375 .170 .682 .004 

    Lower-bound 18.375 1.000 18.375 .170 .682 .004 

  run4 Sphericity Assumed 10.667 1 10.667 .102 .751 .002 

    Greenhouse-Geisser 10.667 1.000 10.667 .102 .751 .002 

    Huynh-Feldt 10.667 1.000 10.667 .102 .751 .002 

    Lower-bound 10.667 1.000 10.667 .102 .751 .002 

Error(Ranking) run1 Sphericity Assumed 5567.917 46 121.042       

    Greenhouse-Geisser 5567.917 46.000 121.042       

    Huynh-Feldt 5567.917 46.000 121.042       

    Lower-bound 5567.917 46.000 121.042       

  run2 Sphericity Assumed 4939.896 46 107.389       

    Greenhouse-Geisser 4939.896 46.000 107.389       

    Huynh-Feldt 4939.896 46.000 107.389       

    Lower-bound 4939.896 46.000 107.389       

  run3 Sphericity Assumed 4969.583 46 108.034       

    Greenhouse-Geisser 4969.583 46.000 108.034       

    Huynh-Feldt 4969.583 46.000 108.034       

    Lower-bound 4969.583 46.000 108.034       

  run4 Sphericity Assumed 4812.833 46 104.627       

    Greenhouse-Geisser 4812.833 46.000 104.627       

    Huynh-Feldt 4812.833 46.000 104.627       

    Lower-bound 4812.833 46.000 104.627       
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Tests of Within-Subjects Contrasts 
 

Source Measure Ranking 

Type III 
Sum of 

Squares df 
Mean 

Square F Sig. 
Partial Eta 
Squared 

run1 Linear 442.042 1 442.042 3.652 .062 .074 

run2 Linear 263.344 1 263.344 2.452 .124 .051 

run3 Linear 117.042 1 117.042 1.083 .303 .023 

Ranking 

run4 Linear 337.500 1 337.500 3.226 .079 .066 

run1 Linear 22.042 1 22.042 .182 .672 .004 

run2 Linear 36.260 1 36.260 .338 .564 .007 

run3 Linear 18.375 1 18.375 .170 .682 .004 

Ranking * 
Mode 

run4 Linear 10.667 1 10.667 .102 .751 .002 

run1 Linear 5567.917 46 121.042       

run2 Linear 4939.896 46 107.389       

run3 Linear 4969.583 46 108.034       

Error(Ranking) 

run4 Linear 4812.833 46 104.627       

 
Tests of Between-Subjects Effects 
 
Transformed Variable: Average  

Source Measure 
Type III Sum 
of Squares df Mean Square F Sig. 

Partial Eta 
Squared 

run1 33227.042 1 33227.042 461.081 .000 .909 

run2 36309.260 1 36309.260 461.912 .000 .909 

run3 32193.375 1 32193.375 376.411 .000 .891 

Intercept 

run4 35190.042 1 35190.042 422.657 .000 .902 

run1 376.042 1 376.042 5.218 .027 .102 

run2 326.344 1 326.344 4.152 .047 .083 

run3 693.375 1 693.375 8.107 .007 .150 

Mode 

run4 477.042 1 477.042 5.730 .021 .111 

run1 3314.917 46 72.063       

run2 3615.896 46 78.606       

run3 3934.250 46 85.527       

Error 

run4 3829.917 46 83.259       

 
 

Estimated Marginal Means 
 

Mode 
 
Estimates 
 

95% Confidence Interval 

Measure Mode Mean Std. Error Lower Bound Upper Bound 

Eye 16.625 1.225 14.159 19.091 run1 

Random 20.583 1.225 18.117 23.050 

Eye 17.604 1.280 15.028 20.180 run2 

Random 21.292 1.280 18.716 23.868 

Eye 15.625 1.335 12.938 18.312 run3 

Random 21.000 1.335 18.313 23.687 

Eye 16.917 1.317 14.266 19.568 run4 

Random 21.375 1.317 18.724 24.026 

 
Pairwise Comparisons 
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95% Confidence Interval for 
Difference(a) 

Measure (I) Mode (J) Mode 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

Eye Random -3.958(*) 1.733 .027 -7.446 -.470 run1 
Random Eye 3.958(*) 1.733 .027 .470 7.446 

Eye Random -3.688(*) 1.810 .047 -7.330 -.045 run2 

Random Eye 3.688(*) 1.810 .047 .045 7.330 
Eye Random -5.375(*) 1.888 .007 -9.175 -1.575 run3 
Random Eye 5.375(*) 1.888 .007 1.575 9.175 

Eye Random -4.458(*) 1.863 .021 -8.207 -.709 run4 

Random Eye 4.458(*) 1.863 .021 .709 8.207 
Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .336 5.434(a) 4.000 43.000 .001 .336 

Wilks' lambda .664 5.434(a) 4.000 43.000 .001 .336 

Hotelling's trace .505 5.434(a) 4.000 43.000 .001 .336 

Roy's largest root .505 5.434(a) 4.000 43.000 .001 .336 

Each F tests the multivariate effect of Mode. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 
Univariate Tests 
 

Measure   
Sum of 
Squares df Mean Square F Sig. 

Partial Eta 
Squared 

Contrast 188.021 1 188.021 5.218 .027 .102 run1 

Error 1657.458 46 36.032       

Contrast 163.172 1 163.172 4.152 .047 .083 run2 

Error 1807.948 46 39.303       

Contrast 346.688 1 346.688 8.107 .007 .150 run3 

Error 1967.125 46 42.764       

Contrast 238.521 1 238.521 5.730 .021 .111 run4 

Error 1914.958 46 41.630       

The F tests the effect of Mode. This test is based on the linearly independent pairwise comparisons among the 
estimated marginal means. 
 

Ranking 
 
Estimates 
 

95% Confidence Interval 

Measure Ranking Mean Std. Error Lower Bound Upper Bound 

1 20.750 1.272 18.189 23.311 run1 

2 16.458 1.551 13.337 19.580 

1 21.104 1.316 18.454 23.754 run2 

2 17.792 1.464 14.846 20.738 

1 19.417 1.413 16.572 22.261 run3 

2 17.208 1.427 14.336 20.080 

1 21.021 1.258 18.488 23.554 run4 

2 17.271 1.527 14.198 20.344 
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Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Measure (I) Ranking (J) Ranking 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

1 2 4.292 2.246 .062 -.229 8.812 run1 
2 1 -4.292 2.246 .062 -8.812 .229 

1 2 3.313 2.115 .124 -.945 7.570 run2 

2 1 -3.313 2.115 .124 -7.570 .945 
1 2 2.208 2.122 .303 -2.062 6.479 run3 
2 1 -2.208 2.122 .303 -6.479 2.062 

1 2 3.750 2.088 .079 -.453 7.953 run4 

2 1 -3.750 2.088 .079 -7.953 .453 
Based on estimated marginal means 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .248 3.547(a) 4.000 43.000 .014 .248 

Wilks' lambda .752 3.547(a) 4.000 43.000 .014 .248 

Hotelling's trace .330 3.547(a) 4.000 43.000 .014 .248 

Roy's largest root .330 3.547(a) 4.000 43.000 .014 .248 

Each F tests the multivariate effect of Ranking. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 

11.4. Extended Experiment 

11.4.1. Steps to Target 

Within-Subjects Factors 
 
Measure: MEASURE_1  

Threshold 
Dependent 

Variable 

1 t100 

2 t200 

3 t300 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's Trace .868 13.098(a) 2.000 4.000 .018 .868 

Wilks' Lambda .132 13.098(a) 2.000 4.000 .018 .868 

Hotelling's Trace 6.549 13.098(a) 2.000 4.000 .018 .868 

Threshold 

Roy's Largest Root 6.549 13.098(a) 2.000 4.000 .018 .868 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: Threshold 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  
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Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

Threshold .605 2.010 2 .366 .717 .926 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
 Within Subjects Design: Threshold 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Sphericity Assumed 768.444 2 384.222 6.262 .017 .556 

Greenhouse-
Geisser 

768.444 1.434 535.989 6.262 .033 .556 

Huynh-Feldt 768.444 1.851 415.092 6.262 .020 .556 

Threshold 

Lower-bound 768.444 1.000 768.444 6.262 .054 .556 

Sphericity Assumed 613.556 10 61.356       

Greenhouse-
Geisser 

613.556 7.168 85.591       

Huynh-Feldt 613.556 9.256 66.285       

Error(Threshold) 

Lower-bound 613.556 5.000 122.711       

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source Threshold 
Type III Sum 
of Squares df Mean Square F Sig. 

Partial Eta 
Squared 

Linear 768.000 1 768.000 29.091 .003 .853 Threshold 

Quadratic .444 1 .444 .005 .948 .001 

Linear 132.000 5 26.400       Error(Threshold) 

Quadratic 481.556 5 96.311       

 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 2616.056 1 2616.056 31.830 .002 .864 

Error 410.944 5 82.189       

 

Estimated Marginal Means 
 
Grand Mean 
 
Measure: MEASURE_1  

95% Confidence Interval 

Mean Std. Error Lower Bound Upper Bound 

12.056 2.137 6.563 17.548 

 
 

Threshold 
 
Estimates 
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Measure: MEASURE_1  

95% Confidence Interval 

Threshold Mean Std. Error Lower Bound Upper Bound 

1 20.167 3.208 11.919 28.414 

2 11.833 4.600 .008 23.658 

3 4.167 1.641 -.053 8.386 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Threshold (J) Threshold 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

2 8.333 4.645 .133 -3.608 20.274 1 
3 16.000(*) 2.966 .003 8.374 23.626 

2 1 -8.333 4.645 .133 -20.274 3.608 

  3 7.667 5.566 .227 -6.641 21.974 

1 -16.000(*) 2.966 .003 -23.626 -8.374 3 
2 -7.667 5.566 .227 -21.974 6.641 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .868 13.098(a) 2.000 4.000 .018 .868 

Wilks' lambda .132 13.098(a) 2.000 4.000 .018 .868 

Hotelling's trace 6.549 13.098(a) 2.000 4.000 .018 .868 

Roy's largest root 6.549 13.098(a) 2.000 4.000 .018 .868 

Each F tests the multivariate effect of Threshold. These tests are based on the linearly independent pairwise 
comparisons among the estimated marginal means. 
a  Exact statistic 

11.4.2. Time to Target (Per Display) 

Within-Subjects Factors 
 
Measure: MEASURE_1  

Threshold 
Dependent 

Variable 

1 t100 

2 t200 

3 t300 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's Trace .858 12.121(a) 2.000 4.000 .020 .858 

Wilks' Lambda .142 12.121(a) 2.000 4.000 .020 .858 

Hotelling's Trace 6.060 12.121(a) 2.000 4.000 .020 .858 

Threshold 

Roy's Largest Root 6.060 12.121(a) 2.000 4.000 .020 .858 

a  Exact statistic 
b  Design: Intercept  
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 Within Subjects Design: Threshold 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  

Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

Threshold .296 4.875 2 .087 .587 .659 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
 Within Subjects Design: Threshold 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Threshold Sphericity Assumed 1.736 2 .868 22.979 .000 .821 

  Greenhouse-Geisser 1.736 1.173 1.479 22.979 .003 .821 

  Huynh-Feldt 1.736 1.317 1.318 22.979 .002 .821 

  Lower-bound 1.736 1.000 1.736 22.979 .005 .821 

Error(Threshold) Sphericity Assumed .378 10 .038       

  Greenhouse-Geisser .378 5.867 .064       

  Huynh-Feldt .378 6.586 .057       

  Lower-bound .378 5.000 .076       

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source Threshold 
Type III Sum 
of Squares df Mean Square F Sig. 

Partial Eta 
Squared 

Linear 1.666 1 1.666 26.782 .004 .843 Threshold 

Quadratic .070 1 .070 5.252 .070 .512 

Linear .311 5 .062       Error(Threshold) 

Quadratic .067 5 .013       

 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 9.394 1 9.394 150.236 .000 .968 

Error .313 5 .063       

 

Estimated Marginal Means 
 
Grand Mean 
 
Measure: MEASURE_1  

95% Confidence Interval 

Mean Std. Error Lower Bound Upper Bound 

.722 .059 .571 .874 
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Threshold 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Threshold Mean Std. Error Lower Bound Upper Bound 

1 .394 .012 .363 .425 

2 .634 .047 .514 .755 

3 1.139 .144 .770 1.509 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Threshold (J) Threshold 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

2 -.240(*) .052 .006 -.373 -.107 1 
3 -.745(*) .144 .004 -1.115 -.375 

2 1 .240(*) .052 .006 .107 .373 

  3 -.505(*) .120 .008 -.813 -.197 

1 .745(*) .144 .004 .375 1.115 3 
2 .505(*) .120 .008 .197 .813 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .858 12.121(a) 2.000 4.000 .020 .858 

Wilks' lambda .142 12.121(a) 2.000 4.000 .020 .858 

Hotelling's trace 6.060 12.121(a) 2.000 4.000 .020 .858 

Roy's largest root 6.060 12.121(a) 2.000 4.000 .020 .858 

Each F tests the multivariate effect of Threshold. These tests are based on the linearly independent pairwise 
comparisons among the estimated marginal means. 
a  Exact statistic 

11.4.3. Fixation Numbers (Per Display) 

Within-Subjects Factors 
 
Measure: MEASURE_1  

Threshold 
Dependent 

Variable 

1 t100 

2 t200 

3 t300 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's Trace .770 6.694(a) 2.000 4.000 .053 .770 

Wilks' Lambda .230 6.694(a) 2.000 4.000 .053 .770 

Threshold 

Hotelling's Trace 3.347 6.694(a) 2.000 4.000 .053 .770 
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  Roy's Largest Root 3.347 6.694(a) 2.000 4.000 .053 .770 

a  Exact statistic 
b  Design: Intercept  
 Within Subjects Design: Threshold 
 
Mauchly's Test of Sphericity(b) 
 
Measure: MEASURE_1  

Epsilon(a) 

Within Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. 

Greenhouse-
Geisser 

Huynh-
Feldt 

Lower-
bound 

Threshold .550 2.388 2 .303 .690 .867 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is 
proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in 
the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
 Within Subjects Design: Threshold 
 
Tests of Within-Subjects Effects 
 
Measure: MEASURE_1  

Source   

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Threshold Sphericity Assumed 19.654 2 9.827 12.196 .002 .709 

  Greenhouse-Geisser 19.654 1.380 14.245 12.196 .008 .709 

  Huynh-Feldt 19.654 1.734 11.332 12.196 .004 .709 

  Lower-bound 19.654 1.000 19.654 12.196 .017 .709 

Error(Threshold) Sphericity Assumed 8.058 10 .806       

  Greenhouse-Geisser 8.058 6.899 1.168       

  Huynh-Feldt 8.058 8.672 .929       

  Lower-bound 8.058 5.000 1.612       

 
Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source Threshold 
Type III Sum 
of Squares df Mean Square F Sig. 

Partial Eta 
Squared 

Linear 18.548 1 18.548 16.016 .010 .762 Threshold 

Quadratic 1.106 1 1.106 2.440 .179 .328 

Linear 5.790 5 1.158       Error(Threshold) 

Quadratic 2.267 5 .453       

 
Tests of Between-Subjects Effects 
 
Measure: MEASURE_1  
Transformed Variable: Average  

Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Intercept 76.076 1 76.076 64.719 .000 .928 

Error 5.877 5 1.175       

 

Estimated Marginal Means 
 
Grand Mean 
 
Measure: MEASURE_1  

95% Confidence Interval 

Mean Std. Error Lower Bound Upper Bound 

2.056 .256 1.399 2.713 
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Threshold 
 
Estimates 
 
Measure: MEASURE_1  

95% Confidence Interval 

Threshold Mean Std. Error Lower Bound Upper Bound 

1 .988 .045 .872 1.104 

2 1.705 .272 1.005 2.405 

3 3.474 .623 1.873 5.076 

 
Pairwise Comparisons 
 
Measure: MEASURE_1  

95% Confidence Interval for 
Difference(a) 

(I) Threshold (J) Threshold 

Mean 
Difference (I-

J) Std. Error Sig.(a) Lower Bound Upper Bound 

2 -.717 .303 .064 -1.496 .061 1 
3 -2.486(*) .621 .010 -4.084 -.889 

2 1 .717 .303 .064 -.061 1.496 

  3 -1.769(*) .573 .027 -3.242 -.297 

1 2.486(*) .621 .010 .889 4.084 3 
2 1.769(*) .573 .027 .297 3.242 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .770 6.694(a) 2.000 4.000 .053 .770 

Wilks' lambda .230 6.694(a) 2.000 4.000 .053 .770 

Hotelling's trace 3.347 6.694(a) 2.000 4.000 .053 .770 

Roy's largest root 3.347 6.694(a) 2.000 4.000 .053 .770 

Each F tests the multivariate effect of Threshold. These tests are based on the linearly independent pairwise 
comparisons among the estimated marginal means. 
a  Exact statistic 

11.4.4. Eye and Random Comparison 

Between-Subjects Factors 
 

  N 

Eye 6 Mode 

Random 6 

 
Multivariate Tests(b) 
 

Effect   Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's Trace .942 43.598(a) 3.000 8.000 .000 .942 

Wilks' Lambda .058 43.598(a) 3.000 8.000 .000 .942 

Hotelling's Trace 16.349 43.598(a) 3.000 8.000 .000 .942 

Intercept 

Roy's Largest Root 16.349 43.598(a) 3.000 8.000 .000 .942 

Mode Pillai's Trace .704 6.348(a) 3.000 8.000 .016 .704 
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Wilks' Lambda .296 6.348(a) 3.000 8.000 .016 .704 

Hotelling's Trace 2.381 6.348(a) 3.000 8.000 .016 .704 

  

Roy's Largest Root 2.381 6.348(a) 3.000 8.000 .016 .704 

a  Exact statistic 
b  Design: Intercept+Mode 
 
Tests of Between-Subjects Effects 
 

Source 
Dependent 
Variable 

Type III Sum of 
Squares df 

Mean 
Square F Sig. 

Partial Eta 
Squared 

Corrected 
Model 

t100 
5.333(a) 1 5.333 .056 .817 .006 

  t200 602.083(b) 1 602.083 9.484 .012 .487 

  t300 690.083(c) 1 690.083 10.390 .009 .510 

Intercept t100 4563.000 1 4563.000 48.048 .000 .828 

  t200 4294.083 1 4294.083 67.641 .000 .871 

  t300 1656.750 1 1656.750 24.945 .001 .714 

Mode t100 5.333 1 5.333 .056 .817 .006 

  t200 602.083 1 602.083 9.484 .012 .487 

  t300 690.083 1 690.083 10.390 .009 .510 

Error t100 949.667 10 94.967       

  t200 634.833 10 63.483       

  t300 664.167 10 66.417       

Total t100 5518.000 12         

  t200 5531.000 12         

  t300 3011.000 12         

Corrected Total t100 955.000 11         

  t200 1236.917 11         

  t300 1354.250 11         

a  R Squared = .006 (Adjusted R Squared = -.094) 
b  R Squared = .487 (Adjusted R Squared = .435) 
c  R Squared = .510 (Adjusted R Squared = .461) 
 

Estimated Marginal Means 
 

Mode 
 
Estimates 
 

95% Confidence Interval 

Dependent Variable Mode Mean Std. Error Lower Bound Upper Bound 

Eye 20.167 3.978 11.302 29.031 t100 

Random 18.833 3.978 9.969 27.698 

Eye 11.833 3.253 4.586 19.081 t200 

Random 26.000 3.253 18.752 33.248 

Eye 4.167 3.327 -3.247 11.580 t300 

Random 19.333 3.327 11.920 26.747 

 
Pairwise Comparisons 
 

95% Confidence Interval for 
Difference(a) 

Dependent Variable (I) Mode (J) Mode 

Mean 
Difference 

(I-J) Std. Error Sig.(a) Lower Bound Upper Bound 

Eye Random 1.333 5.626 .817 -11.203 13.870 t100 
Random Eye -1.333 5.626 .817 -13.870 11.203 
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Eye Random -14.167(*) 4.600 .012 -24.416 -3.917 t200 

Random Eye 14.167(*) 4.600 .012 3.917 24.416 
Eye Random -15.167(*) 4.705 .009 -25.651 -4.683 t300 
Random Eye 15.167(*) 4.705 .009 4.683 25.651 

Based on estimated marginal means 
*  The mean difference is significant at the .05 level. 
a  Adjustment for multiple comparisons: Least Significant Difference (equivalent to no adjustments). 
 
Multivariate Tests 
 

  Value F Hypothesis df Error df Sig. 
Partial Eta 
Squared 

Pillai's trace .704 6.348(a) 3.000 8.000 .016 .704 

Wilks' lambda .296 6.348(a) 3.000 8.000 .016 .704 

Hotelling's trace 2.381 6.348(a) 3.000 8.000 .016 .704 

Roy's largest root 2.381 6.348(a) 3.000 8.000 .016 .704 

Each F tests the multivariate effect of Mode. These tests are based on the linearly independent pairwise comparisons 
among the estimated marginal means. 
a  Exact statistic 
 
Univariate Tests 
 

Dependent Variable   
Sum of 
Squares df Mean Square F Sig. 

Partial Eta 
Squared 

Contrast 5.333 1 5.333 .056 .817 .006 t100 

Error 949.667 10 94.967       

Contrast 602.083 1 602.083 9.484 .012 .487 t200 

Error 634.833 10 63.483       

Contrast 690.083 1 690.083 10.390 .009 .510 t300 

Error 664.167 10 66.417       

The F tests the effect of Mode. This test is based on the linearly independent pairwise comparisons among the 
estimated marginal means. 
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Chapter 12. Appendix C: Overview of Eye 

Trackers 

12.1. EyeLink II (SR Research Ltd) 

SR Research Ltd has the head-mounted Eyelink II and the head-supported Eyelink 1000 eye 

trackers. The Eyelink 1000 samples at 1 KHz. 

 

EyeLink II® Tracking Modes 

Mode Sample 

Rate 

Avg. Delay  

(Filter off/normal/ 

high) 

Noise 

(RMS) 

Stability 

EyeLink Pupil-

Only  

250 Hz 6 ms / 10 ms  < 0.01°  Affected by headband slip and 

vibration  

EyeLink II Pupil-

Only  

500 Hz 3 ms / 5 ms / 7ms < 0.01°  Affected by headband slip and 

vibration  

EyeLink II Pupil- 

CR 

250 Hz 6 ms / 10 ms / 14 ms < 0.022°  Good rejection of slip and 

vibration  

 

Operational/Functional Specifications 

Feature EyeLink II EyeLink 

Image processing Fully digital Hybrid analog-digital 

Pupil tracking Hyperacuity  Hyperacuity 

Corneal reflection 

tracking  

Hyperacuity, ultra low noise None 

Sampling rate 250 or 500 Hz 250 Hz 

Average data transit 

delay 

250 Hz, filter off = 6 ms 

250 Hz, filter on = 10 ms  

filter off = 6 ms 

filter on = 10 ms  
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500 Hz, filter off = 3 ms  

500 Hz, filter on = 5 ms  

Resolution (Gaze) Noise limited to <0.01° (pupil), 

<0.022° (pupil-CR) 

Noise limited to < 0.01° 

Velocity noise < 3°/sec <3°/sec 

Gaze position 

accuracy 

<0.5° average <0.5° average 

Pupil size: resolution 

and noise 

0.1% of diameter (~0.004mm), Noise 

level < 0.01mm 

0.1% of diameter (~0.004mm), Noise 

level < 0.01mm 

Heuristic Filtering Average velocity-matched filter Nearest-neighbor heuristic filter 

Eye tracking range ±30° horizontal, ±20° vertical in pupil 

only mode 

±30° horizontal, ±20° vertical (pupil 

only) 

Gaze tracking range  ±20° horizontal, ±18° vertical ±20° horizontal, ±18° vertical 

Head tracking range 40-140 cm (standard setup),~300 cm 

(special markers) 

40-140 cm (standard setup),~300 cm 

(special markers) 

Head rotation 

compensation range  

±15° for best accuracy, ±30° 

conditional on gaze angle. 

±15° for best accuracy, ±30° 

conditional on display location 

Built-in calibration, 

validation  

Calibration / validation using Pupil or 

Pupil-Corneal 

Calibration and validation using 

Pupil-only 

Operating 

environment 

Tolerates significant indirect IR, CR 

mode can reject more slippage than 

pupil only mode. 

Required IR-free environment, 

physical stability 

Subject compatibility Most eyeglasses and contact lenses in 

pupil only mode: less compatibility in 

CR mode. 

Most eyeglasses and contact lenses 

Data file EDF EDF, direct to disk 

EDF file and link Data 

Types 

Eye position, HREF position, gaze 

position, pupil size, buttons, 

messages, digital inputs. 

Eye position, HREF position, gaze 

position, pupil size, buttons, messages 

On-line eye movement 

analysis 

Saccades, fixations, blinks, fixation 

updates 

Saccades, fixations, blinks, fixation 

updates 

Real-time operator 

feedback 

Eye position cursor during calibration, 

validation, and recording. Camera 

images and tracking status. 

Gaze cursor during recording and 

validation, eye position cursor during 

calibration, camera images. 

 

Physical Specifications 

Feature EyeLink II EyeLink 

EyeLink II Card Half-length PCI (6.8"/176mm) Full-length ISA (13.5"/343mm) 

Headband Headband Padded with height and size 

adjustments 

Leather-padded, height and size 

adjustments 
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Headband weight ~420 grams, low center of gravity ~600 grams 

Headband cable 

length 

4.2meters 5 meters 

Eye camera 

distance 

40 to 80 mm 40 to 80 mm 

Binocular tracking Standard Standard 

Eye Illumination 925 nm IR (pupil) 880 nm IR (CR), 

IEC-825 Class 1, <1.2 mW/cm2 

925 nm IR, IEC-825 Class 1, <1.2 

mW/cm2 

Display Markers 880 nm IR, IEC-825 Class 1 925 nm IR, IEC-825 Class 1 

Ethernet Link TCP/IP or raw, 10BASE-T, built into 

EyeLink II card 

TCP/IP or raw, 10BASE-2 or 10BASE-

T, external card with packet driver 

Response box 

support 

USB or digital Digital 

Analog output Optional PCI card Optional ISA or PCI card 

Digital Control Configurable Configurable 

Display Operating 

system API 

Windows ( 2000, XP Professional 

Service Pack 1), MS-DOS, Macintosh 

OSX, Linux 

MS-DOS, Macintosh, Windows (95 

and 98) 

 

 

EyeLink 1000 Tracking Modes 

Mode Sampling Rate Sample Access Delay* 
Filter (Off/Normal/High) 

Noise** (RMS) 
Filter(Off/Normal/High) 

Pupil-CR 
Pupil 
Only† 

1000 Hz 
1000 Hz 

< 2 ms / < 3 ms / < 4 ms 
< 2 ms / < 3 ms / < 4 ms 

<0.02° / <0.01° / <0.01° 
<0.01° / <0.01° / <0.01° 

* Average End to End latency, measured from an actual physical event to availability of first data sample 
that registered the event on the Display / Subject PC via Ethernet or Analog output. 
Actual "processing time" for each sample is < 0.5 msec. 
** Measured using an artificial eye. 
† With immobilized head / use of bitebar.  
 

EyeLink 1000 Specifications 

Feature EyeLink 1000 Head Supported 
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Average Accuracy down to 0.15° (0.25° to 0.5° typical) 
(measured with real eye fixations at multiple screen positions) 

Spatial Resolution Noise Limited, see the above EyeLink 1000 Tracking Mode table 
Pupil Size Resolution 0.2% of diameter 
Gaze Tracking Range +/- 30° Horizontal, +/- 20° Vertical 
Allowed Head Movement +/- 25 mm Horizontal and Vertical, +/- 10 mm Depth 
Online Event Parsing Fixation / Saccade / Blink / Fixation Update 
Realtime Operator Feedback Eye position cursor during calibration,validation, and recording. 

Camera images and tracking status. 
Eye Illumination 910 nm, Class 1 LED Product, <1.0 mW/cm2 in standard 

configuration 
Headrest Dimensions Approx. 40 cm x 75 cm x 27 cm (width x height x depth) 
Digital Data Access Ethernet 
Analog Output Optional PCI card 
Response Box 7 Button USB response pad included 
Host Operating System DOS 

Display Operating System Windows, Linux, Mac OSX, Mac OS9, DOS 
Approvals FCC and CISPR Class A, 60950-1 ITE Equipment 

 

12.2. Eyegaze (LC Technologies Inc) 

LC Technologies manufactures a remote Eyegaze eye tracker and recently released the 

EyeFollower which is capable of free head motion within the workstation environment. 

   

Eyegaze System Performance Specifications 

Accuracy 

Eyegaze Measurement Angular Gaze  

Orientation 

Spatial Gaze Point 

(with head 20" (51 cm) from 

camera) 

Typical Average Bias Error* 

(over the monitor screen range) 

0.45 degree  0.15 inch (0.38 cm) 

Maximum Average Bias Error* 

(over the monitor screen range) 

0.70 degree  0.25 inch (0.63 cm) 

Frame-to-frame variation+ 0.18 degree  0.06 inch (0.15 cm) 
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(1-sigma variation with eye fixed on a point) 

* Bias errors result from inaccuracies in the measurement of head range, asymmetries of the pupil 

opening about the eye's optic axis, and astigmatism. They are constant from frame to frame and cannot be 

reduced by averaging or smoothing. 

+ Frame-to-frame variations result from image brightness noise and pixel position quantization in the 

camera image and may be reduced by averaging or smoothing. 

Speed 

Sampling Rate: 60 Hertz  camera field rate 

Angular Gazetrack Range 

Gaze Cone Diameter: 80 degrees, typical 

Tolerance To Head Motion 

Lateral Range:  1.5 inch (3.8 cm) 

Vertical Range:  1.2 inch (3.0 cm) 

Longitudinal Range: 1.5 inch (3.8 cm) 

Computer Usage 

Memory Consumption:  6 MB 

CPU Time Consumption:  30-50% 

Light Emitting Diode 

Wave Length:  880 nanometers (near infrared) 

Beam Width:  20 degrees, between half power points  

Radiated Power: 20 milliwatts, radiated over the 20 degree beam width  

Safety Factor:  5 -- At a range of 15 inches the LED illumination 

on the eye is 20% of the HEW max permissible exposure.  

 

 

 

Totally Free Head Motion 
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Automatic Eye Acquisition  
Binocular Eyetracking - The Eyefollower™ tracks both eyes over the full range of head motion. The 
gazepoint sampling rate is 120 Hz. 
High Gazepoint Tracking Accuracy - The Eyegaze System achieves its highly accurate 0.45 degree 
gazepoint tracking accuracy throughout the operational head range. 
Easy User Calibration - The user calibration employs the same, easy procedure used with the fixed-
camera Eyegaze System. 
 
Eyefollower™ Specifications:  
Head Motion Volume: Side to side 

Up and down 
Back and forth 

20 inches 
12 inches 
15 inches 

(51 cm) 
(30 cm) 
(38 cm) 

Head Speed:   8 inches/sec (20 cm/sec) 

Head Accelerations:   20 inches/sec-
sq 

(50 cm/sec-sq) 

12.3. ASL 6000 Series 

Model H6 

 

Control Unit: 

Dimensions (H/W/D):  3 in/9.75 in/10.25 in 

Weight:  4.25 lbs 

Power:  100-240 VAC 

25 watts 

Display:  9 inch b&w monitors for eye and 

scene cameras 

Head mounted optics: 

Sampling and Output Rates:  50 Hz or 60 Hz                      

120, 240 and 360Hz (optional) 

Measurement principle:  pupil-corneal reflection 

System accuracy:  0.5 degree visual angle 

Resolution:  0.1 degree visual angle 

Head movement:  unlimited 

Visual range:  50 degrees horizontally, 40 

Model R6 

  

Control Unit: 

Dimensions (H/W/D):  3in / 9.75in / 10.25in 

Weight:   4.25 lbs. 

Power:   100-240 VAC; 25 watts 

Display:  9 inch b&w monitors for eye and scene 

cameras 

Remote Optics: 

Sampling and Output Rates:  50 Hz or 60 Hz, 

120,240, 360Hz (optional) 

Measurement principle:  pupil-corneal reflection 

System accuracy:  0.5 degree visual angle 

Resolution:  0.25 degree visual angle 

Head movement:  one square foot 

Max. distance optics to eye:  40 in 

Visual range:  50 degrees horizontally, 40 degrees 

vertically 
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degrees vertically 

Weight 8 oz (includes headband, optics module 

monocle and scene camera 

Included equipment: 

Series 6000 Control Unit 

Headband Mounted Optics 

Head Mounted Scene Camera (color) 

Display Monitors (x2), black & white (or two 

PCI framgrabbers) 

EYEPOS operating software 

EYENAL data analysis software 

Dimensions (H/W/D): 4 in/5.5 in/6 in 

Weight: 2.75 pounds 

Included Equipment:   

Series 6000 Control Unit 

Remote Mounted Optics 

Scan converter 

Display Monitors (x2), black & white or two PCI 

framegrabbers 

EYEPOS operating software 

EYENAL and FIXPLOT data analysis software 

 

12.4. SMI’s iView X  

The iViewX Hi-Speed 1250 eye tracker samples at up to 1250Hz. 

 

 

iView X: Technical Details Hi-Speed (Remote) HED (Head Mounted)  

Sampling Rate 240 / 350 / 500 / 1250 Hz  50/60 Hz 

Tracking Resolution, Pupil/CR < 0.01° 0.1 deg. (typ.) 

Gaze Position Accuracy  down to 0.2° 0.5°-1.0 deg. (typ.) 

Viewing Angle (horizontal/vertical) ± 30° / 30° (up) 45° (down) +/- 30° horz., +/-25° vert. 

Head Tracking Area  40 x 40 cm at 80 cm dist.  

Weight of head unit  450 g 
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12.5. FaceLAB 4 

 

The tracking volume of faceLAB 4 is flexible and can be adjusted to meet a wide variety of 

scenarios. The tracking field-of-view can be configured from 45 degrees down to less than 10 

degrees. Wider field-of-view (zoomed out) allows for large unconstrained head motions, whilst 

a narrow field-of-view (zoomed in) allows for either precision gaze, or long range tracking. 

Smallest Face 

• Automatic tracking initialisation when face is only 20 percent of total image width; 

• 6 DOF head tracking and recovery when face is only 10 percent of total image width. 

Largest Face 

• Continues to track when face is so close, only half of it is visible. 

Head Rotations 

• Tracking and recovery up to +/- 90° around neck axis (turn head from shoulder to shoulder);  

• Tracking and recovery up to +/- 45° around nod axis (look up / look down); 

• Tracking up to +/- 90° and recovery up to +/- 30° around tilt axis (lean left / right). 

Gaze Rotations 

• Eye rotations of +/- 45°. 

Recovery Time 

• Tracking failure recovery times approximately 200ms for both head and eye measurements. 

Obscuration 

• Tracking when up to 50% of face is obscured; 

• Recovery requires 80% of face to be visible. 

Wide Field-Of-View Configuration 

In this configuration, head-position and rotation can be automatically tracked over large volumes, without 

calibration. 

• Camera field of view out to 45°; 

• Head tracking distance range from 0.5 to 1.4m; 

• Head tracking horizontal range up to 1.5m. 

faceLAB Classic Configuration† 

In this configuration, both head-pose and gaze tracking are possible. Gaze calibration is not required, but 

can be performed to remove any systematic bias. Resolution is not affected. The specifications are similar 
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to previous versions of faceLAB, with the exception that tracking recovery and robustness to large 

rotations is greatly improved. 

• Camera field of view out to 30°; 

• Gaze tracking distance range from 0.5 to 1.1m; 

• Gaze tracking horizontal range up to 0.3m, vertical range up to 0.2m; 

• Head tracking distance range from 0.5 to 1.75m; 

• Head tracking horizontal range up to 1m; 

• Typical static accuracy of head measurement within +/- 1mm of translational error and 

+/- 1° of rotational error; 

• Typical static accuracy of gaze direction measurement within +/- 5° rotational error. 

Precision Gaze Configuration† 

In this configuration, both head-pose and gaze tracking are possible. Gaze tracking is more precise; with 

the trade-off that head-pose is a little more constrained. This configuration is recommended for indoor 

screen or simulator experiments, where accuracy is at a premium. 

• Camera field of view out to 30°; 

• Precision gaze tracking distance range from 0.5 to 0.8m; 

• Precision gaze horizontal range up to 0.25m, vertical range up to 0.15m; 

• Conventional gaze tracking distance range from 0.8 to 1.1m; 

• Head tracking distance range from 0.5 to 1.4m; 

• Head tracking horizontal range up to 0.5m; 

• Typical static accuracy of gaze direction measurement within 1° rotational error; 

• Pupil diameter (independent left/right eyes); 

• Eye vergence distance (meters); 

12.6. Tobii 1750 and x50 Eye-trackers  

The Tobii 1750 eye-tracker is integrated into a TFT monitor. It is ideal for all studies with stimuli that can 

be presented on a monitor, such as slideshows, movies and text. 

Accuracy 

Drift 

Frame rate 

Top head-motion speed 

Time to tracking recovery 

Max gaze angles 

Tracking type 

Freedom of head-movement 

Head-movement compensation 

Integrated monitor 

0.5 deg 

< 1 deg 

50 fps 

~10 cm/s 

< 100 ms 

+/- 40 deg 

Binocular 

30x15x20 cm 

< 1 deg error 

17 TFT, 1280x1024 pixels 
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The Tobii x50 eye-tracker is a stand-alone unit designed for eyetracking studies relative to any plane, 

such as a monitor, a projection screen or an object set on a table. 

Accuracy 

Drift 

Tracking type 

Frame rate 

Top head-motion speed 

Time to tracking recovery 

Max gaze angles 

Freedom of head-movement 

Head-movement 

compensation 

Accessories 

0.5 degrees 

< 1 degree 

Binocular 

50 fps 

~10 cm/s 

< 100 ms 

+/- 35 degrees 

30x15x20 cm 

< 1 degree error 

Scene camera, calibration grid 

 

12.7. CRS’ EyeLock 

Cambridge Research Systems produces a low cost, robust 50Hz video eyetracking.system for 

£6000 and has recently launched its newer 250Hz system. 

 

Measurement technique Video. Pupil and dual first 

Purkinje image  

Video. Pupil and dual first 

Purkinje image 

Guaranteed sampling 

frequency 

 50Hz   250Hz with no dropped frames 

Resolution  0.1°   0.05° 

Accuracy  0.5° - 0.25°   0.125° - 0.25° 

Horizontal range  ±40°   ±40° 

Vertical range  ±20°   ±20° 

Allowable head movement  ±10mm   ±10mm 

Latency One frame (20ms)  

Measurement units  Fick, Helmholtz coordinates in 

degrees and screen position in 

mm  

 Fick, Helmholtz coordinates in 

degrees and screen position in 

mm 
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CPU utilization  10% for eye tracking with 

mimic and camera window 

(typical on a 1.8GHz Athlon 

processor)  

 25% for eye tracking with mimic 

and camera window (typical) 

Software triggers  Implemented as Callback to 

user routine when subject looks 

into Region of Interest (ROI)  

 Implemented as Callback to user 

routine when subject looks into 

Region of Interest (ROI) 

Number of ROIs  Over 100  Over 100 

Infrared illumination 

wavelength 

 930nm  930nm 

Camera type 50Hz  250Hz digital camera 

Connection to PC  firewire 

Image Capture  Dedicated 32 bit, 33Mhz, PCI 

bus-mastering frame grabber 

for PC 

 

  

 

12.8. The Erica System 

 

  

 

ERT's patented eye-tracking system, the Eye-gaze Response Interface Computer Aid (ERICA), 

is noninvasive and requires no attachments to be worn by the user. The system uses a camera 

and infrared light to create effects off the user's eye. These effects are used to compute where 

someone is looking. The camera and light source are compact units that can be used with any 

Windows based desktop or laptop or tablet PC system. It can also be mounted on a wheelchair. 

Furthermore, ERICA can accurately calculate the gaze position for people wearing glasses and 

contacts. The system can identify where someone is looking 60 times a second and has an 

accuracy rating of 0.5 degrees visual angle. This translates to approximately 0.5 to 1 centimeter 
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accuracy on a computer monitor when sitting at a normal viewing distance. ERICA's imaging 

system is fully integrated into the Windows™ 95, 98, ME, NT, 2000, or XP platforms.  

12.9. Smart Eye Pro 

Smart Eye Pro is targeted for users and applications that require high-accuracy measurements of 

head pose and gaze in 3 dimensions at full frame rate.  Smart Eye Pro features: 

• Measurements performed at frame rate (currently up to 60 Hz). 

• Allows for large head motions (translation and rotation) using two or more cameras. 

• Easily adaptable to various measurement situations with flexible camera mount positions. 

• Handles occluded cameras using 3D head models. 

• Handles high illumination variations (works in complete darkness) using active IR illumination. 

• Fast intrinsic and extrinsic camera calibration through a simple checkerboard procedure. 

• Pixel density approximately 15 pixels per degree. The pixel density is given by the formula pd = 

Pi/180 f/p_ccd, where f is the focal length [m], and p_ccd is the physical size of a pixel element [m]. 

Typical values for a Smart Eye system are f = 6mm and p_ccd = 7.26um which gives pd ~ 15 

pixel/degree. 

• Accuracy of head pose: Rotation 0,5 degrees Translation < 1 mm2. 

• Accuracy of gaze-vector measurement: 1 degree3. 

• Eyelid closure is measured in up to 60 discrete steps. 

• Consensus and quality values for all measurement values. 

• Graphical tools for definition of gaze zones and visualization of gaze tracks. 

• Scene camera extension for overlay of users view. 

• Statistical tools on demand for post-processing of measurement data. 

• Easy to use Active-X interface to other windows applications. 

12.10. Viewpoint Eyetracker  

  

 

Technical Information 

• Tracking Method: Infrared video, bright pupil or dark pupil or monocular. 
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• Software: PC or Mac. 

• Measurement principle: Pupil only, corneal reflection only, or both. 

• Accuracy: Approximately 0.25° - 1.0° visual arc on PC and 0.5° - 1.0° visual arc on Mac. 

• Spatial resolution*: Approximately 0.15° visual arc on PC and 0.25° visual arc on Mac. 

• Temporal resolution: Selectable by the user between 60 Hz & 30 Hz on PC and 30 Hz on Mac. 

• Allowable head movement: Small movements allowed. Subject's pupil and corneal reflection must 

remain within the camera image. 

• Visual range: +/- 44° of visual arc horizontally and +/- 20 ° of visual arc vertically. 

• Pupil size resolution: Measures pupil height and width to better than 0.03 mm instantaneous (no 

averaging). 

• Calibration:  starts in a roughly calibrated state that is adequate for determining screen quadrants or 

other relative movement measurement such as objective preference-of-looking tasks. For accurate 

position of gaze, calibration is required only once per subject. New subject setup time between 1-5 

minutes. Calibration settings can be stored and reused each time a subject returns. Easy Slip 

Correction feature and re-presentation of stray calibration points. 

• Auto threshold: The program scans over the video image for the pupil and / or for the corneal 

reflection. The luminance threshold for discriminating these can be adjusted. The auto threshold 

feature provides good threshold levels automatically. Little or no manual adjustment required. 

• Blink suppression: Automatic blink detection and suppression. 

• Data recorded: Eye data includes X, Y position of gaze, pupil height and width, ocular torsion, delta 

time, total time, and regions of interest (ROI). Asynchronous records include state transition markers, 

key presses and data from other programs. Data is stored in ASCII files. Movies of the eye are 

recorded and analyzed. 

• Real-time display: Gaze point history, gaze trace, fixation duration, pupil size and ROIs, can be 

graphically displayed over stimulus image. Visible to the user and / or the subject. Real-time pen 

plots of X and Y position of gaze, velocity, ocular torsion, pupil width and pupil aspect ratio. 

• Hardware provided: IR Camera, one 940nm IR-LED for illumination, Head Positioner & Camera 

Mount, PCI video capture and display card for Mac, PCI video capture card for PC, universal power 

supply and all required cables. 

• System requirements: Pentium compatible machine (except DELL Dimension or Optiplex) running 

Windows 98 or higher on PC and OS 8.6 - 9.x on Mac. 
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12.11. MicroGuide (Series 1000 Binocular Infrared 

Recording System (BIRO)) 

A unique method of recording eye movement based on the reflective 

characteristics of the front surface of the human eye. Simultaneous 

presentation of the infrared light (IR) and the detection of the reflected IR 

from the eye produce a signal corresponding to horizontal and vertical 

eye movement. The system is non-contact, lightweight, and easily applied 

to the subject. The variety and simplicity of adjustments allow fast set-up 

time. The mechanical stability and ease of use is due to the unique design 

of the headband. All paradigms and tests which involve precise recording 

of all classes of eye movement are accurately recorded. The system is of 

proven value in the clinical and research laboratory.  

Features 

Low Noise: Better than 0.1 degrees resolution  

Low Drift: not limited by electronics of the system, excellent DC accuracy  

Binocular horizontal and monocular vertical recording available simultaneously  

Non-contact infrared technique does not require attachments to the eye or skin  

Does not depend on the corneo-retinal potential  

Calibration and adjustment in one minute  

Comfortable and lightweight  

Specifications 

Sensitivity: At least 0.1 degree  

Bandwidth: 0-100 Hz, 0-40 Hz selectable  

Accuracy: Drift not limited by the electronics, excellent DC accuracy, no drift  

Recording range: ± 30 degrees horizontal ± 20 degrees vertical  

Linear range: within 10% up to ± 20 degrees horizontal within 10% up to ± 10 degrees vertical  

Crosstalk: 10-20% minimum interference between horizontal and vertical signal from the same eye  

Field of View: Unlimited horizontal, minimally restricted downward vertical  

Adjustment: Three-dimensional adjustment for positioning, 40-70 mm interpupillary range  

Interface: Direct to ENG MODULE or 5000 Series processor for analog output.  

System Options 

Available in 1-4 channel configurations 

MODEL NO. DESCRIPTION 

1100 Single Channel Horizontal 

1200 Dual Channel - Monocular Horizontal & Vertical or Binocular 

Horizontal 

1300 3 Channel - Binocular Horizontal and Monocular Vertical 

1400 4 Channel - Binocular Horizontal and Vertical 
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12.12. Quick Glance 2  

 

Quick Glance 2 is a mouse replacement device designed for Microsoft Windows 98/XP 

developed by EyeTech Digital Systems. It allows the user to place the mouse pointer 

anywhere on the screen simply by looking at the desired location. Clicking can be done 

with an eye blink, a hardware switch, or by staring (dwell). Typical users are persons 

with disabilities: ALS, MS, CP, SCI, RSI and anyone who cannot use a standard mouse. 

Quick Glance 2 allows for a much greater range of head motion than Quick Glance 1, 

however, some head stability is still required. See the product comparison chart for 

details. 

Product Comparison Chart 

 Quick Glance 1 Quick Glance 2B Quick Glance 2S Quick Glance 2SH 

Portability Desktop Only Desktop/Laptop Desktop/Laptop Desktop/Laptop 

Connection to PC Internal PCI card 1394 Port 1394 Port 1394 Port 

Head Movement 4 by 4 cm 6 by 6 cm 6 by 6 cm 10 by 10 cm 

*Motion Tolerance 2 3 4 4 

*Lighting 

Tolerance 
2 2 4 4 

Speed (fps) 30 30 30 15 

Camera Type Analog Digital Digital with Strobe 
High-Resolution 

Digital with Strobe 

* Rated on a scale of 1 to 5:  1 = poor, 5 = perfect 

 

Technical Specifications  

• System Requirements: Pentium 800 MHz or faster, one available 1394 (FireWire) port and Windows 

98/XP  

• Tracking Method: Video, dark pupil, infrared illumination.  

• Accuracy: 1 degree (approximate). 
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• Temporal Resolution: Adjustable, up to 30 samples per second for models 2B and 2S and up to 15 

samples per second for model 2SH. 

• Physical Configuration: For desktop computers the video camera and lights mount on the front of the 

computer monitor. For laptop computers the video camera is mounted on a stand which is placed on 

the keyboard. The IR lights are attached to the back of the laptop display and fold out toward the 

user. Nothing is attached to the user. 

• Allowable Head Movement: The user's eye must be kept in the camera's field of view. This is about 6 

by 6 cm for models 2B and 2S and about 10 x 10 cm for model 2SH. A folding chair with adjustable 

headrest can be purchased separately to aid in maintaining proper head position.  

• Processing Hardware: The eye-tracker is hosted on a desktop or laptop PC (800 MHz or faster) 

running Windows 98/ XP. The PC must also have a 1394 (Firewire Port).  

• Infrared Illumination: Illumination provided by LEDs with output at 880 nm. Irradiance at the user’s 

eye under normal operating conditions is less than 0.5 mw per square cm. 

• Calibration: The software displays 16 targets on the screen, which the user looks at in succession. 

Calibration done once and then used for subsequent sessions. Multiple users allowed with individual 

calibrations saved for each.  

12.13. ISCAN’s Visiontrak System 

ISCAN, Inc. developed the standard head-mounted system and the ETL-400 Desktop system. 
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Features 

• Remote Desktop System: The integrated pan/tilt system is used to direct the camera manually from 

the operator’s console or to automatically follow the subject’s eye. Solid state IR illuminator is 

imperceptible to the subject, and well below OSHA intensity limits. Camera zoom, focus and 

aperture controls are adjustable at the operator’s console. 

• Eye Imaging/Tracking: The system uses a robust dark pupil tracking methodology which 

automatically separates the pupil from other dark shadows or eyelashes in the eye image. The system 

has an effective sub-pixel resolution of 1500 x 2200 for both pupil and corneal reflection position 

measurements, and true, real-time 60Hz data update. 

• Data Collection: The system offers operator and subject video point-of-regard overlay display 

outputs. Typical point of regard accuracy is better than one degree over ±20 to 25 degrees of visual 

angle.  

• Data Calibration: The Desktop system uses simple eye angle calibration procedures with built-in 

fixation monitoring and blink detection subsystems. The system offers easy visual point-of regard 

calibration using either 5 or 9 calibration points. These selectable point-of regard calibration models 

may use pupil data only, pupil and corneal reflection, or a hybrid calibration allowing for both 

extended range and tolerance of head movement. 

VisionTrak Desktop Imaging Subsystem 
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This system features an integrated solid state, low-level infrared illuminator and infrared sensitive eye 

imaging camera. The illumination is invisible to the subject. The camera and illuminator assembly is 

mounted on a pan/tilt platform which can automatically follow the movement of the subject’s head to 

keep the eye in the centre of the camera’s field of view. This auto-follow mode is effective within a ±6 

inch horizontal by ±6 inch vertical range of the subject’s head movement, as long as the subject remains 

facing the stimulus area. Subject-to-camera distance may be adjusted over a range of 24-40 inches. 

• Eye Tracking Processor: The eye tracking processor automatically tracks the centre of a subject’s 

pupil and a reflection from the corneal surface, and measures pupil size, all in real-time. Horizontal 

and vertical crosshairs automatically centre themselves over the pupil and corneal reflection to 

indicate proper tracking of the two targets. Calculation of the eye landmarks is accomplished in real 

time with a transport delay of only a single video field. 

• Monitors and Cables: System includes a Pentium® III computer system, SVGA color monitor and 

Windows® 98. The three PCI expansion slots make it possible for all data acquisition and analysis to 

be done using one computer. Two nine-inch black and white monitors and all necessary cabling and 

connectors are also included. One video monitor displays the eye image and the other displays the 

scene image with superimposed point-of-regard. A VGA to NTSC converter is also supplied so that a 

computer generated stimuli can be used with the system. 

• Auto Calibration Processor: The auto-calibration processor accurately calculates the subject’s point 

of gaze with respect to a scene being viewed by using the raw eye position. A scene video camera, 

VCR output or converted computer display output provides the scene information input to the auto-

calibrator. Manual cursor control allows the operator to delimit objects for quantitative gaze/object 

correlation, and an on-screen 24-hour clock is used for video frame-by-frame analysis of the output 

data. 
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Chapter 13. Appendix D: Filed International 

Patents 

1. Applicant: Eastman Kodak Company 

Title: Autostereoscopic Display System (WO 2006/028708) 

Publication Date: 16 March 2006 

Description: A system for displaying images in auto-stereoscopic format, the system includes an 

illumination source that produces light in at least two bands in synchronization with frame sequential 

stereo image data; a single spatial light modulator that is driven by the frame sequential stereo image 

data and that receives the two bands of light from the illumination source; and a real-time eye tracking 

device that monitors positions of eyes of a user so that viewing is not interrupted by movement of the 

eyes of the user; wherein the user views the two bands of light sequentially on only the single spatial 

display which projects a three-dimensional image to the viewer. 

 

2. Applicant: Tobii Technology AB 

Title: Arrangement, Method and Computer Program for Controlling a Computer Apparatus based on 

Eye-Tracking (WO 2005/124521) 

Publication Date: 29 December 2005 

Description: This invention relates to a computer based eye-tracking solution.  

 

3. Applicant: SR Labs 

Title: Method to improve the Data Entry and Management of Information related to Customers 

Relationship Management Systems (CRM) (WO 2005/124518) 

Publication Date: 29 December 2005 

Description: The present invention concerns a method for the data entry and management of 

information related to customers relationship management systems (CRM). This method allows the 

user to use eye-tracking systems and devices for the human-computer interaction using their gaze and 

their voice, through speech recognition systems instead or in addition to the usual user interfaces as 

eye-driven keyboards, mouse, trackball, optical pens etc. 

 

4. Applicant: Sony Electronics Inc. 

Title: Three Dimensional Acquisition and Visualization System for Personal Electronic Devices (WO 

2005/091650) 

Publication Date: 29 September 2005 

Description: A three-dimensional (3D) acquisition and visualization system for personal electronic 

devices comprises two digital cameras which function in a variety of ways. The two digital cameras 

acquire 3D data which is then displayed on an auto-stereoscopic display. For clarity and ease of use, 

the two digital cameras also function as eye-tracking devices helping to project the proper image at 
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the correct angle to the user. The two digital cameras also function to aid in autofocusing at the 

correct depth. Each personal electronic device is also able to store, transmit and display the acquired 

3D data. 

 

5. Applicant: New York University 

Title: Method and Apparatus for an Autostereoscopic Display having a Lenticular Lenslet Array (WO 

2005/079376) 

Publication Date: 01 September 2005 

Description: This invention relates to a method for producing an autostereoscopic image of a scene 

for an observer. The apparatus includes a lenticular lenslet array sheet through which a first portion of 

the scene displayed on the display passes and forms a first seamless image of the left image which is 

visible only to the observer's left eye, and through which a second portion of the scene displayed on 

the display passes through and forms a second seamless image of the right image which is visible only 

to the observer's right eye.  

 

6. Applicant: Customvis Plc 

Title: Limbal-Based Eye Tracking (WO 2005/065527) 

Publication Date: 21 July 2005 

Description: A method of determining and/or tracking the position of an eye, includes utilising at least 

two wavelength components of a plural wavelength zone that traverses the limbus of the eye to obtain 

a profile of whiteness and/or redness across the zone, and identifying from the profile at least one 

predetermined reference position that indicates the position of the eye. Apparatus for carrying out the 

method is also disclosed. 

 

7. Applicant: Alcon Refractivehorizons, Inc 

Title: Hybrid Eye Tracking System and Associated Methods (WO 2005/063154) 

Publication Date: 14 July 2005 

8. Description: A system and method for tracking ocular changes during a surgical procedure include 

directing an eye-safe optical beam toward an undilated, unparalyzed eye. A reflected optical beam is 

detected, and measurements are performed based upon data contained in the reflected optical beam of 

at least one geometric parameter of the eye at a predetermined frequency, and from them is calculated 

a change in the at least one geometric parameter. The calculated change is used to dynamically adjust 

the directing of laser beam shots during surgery. 

 

9. Applicant: Queen's University at Kingston 

Title: Method and Apparatus for Calibration-Free Eye Tracking (WO 2005/046465) 

Publication Date: 26 May 2005 

Description: A system and method for eye gaze tracking in human or animal subjects without 

calibration of cameras, specific measurements of eye geometries or the tracking of a cursor image on 

a screen by the subject through a known trajectory. The preferred embodiment includes one 
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uncalibrated camera for acquiring video images of the subject's eye(s) and optionally having an on-

axis illuminator, and a surface, object, or visual scene with embedded off-axis illuminator markers.  

 

10. Applicant: Seeing Machines Pty Ltd 

Title: Eye Tracking System and Method (WO 2004/088348) 

Publication Date: 14 October 2004 

Description: A method of tracking an expected location of a head in a computerised headtracking 

environment having a delayed processing requirement for locating a current head position, the method 

comprising the step of: utilising previously tracked positions to estimate a likely future tracked 

position; outputting the likely future tracked position as the expected location of the head. Kalman 

filtering of the previously tracked positions can be utilised in estimating the likely future tracked 

position.  

 

11. Applicant: Tengshe, Vishwas, V. 

Title: Gaze Tracking System and Method (WO 2004/066097) 

Publication Date: 05 August 2004 

Description: An eye-tracking system for displaying a video screen pointer at a point of regard of a 

user's gaze. The system comprises a camera focused on the user's eye; a support connected to the 

camera for fixing the relative position of the camera to the user's pupil; a computer having a CPU, 

memory, video display screen, an eye-tracking interface, and computer instructions for: segmenting 

the digital pixel data of the image of the eye into black and white sections based upon user selectable 

RGB threshold settings; determining the center of the eye based upon the segmented digital data; 

mapping the determined center of the eye to a pair of coordinates on the video screen; and displaying 

a pointer on the video display screen at the point of regard.  

 

12. Applicant: VISX Inc 

Title: Methods and Systems for Laser Calibration and Eye Tracker Camera Alignment (WO 

2003/090867) 

Publication Date: 06 November 2003 

Description: The present invention provides methods, systems, and apparatus for calibrating a laser 

ablation system, such as an excimer laser system for selectively ablating a cornea of a patient's eye. 

The invention also facilitates alignment of eye tracking cameras that measure a position of the eye 

during laser eye surgery.  

 

13. Applicant: Eyetools 

Title: Techniques for facilitating use of eye tracking data (WO 2003/050658) 

Publication Date: 19 June 2003 

Description: Individual eye tracking data can be used to determine whether an individual has actually 

looked at a particular region of a visual field. Aggregation of data corresponding to multiple 

individuals can provide trends and other data useful for designers of graphical representation (e.g., 
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Web pages, advertisements) as well as other indicates both regions viewed and regions not viewed, 

can be accomplished using several different techniques. For example, percentages of the number of 

viewers that viewed a particular region can be represented as a particular color, or the underlying 

image being viewed can be blurred based on and acuity gradient and the number of individuals 

viewing various regions. The various regions represented as viewed can be selected based on the type 

of viewing activity (e.g., reading, gazing) is associated with a particular region. 

 

14. Applicant: Imperial College Innovations Ltd 

Title: Manipulation of Image Data (WO 2003/024319) 

Publication Date: 27 March 2003 

Description: A method of analysing an image comprises carrying out eye tracking on an observer 

observing the image and applying factor analysis to the fixation regions to identify the underlying 

image attributes which the observer is seeking. 

 

15. Applicant: Lasersight Technologies, Inc. 

Title: Eye Tracking using Edge of Corneal Flap (WO 2003/022173) 

Publication Date: 20 March 2003 

Description: A method of tracking an eye during vision correction treatment includes cutting corneal 

tissue to define a cut edge. At least a portion of the cut edge is tracked to track eye movements. In one 

embodiment, the corneal tissue is cut to define a flap-like layer such that fluid gathers near the cut 

edge. The fluid is illuminated prior to tracking the cut edge. 

 

16. Applicant: Telefonaktiebolaget L M Ericsson 

Title: Method and Apparatus for Gaze Responsive Text Presentation (WO 2003/019341) 

Publication Date: 06 March 2003 

Description: Method and apparatus is provided for use with a rapid serial visual presentation (RSVP) 

display window in a mobile communication device to selectively adjust the presentation of text. Eye 

tracking sensors are used to detect when a reader's focus shifts outside the text window, indicating 

that the reader has become inattentive to displayed text. Thereupon, presentation of text is halted. 

When the eye tracking sensors detect that the focus of the reader's eyes has shifted back into the text 

window, text presentation is resumed. Usefully, the rate of text presentation is slowed down or 

speeded up, when the eye tracking sensors detect the reader's eyes to be focused on the left edge or on 

the right edge, respectively, of the text display window. 

 

17. Applicant: Qinetiq Limited 

Title: Eye Tracking Systems (WO 2003/017203) 

Publication Date: 27 February 2003 

Description: An eye tracking system for monitoring the movement of a user's eye comprises an eye 

camera and a scene camera for supplying to interlace electronics video data indicative of an image of 

the user's eye and an image of the scene observed by the user.  
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18. Applicant: Smart Eye AB 

Title: Method for Image Analysis (WO 2003/003910) 

Publication Date: 16 January 2003 

Description: The present invention relates to a method for locating the eyes in an image of a person, 

for example useful in eye-tracking. The method comprises selecting a region of interest in the image, 

preferably including the face of the person, using information from said selection in the steps of: 

selecting a plurality of candidate areas ('blobs) in this region of interest, matching said candidate areas 

of an edge map of the image with at least one mask based on a geometric approximation of the iris, 

selecting the best matching pair of candidate areas, and evaluating the relative geometry of said 

selected candidate areas to determine if the pair of candidate areas is acceptable. The key principle of 

the invention is to use information from the face detection to improve the algorithm for finding the 

eyes. 

 

19. Applicant: Sensomotoric Instruments GMBH 

Title: Multidimensional Eye Tracking and Position Measurement System (WO 2002/064031) 

Publication Date: 22 August 2002 

Description: The present invention relates to improved ophthalmic diagnostic measurement or 

treatment methods or devices, that make use of a combination of a high speed eye tracking device, 

measuring fast translation or saccadic motion of the eye, and an eye position measurement device, 

determining multiple dimensions of eye position or other components of eye, relative to an 

ophthalmic diagnostic or treatment instrument. 

 

20. Applicant: Opthalmic Inventions, LLC 

Title: Topography-Guided Opthalmic Ablation and Eye-Tracking (WO 2002/056789) 

Publication Date: 25 July 2002 

Description: Systems and methods for topography-guided ophthalmic ablation and eye-tracking. A 

topographic map of the surface of an eye is generated. A reference pattern on the surface of the eye, 

such as a staining substance applied using applicator to points on the eye, is correlated with the 

topographic map. The eye surface pattern is continuously tracked and the correlation adjusted. 

Ablation of the cornea may be performed based on the correlation as it is adjusted in real time. 

 

21. Applicant: Koninklijke Philips Electronics N.V. 

Title: System for Automatically Adjusting a Lens Power through Gaze Tracking (WO 2002/054132) 

Publication Date: 11 July 2002 

Description: The present invention relates to a device containing an automatic zoom lens, and more 

particularly to a zoom lens that is controlled by a processor that is linked to a gaze tracking system. 

As a user looks onto an object through the device, the gaze tracking system collects data relating to 

the position of each eye of the user. This eye position data is input into the processor where the focal 
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point of the user is determined. The processor then adjusts the zoom lens to zoom in or out onto the 

object based on either a predetermined or user input zoom factor. 

 

22. Applicant: Ruiz, Luis, A. 

Title: Method and Apparatus for Precision Laser Surgery (WO 2002/032353) 

Publication Date: 25 April 2002 

Description: An eye laser system which includes a laser and a laser delivery system for delivering a 

laser beam generated by the laser to the eye and eye tracking system which monitors movement of the 

eye and conveys eye tracking information to the laser delivery system with the eye tracking system 

including a non-invasive eye tilt reference marker. The reference marker projects an energy beam that 

is preferably visible so as to reflect off the iris of the eye and provide microscope and surgical field 

illumination.  

 

23. Applicant: Sun Microsystems, Inc. 

Title: Dynamic Depth-of-Field Emulation based on Eye-Tracking (WO 2002/029718) 

Publication Date: 11 April 2002 

Description: A graphics system comprising a rendering engine, a sample buffer and a filtering engine. 

This invention relates generally to the field of 3-D graphics and, more particularly, to a system and 

method for rendering and displaying 3-D graphical objects.  

 

24. Applicant: Memphis Eye and Cataract Associates Ambulatory Surgery Center 

Title: Method and System for Control of High Resolution High Speed Digital Micromirror Device for 

Laser Refractive Eye Surgery (WO 2001/085045) 

Publication Date: 15 November 2001 

Description: A laser eye surgery system includes a laser for producing a laser beam capable of 

making refractive corrections, an optical system for shaping and conditioning the laser beam, a digital 

micromirror device (DMD) for reflecting the shaped and conditioned beam toward the eye, a 

computer system for controlling the mirrors of the DMD, and an eye tracking system which tracks the 

position of the eye and provides feedback to the computer system. 

 

25. Applicant: Swisscom Mobile AG 

Title: Method and System for Video Conferences (WO 2001/084838) 

Publication Date: 08 November 2001 

Description: The invention relates to a method and to a system for video conference with at least three 

different video conferences user terminals which communicate via a telecommunications network. 

Multimedia data comprising at least user image data and/or user audio data are transmitted via a 

telecommunications network. Every user receives the user image data of the other users arranged on a 

display device so that they are simultaneously visible. An eye tracking system detects the line of 

vision of the respective user and transmits it to a communications unit. The user image data that are 

displayed on the display device and that are not in the current line of vision of the respective user are 
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transmitted via the telecommunications network to the communications device with reduced 

resolution and/or image transmission rate. 

 

26. Applicant: Lai, Ming 

Title: A Hybrid Tracking System (WO 2001/074231) 

Publication Date: 11 October 2001 

Description: A hybrid tracking system is configured to combine the advantages of open loop and 

close loop tracking systems. The hybrid tracking system employs a position-sensing device in an open 

loop configuration, while the position-sensing device itself is a close loop device. A particular 

application of this tracking system is to track eye movement in a refractive laser surgery. The hybrid-

tracking configuration enables optical and mechanical separation of the position-sensing device from 

the surgical laser beam. As a result, the position-sensing device can be made as a modular device, and 

the hybrid eye-tracking system can have a relatively large tracking range even when a curved mark 

such as the limbus is used as the tracking reference. 

 

27. Applicant: Siemens Aktiengesellschaft 

Title: System and Method for Eye-Tracking Controlled Speech Processing with Generation of a 

Visual Feedback Signal (WO 2001/056018) 

Publication Date: 02.08.2001 

Description: The invention relates to a system and a method for the operation and monitoring of, in 

particular, an automation system and/or a production machine or machine tool, whereby the visual 

field, of a user, is recorded on at least one means of display, where the speech information, from the 

user, is at least intermittently determined and where a visual feedback signal is generated, in response 

to the processing status, with regard to recognised voice information. An improved speech interaction 

is thus obtained, in particular, in the field of augmented-reality applications and in complex technical 

plants. 

 

28. Applicant: Nokia Corporation 

Title: Eye-Gaze Tracking (WO 2001/049167) 

Publication Date: 12 July 2001 

Description: A device and a method for tracking an eye-gaze of an observer. A deep blue or violet 

light source is used to emit light to eye, particularly to the retina. The deep blue light is partially 

reflected and partially absorbed by the retina. The absorption is most prominent around the fovea, the 

area of sharp vision, because of the pigment which protects the fovea from short wavelength 

radiation. Thus the device and method of tracking eye-gaze according to the invention comprises 

emitting light having a certain wavelength and transferring the light to the retina of an eye. The 

wavelength of the light being such as to make the fovea of the eye resolvable. The method further 

comprises detecting light that is reflected from the eye to form detection information including the 

resolvable fovea, and mapping the detection information to a predetermined surface, the surface being 

located at a distance from the eye, the location of the fovea on the surface forming an eye-gaze point. 
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29. Applicant: Visx, Inc. 

Title: Two Camera Off-Axis Eye Tracker (WO 2001/024688) 

Publication Date: 12 April 2001 

Description: Improved laser eye surgery and/or eye tracking systems, methods, and devices make use 

of two image capture devices, generally with both image capture devices disposed off the optical axis 

of the eye and/or any laser delivery system.  

 

30. Applicant: Memphis Eye and Cataract Associates Ambulatory Surgery Center 

Title: Eye Tracking and Positioning System for a Refractive Laser System (WO 2001/010338) 

Publication Date: 15 February 2001 

Description: An eye tracking and positioning system for use with a refractive laser system includes a 

camera interface, a computer, and a system for moving the patient relative to the laser beam.  

 

31. Applicant: Digilens Inc. 

Title: Display System with Eye Tracking (WO 2001/009685) 

Publication Date: 08 February 2001 

Description: The present invention relates generally to display systems, and more particularly, to a 

head mounted display system having an eye tracking device for tracking the change in the gaze 

direction of a user's eye and modifying the displayed image in response to the eye movement.  

 

32. Applicant: San Diego State University Foundation 

Title: Method and Apparatus for Eye Tracking (WO 2000/054654) 

Publication Date: 21 September 2000 

Description: Method and apparatus for correlating pupillary response to the cognitive activity of a 

subject undergoing an evaluation of cognitive activity during a task which involves monitoring and 

recording the point of gaze and pupillary response of the subject to the task, subjecting the recorded 

pupillary response to wavelet analysis in order to identify any dilation reflex of the subject's pupil 

during the task, and assigning a pupillary response value to the result of the wavelet analysis. 

 

33. Applicant: Sarel, Oded 

Title: A System and Method for Automated Self Measurement of Alertness, Equilibrium and 

Coordination and for Verification of the Identity of the Person Performing Tasks (WO 2000/033155) 

Publication Date: 08 June 2000 

Description: This invention is an automated self-measurement device for alertness, equilibrium, and 

coordination testing. The device includes eye tracking, a posturograph, a computer, an electric screen 

board, and a magnetic card slot for identification purposes. 

 

34. Applicant: Scientific Generics Limited 

Title: Eye Tracking System (WO 2000/026713) 
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Publication Date: 11 May 2000 

Description: The present invention relates to an apparatus and method for tracking the direction of a 

user's gaze. The invention has particular relevance to an eye tracking system for use with optical 

instruments which form a viewable image of an object, such as microscopes, cameras, telescopes etc.  

 

35. Applicant: Synthetic Environments, Inc. 

Title: System and Method for Controlling Host System Interface with User Point-of-Interest Data 

(WO 2000/016185) 

Publication Date: 23 March 2000 

Description: The present invention generally relates to the field of human-computer interaction and 

user interface technology. More particularly, the present invention relates to a system and method that 

determines a user's intent or choice by comparing, for example, the user's eye motion response 

resulting from a computer or software generated and presented animation sequence stimulus.  

 

36. Applicant: Leica Microsystems AG 

Title: Eye Tracking System (WO 1999/065381) 

Publication Date: 23 December 1999 

Description: An optical instrument, such as a microscope or a camera, is provided for forming a 

viewable image of an object. The optical instrument comprises an objective lens for forming the 

viewable image at an image plane, an eye sensor for sensing the direction of gaze of a user viewing 

the viewable image and means for controlling a controllable function of the optical instrument in 

dependence upon the sensed direction of gaze.  

 

37. Applicant: University of Washington 

Title: Virtual Retinal Display with Eye Tracking (WO 1999/036826) 

Publication Date: 22 July 1999 

Description: This invention relates to retinal display devices, and more particularly to a method and 

apparatus for mapping and tracking a viewer's eye. A retinal display device is an optical device for 

generating an image upon the retina of an eye.  

 

38. Applicant: Bullwinkel, Paul, E 

Title: Fiber Optic Eye-Tracking System (WO 1999/035961) 

Publication Date: 22 July 1999 

Description: This invention is directed to eye tracking devices and in particular to an eye tracking 

device suited for analyzing eye-movement of a patient undergoing diagnostic treatment within a 

magnetic resonance imaging apparatus. An eye tracking device for analyzing motion of an 

individual's eye includes an image converter subsystem, an image receiving subsystem, and 

processing subsystem. 

 

39. Applicant: Dynamic Digital Depth Research Pty. Ltd. 
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Title: Eye Tracking Apparatus (WO 1999/027412) 

Publication Date: 03 June 1999 

Description: The present invention relates to a tracking system for locating the eyes of a viewer 

including: an illumination means; a plurality of cameras; and a processing means; wherein at least the 

viewer's eyes are illuminated by the illumination means to enable capture by each camera, and 

wherein the processing means is adapted to process images from each camera so as to detect the 

position of the viewer's eyes. 

 

40. Applicant: Bid Instruments Limited 

Title: Apparatus and Method for Visual Field Testing (WO 1999/022638) 

Publication Date: 14 May 1999 

Description: An apparatus for ocular testing is provided with means for displaying targets (T1, T2) 

means for tracking eye movement and means (5) for controlling the display of the targets (T1, T2) on 

a screen. A method comprises arranging the control means to choreograph display of the targets (T1, 

T2...) at different positions at the screen depending on whether the eye tracking means detects that an 

observer is directly looking at the target. 

 

41. Applicant: Visx Incorporated 

Title: Eye Tracking Device for Laser Eye Surgery using Corneal Margin Detection (WO 

1999/018868) 

Publication Date: 22 April 1999 

Description: The present invention is generally concerned with ophthalmic surgery, and more 

particularly relates to systems, methods and apparatus for tracking the position of a human eye. The 

present invention is particularly useful for tracking the position of the eye during surgical procedures, 

such as photorefractive keratectomy (PRK), phototherapeutic keratectomy (PTK), laser in situ 

keratomileusis (LASIK), or the like. In an exemplary embodiment, the present invention is 

incorporated into a laser ablation system which is capable of modifying the spatial and temporal 

distribution of laser energy directed at the cornea based on the eye's position during the laser ablation 

procedure. 

 

42. Applicant: Applied Science Laboratories 

Title: An Eye Tracker Using an Off-Axis, Ring Illumination Source (WO 1999/005988) 

Publication Date: 11 February 1999 

Description: A camera assembly for use in an eye tracking apparatus, the camera assembly including 

a camera with a lens having an axis; and a ring shaped light source disposed around the image axis 

and near the periphery of the lens aperture, the light source oriented to direct light along the camera 

axis toward the target. 

 

43. Applicant: Ramot-University Authority for Applied Research and Industrial Development, Ltd. 

Title: Method and Apparatus for Assessing Visual Field (WO 1998/040781) 
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Publication Date: 17 September 1998 

Description: The present invention relates to a method and apparatus for assessing the visual field of a 

subject which utilizes the basic human reflex of eye movement towards a target entering a subject's 

field of vision. 

 

44. Applicant: Geisler, Wilson, S. 

Title: Foveated Image Coding System and Method for Image Bandwidth Reduction (WO 

1998/033315) 

Publication Date: 30 July 1998 

Description: The present invention relates generally to the field of image data compression. More 

specifically, it relates to a foveated imaging system which can be implemented on a general purpose 

computer and which greatly reduces image transmission bandwidth requirements.  


