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Chapter 1

Introduction

1.1 Background

The development of technology brings a range of techniques for digital image capture,
processing, storage and transmission. With this development, we have seen a rapid
increase in the size of digital image collections. The huge amount of images requires
efficient techniques for browsing and searching.

One of the main problems while working with large and varied image collections
is finding a desired image. In a small collection of a hundred or a thousand images,
it is feasible to identify the desired image. For ten thousand images browsing is not
practical, let alone for a million. An annotated collection, where the user searches
with a set of keywords, can solve the problem but this requires intensive manual
annotation of all the images.

The term content-based image retrieval (CBIR) first appeared in 1992 in a paper
by Kato [52] describing his experiments on browsing in an image collection by colors
and shapes. From that moment up to now, many papers have been published making
the term CBIR very popular. It appeared to become an interesting and challenging
field of research. A number of overview papers can be found in [104, 93, 2, 116, 72, 61].
In Smeulders et al. [104], various aspects in CBIR are analyzed with features and
similarity as the main focus of the reference. In [116], a list of 39 CBIR systems is
presented. The authors summarize and discuss techniques used in different systems.
The very large number of papers cited in these references show the vitality of research
in CBIR.

Also in [104], the goals in CBIR are broadly classified into three main categories:
association search, target search, and category search. Search by association is a
search class where the user starts the search with no specific aim other than to find
interesting things. Target search aims at finding a specific image. Finally, category
search looks for images that belong to a specific class. In any of these search tasks
the main issue is to compare images. Therefore, CBIR is also known as retrieval of
images by similarity.

It is stated in [104] that “similarity is an interpretation of the image based on
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2 Chapter 1. Introduction

the difference with another image”. Up to now, the difference is mainly obtained
by comparing features extracted from the images themselves. In literature, features
are classified into low-level features such as colors, textures and shapes, and higher
level features such as spatial relation, or hierarchically ordered features. There is a
number of existing methods developing and improving the performance of retrieval
using features. Review papers are presented in [85, 66, 115]. In the meantime, a
large number of meaningful types of similarity have been defined. Some of them are
associated with specific features. For instance, the color histogram [110] is developed
for comparing images based on their color features. With texture features, it is
possible to measure the similarity based on the degree of coarseness, directionality
and regularity or the response of Gabor filters [85, 63]. For shape based retrieval,
global shape matching, skeletonization, or edge based comparison can be applied [66].
In summary, features and similarity are the two building blocks in any CBIR system.

Good features with good similarity functions are usually developed for specific
search tasks in a narrow domain. In a broad domain, which “has an unlimited and
unpredictable variability in its appearance even for the same semantic meaning” [104],
techniques in CBIR currently yield unacceptable results. This is mainly because of
the difference between the user’s understanding of similarity, and the capability of the
system in interpreting relations between images. This problem is explained in [30].
The authors point out that within the three search categorizations, there are three
levels of user search queries. The first level concentrates on retrieving images by low-
level features. For example, for retrieving images in an iconic collection shape features
outperform other features. Level 2 is retrieval by logical features which requires some
degree of logical inference to identify the search object. A beach scene can be retrieved
by using color, e.g., specifying a large region of blue at the top of the image and yellow
at the bottom. Level 3 is called retrieval by abstract attributes, which are the highest
level of search concepts such as finding images of a certain activity. While most of
the user searches are based on the last two levels, current systems operate mainly at
level 1 [30]. Therefore, despite all research devoted to CBIR, performance of existing
systems is still unsatisfactory for the user [30, 104, 2]. In [104], the problem is made
explicit as the semantic gap: “The semantic gap is the lack of coincidence between
the information that one can extract from the visual data and the interpretation that
the same data have for the user in a given situation.”

The aim of the research in CBIR is to reduce the gap for the user. To do so,
different approaches have been proposed. Applying statistical pattern recognition
techniques is one of those [49]. Pattern recognition has a close relation with CBIR in
the sense that techniques in both fields are meant for separating relevant images from
irrelevant ones. The authors discuss various techniques on feature extraction, feature
selection, and different ways of creating classifiers in a feature space. The classifiers
are learnt on the feature space to best separating relevant and irrelevant images from
one another.

Only the user knows exactly what he is looking for, hence in order to reduce
the gap, a lot of papers have been considered the human into the loop of retrieving
images. The need for user-in-the-loop in CBIR systems stems from the fact that
images reside in a continuous representation space, in which semantic concepts are
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best described in discriminative subspaces “car” are of certain shape while “sunset”
is more describable by color. More importantly, different users at different times may
have different interpretations or intended usages for the same image, which makes off-
line learning unfeasible in general [128]. Having the user involved in the search, the
system is guided to a better interpretation of similarity using the user’s knowledge.
This is known as relevance feedback. A CBIR system with the appearance of the user in
the search is called an interactive CBIR system. Since the first interactive system has
been proposed, techniques in CBIR not only concentrate on features and similarity,
but also developing efficient strategies for user interaction and system adjustment.

A number of examples of such interactive systems can be found in [94, 26, 127,
124, 128, 99, 59]. For example, in [94], the authors propose a relevance feedback
based interactive retrieval approach that takes into account the gap between high-
level concepts and low-level features, and the subjectivity of human perception of
visual content. Interaction between human and computer is to refine high-level queries
to representations based on low-level features. The system automatically processes
existing query such that the adjusted query is a better approximation to the user’s
information need. Another way of using relevance feedback is proposed in [59]. The
user provides feedback as being relevant or not, using decision trees is to learn a
common thread among relevant samples. An overview of existing techniques in CBIR
using relevance feedback can be found in [127, 128, 26].

For communicating between human and computer, an intermediate interface is
an essential element in interactive CBIR systems. Through this interface, the user
provides feedback, and the system shows its current learning progress. The interface is
commonly a visualization of images. Different ways of displaying images can be found
in [16, 91, 71, 74]. For instance, in [16], the authors present a PathFinder network
that visualizes images in a database by visual similarities. The PathFinder is a tree-
based structure of representing images. In [91, 71], interfaces are presented where
images are displayed using a dimensional reduction of high dimensional feature space
to a 2-dimensional space for user interaction with images. A 3D model of displaying
images called 3D MARS is presented in [74]. In these references, a common argument
is that the interface plays an important role as it affects the relevance feedback given
by the user as well as helping the user in understanding the image collections and the
system’s performance.

We will focus on interactive CBIR systems where we consider the two influent
factors, namely visualization and interaction, to reduce the semantic gap.

1.2 Problem definition

As mentioned in the previous section, a large number of overview papers on relevance
feedback show the importance of interactive search in CBIR. In [104], they present a
general framework for interactive systems. In this reference, a query space is defined,
which consists of four components {I,F ,S,Z}. I is an image collection, F is a set
of features derived from I, S is a dissimilarity function and Z contains labels of the
images in I. From there, an interactive CBIR system performs five main steps: query
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initialization, query specification, visualization, feedback, and output. In each step,
all of the components might be affected. Figure 1.1 shows the proposed framework
with the five steps described in [104].

Figure 1.1: A general framework for interactive content based image retrieval systems.

The first step involves the data preparation including normalization of feature
values and similarities. In the query specification step, the user poses a search query
to define an initial set of images. These two steps are important for any general CBIR
system. The interactive stage is formed by two steps: visualization and feedback,
which are iterated. The output step presents the final search result to the user. The
interactive stage is the main focus of this thesis.

Existing interactive systems normally emphasize one aspect of CBIR. Sometimes
this is the sketching capability in the user interface, sometimes it is the new indexing
data structure, etc. [116]. Overview papers [94, 128, 59] focus on relevance feedback
learning techniques only. On the other hand, systems with advanced visualization
techniques only focus on the interface [74, 91, 16]. However, an interactive system is
not only affected by the learning technique but also by the quality of the relevance
feedback. The quality of feedback strongly depends on the interface with the user.
A well designed interface will support the user better in searching. Therefore he will
be able to give more useful information to the system. In other words, an interactive
system should consider the interaction and visualization interface as one.

Visualization of images is presenting images to the user on a display component
such as the computer screen. In visualizing images, a number of issues should be
considered carefully. For instance, not all images in the collection can be shown at
the same time. A set of images has to be selected, so the question is which images
should be displayed to the user? Another issue is that the presentation of images on
the display should take into account that visualization is not just displaying images
but also providing information helpful for user interaction. Hence, another question
is how should images be displayed?

At first, the visualization step received much less attention compared to the feed-
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back step. At this early stage of interactive CBIR, systems usually employ a simple
2-dimensional grid of images. The ordering of displayed images depends on the pur-
pose of the system. In some systems, images are displayed in random order, while the
others are ordered top-down, left-to-right on the degree of relevance to a given query.
Examples can be found in [116, 104, 122]. Recent advanced systems have introduced
different techniques in visualizing images. For example, systems using hierarchical
tree structures to display images [18, 56] where the systems support traversing both
on the current level of the hierarchy and between levels of the hierarchy with opera-
tions such as panning and zooming. In [22, 11, 91, 87], images are organized such that
similar images are grouped or located near each other in the display. This visualization
is called similarity-based visualization. Together with these visualization techniques,
these systems develop interaction tools to assist the user in giving feedback.

There are different ways of the user giving feedback [128, 94]. In the beginning, the
majority of relevance feedback methods asked the user to tune the system parameters
during the retrieval process [59, 128]. This requires a lot of effort from the user as
well as user expertise in CBIR. To ease the user’s tasks, another feedback mechanism
is to ask the user to provide feedback on images indicating whether they are relevant
or irrelevant to the current search [32], or the user marks the degree of relevance
[73]. Some other ways of giving feedback are drawing a sketch, defining the region
of interest in BlobWorld [14] or FOCUS (Fast Object Color-based Query System)
[24], and moving images to define their similarity in [97]. Details of existing systems
with different solutions for user interaction can be found in [116]. Regarding the user
interaction, a question is how to let the user interact with images displayed?.

In summary, visualization of images should take all these issues into account lead-
ing to a general question:

Q1: What is a good way of visualizing images for the purpose of obtaining useful
feedback?

The second step in the interactive stage, namely the feedback step, involves the
learning capability of the system based on relevance feedback. An interactive CBIR
should be designed such that it effectively obtains the most information from the
user, i.e., how to obtain user’s relevance feedback? and how to update the query space
with given feedback?. In the interactive system in figure 1.1, after the user provides
feedback, the system will learn the query space. One or more components of the
query space are then iteratively updated by the relevance feedback RF. We have:

{It,F t,St,Zt}RFt

−→{It+1,F t+1,St+1,Zt+1}

where RFt is the relevance feedback at the tth iteration.
Techniques for updating the components in query space have been discussed in

[104]. For changing the I components, a common technique is image collection filter-
ing [117]. With the feature component F , typical approaches are adjustment of the
weights for feature weighting or feature selection [107, 54, 37], or changing the feature
definition itself [76]. The S component is usually represented as a parameterized func-
tion, where parameters are optimized based on relevance feedback. Finally, the last
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component is changing the probability for the set of labels Z as {relevant, irrelevant}
[67]. Some other review papers on learning relevance feedback recently have men-
tioned the use of support vector machines (SVM) as a basis of the learning strategy
[23, 59, 128]. This statistical pattern recognition learning technique is currently the
most effective in CBIR systems because of its effective performance [113, 62, 20, 125].

For updating the features, one of the issues discussed in [104] is the use of salient
features such as salient points [101] or salient regions [80] which define the most
important part of a search image. In related references, the saliency of features has
not been considered from a context and user perspective. That leads to another
question related to a definition of saliency of features:

Q2: How to define the saliency of features (points, lines, or regions) such that it is
context and user interpretation dependent?

Although the four components are described independently, they all update the
similarity between images. In other words, adjusting one or more components in
the query space directly leads to the update of similarity S. This makes similarity
user and context dependent. As mentioned in the previous section, current research
mainly stays on the primitive level, retrieving images by low-level features, while the
user search focuses on the semantic and abstract levels. The question is:

Q3: How to iteratively learn similarity on a higher level than the primitive level?

Finally, after a system has been built, the task is to evaluate the performance of
that system. Evaluation is usually either objective or subjective. Subjective evalua-
tion has the advantage that it involves real users hence it is close to its actual use.
However, at the same time it is very difficult to set up an experiment as it involves
a number of parameters on the user groups, for instance age, gender, and expertise.
Therefore, it is difficult to repeat an experiment. In an objective evaluation, these
difficulties can be solved by simulating the search scenario with simulated user’s and
system’s actions. Our final research question is:

Q4: How to objectively evaluate performance of an integrated interactive CBIR
system?

1.3 Organization of the thesis

The following chapters of the thesis are organized as follows. In chapter 2 to answer
question Q1, we analyze in detail the problems occurring when visualizing a large
visual collection. From there, we establish a visualization framework satisfying three
proposed requirements: overview, visibility, and structure preservation. As stated in
the previous section the essence is treating visualization and interaction as a whole.
We focus on the integration of visualization and feedback learning in chapter 3 using
the visualization framework proposed in chapter 2. In such an integrated system, we
present the optimization of the system’s performance with simulated search scenarios
(question Q4). In chapter 4, we introduce a new approach to learn dissimilarity for
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interactive search in content based image retrieval (question Q3). Similarity defini-
tion is learned in dissimilarity space instead of feature spaces in existing approaches.
Finally, to answer question Q2, an overview of salient details extraction in CBIR such
as points, lines, and regions is presented in chapter 5.
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Chapter 2

Interactive access to large
image collections using
similarity based visualization

2.1 Introduction

Through the development of multimedia technologies and the availability of cheap
digital cameras, the size of image collections is growing tremendously. Collections
range from consumer pictures, to professional archives such as photo stocks of press
agencies, museum archives, and to scientific pictures in medicine, astronomy, or biol-
ogy. Hence, large image collections are common everywhere.

The use of image collections is domain dependent. For consumer pictures, a task
is finding all pictures taken of a family member in a certain event. In medicine, a
doctor wants to search images similar to a given one, to diagnose a disease. In general,
when working with image collections the main task is searching relevant pictures in
the collection.

When the collection contains a couple of hundred images, one can find all relevant
images by visually inspecting the whole collection. If the size of the collection increases
to thousands or even millions of images, one needs efficient methods for searching and
browsing those collections. To that end, we should note the “semantic gap” between
the system’s automatic indexing capability and the user’s conceptual interpretation
of the data [104]. Interaction and visualization are needed to bring the system
perspective and user perspective together.

The appropriate visualization and interaction method are task dependent. For
understanding the structure of the collection, visualization should allow interaction
with clusters, local structures and outliers [17]. For browsing, some form of rapid
serial visual presentation can be appropriate [25], or network relations between images

This chapter is accepted for publication in the Journal of Visual Language and Computing [78]
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can be visualized for easy navigation [91]. Searching requires the possibility to see
overviews as well as being able to interactively zoom-in on the information [1]. Finally,
annotation requires that images that should receive the same annotation are close to
each other so they can be annotated with one interaction step [78]. The examples
indicate the need for generic tools which can be combined to support each of these
tasks.

In content based image retrieval literature, few systems use visualization as a tool
for exploring the collection. In most query by example based systems, a randomly
selected set of images from the collection is displayed in a 2D grid [104, 116, 122].
In this way, the user does not get an overview of the collection. As a consequence,
much time is wasted in considering non-relevant images and relevant images are easily
missed. Visualization offers the opportunity to guide the user in her exploration.

To guide a user, the structure of the collection is of prime importance. Thus,
focus must not be on the images alone, but especially on the relations between the
images. These relations are captured by a similarity function. Similarity is a very
generic notion and can be based on features computed from the image content, free
text descriptions, or semantic annotations. Recently, advanced systems have been
developed for browsing images based on similarity [11, 17, 22, 57, 74, 91, 97, 118]. In
these systems the similarity, and thus structure, based visualization of the collection
is the guide for the user.

None of the above methods explicitly addresses the problems occurring when vi-
sualizing large visual collections. The most important problem is the limited display
size, not allowing to show the whole collection as images on the screen. Some systems
have made an effort to relief this limitation by showing the whole collection as a point
set [17]. Once the user selects a point, the corresponding image is displayed [22]. To
see the visual structure of the collection, many images need to be shown simultane-
ously. A problem here is visibility. If small thumbnails are used, the images cannot be
understood by the user. Larger thumbnails lead to substantial overlap of the images
on the screen. Most of the existing systems do not take this problem into account.
Exceptions are [71] and [87], but their treatment of the problem is rather ad-hoc.
A final issue to consider is the difference between the high dimensional feature space,
typically of dimension 50 or more, and the 2-dimensional display. A mapping be-
tween the two is needed. For instance, in [71] PCA (Principal Component Analysis)
is employed, whereas [91] uses MDS (Multi-Dimensional Scaling). Inevitably in the
projection, information on the structure of the collection is lost. In summary, there
are a number of problems when visualizing large image collections. In this paper, we
make them explicit.

The advanced visualization tools mentioned above make the development of sys-
tems more complex. The question arises whether it is worth the effort. This requires
extensive evaluation. Evaluating the usability of a system can be done subjectively
or objectively [47]. To evaluate subjectively, real users judge the performance of the
system. In this direction, only Rodden [87, 86], performed evaluations of similarity
based visualization. However, the use of subjective evaluation is quite expensive and
cannot be repeated easily. When the task is well defined some aspects of usability
evaluation can be automated [47]. Such objective evaluation has several advantages
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such as reducing the cost of evaluation, reducing the need for evaluation expertise and
increasing the coverage of evaluated features [47]. It effectively allows to decompose
the evaluation into evaluating the methodology and the design of the interface and
its usability. We view objective evaluation as an important step in the development
of complex systems.

Various techniques that aim at providing this type of evaluation can be found in
[47] such as testing, inspection, inquiry, analytical modelling, and simulation. Sim-
ulation is most suited for our case as it reports the performance of the system and
user’s interactive actions. This method uses models of the user and interface design
to simulate a user interacting with the system. We employ this method making the
scenario of use and criteria for success of our new approach explicit. From there, we
develop a method to simulate the user actions.

This chapter is organized as follows. In section 2.2, we analyze the general re-
quirements for visualizing large image collections. A set of requirements is proposed.
Solutions for each requirement are then given in section 2.3. From there, cost func-
tions are established for optimal visualization in section 2.4. A visualization system to
illustrate the proposed theory with a collection of 10000 Corel images and experiments
based on a user simulation system are presented in section 2.5.

2.2 Problem analysis

In this section, we analyze in detail the problems occurring when visualizing a large
visual collection. From there requirements for a generic system are defined.

First of all, we give some notations and conventions used throughout the chapter.
An image collection is a set of N images, where we assume N � 1000. Each image I
in the collection is represented by a feature vector fI for example a color or texture
histogram. The similarity of two images I, J is denoted by SIJ . Often we will rather
use a distance, or dissimilarity measure DIJ , which is zero whenever the images have
exactly the same feature vector, and larger than zero otherwise. Thus, each image in
the collection corresponds to a point in a high-dimensional feature space. The image
collection, the corresponding feature vectors, and the distances between them define
the information space. Figure 2.1 shows a simple example of a 3D information space.

Apart from the data preparation step, the general scheme of a visualization system
contains three steps. First, in the projection step, the information space is projected
to the visualization space yielding a 2-dimensional view. The image collection now
corresponds to a set of positions {~yi}N

i=1 in the 2D space. In the selection step, the
system selects a subset of images to display. Finally, the interaction step involves the
visualization of the selected set and user feedback. The overall scheme is illustrated
in figure 2.2.

An obvious issue in visualizing a large collection is the limited display size of
the visualization space. This dictates that only a restricted number of images can
be shown simultaneously since the goal is to show the content of the images. Ran-
domly selecting images is certainly not a good approach as it does not capture the
distribution of images in the collection [82]. Therefore, the first requirement is:
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Figure 2.1: An example of a 3-dimensional information space based on the amount
of red, green and blue in an image. Note that in practice the dimensionality is much
higher.

Overview requirement The visualization should give a faithful overview of the dis-
tribution of images in the collection.

Secondly, the information space often exhibits considerable structure in the form
of clusters, low-dimensional manifolds, and outliers. Many examples are found in
literature, e.g., in [83, 84]. Figure 2.3 shows examples of different structures found in
a set of images from a video sequence, similar to those in [84]. Another example of
structure is present in a set of images of the same object in different conditions such
as different light source, viewpoint, and/or orientation (see figure 2.4). This structure
should be preserved in the visualization. Thus we have the

Structure preservation requirement The relations between images should be pre-
served in the projection of the information space to the visualization space.

Finally, it must be stressed that the image itself provides important information
for the user, but only when it is large enough to be understood. Now, when a set of
images is displayed, they tend to overlap each other partially or fully [71, 87]. The
overlap between images influences the quality of a visualization tool greatly. Due to
overlap important images can be missed. Therefore, the overlap among them should
be reduced as much as possible, leading to the following requirement.



2.2. Problem analysis 13

INTERACTION STEP

DATA PREPARATION STEP

Image

collection

PROJECTION STEP

Feature

extraction

SELECTION STEP

Feedback

Dissimilarity

computation

Visualization

Figure 2.2: General scheme of an image collection visualization system.

Visibility requirement All displayed images should be visible to the extent that the
user can understand the content of each image.

So we have three general requirements: overview, structure preservation, and vis-
ibility. Those requirements are not independent. To increase the visibility, images
should be spread out. This has a negative effect on the preservation of structure.
Furthermore, more representatives yield better overviews, but the visibility decreases
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(a)

(b)

Figure 2.3: (a) Linear structure of a sequence showing a car riding in a street. (b)
Nonlinear structure of a video sequence capturing the conversation between two peo-
ple.

because overlap becomes more likely. The relations among the three requirements
are illustrated in figure 2.5. To generate appropriate visualizations, we need means
to balance the different requirements. In the next sections, we find appropriate cost
functions for each of the requirements, which are then combined and jointly optimized.
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Figure 2.4: A set of images of a toy taken from different orientations [83]. When the
viewpoint changes in one direction, the structure is linear.

Figure 2.5: Problems and requirements for visualization of large image collections.

2.3 Projection and selection methods

In this section, we consider different methods for projecting the information space to
visualization space, as well as methods for selecting images for the overview.
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2.3.1 From information space to visualization

Well-known techniques used in existing systems are principal component analysis
(PCA) [71] and multi-dimensional scaling (MDS) [87, 91]. These methods are
assumed that the structure of the information space is linear. If the information
space contains a non-linear structure they will not satisfy the structure preservation
requirement. This is illustrated in figure 2.6.

Example of high dimensional feature
space with manifold structure

Mapping with structure preservation
in visualization space

Mapping without structure
preservation in visualization space

Figure 2.6: Illustration of non-linear mapping.

This issue is considered in new techniques, known as non-linear embedding algo-
rithms, namely isometric mapping (ISOMAP) [111], local linear embedding (LLE)
[89], and more recently stochastic neighbor embedding (SNE) [43]. The proposed
mapping algorithms are able to preserve the real structure of the data and perform
better than PCA and MDS. We consider non-linear techniques only.

ISOMAP was introduced in 2000 [111]. Instead of directly computing the distance
between points, the authors use graph-based distance computation aiming to measure
the distance along local structures. Their algorithm contains three main steps. First,
the algorithm builds the neighborhood graph using t-nearest neighbors (the t closest
points) or ε-nearest neighbors (all points with distance to the point less than ε). The
second step uses Dijkstra’s algorithm to find shortest paths between every pair of
points in the graph. The distance for each pair is then assigned the length of this
shortest path. After the distances are recomputed, MDS is applied to the new distance
matrix.

A different approach is SNE [43], a probabilistic projection method. This method
first computes the probabilities that two points take each other as neighbors, assuming
a Gaussian distribution, in both the high and the 2-dimensional space. The method
then tries to match the two probability distributions. Hence, it provides preservation
of local geometric structure and also keeps points which are distant in the high di-
mensional information space distant in the visualization space. The working principle
of the SNE can be briefly described as follows. Let P = PIJ denote the probability
that an image I would pick J as its neighbor in the high-dimensional space. Under
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the Gaussian distribution assumption, PIJ is given by:

PIJ =
exp(−D2

IJ)∑
L6=I

exp(−D2
IL)

. (2.1)

with PII = 0. Note that this measure in general is asymmetric: PIJ 6= PJI .
In the 2-dimensional space, SNE initializes {~yi}N

i=1 at random positions. The
induced probability Q = {QIJ} is then calculated for every pair of images:

QIJ =
exp (−||~yi − ~yj ||2)∑

k 6=i

exp(−||~yi − ~yk||2
, QII = 0. (2.2)

To measure the distance between these two distributions P and Q, the Kullback-
Leibler distance is used. This asymmetric distance is commonly used in measuring a
natural distance from a “true” probability distribution, P, to a “target” probability
distribution, Q.

DPQ =
∑

I

∑
J

PIJ log
PIJ

QIJ
.

The algorithm then finds the optimal positions {~yi} by minimizing DPQ.
SNE uses direct distance computation among points, hence it can benefit from

replacing this distance by the graph based distance from ISOMAP. We therefore
propose ISOSNE, a combination of ISOMAP and SNE.

Since SNE uses gradient descent methods it requires substantial computation time,
especially when the size of the data reaches several thousand images. LLE [89] can be
viewed as an approximation to SNE which is much faster to compute. This method
first constructs the t-nearest neighborhood graph. Then, for each point ~yi it computes
the weights wij that optimally reconstruct ~yi from its neighbors by minimizing the
cost function

∑
i ||~yi −

∑
j wij~yj ||2.

In the reference, the LLE distance is computed directly, but we can also recompute
distance like in ISOSNE. We denote this combination by ISOLLE.

2.3.2 Selection methods

To select a representative set from the collection to be used in the overview, a common
method is dividing the collection into a number of groups. One image from each group
is then selected as representative. This requires finding clusters based on the distance
matrix.

A comprehensive overview of different clustering techniques is presented in [50].
Comparisons among different methods are given in [8, 28, 40, 126]. They conclude
that the k-means algorithm is one of the most successful methods because of its
simplicity in implementation and its linear time complexity. We therefore employ
k-means to select images for the overview in our system.
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The k-means algorithm is applied after projection of the information space to
visualization space. We initialize the k center points at random positions. The re-
assignment of points to the nearest center is repeated until the clustering satisfies
certain requirements, or when the maximum number of iterations is reached. The
image corresponding to the point nearest to the cluster center {m} is selected as the
representative of that cluster.

2.4 Balancing the requirements

As mentioned in the problem analysis, the three requirements are dependent on one
another. In order to balance them, we first develop a cost function for each require-
ment. For the first two requirements, existing functions are employed, while for the
last requirement, we introduce our own cost function as it has not yet been investi-
gated in literature. From there, balancing functions are introduced and applied to
realize our final visualization scheme.

2.4.1 Cost functions

2.4.1.1. Structure preservation cost function

To preserve the nonlinear structure of a collection, the projection algorithm should
at least map the neighbors of an image in the information space in such a way that
they are neighbors in the visualization space also, which is less strict than preserving
distance. In addition, users are also using comparisons of distance rather than abso-
lute distance. The cost function used in SNE is therefore a good option for evaluating
different projections. It is given by the Kullback-Leibler distance between the two
distributions P and Q defined in section 2.3.1:

CS =
∑

I

∑
J

PIJ log
PIJ

QIJ
. (2.3)

Clearly, the lower this cost, the better the projection has preserved the relations
between neighbors.

2.4.1.2. Overview cost function

When the images are assigned to their corresponding cluster, we need to find a cost
function to evaluate the overview provided by the representative images of each clus-
ter. Clearly this depends on the number of clusters k asked for, and how well the
representatives cover the whole data set. A commonly used measure for the quality
of the clustering is the modified Hubert statistic [28] ranging from 0 to 1, where the
higher the value the better the clustering. So our overview cost function is:

CO = 1− r −MpMc

σpσc
(2.4)
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where

r = (1/M)
∑∑

DIJd(mI ,mJ),

Mp = (1/M)
∑∑

DIJ ,

Mc = (1/M)
∑∑

d(mI ,mJ),

σ2
p = (1/M)

∑∑
D2

IJ −M2
p ,

σ2
c = (1/M)

∑∑
d2(mI ,mJ)−M2

c ,

M = k(k − 1)/2,

where mI is the center of the cluster containing image I and d(mI ,mJ) is the distance
between two cluster centers.

2.4.1.3. Visibility cost function

So far the solution for the requirements can be based on existing measures, mainly
because they apply equally well to point-sets.

The major issue in visibility is the overlap of the images displayed. This depends
on the number and size of images displayed. A few small images will not overlap,
but when 1000 large images are displayed there is always overlap. It also depends on
the structure of the data. If images are clustered in information space, the structure
preservation requirement will dictate that a lot of overlap is present in visualization
space.

To define a cost for the overlap among images displayed, we consider the overlap
of two images, and combine them over all pairs. Finding the overlap between the
rectangles defining two images is not difficult, however, many different cases have to be
distinguished. To develop an analytical function, we make the simplifying assumption
that all images have width w and height h, with w = h. We then represent an image
as a circle, with radius R = w

2 (see figure 2.7a). This is a reasonable approximation
as the area of the circle covers π

4 ' 80% of the image area. So, if the two images
overlap outside the area of the circle and inside the image area (see figure 2.7b), the
viewable area of the image is larger than 75% of the image area, which is sufficient
for visibility.

The overlap between two circles i and j is given by:

Oij =

{
R2
(
2 arccos

(
dij

2R

)
− sin

(
2 arccos

(
dij

2R

)))
, if dij < 2R,

0 , otherwise.
(2.5)

where dij is the Euclidean distance between the center points of the images I and J .
Hence, if the number of displayed images is n, the total visibility cost is defined

by:

CV =
1

n(n− 1)

n∑
i

n∑
j 6=i

Oij

ΠR2
. (2.6)
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Figure 2.7: Image with its corresponding enclosed circle and the overlap area between
two images

Because of the limited size of the visualization space, there is a maximum number
of images which can be displayed while satisfying the visibility requirement. Let us
assume an image is called viewable if its visible area occupies t% of the image and
the visualization space has size W and H. Then, the maximum number of displayed
images with t% visible is H×W

h×w×t . This yields a strong constraint on the design of the
visualization method.

2.4.2 Balancing functions

There are two main relations among the three requirements. First, the relation be-
tween overview and visibility, which is affected by the number of representative images.
The more images, the better the overview, but visibility is reduced. To balance these
two requirements we take a linear combination of their cost functions Eq.(2.4) and
Eq.(2.6):

C1 = λ1CO + (1− λ1)CV (2.7)

where 0 ≤ λ1 ≤ 1. Now, for given λ1 we find the n where C1(n) reaches its maximum
value:

nopt = argmax
n∈[2..nmax]

C1(n). (2.8)

Since this step is done offline, we use a brute-force approach computing CO and
CV for n from 2 to nmax.

The second relation is between the visibility and the structure preservation require-
ment. The more visibility, in other words less overlap, the less structure is preserved.
We again use a linear combination of Eq.(2.3) and Eq.(2.6). The problem boils down
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to finding the best optimal positions of images in visualization space where the joint
cost of overlap and disobeying structure preservation is minimal:

~yopt = min
~y
C2(~y).

with
C2(y) = λ2CS(y) + (1− λ2)CV(y) (2.9)

where 0 ≤ λ2 ≤ 1.
To find the optimum, gradient descent is applied. This requires to compute how

the cost function changes when images are moved away from their positions, i.e., the
derivative of C2 with respect to the ~yi:

∂C2

∂~yi
= λ2

∂CS

∂~yi
+ (1− λ2)

∂CV

∂~yi
.

The differentiation of CV is given in [43]:

∂CS

∂~yi
= 2

∑
J

(~yi − ~yj)(PIJ −QIJ + PJI −QJI).

Given Eq.(2.6), we derive:

∂CV

∂~yi
=

1
k(k − 1)ΠR2

∑
J

(~yi − ~yj)
−
√

4R2 − d2
ij

dij
.

2.4.3 Final visualization scheme

Up to this point, we have analyzed the visualization requirements and how to optimize
them using balancing functions. We propose a new visualization scheme conform the
general scheme in figure 2.2 (see figure 2.8).

The data preparation step, the projection step and a part of the selection step
can be prepared beforehand. Therefore, we call these steps the offline process. In this
stage, features are first extracted for all images in the collection and a dissimilarity
matrix is computed. Next, a projection from the information space to the visualization
space is applied. After that, k-means is applied with n ranging from 2 to nmax (we
select nmax = 300). We then calculate CO and CV . From there, the balancing function
in Eq.(2.7) with given λ1 returns the optimal number of images to be displayed in
each iteration. The optimal clustering is kept for subsequent steps.

The other part of the selection step, involving the selection of the representative
set, and the interaction step are part of the interactive process. In the first iteration,
representatives are the cluster centers. The visualization step computes the arrange-
ment of representative images on the screen according to the second and the third
requirement. This means that the balancing function C2 (Eq.(2.9)) is optimized to
find positions for all displayed images. These positions assure that relations between
them are preserved as much as possible and the content of images are sufficiently
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Figure 2.8: Scheme of an image collection visualization system, where we combine
the general scheme of figure 2.2 with balancing functions.

visible. After the find next step, the system selects the set of images to display in the
next iteration. The selection contains images which have not been displayed before
and are closest to the corresponding center points.

2.5 Experiments

In this section, we present experiments to validate the different components of the
visualization system. The preparation of the offline stage contains the data selection,
feature selection, and dissimilarity computation. Then, we compare different mapping
algorithms for the projection step. A system to demonstrate the scheme is presented
in section 4.3. Finally, we apply our system to a search task, comparing our approach
with a more traditional visualization.
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2.5.1 Data collection

We select a collection of N = 10000 Corel images. There are 100 predefined cat-
egories, where each category contains 100 images. The existing categorization will
be used as ground-truth for later evaluation. The images depict different scenes and
objects. Computing the dissimilarities between images strongly depends on the fea-
tures and dissimilarity function chosen. Because of the large variety in images in this
particular collection, no features and/or dissimilarity functions exist which correctly
classify images. As in practice this is also the case and we are focussing on the in-
teraction process, we employ simple global color histograms. In particular, HS (Hue
and Saturation) and L*a*b (L* defines lightness, a* denotes red/green value, and
b* the yellow/blue value). We compute the histogram using 32 bins for each color
channel, this means that for HS we get a histogram of 64 dimensions, and 96 in the
case of L*a*b. Histogram intersection and Euclidean distance are used as similarity
functions for HS and L*a*b histogram, respectively.

2.5.2 Comparison of projection methods

As mentioned above, we concentrate on the nonlinear dimension reduction methods
ISOMAP, LLE, SNE, ISOSNE, and ISOLLE. MDS is used as a baseline.

MDS ISOMAP SNE LLE ISOSNE ISOLLE
CS with HS 0.008653 0.006785 0.000247 0.000252 0.000076 0.000225
CS with Lab 0.043584 0.004489 0.000089 0.000202 0.000063 0.000190
T (hour) ∼1.5 ∼1.5 ∼10 ∼2.0 ∼10 ∼2.0

Table 2.1: Results for MDS, ISOMAP, SNE, LLE, ISOSNE, and ISOLLE in preserving
original structure when mapping data from high dimensional feature space to 2d
visualization space. The first row gives results of mapping from HS feature space.
The second row is for L*a*b feature space. The last row shows the computation time
of each method.

SNE and ISOSNE are expected to perform best as we have chosen Eq.(2.3) as the
evaluation criterion. However, these two use gradient descent in finding the optimal
solutions hence they have a long processing time. LLE and ISOLLE are fast as they
use approximations to find the embedding. Hence, in the comparison, we also take
into account time complexity. All the experiments are run on the same PC PenIV,
2Ghz. The results are in table 2.1. In both experiments, MDS yields the worst
performance. SNE and ISOSNE outperform the others, but require 10 times longer
processing time than LLE which still has good performance. So when computations
are done offline, SNE based methods are preferred. In practical situations LLE can
often be employed.
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2.5.3 A system demonstration

In our system the projection is computed once in the offline stages so we choose
ISOSNE. Figure 2.9(a) and 2.9(b) show the mapping results of ISOSNE on the given
collection using the HS and L*a*b feature space, respectively.
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Figure 2.9: Result of projecting 10000 Corel images from 64 dimensional HS fea-
ture space and 96 dimensional L*a*b feature space to the 2-dimensional visualization
space.

For further demonstrating the system, we use the HS features. First, to find
out the optimal number of clusters the collection should be divided into, we apply
Eq.(2.7) with λ equal to 0.5 and n ∈ [2..300]. From Eq.(2.8), we find nopt = 55, so
the collection is divided into 55 clusters.

Note that, the above optimal number of images are with no overlap reduction.
This means that in the visualization space, with nopt = 55, all displayed images
satisfy the visibility requirement. As in practice, one may prefer to have more images
on the screen, the value of nopt is used as a threshold. If there is a higher number of
displayed images, we will get a better overview, but the visibility is reduced. Then
we need to consider the overlap problem. Applying Eq.(2.9), one can increase the
number of displayed images.

In the subsequent online process, in the first iteration of the visualization, images
closest to the center points are selected for display. Each image represents one cluster.
The second balancing function C2 with λ2 = 0.5 is used to find the optimal positions
for the displayed set. This process is repeated to display the subsequent sets of images.

In selecting the optimal positions, not only the number of displayed images, but
also the value of λ2 can affect the result. With λ2 equal to 1.0, only structure is
preserved. When λ2 goes to 0, images are spread out loosing much of the structure.
An example is shown in figure 2.10. We have to notice that there is another factor
affecting the selection of these parameters, which is size of the display space. We
assume the visualization space is equal to the size of a standard computer screen.
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Figure 2.10: Example of displaying 100 images with λ2 = 1, 0.5, and 0, respectively.

We, therefore, experiment with different numbers of images, as well as different
values of λ2 to see the effect of those two parameters on the visibility and the structure
preservation requirements. In order to do that, the k-means clustering is applied with
n = 50, 100, 150, 200. After the clustering, each time a set of n representative images
is displayed. The balancing function in Eq.(2.9) is applied with λ2 ranging from 0 to
1. We then calculate for the currently displayed set the percentage of images visible
for at least t%, with t = {25, 50, 75, 100}. The cost CS is also computed for each case.

Figure 2.11 shows the results for different n and t. The figures clearly illustrate the
relation between number of images, λ2, structure preservation and the visibility. With
a small number of images, the system easily finds a solution for Eq.2.9. For example,
in case of 50 images, without any constraint on visibility (λ2 = 1), the percentage of
images 75% visible is very close to 100%. With λ2 = 0.5 all images are visible while
structure is well preserved. In contrast, with 200 images, even when λ2 = 0 meaning
no structure preservation, the total percentage of 50% visible images is not increased
much. This is to be expected from the discussion in 2.4.1. In fact, too few images
will increase the browsing and exploration time through the image collection. From
the above, selecting 100 images with λ2 = 0.9 is a good option.

2.5.4 Similarity based vs. 2D sequential visualization

In this section, we compare traditional 2D sequential visualization with our 2D simi-
larity based visualization. We do so by setting up an explicit scenario of use and then
we simulate the user actions.

2.5.4.1. Scenario setup and evaluation criteria

The scenario we use is full database annotation.

Database annotation is assigning all images in the database to their corresponding
category.

Manual database annotation is very time consuming and labor expensive, espe-
cially when the size of the data is getting larger. Now let us see how this scenario is
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(a) (b)

(c) (d)

Figure 2.11: Examples of visibility versus structure preservation with different number
of images, and different values of λ2.

performed in our system. In visualization space, a set of n images, where each image
represents one cluster, is displayed to the user. He/she selects an image and then
goes inside the corresponding cluster. Images in that cluster are then annotated. One
user action is an interaction of the user to annotate one image a a group of images.
We finally obtain the total number of actions to annotate the whole database, the so
called annotation effort.

Annotation effort is the total number of user actions needed to perform the task.
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In sequential visualization, displayed images are arranged on a grid with no rela-
tions between them taken into account. So a user action is needed for each separate
image on the screen. This means that annotation effort equals the size of the collec-
tion.

In 2D similarity based visualization, similar images are located close to each other.
In the ideal case, all images in a cluster belong to the same category. In practice the
cluster contains images from different categories, therefore the user draws a rectangle
around each set of images belonging to the same category to annotate them. Figure
2.12 shows an illustration of the process.

Dragging
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selection

User selection
of one positive
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Show
representative
set

Enter
corresponding
cluster

Dragging
rectangle for

selection

User selection
of one positive
example

Show
representative
set
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Figure 2.12: An example to illustrate user actions during annotation process.

As we propose a user simulation scheme to implement a quantitative evaluation,
we need to mimic the above defined user action. We do so by implementing an
algorithm finding the number of rectangles needed to assign all images displayed to
the appropriate category. Optimal search for the minimum number of rectangles can
be employed. However, in reality, the user often does not draw an optimal number of
rectangles to cover all images of interest. Hence, a simpler greedy search appropriately
fits the user action. The pseudo code is as follows.

Rectangle-search(an image set M)
For each element m in M

If (m has not been annotated as positive)
X = sort(neighbors(m)) on distance to m;
R = draw_rectangle(m);
For each element x in X, where category(x)=category(m)
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store(R);
R = draw_rectangle({R, m}); //increase size of the rectangle.
If R contains y, where category(y)!=category(m)

R = store(R);
break;

else
annotate(x);

2.5.4.2. Comparison

Of course the success of similarity based visualization for annotating groups depends
on how well the categories are separated from each other. When elements of a category
appear in more clusters, i.e., yielding high entropy, more actions will be needed. The
entropy of category ith is computed by the allocation of all elements in this category
over the clustering [40]:

Ei = −
∑

j

αij

αi
log

αij

αi

where αi is the number of images in category i, αij is the number of images in category
i which appear in cluster j.

From the results of the previous section, we select n = 100, with λ2 = 0.9, the
average percentage of t = 75% visible images will be more than 80% and reaches 100%
of displayed images visible for 50% and 25%. We use the above clustering result with
100 clusters. As a result of clustering, the sizes of clusters vary, therefore in the
display of the cluster’s content, if the size of a cluster is larger than 100, the system
will show subsets of the cluster containing at most 100 images. Figure 2.13 shows the
annotation effort decomposed into the different categories.

We observe that if the categories are reasonably separated, i.e., entropy is not
too large, the number of actions needed is reduced significantly. For example, in
the given collection, some categories containing black and white images can be well
distinguished from other colorful categories. Using color histogram as a feature, they
will be placed close to each other, less actions will be needed in this case. The
annotation effort for those categories reduces from 100 to only 6 actions. For other
categories, the categorization is semantic and cannot be easily distinguished based
on the color histogram only. The entropies of these categories are high making the
mixture of images among different categories on the display. Therefore, more actions
will be required, but in general always less than the number of actions in the baseline.
On average, our system reduces the annotation effort by 20% up to 94%. We can
conclude that more complex implementation pays off, we can significantly reduce the
annotation effort.

2.6 Conclusion

Visualization is an essential tool for exploring visual collections. To build a good
visualization system, a set of related requirements should be taken into account.

In this chapter, we established three general requirements for similarity based
visualization systems: overview, visibility, and structure preservation. These require-
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Figure 2.13: Counting the number of user actions for annotation by simulation using
grid-based and similarity based visualization. The different categories are ordered
by their entropy. For better viewing the result, we use an exponential function on
the x-axis. The y-axis shows the annotation efforts. The baseline is the dashed
line representing the actions in grid based visualization. As mentioned in previous
sections, because of the sequential display, the number of actions equals the size of the
categories. In this case, there are 100 images in each category. So, annotation effort
is 100 user actions. The solid line shows the result for the proposed visualization
interface.

ments provide the user an optimal way to interactively access a large image collection.
The overview gives the user the overall look of the whole collection, and guides the
user to the right search direction. The structure preservation ensures that original
relations between images in the collection are kept in the visualization. Visibility is
essential for interaction between the user and images displayed. As these requirements
are not independent, compromises among them are needed. We proposed novel bal-
ancing cost functions and algorithms used to define the relative importance of these
requirements to the overall visualization goal.

Using a rather large data set of 10000 images, we conducted experiments to eval-
uate the proposed framework. In a first experiment, we compared the performance of
different projection methods, namely LLE, ISOMAP, SNE, ISOSNE, and ISOLLE.
ISOSNE is the best option when computation time is not the limiting factor. How-
ever, for interactive performance, LLE or ISOLLE should be selected. To evaluate the
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Figure 2.14: A screendump of the visualization system. The upper-left corner shows
the whole collection as a point set with red points representing the currently displayed
set. The bottom-left corner shows an enlarged version of the currently selected thumb-
nail. The main screen shows the representative set as images. The green rectangle is
an example of a user selection of a group of images by dragging the mouse.

interactive system as a whole, instead of doing user based evaluation which is quite
expensive and not easy to repeat, an objective user model is built. In particular we
defined a database annotation scenario. The proposed visualization scheme reduces
the total annotation effort significantly ranging from small reduction to 16 times lower
effort depending on the separation of the different categories.

Not only in the given scenario, but for different tasks such as target search, cate-
gory search, category annotation, or example based search, one could apply the three
requirements and balancing functions to build an optimal system by simply changing
the scenario.
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Chapter 3

Optimization of interactive
visual similarity-based search

3.1 Introduction

Research on interactive search mechanisms is currently split into two separate fields.
In content based retrieval, concentration is on machine learning methods for effective
use of relevance feedback [94, 104]. The information visualization community focuses
on effective methods for conveying information to the user [53, 103, 6]. What lacks
is research considering the information visualization and interactive content based
retrieval as truly integrated parts of one search system.

Features form the basis for content-based retrieval (CBR). In literature a large
number of features have been introduced to improve search performance. Some fea-
tures are only proposed for specific tasks or specific domains, for example medical
images, or satellite images. These methods have limited application. General fea-
tures such as global color histograms quite often fail because of the semantic gap
between user expectation and system ability. Employing accompanying text, the se-
mantic gap can be reduced either by using generic features such as keywords in the
text [75] or multi-modal concepts [106]. The required indices are either labor ex-
pensive, time consuming or hard to derive. For instance, often text is not available,
hence processing a textual query requires annotating the whole collection, which is
impractical for large collections.

When no suitable concept is present, many image retrieval systems use query by
example, where examples are taken from inside or outside the collection. In reality,
there are many search tasks where the user does not have any example to start with.
Then, the user needs to explore the collection to find relevant examples. In both
query by example and exploration a good similarity function is essential.

Finding a suitable similarity function is strongly dependent on the chosen feature.

This chapter is accepted with subject to minor revision in the ACM Transactions on Multimedia
Computing, Communications, and Applications
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Systems in literature usually select the similarity function, commonly associated with
the chosen features. For example, histogram intersection [110] is typically selected for
comparing two color histograms. Features and similarity are computed offline.

The interactive stage contains two main steps namely visualization and relevance
feedback, which are iterated [104]. The visualization step displays a selected set of
images to the user. Based on that the user judges how relevant those images are with
respect to what she is looking for. The system learns from the user’s feedback and
repeats the above step.

Using learning is well-known in interactive CBR. Comprehensive overviews of tech-
niques are presented in [94, 104, 128]. Recently the use of support vector machines
in learning has gained interest. It has proved to give the highest boost to the perfor-
mance [17, 38, 39, 62, 113, 19].

For effective interaction, a good learning method is not sufficient, an interface for
communication between the user and the system is needed. Such an interface should
not be judged on its aesthetic value alone, but more importantly on its effectiveness in
supporting the user’s search process. It should therefore combine CBR and advanced
visualization. We call such an integrated system a visual search system.

To realize visual search systems, recent systems apply similarity based visualiza-
tion techniques giving a more informative and effective interface [71, 78, 42, 91, 97].
chapter 2, we present comparisons of existing techniques in visualizing image collec-
tions and conclude that for an optimal similarity based visualization system, three
requirements have to be obeyed: overview, structure preservation, and visibility.

(i) Overview requirement : ensure that the set displayed represents the whole col-
lection since not all images from the collection can be shown on the screen at
once.

(ii) Structure preservation requirement : preserve the relations between images in
the original feature space on the screen.

(iii) Visibility requirement : keep the content of displayed images visible to make
interaction feasible.

The similarity based visualization we proposed in chapter 2 satisfies these require-
ments. It forms the basis for our interactive system, which in this chapter is extended
with an active learning component ∗.

The ultimate goal of a search system is to have real users working with it. Thus,
when optimizing retrieval, one should not only evaluate the individual steps, but the
integral process. However, an experiment with real users introduces a large number
of variables influencing the result such as age, sex, level of expertise, and the type of
questioning. Therefore, obtaining repeatable results from experiments such as the one
in [87] is difficult and time consuming. When the scenarios and criteria for success
have been made explicit, the user and its actions can be simulated. It effectively allows
for decomposition of the evaluation of the visualization methodology and the design

∗This system is part of the MediaMill system which received the Best Techinical Demo Award at
ACM Multimedia [106]
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of the interface and system performance [47]. Therefore, we develop an evaluation
method integrating both user interaction as well as system aspects in a simulated
scenario where many of the free parameters can be optimized before the user study.

In this chapter, we aim for a similarity based search system combining visualiza-
tion and interaction. The system builds upon the visualization and active learning
components described above. The key issue here is that we integrate these elements
into a unique framework. Within the system, there are many free parameters like the
similarity function and the method for processing relevance feedback. To optimize
the performance of the system, we consider an interactive category search scenario
in various large image collections. The search tasks range from finding images shar-
ing simple properties such as images of the same object, to complex properties, for
instance, images of a person entering a vehicle.

The chapter is organized as follows. To optimize the search task, each step is
analyzed to find the best solution in section 3.2. In section 3, we present experiments
of the proposed system for three different classes of data: ALOI (Amsterdam Library
of Object Images), the Corel dataset, and the TRECVID dataset.

3.2 Methods

In this section, we first briefly describe the system in chapter 2, and from there its
proposed active learning extension. Finally, we describe the built-in optimization
method.

3.2.1 Similarity based visualization

The system in chapter 2 is based on the requirements (i), (ii), (iii) from the introduc-
tion. Cost functions are introduced for each of them.

Let us consider an image collection I = {I1, I2, · · · , IN} described using features.
For similarity based visualization, a projection has to be made from the high dimen-
sional feature space to the visualization space. From the results in chapter 2, the
ISOSNE turns out the best one among others in obeying the structure preservation
requirement. In this projection, nearest neighbors of each image in the feature space
are computed to create a nearest neighbor graph. The graph-based distance is then
used to redefine the distances between non-neighboring images. Finally, the non-linear
mapping SNE obtains the positions of images in visualization space. To evaluate this
requirement, a structure preservation cost function CS is defined. Assume P = {Pij}
and Q = {Qij} are the discrete probability density functions on relations between N
images in the high dimensional space and the visualization space, respectively, then
we have:

CS =
N∑
i

N∑
j

Pij log
Pij

Qij
. (3.1)

Thus, when this function is minimized, the relations between images are optimally
preserved in the visualization space. As a consequence, similar images tend to be
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grouped together. They are likely to overlap on the screen. It influences the in-
teraction process, because the user can miss the relevant ones as they are hidden.
Therefore, the need for the visibility requirement. The cost function of this require-
ment CV is based on the inscribed circles of the two images. For simplicity, assuming
all images are square and have equal size:

CV =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

(
1− Oij

πR2

)
. (3.2)

where Oij is the overlap area of the inscribed circles of image Ii and Ij . R is the
radius of these inscribed circles. In reality, images can appear with different sizes, in
this case, the value R will be varied for different images.

To satisfy the overview requirement, I is divided into a number of clusters on the
visualization space. A set containing selected images from each cluster, called the
representative set, is the basis for presentation to the user. To measure how well
this set represents the whole collection, the modified Hubert statistic [28] is used as
the overview cost function CO. Assume we have n clusters. Let d(Ii, Ij) denote the
distance between image Ii and Ij and dc(Ii, Ij) the distance between the two cluster
centers containing the two images, we have:

r = (1/M)
∑∑

d(Ii, Ij)dc(Ii, Ij),

Mp = (1/M)
∑∑

d(Ii, Ij),

Mc = (1/M)
∑∑

dc(Ii, Ij),

σ2
p = (1/M)

∑∑
d2(Ii, Ij)−M2

p ,

σ2
c = (1/M)

∑∑
d2

c(Ii, Ij)−M2
c ,

M = k(k − 1)/2,

The overview cost function CO is defined as:

CO =
r −MpMc

σpσc
(3.3)

The above requirements are conflicting. For example, to satisfy the overview
requirement, the number of representative images should be large. Because of the
fixed size of the visualization space, the more images the higher chance of overlap-
ping images, hence, the visibility requirement will be violated. On the other hand,
while preserving visibility, images are spread out, original relations between them are
changed i.e structure is not preserved. Therefore, two balancing functions between
the above cost functions, namely C1 and C2, are needed. The first one is the relation
between overview and structure preservation. The second one is between structure
preservation and visibility. The two parameters influencing the cost functions are
the size n of the representative set and the positions y of the images in visualization
space. From results in chapter 2, we have:
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C1(n) = λ1CO(n) + (1− λ1)CV (n) (3.4)

C2(y) = λ2CS(y) + (1− λ2) (1− CV (y)) (3.5)

where 0 ≤ λ1, λ2 ≤ 1, n is the size of the representative set and y denotes the set of
positions of images in the visualization space.

In brief, after the collection is projected to the visualization space, images are
clustered into n groups. The k-means algorithm is selected to do the clustering because
of its simplicity and good performance. Each time a set of n images representing
clusters are displayed. The value of n is the result of optimizing the balancing function
C1 using exhaustive search:

nopt = argmax
n∈[2..nmax]

C1(n). (3.6)

Because of the limitation of the display, there is a restricted number of images
which can be shown to the user at one time. The maximum number of displayed
images depends on the size of the image, the size of the display, and the area of the
images visible to the user. Let us assume all images have equal sizes denoted w and
h for width and height, respectively. Let the the size of the display be W and H.
Finally, assume that for interaction, displayed images should be visible for at least
v%. We have:

nmax =
H ×W

h× w × v
100

In our system, v is set to 75% which we consider feasible for a user to view the image
content. With W = 900, H = 1024, w = h = 64, from the above equation, nmax is
set to 300.

Positions y are found as
yopt = min

y
C2(y). (3.7)

by gradient descent.
In figure 3.1, examples of displaying different sets of images are shown. It can

be seen that similar images are indeed placed close to each other in the visualization
space and almost every image is visible.

3.2.2 Features and similarity functions

In [78], one feature and one similarity function is used. As these two parameters
also affect the overall performance of the system, we extend the consideration with
different features and similarity functions.

3.2.2.1. Features

As mentioned in section 3.1, features are generally task-dependent. Using shape
features to detect circles with constraints in their spatial relations to find cars may give
satisfying results, but will completely fail when applied in searching for flowerbeds.
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Figure 3.1: Examples of visualizing images with similar ones are close together.

Here we aim at a generic method, therefore, we select from literature two generic
features, one for color and one for texture.

We denote a feature set as F = {F 1, F 2, · · · , F l}, where l is a number of features.
For each image Ii ∈ I, ~Fi = (F 1

i , F 2
i , · · · , F l

i ) is the corresponding feature vector.
The global color histogram is the most commonly used feature because of its simple
computation, and its invariance to rotation and small changes in the images. The
L*a*b color space, compared to color spaces such as RGB and HSI, has the advantage
that it is designed to be perceptually uniform. A distance in color space leads to
equal human color difference perception. In our experiment, the L*a*b histogram is
computed using 32 bins for each color channel, so in total, each image is represented
by a 96 dimensional feature vector, i.e. l = 96.

The texture feature is the Wiccest (Weibull Invariant Color Contrast ESTimator).
This is a new class of color invariant features introduced by Geusebroek in [36]. Wic-
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cest features combine color invariance with natural image statistics. Color invariance
aims to remove accidental lighting conditions such that the result is constant under
varying illumination color, shadow effects and shading, while natural image statistics
efficiently represent image data. We implement the feature extraction following [106].
An image is first divided into 3× 3 regions. In each region the Wiccest features with
2 Wiccest parameters (β, γ) in 6 color channels are computed. This means that each
region is represented by a vector of 12 values. Therefore, an image is represented by
a vector of l = 108 dimensions.

3.2.2.2. Similarity or distance functions

Similarity is interpreted as a distance function. The more similar two images, the
smaller the distance between them. In literature, a number of distance functions
have been proposed [5, 90]. The simplest ones are in the family of Mikowski based
functions:

d(Ii, Ij) =

(
l∑

t=1

(F t
i − F t

j )m

) 1
m

(3.8)

with m = 1 we have the city-block distance L1, m = 2 is the Euclidean distance L2,
and the special case is the maximum value distance (Chebyshev) L∞.

Some distance functions measure the difference of two probability distributions.
Examples are Kullback Leibler distance and its symmetric version Jeffrey divergence.

Kullback divergence: d(Ii, Ij) =
l∑

t=1

(F t
i − F t

j )

(
log

(
F t

i

F t
j

))

Jeffrey divergence: d(Ii, Ij) =
l∑

t=1

F t
i log

 F t
i

F t
i +F t

j

2

+ F t
j log

 F t
i

F t
i +F t

j

2


Some other distance functions are also used often, for instance the Bhattacharyya,
and Matusita.

Bhattacharyya distance: d(Ii, Ij) = − log

(
l∑

t=1

√
F t

i F t
j

)

Matusita distance d(Ii, Ij) =

√√√√ l∑
t=1

(√
F t

i −
√

F t
j

)2

Though it is not an explicit rule that one should use a specific distance function for
a specific feature, it is a tacit consent. For example, the common way of comparing
images represented by L*a*b color histograms is Euclidean distance:

dL*a*b(Ii, Ij) =

√√√√ l∑
t=1

(
F t

i − F t
j )
)2 (3.9)
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The Wiccest features are Weibull-based. A distance measure for two Weibull
distributions with parameters (β1, γ1) and (β2, γ2), is defined in [36] as

dWiccest = 1− min(β1, β2)
max(β1, β2)

min(γ1, γ2)
max(γ1, γ2)

(3.10)

As the Wiccest features are computed for all the regions in the partitioning of the
image, we have:

dWiccest(Ii, Ij) = 1− 1
Nr

Nr∑
t=1

min(βt
i , β

t
j)

max(βt
i , β

t
j)

min(γt
i , γ

t
j)

max(γt
i , γ

t
j)

(3.11)

where Nr is the number of regions in each image. In our case 3× 3 regions are used
hence Nr = 9.

3.2.3 Relevance feedback and active learning algorithm

We now extend the visualization method described with an active learning component.
A common way of giving feedback is to have the user label a set of images as positive
(relevant images) and/or negative (non-relevant images). For an overview see [94,
128]. To provide a set of images, the system actively selects images which are most
informative. Labelled images are used as the training set [38, 79, 124]. After learning,
a new set of images is then selected, and the process is iterated. This process is known
as active learning.

In literature, the active learning methods mostly use SVM as a feedback learning
base [17, 62, 39]. SVM was first introduced in data mining research as a classification
method. Given a training set IT of r � N images, each image Ii ∈ IT is represented
as a point xi with label li ∈ {−1, 1}. The aim is to produce a model that predicts the
class for unlabelled images by creating a hyperplane that separates the collection into
a positive and a negative class based on the user feedback. This requires to optimize
the following function:

minω,b,ξ
1
2
ωT ω + C

r∑
i=1

ξt

subject to li(ωT φ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

(3.12)

with C a penalty parameter for the error term. Training image xi is mapped to a
higher dimensional space by the function φ . The function K(xi,xj) ≡ φ(xi)T φ(xj)
is called the kernel function. The SVM originally uses linear classifiers. Several non-
linear kernel functions have been introduced later. In [15], the authors point out that
the radial basis function is a good choice, which we will use in the chapter, namely

K(xi,xj) = e−γ‖xi−xj‖2 ,

γ > 0 is a kernel parameter.
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Figure 3.2: An example of a decision boundary. The small circles are unlabelled data,
the bigger ones are the labelled ones used as training data. The empty circles are
irrelevant images, and the filled circles are relevant ones. In case of one-class SVM,
only the labelled images are used as positive examples, SVM finds the optimal border
to cover those training examples (solid boundary). The dashed line is the result in
case of two-class SVM.

The performance of SVM depends on the selection of its parameters. However,
there is no optimal set of parameters that works well in all cases. The choice of default
parameters are a good option for building a general search system using SVM [15].
Therefore, we also use the default parameters as suggested in [15].

With different ways of giving relevance feedback, IT can contain either both pos-
itive and negative examples or only one of those. Hence, two main approaches for
learning are available. The first approach is based on both positive and negative ex-
amples, which is called two-class SVM. At each iteration, both sets are used to find
the best classifier separating positive examples from negative ones [124]. The second
one is based on only positive examples known as one-class SVM. The main argument
for using this approach over the other one is that in a large collection, the number of
relevant images is normally much smaller than the total size of the collection. More-
over, the distribution of non-relevant ones is unpredictable and therefore it is difficult
to find the borders for those. Hence, in this approach when interacting with the im-
ages displayed, the user labels positive examples only. By assuming similar images
are clustered in feature space, the algorithm learns the border of the area covering as
much as possible of those examples, i.e. the set of images one is searching for [17, 62].

After training is finished, there are two common ways of selecting a new set of
images to display for another round of feedback. The first approach is selecting images
in the positive class with maximum distance to the border, which have highest chance
of being relevant to the search task. Alternatively, in the second approach, images
closest to the border are returned, and this approach is said to provide the most
informative set to the user [17, 62].

Those images returned are then also labelled as positive or negative by the user.
The system repeats the process to obtain new feedback information. The iteration
is stopped when the performance satisfies given constraints such as the number of
iterations, time limitation, or simply that the user does not want to give any more
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feedback.
Finally, when the interaction process is finished, images inside the decision bound-

ary are ranked by their distances to the border. Images having maximum distance
are supposedly most relevant to the search task.

3.2.4 Scheme

Up to this point, we have analyzed the two main techniques used in the system namely
similarity based visualization (SimVis) and active learning (SimVisActive). We will
now define the proposed scheme combining these techniques. The user starts the
search without any examples at hand, and the general scenario contains the query
initialization step and the interactive step.

The SimVis system requires the preparation of the projections, and representative
set. We can add these steps in the interactive stage, but usually this is computation-
ally impractical. Therefore, they are computed beforehand. First, features of images
in the collection are selected and extracted. Distances between images are then ob-
tained with a selected similarity function. After that, ISOSNE is applied to project
images to the visualization space. Next, we employ k-means to cluster images into
n clusters. A set of images selected from different clusters form the representative
set of the collection. Information of each image belonging to a certain group, and its
position in the visualization space are stored as offline data.

Figure 3.3 shows the interactive stage. Each time a set of n images is displayed. In
the first screen, the representative set is shown to the user. He then uses the system to
explore the collection and find relevant images. Particularly, if the currently displayed
set contains any positive examples, the user selects that image and asks for a set of
nearest neighbors expecting to find more images that are similar. The number of
nearest neighbors displayed is set to k. Those neighbors are based on the selected
similarity function.

The system satisfying the visibility requirement, assures feasible interaction with
all images displayed. Moreover, employing the advantage of similarity based visu-
alization, instead of clicking on an individual image for labelling, the system allows
the user to select several images by dragging a rectangle around images in the same
category. As a consequence, our system can reduce the number of actions needed
from the user. In case there is no positive image in the current set, the user asks the
system to display another representative set. This set contains images, which have
not been displayed before and are closest to the previous representative set.

In the feedback step, training examples are selected by the user. When a certain
number of examples are provided, the SVM trains the support vectors. We use the
well-known SVM library developed by [15], which gives one-class as well as two-class
SVM implementations. As indicated, the parameters of the SVM implementations
are set to their default values.

3.2.5 Scenario optimization

First of all, we remind the search scenario that we will work on:
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Figure 3.3: The interactive stage of the SimVisActive system.

Category search: finding as many images as possible belonging to a certain category.
In the general scheme above, there are several degrees of freedom in each step

either from the user or the system point of view. This leads to the difficulty of finding
the factors that are user specific and those that are objectively improving the system.
In the introduction section, we have pointed out that the use of simulated user and
system actions helps in optimizing the overall performance. Hence, in this section, all
possible system and user actions in the proposed scheme are simulated.

The main concentration is the interactive stage, where the system actions are:

• Selection of images displayed following the balance between the overview and
visibility requirement.

• Adjustment of those images on the display such that the balancing cost function
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between the visibility and the structure preservation requirements are optimized.

• Remembering examples selected or removed by the user.

• Reaction to user requests such as: get feedback, show neighbors, and show
results.

Secondly, we simulate user actions including user judgment. There are four typical
types of actions, which count as one action:

• Selecting one image

• Clicking to display another set of representative images to find more examples.

• Clicking to go to the cluster corresponding to the current example.

• Dragging a rectangle around a set of positive images. In the worst case, a
rectangle contains only one image.

The first three actions are straightforward in implementation. For the last one,
we proposed an algorithm for finding the minimum number of rectangles needed to
cover all relevant images in the currently displayed set [78]. Briefly, for each relevant
image, the system finds a rectangle containing the maximum number of neighboring
relevant images such that none of the irrelevant ones is inside. The pseudo-code for
simulating the user action of dragging a rectangle is described as

Rectangle-search(an image set M)
For each element m in M

If (m has not been annotated as positive)
X = sort(neighbors(m)) on distance to m;
R = draw_rectangle(m);
For each element x in X, where category(x)=category(m)

store(R);
R = draw_rectangle({R, m}); //increase size of the rectangle.
If R contains z, where category(z)!=category(m)

R = store(R);
break;

else
annotate(x);

Figure 3.4 shows the simulated scenario with simulated user actions and simulated
system actions associated with the scheme. The counting user actions will calculate
the number of actions the simulated user needs during the interactive process. The
optimization part involves the adjustments of parameters in the simulated scenario.

3.3 Experiments

3.3.1 Data preparation

For studying the proposed methods, we use three different image collections with
widely varying characteristics. First, the ALOI (Amsterdam Library Object Images)
dataset which contains high quality images of 1000 objects [35]. Each image contains
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Figure 3.4: Scheme with simulated user and system actions.

one object, and this object is captured in different orientations and lighting conditions.
In total, the dataset has 110,250 images. For each object, we select 12 different
recording conditions, which includes 4 different in-plane viewing angles (00, 300, 900,
2700), 6 different illumination angles, and 2 illumination colors. The 12 images of the
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Figure 3.5: Left-right, top-down order: two images with changing illumination colors,
images under 4 different viewing angles, images with 6 different illumination angles.

Figure 3.6: An example of images in the category Bus from the Corel dataset.

object form one category. Thus, the dataset has 12,000 images in total, with 1000
categories. As images of the same class capture the same object, we expect a lot of
structures in the information space spanned by these images. Figure 3.5 shows the
12 different images of one object.

The second one is the well-known Corel dataset, which is used often in existing
search systems. Images in this dataset are also of high quality. Different from the first
collection, they are classified into semantic categories, where images in one category
might vary widely in visual appearance. We select a collection of 33326 Corel images
with different scenes such as winter and surfing, and objects such as flowers, buses
and birds. As ground truth, we use the pre-defined categorization of Corel. Thus, we
have 460 categories where the size of each category is different. An example from this
collection is shown in figure 3.6.

The final collection contains images taken from the TRECVID 2005 news video
archive [106]. As we deal with images, each video is first segmented into shots; each
shot is then represented by a keyframe. Thus, TRECVID05 contains 45765 images.
TRECVID defines a set of 24 topics such as images of Tony Blair, or images of people
shaking hands. For these 24 search topics ground-truth information is available and
these topics are thus used as categorization. The selection of this dataset into the
evaluation is challenging in many aspects. As images are extracted from videos, which
are encoded, the quality of this dataset is low compared to the other two. Moreover,
they have a semantic categorization, and within these categories elements vary largely
in content (see figure 3.7).

3.3.2 Selection of similarity/distance functions

With the L*a*b and Wiccest selected as features, this section concentrates on selecting
suitable similarity or distance functions. The primary role of the distance function
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Figure 3.7: An example of images in the category People shaking hands from the
TRECVID dataset.

is to add structure to the data. In the ideal structure, the distance yields semantic
clusters, where neighboring images belong to the same category. Therefore, the aim
of this section is to choose the distance function able to return the maximum number
of relevant nearest neighbors. This is important as in the projection step, nearest
neighbors are first computed after which the mapping tries to preserve those neighbors
in the projected space. So the k-nearest neighbors of an image ideally belong to the
same category.

Now let IC be the set of images in category C. For evaluation of the distance
functions in 3.2.2, we compute for each image Ii ∈ IC the set Ik

i of k nearest neighbors.
Results are evaluated, using the ground truth categorization. Recall and precision
values for image Ii are:

recall(Ii) =
‖Ik

i

⋂
IC‖

||Ik
i ||

(3.13)

precision(Ii) =
‖Ik

i

⋂
IC‖

||IC ||
(3.14)

From there, we compute mean recall and mean precision as:

mean recall =

∑
Ii∈IC

recall(Ii)
||IC ||

, (3.15)

mean precision =

∑
Ii∈IC

precision(Ii)
||IC ||

(3.16)

where ||.|| denotes the size of a set.
Figure 3.8 shows results for each collection. The results are surprising. The default

distance L2 used for L*a*b feature is not the best one. Its performance is even worse
than L1. For all of the three collections, the Matusita function is the best out of all
the distance functions considered for L*a*b. For the Wiccest feature, the standard
distance function, as expected, performs significantly better than the rest.

From the experiments, we decide to use the Matusita function in case of L*a*b,
and the original Wiccest distance for comparison of images described with Wiccest
feature.

3.3.3 System setup

In the query initialization or the offline stage, because of the need for a balance
between the different requirements, parameters need to be set such as the number of
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Figure 3.8: Comparison of distance functions: The first column gives results for
L*a*b; in top-down order the ALOI, Corel, and TRECVID collection. In a similar
way, the second column gives results for the Wiccest features.
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Figure 3.9: Query initialization in experiments.

clusters and the values for λ1 and λ2. We use the result from [78], λ1 and λ2 (in the
equations Eq.3.4 and Eq.3.5) set to 0.5 and 0.9, respectively. In this reference, we
experimented with different values for n in Eq.3.4, n = 100 turned out being optimal.

K-means algorithm with n = 100 is applied to the whole collection. With large
images sets, the original k-means algorithm has two major disadvantages: high mem-
ory requirements and large computation time it requires the calculation of the N ×N
distance matrix, where N is number of images. As this process is done only one
time in the offline stage, timing is not an important issue. To overcome the memory
problem, we use the competitive learning technique for the k-means algorithm [95].

The data preparation for the experiments is shown in figure 3.9. Each of the
selected features is computed for each image collection and stored. In the projection
from high dimensional feature space to the visualization space, neighbors are found
using corresponding distance functions.

3.3.4 Evaluation criteria

The benefit of using SVM is clearly proved in previous work, our aim in this chapter
is to prove that the combination of SVM and similarity based visualization improves
the results even further.

In category search, performance of the system is commonly measured using pre-
cision and recall. Recall is the percentage of relevant images in the result set, with
respect to the total set of images in the category searched for. Precision is the number
of relevant images in the result set, relative to the size of the result set. To evalu-
ate and compare different methods, both recall and precision are important. It is
however easier to have one single measurement. Therefore, another popular measure
is the average precision [119, 129] which calculates the area under the precision and
recall curve. The values of those measurements are in the range [0, 1].
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Average precision is the sum of the precision at each relevant hit in the result set
divided by the total number of relevant images in the collection.

Besides, high average precision, our aim is to reduce the number of user actions
needed to get there. Hence, the average precision is computed as function of the
interactive effort.
Interactive effort is the total number of actions one needs to interact with the system
to get a certain result.

Figure 3.10: A brief scheme for three different searching approaches. From left to
right: sequential search, GridVisPassive, SimVisPassive

For comparison, we consider the search system with or without SimVis and with or
without active learning. First, to provide the baseline, without both of the optional
steps, we get exhaustive search, without any system support. The first column in
figure 3.10 is a sketchy version of the interactive stage of the baseline. In this search,
the user gradually goes through the collection to find all relevant images. The system
displays 100 random images in sequence (we name this visualization GridVis, i.e. grid-
based visualization), the user selects positive images one-by-one from the images in
the visualization. This search is called sequential search. When finished, another
random set is shown. The process is repeated until all images of the category are
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found.
Secondly, the first optional step is again removed, i.e. visualization method is

GridVis, and the second one is replaced by the standard interactive search algorithm,
leading to GridVisPassive. Therefore, the interactive stage in figure 4 is skimmed
down as shown in the second column of figure 3.10. In this search, after a number of
interactions, the selected images are used as query set. Similarity values between all
images in the collection to the query set are computed based on a predefined similarity
function. A ranked list based on these similarity values is obtained. The top 100 most
similar ones are returned. From there, average precision values are also computed.
We report the mean average precision at interactive effort intervals of 5 over all the
search categories for each collection.

As a third method, we apply the first optional step to the sequential search, to find
what performance in search can be achieved without an advanced learning algorithm,
SimVisPassive.The process is briefly presented in the last column of figure 3.10.

Finally, the proposed scheme in figure 3.4, called SimVisActive, is compared to
all the others.

In summary, four different search strategies are considered

• Sequential: exhaustive search with gradual annotation of relevant images.

• GridVisPassive: interactive search using grid based visualization, no support
of similarity based visualization.

• SimVisPassive: interactive search with similarity based visualization.

• SimVisActive: interactive search in the proposed scheme with combination of
similarity based visualization and active learning.

3.3.5 Selection of active learning methods

In this experiment, the two SVM approaches in section 3.2.3 are considered. Param-
eters for the two methods are taken from [15]. Results are in figures 3.11.

This figure shows the results on three collections with two different features. In
the ALOI collection, as the number of images in each category is rather small, using
one-class SVM out-performs two-class SVM as the two-class SVM classifies many
irrelevant ones as relevant. In the Corel collection, as the number of relevant ones is
reasonable with 100 or more images, the performance of two-class SVM is improved.
Overall, it is comparable with one-class SVM, but again the speed factor is a concern
as the size of training data increases rapidly during interaction. The last two figures
are for the TRECVID collection. Again, the performance of the one-class SVM is
higher.

Results prove our expectation on the performance of the two techniques. Despite
of the fact that more information is given in the training examples for two-class SVM
than in one-class SVM, it turns out the one-class SVM works better in general. One of
the reasons is that the number of non-relevant images is very large while the relevant
set is much smaller. A way to gain a better performance in this particular problem
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Figure 3.11: Comparison of SVM performance. The first column gives results with
L*a*b, top-down the ALOI, Corel, and TRECVID collection. In a similar way, the
second column gives results for the Wiccest features.
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of the two-class SVM is to adjust the parameters such as setting the penalty for the
negative class higher. However, doing this iteratively according to the user relevant
feedback is very difficult. Moreover, after one feedback iteration the size of the training
data is increased especially the number of negative examples, hence the training time
takes longer. In interactive search, processing speed is an important element. All
the computation and display should be in acceptable time as the user does not have
the patience to wait long for the next iteration. One-class SVM requiring much less
examples will be a better option.

One-class SVM does have the disadvantage that when relevant images fall into
different clusters or they are scattered, it may concentrate on one part of the feature
space containing relevant images, ignoring other potentially relevant areas. Never-
theless, in the given search scenario, within a certain searching time, the number of
correct ones returned are more important than how diverse the distribution of correct
ones is. Therefore, we select the one-class SVM.

3.3.6 Experimental results on the full scenario

For each query, we simulate the user search actions following the proposed scheme.
The search stops when the average precision reaches 1.

The ALOI results are presented in figure 3.12. Since images of the same category
are close in information space, even GridVisPassive performs well in the beginning.
However, at some point, it cannot find more relevant images, while the average pre-
cision of the proposed approach still increases. Secondly, results show that using
Wiccest features gives better performance in this dataset than L*a*b. The average
precision reaches 1 very fast especially with our approach. The search time is im-
proved significantly. Where in the baseline the user needs on average 80 actions to
get all the relevant images, only 20 actions are needed in SimVisActive.
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Figure 3.12: Results of interactive effort vs. average precision with the ALOI data.
Left to right: with the L*a*b, with the Wiccest features.
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Results in figure 3.13 are for the Corel collection. The GridVisPassive performs
worst, even worse than the sequential baseline. This is expected, as the color his-
togram is too poor to distinguish high-level concepts. With similarity based visual-
ization, the result of SimVisPassive is improved significantly. At the beginning, when
only limited interactive effort has been made, i.e. small number of training samples,
the GridVisPassive even yields better results than the SimVisPassive and SimVisActive.
When sufficient examples are provided, performance of the proposed system becomes
the best. Overall, Wiccest features do not improve the performance upon simple
L*a*b histograms for this dataset.
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Figure 3.13: Results of interactive effort vs. average precision with the Corel data.
Left to right: with the L*a*b, with the Wiccest features.

Figure 3.14 gives the results for search topics in TRECVID data. It is obvious
that the baselines are very low as the search tasks are semantic. The global histogram
L*a*b is too simple to obtain the relevant images, meaning that the relevant images
are easily scattered into different clusters. Therefore, though the performance of
the proposed system is improved, on average the different between SimVisPassive and
SimVisActive is not as significant as in case of the ALOI and Corel collection. To search
through this collection, filtering based on a textual query or a semantic concept query,
as for example in [106], should be applied first to reduce the whole collection to a
limited set of more homogeneous images. From there, our approach can be employed
to do the search.

In summary, the proposed approach works well in all three different image col-
lections with different image features. It shows that the combination of advance
visualization and active learning does lead to a better search performance. Results
with the Wiccest features in general are better than with the simple L*a*b color
histogram, especially with the ALOI collection where images of the same search cat-
egory are very similar. Figure 3.15 show an example of the system interface, where
interactions between the user and the system take place.
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Figure 3.14: Results of interactive effort vs. average precision with the TRECVID
data. Left to right: with the L*a*b, with the Wiccest features.

Figure 3.15: Screen-dump of the interactive search system with the Corel dataset.

3.4 Conclusion

In interactive search, most systems only concentrate on improving the performance of
active learning based on user feedback. Therefore, the way images are shown to the
user has received little attention. On the other hand, in evaluating the interaction
interface between the user and the system related work is mostly interested in the
visualization. A visual search system combining similarity based visualization and
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active learning using support vector machines has been proposed. In this scheme, we
analyze possible relations between visualization and relevance feedback. From there,
an optimal solution is presented.

On the way of building an optimal system, we have implemented different distance
functions for comparing two feature vectors. Our experiments show that the selection
of distance function is strongly dependent on the chosen feature. The default function
may not be the best option, for instance for L*a*b histograms, the Matusita function
is certainly better than the commonly used Euclidean function. Comparison between
one-class and two-class SVM is also presented. Our conclusion is that for interactive
search, the two methods are generally having equal performance, but one-class SVM
is much faster, therefore, better suited for interactive search.

To prove the efficiency of our method, we have strategically selected three different
classes of image collections. The first collection, ALOI, has high quality and exhibits
structure in the high dimensional feature space as images in a category are of the
same object. The Corel collection also has high quality but semantic categorization;
hence, it is difficult in search. The last one, a collection of broadcast news shots used in
TRECVID 2005 from CNN, Chinese, and Arabic broadcasters, is the most challenging
for any search system with varying semantics in each category. By selecting these
collections, we show that our proposed approach gives the best performance compared
to common systems.

Applying the system with objective evaluation where all possible actions are sim-
ulated is also one of our contributions in this chapter. This choice overcomes the
limitation of having real users or subjective evaluation because of its difficult and
expensive set up. The proposed simulated actions can be easily applied to other
systems.

Experiments show that for the ALOI collection, our system reduces the user in-
teractive effort by a factor of 4 compared to the search baseline, for example, after 10
actions it reaches an average precision of almost 1.0, whereas it needs up to 70 actions
in the baseline to get similar results. In case of Corel, on average, the performance of
the proposed approach is 3 times better with the same number of user actions, and
almost 2 times for the TRECVID collection. Our system, therefore, eases user search
tasks such that with much less number of actions it is possible for the user to get
more images that are relevant.

The performance of the new class of color invariant features, the Wiccest features,
is still domain dependent. It works well, specifically for the ALOI collection, when
images of the same category search are very similar. For collections where similarity
of images is more abstract such as in the TRECVID collection, its performance does
not outperform the simple color histogram feature. That means for a general search
system, using color histogram is still a good option

In this chapter, we concentrate on visual exploration of the collection as a whole
while ignoring the query specification step. However, the proposed scheme can still
easily apply to systems which use a query as filtering step. Especially in cases where
the search is based on semantic categorization, for instance in the TRECVID collec-
tion, our visual based search scheme works well [106].

With the tremendous growth of image collections, a very time consuming user
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interaction process will result. Our approach can be considered as the beginning
of a new generation of advanced search mechanisms. The scenario-based evaluation
method is a general scheme for evaluating interactive retrieval systems. Many other
search scenarios can be objectively evaluated in order to find effective integrated
methods.
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Chapter 4

Interactive search by direct
manipulation of dissimilarity
space

4.1 Introduction

Interactive search tasks in content-based image retrieval (CBIR) are classified into
three types: association search, target search, and category search [104]. Search
by association is a class of search where the user starts with no specific aim other
than interesting findings. Target search aims at finding one specific image. And
category search looks for all images belonging to a specific class. In any of the three
tasks, during the search process, the system aims at finding relevant images while
discarding irrelevant ones. To do so, a dissimilarity measure is needed to compare
images. However, dissimilarity between images strongly depends on the context of
the search. Prior to the interaction, the system’s definition of dissimilarity is based on
the objective image content, whereas during the interaction the user judges similarity
based on a subjective interpretation of the semantic content. This contrast is known
as the semantic gap [104]. Imagine we have two sets of pictures, one of “dogs” and the
other of “birds”. In a search task looking for images of the “animal” category, images
in these two sets are to be taken as members of the same class. However, if the task
is searching images of “pets”, the pictures with “dogs” are relevant, but the pictures
with “birds” may not be relevant as it depends on what type of bird appeared in the
pictures. Only the user knows exactly what she is searching for and the systems needs
to learn the dissimilarity based on the user’s relevance feedback.

In literature, many different methods have been developed to learn dissimilarity
measures from relevance feedback. For an overview see [94, 128]. To provide feed-
back, users enter their input and receive feedback in the manipulation space. When

This chapter is submitted to the IEEE Transactions on Multimedia
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feedback is given, the dissimilarity is commonly learned via feature space [7, 71, 58].
To effectively learn dissimilarity, a large set of features are needed or a small set of
specific features. A small selection of specific features usually works for a narrow do-
main only. In contrast, a large set of generic features, provides the possibility to find
dissimilarities among images of any kind. However, such a large set of features leads
to a high computational load, especially when the dimension of the feature space goes
to thousands of features. And what is more, a large set needs a large set of examples.
For interactive search, immediate response is important, hence for interactive search
in broad domains learning dissimilarity based on the feature space is not ideal.

Let us reconsider the above example. It is difficult to define effective features to
assign two images to the “animal” group. However, if the user points out that target
images are similar to an example picture of a “dog” and an example of a “bird” we
might group them based on the observation that they are close to either one of them.
Defining concepts on the basis of examples is also far more intuitive for the user
than defining it in terms of the features of the images. In our approach, rather than
considering the feature space, we will focus on the dissimilarity space, where images
are represented by their relations to other images.

A similar approach has been applied in [10]. In this reference, the authors also
consider dissimilarity space as a substitute for the feature space. They create dis-
similarity spaces following the technique of Duin and Pekalska [29, 81] for different
classes of features such as color or texture. They first select a set of images, named
prototypes. The dissimilarity space is created such that images are represented by
their relative dissimilarities to the prototypes. They then explore the optimal way of
fusing these spaces over the feature spaces. Although the retrieval process is done on
the dissimilarity spaces, these spaces are not updated, hence the interactive learning
of dissimilarity still strongly depends on the initial feature spaces. As indicated this
makes it difficult to learn the semantic target classes.

In feature space, the individual features have no meaning to the user so the feature
space can not be mapped to manipulation space in an intuitive manner. Using dissimi-
larity instead of features is more intuitive for the interacting user. In the manipulation
space, images are displayed showing the current interpretation of dissimilarity of the
system. The user may interact in the space by labeling images as relevant and/or
irrelevant, by giving dissimilarity scores, or by moving relevant images close to one
another. By doing this, the user gives direct feedback to adjust dissimilarity among
images.

In this chapter, we integrate the information available from interaction as deep into
the definition of (dis)similarity as one can. We do not only update dissimilarity but
also iteratively update the dissimilarity space. This means that when the user changes
the layout of the image set displayed in the manipulation space, the layout of images
on the dissimilarity space is also adjusted to fit the feedback. Images are presented
to the user with their relations reflecting the system’s definition of dissimilarity. This
definition is obtained from the dissimilarity space. The user either agrees or not with
the current relations. If not, he can give feedback to show his opinion on how the
relations should be. The changes on the manipulation space will be directly mapped
to update the dissimilarity space.
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The chapter is organized as follows. In section 4.2, we will describe in more
detail existing research in learning dissimilarity. Next, in section 4.3, we present
our approach to learn the dissimilarity through updating the dissimilarity space in
manipulation space. Results of the system with two different image collections are
shown in section 4.4. Finally, conclusions are presented in section 4.5.

4.2 Background and related work

In this section, we introduce notation. We also give an overview of the literature on
learning dissimilarity.

4.2.1 Basic notation

Given a collection of images I = {I1, I2, ..., In}, an r-dimensional feature space F is
defined in which each image Ii ∈ I is represented by a feature vector ~Fi of length r.
Dissimilarities S(.) are derived from the feature vectors. They are computed between
every pair of images Ii and Ij and stored in a matrix S = {S(Ii, Ij)}i=1,n;j=1,n. Let
~W = {w1, w2, . . . , wr} denote a set of r values weighing the dimensions in F . Let ~ζ
denote a set of parameters steering the dissimilarity function.

When the user is interacting with the system he has a goal which can be defined as
a set of desired images I+ ⊂ I to be found. Given this goal, learning of dissimilarity
can be viewed as an iterative process where the system learns to identify the set I+

from feedback given by the user.

4.2.2 Methods for learning dissimilarity

In most existing methods, learning is done via feature space either by feature selection
[7, 71], feature weighing [58, 123], or using a parameter-based function of features
[97, 39].

In general, for existing methods, learning the dissimilarity in iteration t + 1 from
analyzing the feedback of the user in iteration t can be formulated:

St+1(Ii, Ij) = f( ~Fi, ~Fj | ~W t, ~ζt), (4.1)

where ~W 0 and ~ζ0 are start values.
In general, not all features are equally important. Hence, in the feature weighting

approach weights are set for each feature. Feature selection is a special case of feature
weighting, where the weights of the eliminated features are set to 0. As the update
changes ~W only, Eq.4.1 can be rewritten as:

St+1(Ii, Ij) = f( ~Fi, ~Fj | ~W
t
). (4.2)

In [123], the authors concentrate on exploring the distribution of the data set. A
subspace of the feature space is found, and a quadratic similarity functions is learnt.
From there, the dissimilarity matrix between images is updated. A similar approach
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is presented in [7], where the authors propose a weighted Minkowski similarity that
continuously learns the weight of each feature based on positive and negative exam-
ples. The dissimilarity matrix is adjusted on the basis of the new set of weights. In
[71], the similarity is also recalculated by selecting a subspace. Updating is based on
the configuration of images on the screen resulting from the user’s manipulation of the
position of images on the screen. The system re-estimates the layout of the images,
such that the similarity function gets closer to the user’s desire. A similar approach
but with dynamic selection of the feature subspace followed in [58]. In this reference,
starting with a number of features, a dynamic function is proposed where at each step
the optimal number of features is found. From there, the weighted and non-weighted
perceptual dynamic function is built based on the Minkowski distance. In [31], the
authors propose a system which allows the user to score similarity between given pairs
of images. The system then learns the similarity coefficient from the user feedback
predicting the similarity among the images which were not displayed. Within the
same school of thought, work has been reported in [13, 41, 98, 107]. In general, this
approach requires a large set of features in order to select a subset best representing
the semantic similarity between images. However, the selection of a large number of
features has a major disadvantage for interactive search because of its computational
expense, especially with complicated dissimilarity functions. In addition, the need for
a large a number of examples in learning leads to tedious interaction.

Another class of methods is formed by the parameter-based approaches. In these
approaches, the matrix in the feature space does not change during learning, but
rather a parameterized function of the features is adjusted to fit the user’s feedback.
Eq.4.1 is specialized as:

St+1(Ii, Ij) = f( ~Fi, ~Fj |~ζt), (4.3)

For example, in [97], the authors introduce an interface where the user adjusts the
similarity between images in the manipulation space by moving them around. New
positions of images displayed are used as relevance feedback. Using Fuzzy Feature
Contrast and Tversky’s similarity measure, the authors define a similarity function
where ~ζ contains around 100 different parameter dimensions. Based on user feedback,
the system then adjusts the set of parameters in the dissimilarity function such that
the dissimilarity decreases between images which according to the user are close. The
large number of parameters requires a large number of training examples and thus
substantial user interaction. In [39], given a set of images as query examples, a re-
stricted similarity measure is formulated which recalculates dissimilarity between all
images and queries depending on their positions compared to the classification bound-
ary. The boundary is characterized by a parameter set. Given a set of positive and
negative examples, SVM and AdaBoost are used to learn a classification boundary.
The top ranked images are then labelled as positive and negative examples to repeat
the refinement of dissimilarity.

The parameter based approaches do not require a large set of features. However,
to effectively learn the dissimilarity matrix either the features should be well chosen
or the system should have a wide range of parameters.
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The use of features in learning dissimilarity has a major limitation as it strongly
depends on the choice of features. With the lack of efficient features for general search
tasks, a new approach that learns dissimilarity with less influence of features should
be considered.

4.3 Direct manipulation of dissimilarity

In this section, we present our approach in learning dissimilarity by updating the dis-
similarity space based on user’s relevance feedback without going back to the feature
space. Using the same notation as in eq.4.1 our method can be described as:

St+1(Ii, Ij) = f(St(Ii, Ij)), with S0(Ii, Ij) = f( ~Fi, ~Fj). (4.4)

Figure 4.1: Schematic overview of the proposed approach.

An overview of our proposed approach is in Figure 4.1. First, a dissimilarity
matrix is obtained by comparing feature vectors in the feature space F . A projection
from the high dimensional space is used to create a manipulation space M (to be
discussed in section 4.3.2). Images are presented in M to the user for interaction and
feedback. A set of images, named the prototype set IP , is selected (section 4.3.1).
When sufficient prototypes have been found, a dissimilarity space DP is then created
(section 4.3.1). The learning process is then started. The manipulation space M is
now a direct projection of DP . In this learning phase, DP is iteratively adjusted with
user feedback and active learning. The adjustment is presented in section 4.3.3. At
each iteration, a set of most informative images is returned. The user then labels
positive images for another round of feedback. The learning phase is finished when
the user stops the search.
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4.3.1 Creation of the dissimilarity space

4.3.1.1. Prototype-based dissimilarity space

To create a dissimilarity space, we employ the method proposed by Pekalska [81].
In the reference, the goal is data classification with no user interaction or relevance
feedback, we extend it to interactive search.

The first step is to select a set of p images IP ⊂ I, called the prototypes:

IP = {IP1 , IP2 , . . . , IPp
} (4.5)

The role of the prototypes is to create a dissimilarity space where relevant and
irrelevant images are well separated. Hence, careful selection of prototypes is impor-
tant. The mapping from dissimilarity matrix to dissimilarity space by selection of
prototypes is equivalent to choosing a set of columns (or rows) in the dissimilarity
matrix. DP denotes the dissimilarity space, and Φ the mapping from a dissimilarity
matrix S to DP :

Φ : S IP7−→ DP . (4.6)

This means that for each image Ii, we have a p-dimensional vector

Di =
{
S(Ii, IP1), S(Ii, IP2), . . . , S(Ii, IPp

)
}

(4.7)

Therefore, dissimilarities between all images in I to IP are represented by a matrix
with size n × p. The collection I then builds up a p-dimensional dissimilarity space
DP , named prototype-based dissimilarity space:

DP =


S(I1, IP1), S(I1, IP2), . . . , S(I1, IPp

)
S(I2, IP1), S(I2, IP2), . . . , S(I2, IPp)

...
...

S(In, IP1), S(In, IP2), . . . , S(In, IPp)

 (4.8)

An illustration of creating a dissimilarity space is shown in figure 4.2.
In DP the similarity SP(Ii, Ij) of two images is defined by the Euclidean distance

between Di and Dj .

4.3.1.2. Selection of prototypes with hierarchical clustering

For selecting prototypes, it is argued in [82] that systematic selection of prototypes
gives a better representation of the dissimilarity space than random selection. We
therefore aim to find a set of prototypes IP such that the mapping Φ preserves the
information in the similarity matrix S as good as possible.

The method in [81] aims for classification, where training set and test set have been
defined beforehand. In interactive search, we are not able to select a set of prototypes
as we do not know which images the user will search for. In practice, there are cases
where the user starts the search with relevant and/or irrelevant images. In general
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Figure 4.2: An example to illustrate the creation of a dissimilarity space. (a) In this
example, for simplicity, images are represented in a 2D feature space F = {F1,F2},
with dissimilarities among them obtained by the unweighed Euclidean distance be-
tween feature vectors. Two images are selected as prototypes. (b) Based on distances
between all images to the prototypes IP1 and IP2 , we create a 2D dissimilarity space.

this set of images is not a good set of prototypes. For CBIR, a strategy is needed for
finding a good set of prototypes.

The browsing for prototypes is performed in manipulation space, where the user
directly interacts with images. The selection of relevant images as prototypes makes
the learning on dissimilarity space simpler [10]. We therefore focus on images selected
as relevant by the user. In particular, a set of images is shown to the user, she will
select relevant images when they appear. Because of the limitation of the display
screen, only a small set of images can be displayed at a time. We denote the set
of images displayed in iteration t as It

D. This set should be carefully chosen as it
affects the resulting IP . Important is that It

D gives an adequate overview of the
whole collection [78]. First, the collection is divided into a set of clusters {ICk

}k=1,M

using a clustering algorithm. The system selects an image from each cluster, which is
called the representative element of that cluster, for display. M is chosen such that
the representatives are giving an overview of the collection I, while assuring that the
M images still fit the screen. If a relevant image (i.e., an element of I+) is presented
in ID, the user will select that image as a prototype, i.e.,

It+1
P = It

P ∪ (It
D ∩ I+), I0

P = ∅ (4.9)

Once images currently on display are inspected, the system will choose a new set of
representatives to display.

From a practical point of view, the size n of the image collection is usually large.
Hence, sequentially visiting all images is a time consuming procedure and should be
avoided when there are clusters not containing any relevant image. To speed up the
process, we add a filter to the browsing. Rather than visiting all elements in cluster
ICi

, the cluster is divided into m sub-clusters using the same clustering algorithm.
The value of m is selected such that:
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m =
[
||ICi

||
n∗

]
, (4.10)

with ||ICi || the size of the cluster. For example, if the cluster ICi contains 100 elements
and n∗ is set equal 20, the number of sub-clusters is m = 5. Increasing the value of
n∗ will give a finer clustering and hence more browsing time. Coarse clustering with
a high value of n∗ increases the chance of missing relevant images.

As in the above, centers of the sub-clusters are chosen as the representatives for
that cluster, i.e., one of the m sub-centers is sequentially selected to represent the
cluster. Therefore, instead of visiting all n images, the user only considers M ∗ m
representative images. For each cluster, when m representatives have been visited
and no relevant image is found, the cluster has a high probability of being irrelevant
to the search. Hence, it can be eliminated from the collection. On the contrary, if
one of the representatives is relevant, with the expectation that more relevant images
could be inside the corresponding cluster, the system keeps the cluster.

When a cluster is removed, there is space for other representative images to go on
display. The unexplored part of the collection IU contains images which are not in
the removed clusters IR and not in the kept clusters IK :

It+1
U = It

U\(It
K ∪ It

R), I0
U = I. (4.11)

In each iteration, the system needs to cluster It
U . This step cannot be done offline

as it depends on the user actions. Hence, a fast and computationally inexpensive
clustering algorithm is used namely competitive learning [95]. With new clusters
available, the browsing is continued until a predefined number of prototypes has been
found, denoted by iteration ∞. At that point, we have found a set of prototypes I∞P
and effectively reduced the collection to an active set IA:

IA = I\I∞R (4.12)

with increased chance of finding relevant images in a later stage. For notational
convenience the ∞ is dropped in the following sections.

4.3.2 The manipulation space

To provide relevance feedback a 2-dimensional manipulation space M is needed in
which the user interacts with the images. Ideally, there is a direct relation between
the similarities defined in the high dimensional space, being it feature space or dis-
similarity space, and the manipulation space.

A projection from the high dimensional space to a 2-dimensional manipulation
space is needed. Similarity based visualization, [71, 91, 78, 87] which aims to preserve
the dissimilarities between every pair of images in the manipulation space is highly
appropriate for this task.

Let xi denote the position of image Ii in manipulation space. Furthermore, let
SM(Ii, Ij) be the Euclidean distance between the images in manipulation space M.
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In similarity based visualization, to faithfully represent the dissimilarity space, SM
should reflect the similarity SP in dissimilarity space. We define:

Ψ : S 7→ M (4.13)

With S a matrix containing dissimilarities. In chapter 2, we have compared four
different projection techniques Ψ. The projection method giving the best performance
in terms of preserving original relations is called ISOSNE, a combination of isometric
mapping and stochastic neighbor embedding. ISOSNE is chosen as our Ψ.

ISOSNE contains two main steps (see chapter 2 for more details). A graph-based
distance between images is first computed using k nearest neighbors. For each image
Ii, the algorithm creates links to its k nearest neighbors based on Euclidean distance.
Based on the graph, distances between images are redefined. If an image Ij is not
in the k nearest neighbor list of Ii, i.e., there is no direct link between them, their
distance will be computed via the intermediate links. Dijkstra’s algorithm is employed
to compute the shortest path between Ii and Ij . The second step is to project relations
obtained from the graph based distance to the 2D manipulation space. To preserve the
relations, the algorithm optimizes a cost function C measuring the difference between
the probability distribution in M and the distribution in the original space, denoted
as PM and PO, respectively. Based on Kullback-Leibler distance, C is computed as:

C =
∑

i

∑
j

POij log
POij
PMij

(4.14)

where the probability distributions are calculated as follows:

P
(.)
ij =

exp(−S2
(.)(Ii, Ij))∑

l 6=i exp(−S2
(.)(Ii, Il))

(4.15)

with S(.) denoting similarity in the high dimensional original space, or a Euclidean
distance in 2D between image Ii and Ij in M.

To find the optimal placement of images in manipulation space, they are first
initialized at random positions. These positions are then adjusted after each gradient
descent iteration such that it reduces the cost function C. When C is optimized, with
positions found, distances between images SM are the ones optimally preserving the
original relation in collection. Figure 4.3 shows two examples of displaying images in
manipulation space with similarity preservation.

4.3.3 Automatic adjustment of dissimilarity space

At this point, the initial dissimilarity space is in place. The user has selected the set
of prototypes IP treated as query examples to start the search process. The search
task is now to find other relevant images using these examples.
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(a) (b)

Figure 4.3: Two examples of similarity based visualization of images in the manipu-
lation space. The layout of images is such that similar images are close. This allows
for efficient interaction as images of the same class are likely to be grouped on the
screen and can be selected by one user interaction.

4.3.4 Active learning

Different learning strategies can be employed [128]. We select active learning with
support vector machines (SVM) for its capability of boosting retrieval results [113,
128, 79]. In interactive search, there is an unbalance between the size of the category
searched for and the size of the collection. We therefore follow [62, 17, 77] and use
one-class SVM.

The prototypes IPi are used as positive examples. From there, the one-class SVM
defines a boundary B covering as much as possible the positive examples. Let us
denote:
B+ the set of images inside B predicted to be relevant to the search.
B− the set of images outside B predicted to be irrelevant to the search.
IB the set of images closest to B according to distance function dB(.).

For SVM, dB(.) is computed as a decision function that decides the probability of
an image belonging to the relevant or irrelevant class.

In the next iterations, to improve the search, the system aims at refining B. The
refinement is such that it eliminates irrelevant images from B+ and adds new irrelevant
images to B−. To do so, the images in IB are chosen as display set It

D. Thus, the
images displayed are the ones for which classification is most uncertain. Feedback on
those uncertain images yields the most information for improving the classification
boundary. This is known as the “close-to-boundary” feedback approach [113, 79].
Figure 4.4 shows an example of images closest to the boundary, and figure 4.5 shows
images in B+.



4.3. Direct manipulation of dissimilarity 67

(a) (b)

Figure 4.4: (a) An example of images closest to the border. (b) Idem represented by
green dots in the full manipulation space.

(a) (b)

Figure 4.5: (a) An example of images inside the boundary. (b) Idem represented by
green dots in the full manipulation space.

The user will label relevant images if they exist. Unlabelled images are treated as
irrelevant and removed from the collection. Let

IBt
+

= It
D ∩ I+, (4.16)
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IBt
−

= It
D\IBt

+
(4.17)

When new feedback is given the SVM is recomputed on the new set of positive
examples to update the boundary:

Bt+1
+ = (Bt

+ ∪ IBt
+
)\IBt

−
(4.18)

The process is repeated until the user stops the search.

4.3.5 Similarity update

Initially, DP is the result of the projection of the dissimilarity matrix SF obtained in
the feature space F (Eq.4.6). Hence, in general it does not correspond to the user
desired semantic similarity. In that case, DP needs to be adjusted using user feedback.
Therefore, in an iterative process the similarity is updated to better reflect the user’s
target similarity. To do so we adapt the update method from [39].

As indicated, B defines the currently predicted class boundary. For the dissimi-
larity update we make the assumption that the prediction is correct. For all images
Ii ∈ B+ the representation DP(Ii) is kept constant. In contrast, for Ii ∈ B− the rep-
resentation is altered. In the ideal case, where B perfectly covers all relevant images,
all other irrelevant images should be pushed away from the boundary. Of course, in
practice, relevant images can be miss-classified. Pushing these images far away from
the boundary makes it difficult to retrieve them later. As the likelihood of being
relevant depends on the distance to the boundary dB(.) we require that

∀Ii, Ij ∈ B−: if dB(Ii) < dB(Ij) ⇒ SP(Ii, IP ) < S(Ij , IP ) (4.19)

and use this in the gradual change of the dissimilarity space based on the user
feedback.

positive examples

unlabeled images

prototypesboundary B I
i

IP1

I
j

IP2

I
k

positive examples

unlabeled images

prototypes

positive examples

unlabeled images

prototypesboundary B I
i

IP1

I
j

IP2

I
k

Figure 4.6: Illustration of similarity update. Assume a dissimilarity space created by
2 prototypes IP1 , IP2 . Let image Ij be less similar to IP compared to image Ii. After
the update, image Ii will be more similar to IP than Ij . When simply using distance
to the boundary, this is not the case. Images Ik /∈ B+ will be pushed away from IP1

and IP2 .
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The method in [39] (see fig. 4.6) satisfies the above constraints by using the fol-
lowing update function:

SP t+1(Ii, IP ) =

SP
t(Ii, IP ) if Ii ∈ B+,

max
Ij∈B+

SP t(Ij , IP ) + dB(Ii) otherwise. (4.20)

Hence, after learning with SVM and based on the new positions of images with
respect to the boundary, their distances to the prototypes are changed. This leads
to the adjustment of the dissimilarity space. These changes assure that irrelevant
images will be pushed away, while the system keeps relevant images in the vicinity of
the prototypes. In the next iteration the new similarity helps in better classification.

4.4 Experiments

4.4.1 Setup

4.4.1.1. Overview of experiments

We now present experiments to show the performance of our proposed approach.
The first experiment concentrates on the filtering component in the browsing phase

of the proposed system. We will evaluate whether adding this component to the
system will speed up the browsing through the collection for finding relevant images.

The second experiment considers the creation of the dissimilarity space. As de-
scribed in section 4.3.1, to create DP we need to determine the prototype set IP and
the dissimilarity between images and prototypes S(Ii, IPi

). At the beginning of the
search, two spaces are available, namely the feature space F and the manipulation
space M.

To create a dissimilarity space both spaces can be used. We have the following
two options for creating a dissimilarity space:

Φ1 : SF
IP7−→ Dr

P (4.21)

Φ2 : SM=Ψ(SF )
IP7−→ D2

P (4.22)

where Dr
P is the dissimilarity space based on r-dimensional prototypes, and D2

P the
dissimilarity space based on 2-dimensional prototypes. This experiment leads to the
choice of the proper dissimilarity space DP .

In the final experiment, the goal is to compare the search performance on the
selected dissimilarity space against the feature space. For a fair comparison, the
starting points are the same for both approaches.

4.4.1.2. Image collections

We select two different image collections. The first one is the well-known Corel col-
lection. We select a set of 10000 images containing 100 non-overlapping categories of
size 100 each.
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The second collection is obtained from the TrecVid 2005 benchmark [105]. This set
contains 43907 images, extracted from news video archives. We take the 29 different
categories defined in [114] such as boat, basketball, car, chair to classify the collection
. Other than the Corel collection, an image in this collection may be in more than
one category. The number of images in each category varies from tens to thousands.

4.4.1.3. Features

For these two image collections, we extract the contexture feature set introduced
in [114]. This feature set is evaluated as effective in learning the categorization of
images. The authors define 15 proto-textures such as water, sky, snow. They learn
the probability that an image contains the proto-textures. For the two collections in
our experiment, 8 different parameter settings are used (spatial scale σ = 1, σ = 3 and
different region sizes with ratios of 1

2 and 1
6 of the x and y dimensions of the image).

For each image, we extract a feature vector containing 15 probabilities for 8 parameter
values leading to a feature space of 120 dimensions. To obtain the manipulation space,
ISOSNE is applied to project the feature space to 2D space. The Euclidean distance
is used for comparing two feature vectors.

4.4.1.4. Evaluation criteria

For comparison, we define a baseline based on displaying pictures without any dis-
similarity (or feature) computation where the system in each iteration displays a set
of nD randomly chosen images. Relevant images are selected if they are present in
the displayed set. The baseline is calculated as the number of relevant images nt+1

likely to be found at iteration t + 1. We have:

nt+1 = nt +
n+ − nt

n− nt
∗ nD (4.23)

where n is the size of the collection and n+ is the total number of relevant images.
For the Corel collection, we have n = 10000, nD = 100, and the value n+ = 100

for each category. At the first iteration, the user will find one relevant image out of
hundred on average. For the TrecVid2005 collection we average over all categories to
obtain the baseline.

For evaluating the performance of the system, we report recall values R of the top
ranked 100 images I100:

R =
‖I100

⋂
I+‖

‖I+‖
. (4.24)

where ‖.‖ denotes the size of a set. From there, we calculate the relative improvement
measuring the improvement of a method over the baseline. Assume, a method X at
iteration t yields a recall value Rt

X , the baseline at the same iteration returns a recall
Rt

B . The relative improvement is:

φt(X, B) =
Rt

X −Rt
B

Rt
B

∗ 100 (4.25)



4.4. Experiments 71

4.4.2 Experiments on prototype selection

To see the efficiency of the filtering, we test with the two given collections above.
We report at each iteration the number of images removed, number of images kept,
and number of missing relevant images when they fall into removed clusters. Finally,
we average results over all categories, which is 100 for the Corel, and 29 for the
TrecVid. The comparisons are between browsing through the collection with and
without the filtering component. Selection of representative samples for a cluster by
random selection is also examined.

We select n∗ = 10 for our experiments. Table 4.1 and 4.2 show results.

iterations elements kept missing relevant
no filtering 184 100% 0%

random subcluster 20 60% 13%
selected subcluster 23 61% 5%

Table 4.1: Results for browsing the Corel collection.

iterations elements kept missing relevant
no filtering > 500 100% 0%

random subcluster 46 67% 17%
selected subcluster 41 64% 8%

Table 4.2: Results for browsing the TrecVid collection.

Of course, browsing without filtering will not miss any relevant image as all are
visited. The drawback is that the total number of iterations needed is 10 times
higher compared to the other two approaches. On average, with the Corel collection,
normal browsing requires 184 iterations to check the whole collection, while the new
approach needs only 23 iterations. With the TrecVid collection, the difference is even
more significant with the number of iterations reducing to 41 while without filtering
over 500 iterations are needed.

For a fair comparison, we average 10 different runs for the random approach. With
the proposed approach, the number of missed relevant images is always smaller than
random selection of representatives. Moreover, it is observed that the filtering can
reduce the size of the collection significantly without loosing many of the relevant
images. In the Corel collection, the size is reduced by 39%, while missing 5% of the
relevant images. Reducing the size of the collection will certainly speed up the search.
We believe it will also increase the precision and recall values. The same holds for the
TrecVid collection, with a reduction of 36% of the size of the collection on average
missing 8% of relevant images.

From this experiment, the conclusion is that adding filtering during browsing does
indeed support the search process by reducing the size of the collection while keeping
the chance of missing any relevant images to a minimum.
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4.4.3 Experiment on the creation of dissimilarity space

To create the projection of the 120 dimensional feature space F to M, the 2D manip-
ulation space, we apply ISOSNE. We compute two dissimilarity spaces D120

P and D2
P .

To do so, first the prototype set IP is selected. We test with two sets of prototypes
in the creation of DP with p = 5 or p = 10.
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Figure 4.7: Using different dissimilarity spaces with the Corel collection averaged over
100 categories. (a) dissimilarity space created by 5 prototypes. (b) dissimilarity space
created by 10 prototypes.

On each dissimilarity space, prototypes IPi are used as initial positive examples.
The SVM produces a ranked list based on distances to the boundary. Recall values
are reported based on the 100 top ranked images.

Figure 4.7 and 4.8 show the performance on D120
P and D2

P . Based on equation
4.25, for both collections, the performance of learning on dissimilarity space is on
average 60% relative improvement over the baseline.

Because of the projection of I from 120 dimensions to 2 dimensions for creating the
manipulation space, relations between images cannot be kept perfectly even though
the projection is optimal in keeping these relations. If the relation is not preserved
on M, performance of the D2

P will get worse when compared to D120
P . However, it is

interesting to observe from the results that the search performance on D2
P is always

better than on D120
P whether having 5 or 10 prototypes. These results show that

the ISOSNE performs very well in preserving relations between images. Moreover,
because of ISOSNE extracts the structure of the collection by first computing the
graph-based distance, it takes an advantage over the direct distance computation on
the feature space. In other words, dissimilarity between images in the feature space
is computed by directly comparing two feature vectors, whereas in the manipulation
space, as a results of ISOSNE, dissimilarity is obtained by preserving a graph-based



4.4. Experiments 73

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

re
ca

ll

number of iterations

Trec2005FSD: comparison result (5 prots) with 29 categories

2D prototype dissSpace
nD prototype dissSpace

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

re
ca

ll

number of iterations

Trec2005FSD: comparison result (10 prots) with 29 categories

2D prototype dissSpace
nD prototype dissSpace

(b)

Figure 4.8: Using different dissimilarity spaces with the TrecVid collection averaged
over 29 categories. (a) dissimilarity space created by 5 prototypes. (b) dissimilarity
space created by 10 prototypes.

distance on the feature space. That explains why the performance of learning on D2
P

is better than learning on D120
P .

For the selection of a dissimilarity space, we prefer using D2
P . Moreover so because

it establishes a direct link between distances in dissimilarity space and manipulation
space.

4.4.4 Experiment on direct manipulation of dissimilarity space
vs. indirectly via feature space

We compare two ways of updating the dissimilarity matrix, via D2
P as we propose, or

via feature space F [7, 71, 58, 123].
Results are shown in figure 4.9 and 4.10 for the Corel and TrecVid. The figures

show that with small number of prototypes, the dissimilarity space is not able to
maintain the relations between images. Therefore, the improvement of learning on the
dissimilarity space is smaller than learning via the feature space. With 10 prototypes,
the dissimilarity space covers the image collection better. Hence, on average it gives
a higher improvement.

With a smaller number of prototypes, i.e., smaller number of initial positive ex-
amples, the performance of the baseline is worse than the one with higher number of
examples. From the figures, average performance of learning via feature space will
get worse when starting from more initial examples. Because the prototype set IP is
chosen such that it distributes over the collection when p gets higher, this set better
covers the collection. In the feature space, this means that the more prototypes, the
broader the boundary B. This leads to a higher number of irrelevant images inside



74 Chapter 4. Interactive search by direct manipulation of dissimilarity space

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
ca

ll

number of iterations

Corel: comparison result (5 prots) with 100 categories

2D prototype dissSpace
feature space
baseline

(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

re
ca

ll

number of iterations

Corel: comparison result (10 prots) with 100 categories

2D prototype dissSpace
feature space
baseline

(b)

Figure 4.9: Comparison of direct learning on dissimilarity spaces and learning via
feature space with the Corel collection averaged over 100 categories. The results are
evaluated by recall. (a) dissimilarity space created by 5 prototypes. (b+d) dissimi-
larity space created by 10 prototypes.
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Trec2005FSD: comparison result (5 prots) with 29 categories
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Figure 4.10: Comparison of direct learning on dissimilarity spaces and learning via
feature space with the TrecVid collection averaged over 29 categories. The results are
evaluated by recall. (a) dissimilarity space created by 5 prototypes. (b) dissimilarity
space created by 10 prototypes.

B. This is a main disadvantage of using a feature space since they are not capable of
capturing semantic categorization. When a dissimilarity space is created from IP , the
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set of initial examples groups positive images together. Therefore, the performance
of learning on dissimilarity space is improved.

From this experiment, we conclude that number of prototypes should not be too
small. Ten prototypes is reasonable for creating the dissimilarity space as well as
reasonable in the interactive search where few positive examples are provided. The
learning performance on the dissimilarity space is better than updating dissimilarity
via feature space.

4.5 Conclusion

In this chapter, we have proposed a new approach in interactively learning dissimi-
larity. Different from existing techniques [7, 71, 58, 123] we directly learn the dissim-
ilarity space from user’s feedback. This means that instead of collecting a large set of
features or choosing problem-specific features, only the relations between images are
used. By doing so, we avoid the computational problem occurring for large sets of
features and the difficulty in selecting effective features in interactive category search.
Representing images by their relations to others is close to the perceptual meaning of
those images, which is difficult to obtain using feature representations.

We have demonstrated by experiment that learning in this dissimilarity space DP
in general gives a better performance than the learning on feature space F , when a
reasonable number of initial prototypes IP is being used.

For the selection of prototypes, we present a browsing technique with hierarchical
clustering and filtering components. This browsing strategy can speed up searching
for relevant images, and in the mean time filter the collection by removing irrelevant
clusters. This means that we are able to get a better chance of finding relevant images.
In our experiments, we showed that the number of iterations needed to browse through
the collection reduces by a factor of 10 for both the Corel and the TrecVid collection.

We present a method of updating the dissimilarity space using relevance feed-
back and active learning with one-class SVM. This adjustment assures closeness of
relevant images to the classification boundary, while pushing away irrelevant ones.
Experimental results show that our proposed approach outperforms the others there
the relative improvement over the baseline is on average 60% for both the Corel and
the TrecVid collection.

Finally, we have implemented an interactive search system, based on the proposed
methodology (this system is part of the MediaMill search system [106]). Figure 4.11
shows a screenshot of our system.

In conclusion, interactive learning on dissimilarity space DP rather than via fea-
ture space F is very promising. The simplicity in creating dissimilarity space and
its performance has great potential for many tasks in content based retrieval. In
this chapter, our proposed approach in improving the interactive search in CBIR by
updating the dissimilarity space gives the best performance. Moreover, as the ma-
nipulation space M reflects the structure of the collection on the dissimilarity space
DP , user interaction on M will directly influence the adjustment of DP allowing for
intuitive interaction.
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Figure 4.11: A screen shot of the system when searching the Corel collection. The
system contains 4 parts. The main window represents the part of manipulation space
displayed, where the user interacts with images. This screenshot captures one step of
the learning stage with displayed images being the ones closest to the classification
boundary. The top-right window gives an overview of the whole manipulation space.
The bottom-right corner window shows the full size of the current image. During the
interaction, relevant images selected by the user will be kept in the middle window on
the right side. For selection of positive examples, the 2D similarity based visualization
shows the advantage over the grid based display. For example, instead of selecting
one image at a time, in 2D similarity-based visualization similar images stay close
together, therefore the user can select a group of images at a time. Furthermore,
as distances among images on the screen have a direct relation to distances in the
dissimilarity space the interaction is very intuitive.
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Chapter 5

Relevance feedback based
saliency adaptation in CBIR

5.1 Introduction

Content based image retrieval (CBIR) has been under investigation for a long time
and many systems were built to cater for the varying demands posed by different
applications. An extensive review can be found in [104]. Despite of the large number
of systems developed, a gap remains between the user’s expectation and the system’s
retrieval capabilities. The main reason for this is the semantic gap in [104] defined
as:

“The semantic gap is the lack of coincidence between the information that one can
extract from the visual data and the interpretation that the same data have for the
user in a given situation.”

The gap can be limited by using even more advanced features [104], [93], by in-
troduction of ontologies for structuring the possible user queries [102], or by using
additional resources like associated textual information [4]. However, as the interpre-
tation is subjective, a gap will remain. Thus, user interaction is an essential part of
any practical CBIR system.

In [104], a framework for interactive CBIR called query space is defined capturing
all of the state-of-the-art interaction mechanisms. The query space is defined as
Q = {IQ, FQ, SQ, ZQ}. The first component is the set of active images IQ. The
second one is a selection of features FQ. The third one is a similarity function SQ
used to compare images in the database. The last one is a set of symbolic labels ZQ
with an associated probability for each image. The retrieval process in query space
consists of five main steps. The first one is initialization in which the system initiates
a query space. A query is then defined in the specification step. In the visualization
step, retrieved results of the query are mapped into a n-dimensional display space.

This chapter is published in the ACM Multimedia Systems [76]

77
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In the feedback step the user gives relevance feedback RFi by changing one or more
components in query space Q:

{Ii
Q, F i

Q, Si
Q, Zi

Q}
RFi→ {Ii+1

Q , F i+1
Q , Si+1

Q , Zi+1
Q } (5.1)

The final results are returned in the output step.
Existing interactive systems mostly focus on changing I, S or Z. For example,

Vendrig focusses on changing I [117]. In [92] positive and negative examples are used
in the similarity function S to update the weighting of different features. In [97],
the user changes the relative position of the images in visualization space to update
similarity. Minka [70] learns labels in Z like grass, and brick from the user feedback.
In [65], the user redefines the label of the object obtained by the system such as names
of people, or special type of animals.

Few systems support user feedback on the features. QBIC [34] has the user select
features such as color, texture, and shape. The Pictoseek system [37] allows users to
decide between different color spaces like RGB, HSI, rgb. However, these selections
have to be made beforehand by the user, they cannot be changed during the course
of interaction except from starting all over again. Dynamic feature selection was
proposed in [92], but only for global features.

An alternative to global features are salient details to represent the image content
where salient details can be points [45], [68], [112], lines [60], [88], or regions [27],
[121], [80].

These methods are focussed on automatically summarizing the image into a set
of salient details. More precisely, they use a fixed definition of saliency. However,
the saliency is user and context dependent and thus should be defined by the user
through interaction.

Therefore, we aim at interactive definition of saliency. To that end, we need
to analyze existing detail detection methods and summarize them into a unifying
framework. The framework is presented in order to find out which elements are
involved in changing the output results. These are called tunable parameters. The
main idea of our method is to tune those parameters to best fit the user feedback.
From there, we present an application of our approach in CBIR. Thus our approach
follows the pattern:

{IQ, F i
Q, SQ, ZQ}

RFi→ {IQ, F i+1
Q , SQ, ZQ} (5.2)

To do so the system is composed of an off-line stage to precompute candidate
salient details and an interactive stage in which the user is doing the interactive
retrieval. It yields a general framework for interactive retrieval based on salient details.
Thus it can be used to create an add-on to existing methods rather than replacing
them.

This chapter is organized as follows. Section 5.2 describes the off-line stage. This
section is also a review of existing salient detail detectors in order to find the tunable
parameters for the interactive stage. Different sets of candidate salient details are
extracted by changing those parameters. In section 5.3, this second stage of our
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framework is presented with methods to tune the parameters based on user feedback.
Section 5.4 shows results to demonstrate the new approach.

5.2 Off-line salient detail detection

Although the salient detail detectors in literature follow different approaches, every
method can be divided into five main steps: image processing, detail detection, feature
computation, saliency computation and selection based on significance, which we will
now define more precisely.

Image processing is the step where both the input I and output I∗ are one or
more images. Image processing removes irrelevant information like noise, or enhances
specific image content like edges or contrast. An image processing operator is denoted
by e~σ where ~σ is an element in the space Σ of parameters steering the process. Thus
we denote the image processing step by

I∗ = e~σ(I). (5.3)

Detail detection is the process where the image is decomposed into details D, where
the details can be regions, lines or points. By adjusting the set of parameters ~ω in
parameter space Ω, different sets of details are obtained. The detail detection step is
given as:

D = p~ω(I∗) (5.4)

where p~ω is a specific segmentation method.

Feature computation calculates the set of feature values F over all detected details.
A feature can be any description of a detail, e.g., based on color, texture, shape or
size. We denote feature computation for a set of details D as

F = f~λ(D) (5.5)

where ~λ is a set of parameters in parameter space Λ to compute the feature f .

Saliency computation calculates how salient the features of a detail are relative to
other details within its spatial context. Thus it needs to define a local area π ∈ Π in
which feature values of other details are considered. In literature most of the methods
consider π to cover effectively the whole image, thus ignoring local spatial context.
We define it in the more general form where within the context defined by π this step
typically uses an operator l to compute the local extrema. It could further enhance
the saliency of the detail by normalizing the saliency inside the context. An example
of this is shown in figure 5.2. We denote it by l~π(D) where ~π defines the interval or
area used in determining the saliency of a certain detail. This step will select details
standing out from the other details in the set D. The general form of this step is

L = l~π(F). (5.6)
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Figure 5.1: Framework for offline salient detail detectors.

Selection based on significance is the step which finally selects details D̂ based on
the saliency values computed in the previous step. It reveals the most salient parts of
the image, e.g., by defining a given threshold on the saliency values or by restricting
the number of output salient details. The selection function is denoted by g~γ with
~γ ∈ Γ. It gives:

D̂ = g~γ(L). (5.7)

Going through the general scheme, the whole process of automatic salient detail
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detection can be described as:

D̂ = g~γ ◦ l~π ◦ f~λ ◦ p~ω ◦ e~σ(I) (5.8)

where I is the input image, and D̂ is the final output set of salient details, D̂ ⊆ D.
As stated each step has its own set of parameters. So for each salient detail

detector we have a set of parameters θ = (~σ, ~ω,~λ, ~π,~γ). By changing any of the
parameters in θ, we get a different set of salient details.

Figure 5.1 shows the model for the salient detail extraction process. Each step
is described in more detail in the sequel by considering how it is defined in existing
methods:

5.2.1 Image processing

Image processing enhances specific image characteristics. Examples are smoothing,
gradient computation, or enhancement of line-like structures. These methods all
involve a scale parameter [108] [3], [60], [48].

Recognizing that the proper scale is dependent on the user need, scale based meth-
ods consider a range of parameter values. Different scale spaces have been defined.
Sebe et al. [112] use the wavelet transform to represent image variations at different
scales. Another similar approach considers the input image(s) at different resolutions,
but with different features. As an example in [27], luminance, color and texture at
several scales are computed at every position in the image. The strength of inho-
mogeneities of luminance, color and textures are used as indicators of edge evidence.
An accumulated edge evidence map (AEEM) for different scales and different local
measures is then created. Another example is in [46], where Itti builds a scale space
where for every pixel in the image he computes color, intensity and orientation. Along
the same line, Salah et al. [96] use line orientations as the features at different scales.
In [120], Walker uses normalized Gaussian derivative kernels with different scales to
construct the differential structure of the image.

In summary, the process of salient detail detection, at this step, represents the
input image I as one or more images in which specific characteristics are emphasized,
but with scale as the most important parameter..

5.2.2 Detail detection

Detail detection involves the segmentation of images into a set of details namely
points, lines or regions. This step may use statistical classification [120], edge detec-
tion [45], region detection [27] or a combination of these techniques [51]. Each method
has its own parameters.

Regarding point detection, Schmid [100] gives a comprehensive overview. Exam-
ples of methods segmenting images into points are also given in [45]. The author first
segments the image into lines, and then finds the “cotermination” of pairs of lines
under some constraints.

Also in [45], Qasim uses a perceptual grouping algorithm to segment the image
into line based details such as: line segments, L-junctions, and U-junctions. Based



82 Chapter 5. Relevance feedback based saliency adaptation in CBIR

on the intensity image, pixels are grouped into “line-support” regions if they have a
similar gradient orientation. Other examples are in [60], [3].

For region detection, a typical example is the method in Blobworld [14]. After a
set of features are computed at each pixel at a selected scale, the system then groups
pixels into regions using the EM algorithm. Hoang in [44] uses k-means clustering to
group pixels in the image feature space to find homogeneous regions. In [21], Cinque
et al. segment the image into regions using a region-growing algorithm. Each time
a pixel is added to a region, its four nearest neighbors that have not been processed
are considered. A threshold on the color difference is used to decide whether a point
belongs to the region or not. In the reference, they also merge two nearby regions if
the difference between their mean colors is less than a threshold. These two thresholds
determine the region segmentation results.

5.2.3 Feature computation

Features can be any description of the details. Examples are the color histogram of
a region, the length of a line, or the curvature at a point on a curve. Changing the
features used and steering their computation gives another possibility for changing
the final set of salient details.

In [69], where the image with candidate points is represented in a scale-space, the
scale invariance of points is computed as feature. In [112], for every points extracted
in the previous step using wavelets, the feature computed at each point the sum of
the coefficients along the trace from the coarse level to the finer one. This method
thus depends on the wavelet function selected.

Another approach for computing features of points is described in [120]. Several
vectors of invariants are formed at each candidate point in the image. These vectors
build a multivariate distribution. At each point, they estimate the local density in a
distribution by summing the contribution from a mixture of Gaussians. The density
estimated for each vector of invariants is used as a feature at the appropriate scale.

In the case of lines, [3] uses the Gestalt’s principles. They calculate the following
features of curves: the length of the curve, the total curvature or energy, and the
amount of fragmentation. In [60], they use the expected number of closed contours
that pass through an edge as its feature.

In [45], the length of a line is used. In [88], he presents some features of edges such
as life-time, the time that an edge persists before disappearing during the blurring.

Feature computation for regions is presented in [27], [65], [80], [46]. Cinque [21]
simply uses the mean color of a region. In [27], Dimai computes the strength of
inhomogeneities of luminance, color and texture as feature of the region considered.

The feature computation step is very important to provide good candidates for the
next step. This step depends on the segmentation step as it needs correctly segmented
details. The most important parameter is the choice of the right feature to compute
for each detail.
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5.2.4 Saliency computation

For humans saliency is always defined relative to a neighborhood thus saliency should
be computed locally. However, most of the methods compute saliency as global
saliency based on the feature values. This leads to missing local salient details which
in the whole image may not seem significant, but within a local area become salient.
A particular example of locally defined saliency is given in figure 5.2.
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Figure 5.2: Example of local saliency. For global saliency computation, detail k will
not be considered salient. Within the interval, the local maxima detector returns k
as a salient detail since compared to its neighbor it exhibits a significant change in
feature value.

It follows that the typical parameter for this step is Π determining the area or
the interval where the saliency is considered [69], [100]. For example, in [100], they
first apply the Harris detector for extracting corner points. The authors then use
relatively small circles around each corner to compute the saliency of that point based
on variance under rotations. In the special case where Π denotes the whole image, it
boils down to global saliency computation.

Hence, in the output of this step, for each candidate detail d, the saliency value is
l~π(d).

5.2.5 Selection based on significance

For describing an image one should select a limited set composed of the most relevant
salient details. Given the saliency based on feature values, we classify existing methods
in the following two types. The first type employs a simple way of selection by using
a threshold on the number of details. This ignores the varying complexity of different
images. The second type is more natural using a threshold δ on the saliency values
[9], [21], [45]. For example, in [45], a threshold is used to select the longest lines. In
general, this approach can be represented as follows:
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D̂ = { d ⊂ D | l~π(d) > δ, δ ∈ R }. (5.9)

The following is the special case requiring no parameters where only the most salient
detail will be returned:

D̂ = argmax
d∈D

l~π(d). (5.10)

5.3 Interacting with salient details

In the interactive stage, the aim is to take the offline data as basis and find the details
which are salient from the perspective of the user. At this point we should make a
distinction between salient details for which visual evidence is present in the image
and details for which this is not the case. The latter can only be found by the system
using prior knowledge on the shape [3]. We focus on the former case, and hence make
the assumption that for a user desired salient detail the evidence can be found for
some parameter setting. However, due to the “sematic gap”, the system cannot define
automatic methods for setting those parameters in a general domain. Support by the
user to find the most appropriate parameters is required.

5.3.1 Processing steps

In current systems changing the features, if possible at all, is done by manipulating
the parameters and visualizing the result. This is acceptable for a computer vision
expert, but being able to control the system in such a manner is not feasible for the
end-user. Therefore, rather than having the user manipulate the parameters directly
we let the user give relevance feedback on the results obtained. Based on this user
interaction, the system then has to select the optimal parameters accordingly.

Thus, the interactive stage consists of four steps: initialization of the result, visu-
alization of the result by using default parameters, relevance feedback and parameter
adjustment which will now be described. Figure 5.3 presents the whole framework
composed of the two stages.

Initialization This step starts the interactive stage with default parameters θ0

as suggested by the original methods. Those values are sent to the database and the
system returns the default salient detail set D̂0.

Visualization In this step, the details and their properties are visualized to help
the user in giving useful relevance feedback. In the simplest case, points and lines are
shown with their positions, regions with their boundaries overlaid on the image. A
more advanced method would also show why these details are considered more salient
than the others.

Relevance feedback By interacting with the objects visualized, the user gives
relevance feedback RFi to the system. A number of possibilities are indicating posi-
tive/negative examples, denoting a degree of (ir)relevance with respect to the target,
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Figure 5.3: Framework of interacting with salient details

changing positions, or indicating region of interest, merging or splitting [94], [64], [73],
[59]. The general form of this step is:

D̂θi
RFi−→ D̂θi+1 , (5.11)

where D̂θi is the current set of salient details, and D̂θi+1 is the set returned after the
relevance feedback.

Parameter adjustment Given the user’s feedback RFi the system should find
a set of parameters θ̂i+1 optimizing some criterion. Let us consider an example in
the case of points. When the user selects a region of interest, the new set of salient
points should contain as much points as possible in the interest region while limiting
the number of points in other regions. A general form for this is given by:

θ̂i+1 = argmax
θ

ERFi

(
D̂θi+1

)
, (5.12)

where D̂θi+1 is the set of salient details returned with parameter θi+1, ERFi
is an

evaluation function on the output salient details. The choice for this function depends
on the specific application. A general criterion is that the new set of salient details
should be closer to the user expected result than the previous one.

To avoid the user becoming disoriented by large changes a constraint C is added. In
other words, the constraint assures a smooth path to the optimal query. For example,
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a constraint could be that the size of new set of salient details should not be much
larger than the previous set. The general constraint is represented as:

C = C
(
D̂θi , D̂θi+1

)
. (5.13)

From 5.12 and 5.13 this parameter adjustment is described as:

θ̂i+1 = argmax
θ

ERFi

(
D̂θi+1 |C

)
, (5.14)

After parameter adjustment, the system finds the optimal set of parameters. These
values will be sent to the database, after which a new set of candidates is returned.
The process is repeated until the user accepts the results.

5.3.2 Offline computation

We have shown that salient details can be computed using a five step process where
each step is steered by a set of parameters. For interaction it is not feasible to
do all the computation at run-time. Therefore for a given range of the parameter
values we pre-compute the salient details and store them in a database in the offline
computation step. At each step, we determine the most important parameter, while
keeping the other parameters to their default values. Computing details beforehand
leads to the problem of storing the offline data. As only the resulting details have to
be stored the storage requirements are moderate compared to the space required for
the image itself. For example in the case of salient points, only their coordinates are
stored for each parameter setting. In the case of salient regions, the storage is also
moderated as for each parameter setting an identification image is stored where the
value corresponds to a region. As the number of regions is limited, the identification
image of a RGB image is on average 3KB only (in PNG format with the size of an
image is 384x256 or 256x384).

Assume the setting for a parameter is 10 different values. In the worst case when
the method employs each of the five step a parameter, the size of Σ is then 105. Each
segmented image has size 3KB, so for example with 10000 images, total storage is
3GB. It seems that the setting for each parameter is unlimited. In practice, those
parameters should not be too different from the default ones since we meant to adjust
them to suit a specific query. As in our experimental results, the setting takes the
default parameters as a standard point then decreases and/or increases within certain
range to get the new set of parameters. Hence, this will limit the explosion of possible
combination between parameters.

In the following the pre-computed data for a given input image is called the offline
data for that image. The size of the offline data is O(Nit):

Nit = (||Σ|| × ||Ω|| × ||Λ|| × ||Π|| × ||Γ||),

where the || · || denotes the size of a set.
When the dataset grows beyond 10.000 images we should consider the use of special

data structures to make the access to the offline data more efficient. This depends
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on the type of relevance feedback given by the user, the specific function chosen in
equation 5.12 and the constraint function chosen in equation 5.13. With a carefully
chosen constraint it is feasible to obtain a considerable pruning of the search region
in parameter space. That is, for every image and for every parameter setting we can
precompute which other parameter settings fall within the constraint. Links to those
parameter settings can be stored in an index. Only if the initial query image is chosen
outside the dataset, we have to go through the whole parameter space.

5.4 Instantiations of the framework

In the previous section a general framework for interacting with salient features has
been defined. To show its validity we now introduce three example instantiations
of the framework to show how it can be used to add an interaction step to existing
methods. Each example illustrates different aspects of the framework to show how
it can be used to add an interaction step to existing methods. These examples are
respectively based on points, lines and regions. Finally, we show how to apply the
latter as the query redefinition step in content based image retrieval.

5.4.1 Interacting with salient points

For offline salient point detection, the Harris detector is used [55]. The Harris de-
tector has a set of parameters θ = θ(σ, r, t) where σ is the standard deviation of the
smoothing Gaussian used in the image processing step, r is the radius of mask’s size
considered for local maxima in the detail detection step, and t is the threshold for
selecting output salient points.

The off-line stage as described above stores an archive of possible sets of salient
points by computing results for σ = {1.0, 2.0, 3.0, 4.0}, r = {1.0, 2.0, 3.0, 4.0}, and
t = {100, 200,
500, 800, 1000, 1100, 1200, 1500, 1800, 2000, 2500}. The default set of parameters is
given by θ0 = (1.0, 1000, 1.0) [55]. In this example, the relevance feedback is the
selection of a region of interest.

Given an input image with a set of points extracted by the initialization step, the
user then selects a region of interest T by drawing an rectangle with points inside
taken as positive examples. This relevance feedback is used to search through the
off-line database to find the optimal result.

The updating step searches for a θi+1 satisfying equation 5.12. In this experiment,
we aim at finding many points inside the region of interest, and few points outside.
Hence, the system finds θi+1 such that:

θi+1 = argmax
θ

(
||Pin(θ)||

||Pin(θ)||+ ||Pout(θ)||

)
where {

Pin(θ) = T ∩ D̂θ

Pout(θ) = D̂θ \ T
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Figure 5.4: Instantiation of the framework for the Harris point detector

to assure that points are gradually added to T , we use the constraint:

C =
{

(1− ε)||D̂θi || < ||D̂θi+1 || < (1 + ε)||D̂θi ||
}

.

with ε = 0.2. This means that within the constraint C, we find a parameter set θ that
returns the maximum value of Pin

Pin+Pout
. This is illustrated in figure 5.4.

We now show some results of using the method thus defined. In the first example,
we consider the image depicted in figure 5.5a. With the default set of parameters,
the Harris point detector returns 463 points mostly lying along the borders. In case
the user wants to have points inside the petal area, the default parameter set fails to
return the set of salient points inside that region. Within the region of interest, the
number of positive points is 128/463. Based on the user feedback, the system finds
the new values for parameters which return the total number of 475 points, with more
points in the region of interest namely 162/475.

The second example is similar. The default parameter set returns 1904 points with
39 positive points. The system updates the parameters and 1568 points are found.
The final set of salient points (107/1568) is still able to cover the main corners,
borders, while better to representing the user selected region.

5.4.2 Interacting with salient lines

In this section, we show an instantiation of the framework for salient line extraction.
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Figure 5.5: Examples of experimental results. The left images are query images. The
middle ones are images with default automatic detected salient points superimposed,
the rectangles show the regions of interest with positive examples given by the user.
The right ones are the returned images after user-feedback.

In this example, we employ the Canny edge detector [12]. In the image processing
step, the input image is smoothed using a Gaussian mask. Gradient magnitude and
edge direction are then computed at each pixel to extract edges. In the final step,
Canny uses a threshold over the average strength of candidate edges, which will yield
a set of salient edges.

The output is given to the user to provide feedback. The final image should
contain as much as possible the details which are salient from the user’s perspective.
The instantiation is shown in figure 5.6.

From the above we collect the set of parameters for this method as θ = θ(σ, t),
where σ is the standard deviation of the Gaussian, and t is the threshold to select
whether there is an edge point or not. Default θ0 is set to (1.0, 3.0) as proposed in [33].
The offline-stage stores an archive results for parameters σ = {1.0, 1.5, 2.0, 2.5, 3.0, 3.5,
4, 4.5, 5}, and t = {1.0, 2.0, 2.5, 3, 3.5, 4, 5, 6, 6.5, 7}.

In this experiment, we let the user give feedback by selecting the line which they
want to be removed. Here we make the assumption that these edges occur because
the level of detail is too high, hence too many edges of limited length are present.
Therefore, the length l0 of the selected line is computed. The new θi+1 will be
searched through the offline data such that the new set of salient lines contains as
little as possible lines with length smaller than l0. Thus,

θi+1 = argmax
θ

(
||Dp(θ)||

||Dp(θ)||+ ||Dn(θ)||

)



90 Chapter 5. Relevance feedback based saliency adaptation in CBIR

q
i+1

Salient points

q
o

Original image with

extracted edges

superimposed

Parameter

adjustment

Initialization

Offline stage

Gaussian smoothing

Edge strength

Thresholding

Input image

Candidate

salient points

Interactive stage

S = {s1, s2, …, sk}

G = {t1, t2, …, tT}

S G
Salient

points

Select of

edge/non-edge

Positive

examples

Edge detection

Saliency equals

feature value

Figure 5.6: Instantiation of the framework for Canny edge detection

where {
Dp(θ) = {d : ||d|| > l0}
Dn(θ) = {d : ||d|| ≤ l0}.

The constraint is:

C =
{
||(1− ε)||D̂θi || ≤ ||D̂θi+1 || ≤ (1 + ε)||D̂θi ||

}
,

where we use ε = 0.1.
To start the system, we begin with the smallest value of σ and t to obtain all

possible edges. Each time the unwanted lines are removed. This is illustrated in figure
5.7. We observe that the image after user’s feedback has less petty lines compare to
the result using default parameters. Of course, this experiment can also be done in
the case where the user looks for more detailed edges. The user then gives feedback
by pointing at regions in the image where edges should be found, but are not present.
This is quite similar to the case of finding points of interest as presented in section
5.4.1.

5.4.3 Interacting with salient regions

In this example, we work with the region segmentation method from [44]. In this
reference, starting with Gaussian smoothing, the image is filtered using a set of Gabor
filters. All pixels are represented in the feature space given by the Gabor results and
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Figure 5.7: Examples of experimental results with interactive salient line detection.
The first row contains the original image and an edge image with default parameters.
Some results after user interaction are shown in the second row.

the color. A k-means clustering method is then used to group pixels into regions.
They collect the same color and texture features from the previous step to find the
similarities between extracted regions. Regions with similarities larger than a given
threshold are then merged to give the final salient regions.

Different parameters are used in the process, we select two of them as tunable
parameters: the scale σ used in the Gabor filters computation, and the similarity
threshold t. Thus, we collect a set of parameters for this method as θ = θ(σ, t).
The remaining parameters for the Gabor filter namely the specific frequencies and
orientations are taken following the guideline in [44]. The default values are θ0 =
({4, 3.5, 2.95, 2.35, 1.75}, 7.5). In the experiment, we take t ∈ [4.0, 8.0] with step 0.5
and σ ∈ [1.0, 6.0] with step 0.05 and apply them to the method.

The resulting salient regions are visualized. The user gives feedback by asking the
system to split or merge regions. When the user asks for a global split or merge, the
system searches for a θ̂ which returns D̂′θ with a number of regions larger or smaller
respectively than the previous result D̂, i.e.,

θi+1 = argmax
θ

(
||D̂θ||

)
,

with

C =
{
||D̂θi || < ||D̂θi+1 || < (1 + ε)||D̂θi ||, ε ∈ R+

}
C =

{
||D̂θi || > ||D̂θi+1 || > (1− ε)||D̂θi ||, ε ∈ R+

}
The new θt+1 returned with maximum number of regions or minimum, in case of
splitting or merging respectively, within the constraint C.

In our experiment, we simply select ε such that the number of salient regions will
increase/decrease 20% in the new set. If ε ∗ ||D̂θi || < 1 then the constraint will be ±1
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Figure 5.8: An instantiation of the framework using Hoang’s region segmentation

region, respectively. Therefore,

ε = max(0.2,
1

||D̂θi ||
).

In case of a local split the system tries to keep the outer boundary of the selected
region, and introduces inner boundaries. With local merging of regions, the system
keeps the outer boundary and removes inner ones. This leads to general criteria for
selecting a set of parameter θ which will now be explained.

Assume the current set of salient regions is D̂ = {d̂1, · · · , d̂k}, the user decides to
merge two regions d̂i and d̂j . The system returns D̂′θ = {d̂′1, · · · , d̂′t} such that

∃m : d̂′m ' {d̂i ∪ d̂j},

where ' denotes that the new region d̂′m approximates the combination of the two
regions d̂i and d̂j with an error τ ∈ R+.

Therefore, let A(d̂) denotes the area of d̂ then the evaluation function will be:

E =
((
A(d̂′m) ∪ A({d̂i ∪ d̂j})

)
\
(
A(d̂′m) ∩ A({d̂i ∪ d̂j})

))
,

with constraint C =
{
||D̂θi+1 || = ||D̂θi || − 1

}
.
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In the similar case for local splitting, we have d̂m ' {d̂′i ∪ d̂′j}. Those formulas can
easily be generalized for n regions. Repeating this process, the user will be able to find
the meaningful segmentations. Figures 5.9 and 5.10 show some results of interactive
segmentation of images.

Figure 5.9: Example of an interactive segmentation result. The left image is the
query image. The middle one is the segmented image with default parameters. The
right image is the result after user-based splitting/merging process. The default set of
candidate salient regions are shown to the user, a global merging command is given.
The system then returns the segmented image with a number of regions lower than
before.

The results depend on what the user is looking for, since the definition of “ob-
ject” is at the semantic level. In the first example, the salient region represents the
“woman”. In the second example, the user looks for the region of the sun.

5.4.4 Content based image retrieval with query refinement

In this section, we present two applications of the proposed framework for content
based image retrieval using salient points and salient regions. We leave out the ap-
plication with salient lines as it is in the middle of points and regions.

Some available examples of using salient points in CBIR are presented in [100],
[112], for lines in [45], and for regions in [14]. For CBIR with salient details an
appropriate similarity function has to be defined. For instance, the Hausdorff or
Chamfer distance would be an appropriate choice to measure the similarity between
images based on comparing the locations of salient points. With sets of lines, the
similarity can be based on the comparison between two sets of lines on either the
curvatures of lines, or their shapes, or we can view lines as the border between two
regions and compare their features. With regions, features can be shapes, colors,
textures.
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local splitting

Figure 5.10: Example of an interactive segmentation result. In this case, a local
splitting command is given to the default set. A local search is given within the
selected region to find more regions in it, therefore the parameter θ is locally defined.

In the previous sections, we have used the framework to find the optimal parame-
ters for one image. Now let us consider how to apply this for searching. If we perform
t steps, we have (from e.q. 5.2)

{IQ, F 0
Q, SQ, ZQ}

RFi→ {IQ, F t
Q, SQ, ZQ}

Thus at every step, the whole query space is updated as the current parameters
are applied to the whole dataset. Thus after initialization we iteratively search for
a good query. The number of iterations during the user interaction depends on the
value of ε in the constraint function C. If ε is set to a small value, the system will
take several steps to reach the final result.

5.4.4.1. Examples

For the experiment, a dataset of 1100 Corel images is used, which consists of different
scenes and objects. The initial images can be selected by the user from a set of
internal or external examples. For simplicity, we work on a single image at a time.
Working with multiple examples can be done by combining the user’s feedback on
each image.

The system is based on the query details defined by default parameters and tuned
parameters after relevance feedback as described in section 5.4.3 and 5.4.1.

In case of using salient points, for each image in the database, a set of salient
points is extracted. For computing the feature, we use [109] to get color moments
at each color channel. In our experiment, we use HSI color space. First, the color
histogram HSI is computed at each salient point in a 3x3 neighborhood. Those values
are sum up and normalized by the number of salient points in the images. Next, three
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color moments: mean, variance, and skewness are computed for each color channel.
Hence, each image is then represent by a vector of 9 values. L1 is used as a similarity
function between feature vectors.

For query region specification and refinement we follow the method of section 5.4.3.
However, in this case, as features of the region, we take Hue and Saturation as they
are simple and effective for the Corel dataset. With Hue and Saturation features, the
function SQ is based on histogram intersection [110]. The similarity value is defined
by the best matching region of an image to the query one. Finally, returned images
are ranked based on similarities.

As described in the previous section, we select ε = 0.2. Then for each query, it
takes 4 to 5 iterations to reach the user’s desired result, i.e., t = 4 or 5.

Query region

Figure 5.11: Example of a query region definition. The upper-left corner is the query
image, the upper-right corner is the image with query region using default parameters.
The last one is the image with redefined query region. The circle denotes the clicked
point by the user.

An example of how the system works is given in figure 5.11. In this particular
example, it follows that with default parameters, the query is almost the whole image,
hence contains both red (flowers) and green (leaves). The system then returns images
which contain regions with similar color distributions. The user shows that he/she
is only interested in the red region, the results after adaptation therefore show all
images with red regions also if they are on a different background. In figure 5.12, we
show the results with the corresponding retrieved regions similar to the query region.
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It is observed that the result with updated parameters (figure 5.12a) is closer to the
desired results than the default (figure 5.12b) since retrieved regions are indeed similar
red regions. In figure 5.12c, the updated parameters are only applied to the query
image but not to the whole dataset. Since the new parameters define a smaller scale,
the results show that images returned have red regions extracted at high scale but
miss ones that only exist at smaller scale. When applying the updated parameters
to the whole dataset, the regions at higher scale are subdivided into smaller regions,
hence those contain smaller red regions, which are now retrieved by the system.

5.4.4.2. Experiments

As stated before, finding the user’s desired results is a subjective problem, hence it
is not easy to evaluate or compare our system to existing ones. However, we believe
that using updated parameters, the user will be provided the choice to select the right
details, which are missing using the default ones, for a query search. To see whether
salient details performs better than global features, and to see whether it pays off
to optimize the parameters specifically for each query, we compute the following
comparisons:

(i) default query detail compared to details with default parameters in offline data.
(ii) updated query detail compared to details with default parameters in offline

data.
(iii) updated query detail compared to details with updated parameters in offline

data.
(iv) using global features (i.e., features are computed for the whole image).
For that purpose, we built a model for the search task, which will be described as

follows.
We used the pre-defined categories from Corel. The 10 categories are cars, surfing,

sunset, flowers, roses, seasons, flower beds, balloons, summer, winter. The size of each
category is 100 images, except the category “Roses” containing 200 images. Each
image in the dataset is subsequently used as the query. Salient details are extracted
using either default or updated parameters. With salient points, the feature vector
of the query image is compared to all feature vectors in the database at the same
parameter setting. In case of region based search, the comparison is more complicated.
Each region in the image is selected as the query region. The search process looks
into the offline data, and compares the query with all extracted regions at the same
parameter setting. The similarity is the maximum value of all regions in one image
compared to the query region. Hence, for each query region, we get a ranked list of
images based on the similarity values (figure 5.13). We then compute the recall and
precision. The final rank list of a query image is the one with highest values of recall
and precision. Number of retrieved images in the experiments are 10, 20, 30, 50, 100,
150, 200 images. Figure 5.16 and 5.17 and 5.18 show average precision and recall of
each category using salient regions and points, respectively.

From the results, we show that using salient details generally perform better than
global features. This especially holds for region based search when finding red flowers,
cars, and sun. Since the searched objects are specific, the user easily figures out the
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(a)

(b) (c)

Figure 5.12: (a) Result images using region-based search where the query region
is extracted using default parameters, at the right side of each picture the region
found is indicated. (b) The same but now using the updated parameters. (c) Result
images using region-based search where the query region is extracted using updated
parameters but without applying those updated parameters to the whole dataset.

salient regions for the search. In case of general search, for example searching for
seasons, it is hard to point out which regions are most representative for the term
“Season”. Besides, we show that finding the appropriate query details (ii) leads to
an improvement of the search. However, updating the whole dataset with the new
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Figure 5.13: Experimental setup.

updated parameters (iii) will give the best results. From the experiments, we also
prove that for each category there is an optimal parameter set for the search different
from the default one.

5.5 Conclusion

In this chapter, we have proposed a user based framework for interacting with salient
details. Using this framework we have identified that existing salient detail detec-
tions can be classified into the following five steps: image processing, detail detection,
feature computation, saliency computation, and selection based on significance. Tun-
able parameters at each step are then found, from there we present efficient methods
for updating those parameters via user relevance feedback. The instantiations of the
framework show that adapting saliency of details can get closer to saliency in user’s
perspective. Moreover, based on a set of 1100 images from the Corel collection, the
potential of applying the frame work to the image retrieval system is illustrated. Ex-
perimental results first prove our theory that using salient details perform better than
global features, especially using salient regions. Secondly, it is demonstrated that us-
ing parameter optimization to update the query space remarkable improvements in
retrieval performance can be obtained. Extending the proposed framework so that it
can deal with larger datasets (e.g., more than 100000 images) is an interesting topic
for future work. For such a large data set, a number of issues such as indexing for
interaction and search as well as storing data must be studied thoroughly.
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Figure 5.14: Average recall and precision comparison of 1100 Corel images.
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Figure 5.15: Recall and precision comparison using salient points.
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Figure 5.16: Recall and precision comparison using salient points (continue).
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Figure 5.17: Recall and precision comparison using salient regions.
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Figure 5.18: Recall and precision comparison using salient regions (continue).
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Chapter 6

Conclusion

6.1 Summary of contributions

Content-based image retrieval (CBIR) has been under investigation for a long time.
Many systems have been built to meet different application demands. In all systems,
there is a strive towards semantic retrieval. As the exchange of semantic information
requires concordance between any two parties on the context, user interaction is an
essential component of any semantic CBIR-system. And, the interaction will be not
easy to achieve as still there is the semantic gap between the user’s expectation of
what the system can do and the actual retrieval capabilities of the system. In this
thesis, we have developed and evaluated several components for interactive CBIR to
reduce the semantic gap. The research questions raised in the introduction have been
analyzed and answered in four chapters.

To answer the question Q1: What is the optimal way of visualizing images in
obtaining useful feedback?, we investigated various visualization techniques in chap-
ter 2. We first analyzed the role of visualization in interactive CBIR for searching
and browsing through large collections of images. Despite of their essential role, we
observed that existing visualization systems do not sufficiently cope with the prob-
lems occurring when dealing with large visual collections. Therefore, we have made
these problems explicit. From there, we established three general requirements that
visualization should obey: overview, visibility, and structure preservation. Solutions
satisfying each requirement were proposed as well as functions balancing the im-
portance of the various requirements. Based on these requirements, we presented an
optimal visualization scheme for supporting users in their interaction with large image
collections. Experimental results on a collection of 10,000 Corel images, using simu-
lated user actions, show that the proposed scheme significantly improves performance
for the task of category search when compared to the 2D-grid based visualizations
commonly used in CBIR.

Having defined an optimal visualization system, we considered the integration of
visualization and user feedback to improve interaction further. In chapter 3, we
first observed that in current research the visualization and feedback are often being
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considered as two independent elements. This means that on the one hand, some of
the research concentrates on learning methods for effective use of relevance feedback;
while on the other hand, another focus of research is on effective methods for con-
veying information to the user. We proposed an efficient interactive search system
in which the two steps are truly integrated. In such an integrated system, there are
many degrees of freedom like the similarity function, the number of images to dis-
play, the image size, different visualization modes, and possible feedback modes. It
is unfeasible to find by user studies optimal values for all of these parameters. We
therefore developed search scenarios in which tasks and user actions were simulated.
This gave an answer to the question Q4: How to objectively evaluate the performance
of an integrated interactive CBIR-system?. Given the scenario and user actions, the
proposed scheme was optimized based on objective constraints and evaluation crite-
ria. In such a manner, the degrees of freedom are being reduced and the remaining
degrees can be evaluated in user studies. We performed extensive experimentation
on interactive category search with different image collections. The results show that
the use of advanced visualization and active learning indeed pays off on all of the
datasets. The components are included in the MediaMill system, which received the
Best Technical Demo Award at the ACM Multimedia conference 2005 [106].

The first set of chapters consider the problem at a system level. In the next
two chapters, we concentrated on specific components of the interactive framework
(see figure 1.1) namely the features F and similarity function S. In chapter 4, we
considered the learning of similarity between images (question Q3: How to iteratively
learn similarity on a higher level than the primitive level). We introduced a new
approach to learn dissimilarity for interactive search in CBIR. We used relevance
feedback to adjust the dissimilarity without going back to the feature space, and this
is different from what other techniques do. This has the great advantage that we can
manipulate the dissimilarity directly. To create a dissimilarity space, a set of images
was first selected as prototypes. Similarities between each image in the collection
and each of those prototypes formed the new representation of an image [81]. After
user feedback, we employed one-class SVM to adjust this space such that relevant
images stayed close to one another while irrelevant ones were pushed away following
the technique in [39]. Results on a Corel dataset of 10000 images and a TRECVID
collection of 43,907 key frames show that our proposed approach is not only intuitive,
it also significantly improves the retrieval performance.

Like the definition of similarity, the saliency of image features also is user and
context dependent. So, to answer the question Q2: How to define the saliency of fea-
tures, namely points, regions, or lines, such that it is context and user interpretation
dependent?, in chapter 5, we considered user interaction with salient details in the
image. Interaction with features in literature has mostly been focused on changing
global image features. The interactive salient detail definition goes further than sum-
marizing the image into a set of salient details. We dynamically updated the user- and
context-dependent definition of saliency based on relevance feedback. To that end, we
proposed an interaction framework for salient details from the perspective of the user.
A number of instantiations of the framework were presented. Experimental results
using salient points and regions proved the effectiveness of adapting the saliency from
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user feedback in the retrieval process.
In summary, we have introduced a new generation of advanced image search mech-

anisms. An optimal search system integrating both visualization and feedback steps
has been proposed. The techniques to iteratively update dissimilarity and salient
features in this thesis bring these abstract notions much closer to the user. With the
proposed techniques and systems, the results of interactive CBIR improve in perfor-
mance and intuition, building a bridge over the semantic gap.

6.2 Future directions

We consider similarity-based visualization and the associated feedback mechanisms as
the most promising line of research to continue on. We discuss here how to generalize
the current system to support other tasks, how to scale up to much larger collections
of images, and how to arrange the evaluation.

Generalization to other tasks In this thesis we mainly concentrated on visual fea-
tures, but the visualization system can in principle be applied to many other
types of features as long as there is a well-defined similarity function. As long
as visual similarity is used, relations between images may be evident by simply
looking at them. This may not be all that trivial for other situations like the use
of text-based relations. What are needed are visualization mechanisms which
visualize these relations for the users to grasp their meaning. The proposed
interaction scheme can be adapted to different scenarios such as target search,
association search, and annotation. For instance, in target search the user looks
for a specific image. In our system, hierarchical browsing of images where simi-
lar images are grouped will guide the user to the right search direction. For this
task the system should be more conservative in deleting images from the active
set as it might well contain the target image. For the annotation task, images
have to be assigned a semantic meaning by the user. As similar images are
located close to each other, the user’s effort to annotate a large image collection
will be reduced significantly. To adapt to this task the system should allow
attaching multiple semantic labels to an image whereas in category search only
one category is considered. In general, for new tasks, the adaptation is achieved
by careful redefinition of the task and the user actions before optimizing the
system.

Scalability in supporting the user One of the major challenges in interactive re-
trieval is the ever increasing size of image collections. The collections used in
this thesis are big, but still small compared to image collections users might
encounter in practice. At some point the combination of hierarchical search fol-
lowed by similarity-based visualization will require too much interaction steps.
The limitation of the display in combination with the visibility requirement
will become a bottleneck. To optimize the use of the visualization space, 3D
and dynamic similarity based visualization are to be considered. When follow-
ing this direction, the balance between the three proposed requirements should
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be adapted as well. 3D-visualization can be treated as a layered set of 2D-
visualizations, where the techniques in this thesis are applied to each individual
layer. The question then is how the order of the layers relates to structure.
When genuine 3D visualization is used with the size of images changes with
depth, structure should be preserved in 3D, while visibility has to be dependent
on depth. In dynamic visualization, visibility puts limitations on the speed with
which images can be displayed, and this should be an additional constraint in
the visibility term. Advanced visualization is even more needed for very large
collections than it is for the datasets considered in thesis.

Scalability from a system perspective . To achieve interactive response times,
our interactive system mostly deals with representations of the data which are
computed offline. Offline computation makes the system less flexible. When im-
ages are added to the collection, re-computation of the offline data is required.
For clustering the competitive learning method described in section 4.3.1 (chap-
ter 4) scales well. But, when moving from offline to online computation different
mapping techniques are needed. In chapter 2, we showed that the local linear
embedding LLE (see table 2.1) gives a good approximation to the best perform-
ing mapping ISOSNE (isometric stochastic neighbor embedding), but requires
an order of magnitude less computation time. Therefore, LLE is a good candi-
date for achieving online mapping of large collections. An alternative is a more
recently published version of the ISOMAP algorithm [111]. This method pro-
vides an approximation of the optimal mapping of datasets by selecting a set of
elements called landmark points. It means that for computing the mapping only
a subset of the dataset needs to be considered. For small sets the landmarks will
not be able to preserve the structure of the whole collection in the mapping. For
large image collections, the problem of selecting appropriate landmark elements
which preserve structure and in the mean time are fast enough for interactive
system purpose is an open issue. Following these lines of fast, but sufficiently
accurate, methods will allow scalability in the number of images the system can
handle in an interactive fashion.

Objective evaluation Unlike fully automatic systems, an interactive system is de-
signed to work with users. For evaluating the system user studies are essential.
As we have discussed in the thesis, user studies should be preceded by evalua-
tions with simulated users as it is easier and more flexible. In our experiments,
the simulated actions are the ones most commonly used during interaction. The
more complicated the system, the more difficult it becomes to simulate the user
actions. To establish more elaborate objective evaluation models, a close rela-
tion between interactive search and the human-computer interaction field is to
be established. Currently, we see a limited research effort in that community
on interactive CBIR systems. And, in the CBIR-community limited attention
is paid to usability aspects. What is needed is a common framework in which
both technical and usability aspects are well defined. Then both can be jointly
optimized using simulations similar to the ones we have proposed.
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Extension on the methodology The use of a dissimilarity space for searching im-
ages in CBIR is a promising research direction. We have pointed out the advan-
tages of this approach: the space is simple to create; it is intuitive for interaction
and thus it is easier for the user to understand. Our method for adjustment of
the dissimilarity representation already improves search, but it is still basic as
we give all assumed dissimilar images the same adjustment direction. This is
not an optimal solution as each image has relations with its neighbors. Moving
an image affects those neighbors also. Hence, the movement of images in the
collection should be made dependent on one another. Secondly, the requirement
of having a reasonable number of positive prototypes may not be met for col-
lections containing a few relevant images only. A careful selection of negative
examples as prototypes can solve this problem. This means that prototypes
now contain positive as well as negative examples. Current research in the
pattern recognition field is considering how to deal with this issue [82], but no
application to CBIR has found its way yet.

With the proposed directions, we believe the current small bridge across the se-
mantic gap may be strengthened so that it will be able to support heavier traffic.
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Samenvatting

Het veld dat zich bezighoudt met het ontsluiten van beelden op basis van de inhoud,
beter bekend onder haar Engelse equivalent Content-based Image Retrieval en bi-
jbehorende acroniem CBIR, heeft door jarenlange studie een grote verzameling aan
toepassingen opgeleverd die voldoet aan een varirend eisenpakket. In al deze syste-
men bestaat er echter een semantische kloof tussen de verwachting van gebruikers
enerzijds en de zoekbekwaamheid van systemen anderzijds. Gebruikersinteractie is
daarom een essentile component van elk CBIR systeem. In dit proefschrift beschri-
jven en ontwikkelen we verschillende componenten van interactieve CBIR systemen
om de semantische kloof te dichten. De onderzoeksvragen uit de introductie worden
geanalyseerd en beantwoord in de vier hoofdstukken van dit proefschrift.

Het antwoord op vraag Q1: “Wat is de optimale wijze om beelden te visualiseren
voor het ontvangen van waardevolle terugkoppeling van gebruikers?” wordt beantwo-
ord in hoofdstuk 2 door verschillende visualisatietechnieken te onderzoeken. Eerst
analyseren we de rol van visualisatie in interactieve CBIR systemen voor het zoeken
en bladeren door grote beeldverzamelingen. Ondanks haar essentile rol, zien we dat
bestaande visualisatietechnieken niet alle problemen oplossen die een rol spelen bij het
analyseren van grote beeldverzamelingen. Deze problemen maken we expliciet en we
bepalen drie algemene eisen voor visualisatie van beeldverzamelingen: overzicht, zicht-
baarheid, en structuurbehoud. Voor elke eis stellen we oplossingen voor, evenals func-
ties om de verschillende eisen te balanceren. We presenteren een visualisatieschema
dat gebruikers optimaal ondersteunt bij het interacteren met grote beeldverzamelin-
gen. Voor de experimenten gebruiken we een verzameling van 10.000 beelden uit
de Corel collectie in combinatie met gesimuleerde gebruikersacties. Uit deze experi-
menten blijkt dat het voorgestelde visualisatieschema de resultaten voor een gegeven
zoektaak significant verbetert in vergelijking met reguliere 2D rastervisualisatie, zoals
die veelvuldig benut wordt in bestaande CBIR systemen.

Na het bepalen van optimale visualisatieschema’s, beschrijven we de integratie
van visualisatie met terugkoppelingstappen. In hoofdstuk 3 laten we eerst zien
dat huidig onderzoek naar interactieve zoekmechanismen visualisatie en terugkoppel-
ing als twee onafhankelijke elementen beschouwt. Dit betekent dat bestaand onder-
zoek zich enerzijds concentreert op leermethoden voor effectief gebruik van relevante
terugkoppeling en zich anderzijds focusseert op effectieve methoden voor het overbren-
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gen van informatie naar de gebruiker. Wij stellen een efficint interactief zoeksysteem
voor waarbij deze twee stappen daadwerkelijk gentegreerd zijn. In een dergelijk gen-
tegreerd systeem bestaan verscheidene vrijheidsgraden, zoals de gelijkenisfunctie, het
aantal zichtbare beelden, de beeldgrootte, de visualisatiewijze en mogelijke terugkop-
pelingmanieren. Het is onhaalbaar om via gebruikersstudies voor al deze variabe-
len een optimale waarde te bepalen. We ontwikkelen daarom zoekscenario’s waarbij
taken en gebruikersacties gesimuleerd worden. Dit geeft ons een antwoord op vraag
Q4: “Hoe de performance van gentegreerde interactieve CBIR systemen objectief te
evalueren?” Van daaruit wordt het voorgestelde integratieschema geoptimaliseerd,
gebaseerd op objectieve randvoorwaarden en evaluatiecriteria. Op deze wijze worden
de vrijheidsgraden gereduceerd. De resterende vrijheidsgraden kunnen met behulp
van gebruikersstudies worden gevalueerd op een systeem dat geavanceerde gelijkenis-
gebaseerde visualisatie integreert met interactief leren. We voeren uitgebreide ex-
perimenten uit met verschillende beeldverzamelingen op het interactief zoeken van
categorien. De resultaten op basis van het voorgestelde simulatieschema laten zien
dat het gecombineerde gebruik van geavanceerde visualisatie en interactief leren loont
op alle datasets. Ons systeem is gentegreerd in de MediaMill video zoekmachine, die
als beste technische demo bekroond is op de ACM Multimedia conferentie in 2005
[106].

De bovenstaande hoofdstukken beschrijven het interactievraagstuk op een sys-
teemniveau. In de volgende twee hoofdstukken focusseren we op specifieke compo-
nenten van het interactieraamwerk (zie figuur 1.1), namelijk de kenmerken F en de
gelijkenis S.

In hoofdstuk 4 beschrijven we het leren van gelijkenis tussen beelden (vraag
Q3: “Hoe kunnen we iteratief gelijkenis leren op een niveau hoger dan het primitieve
niveau?”). We introduceren een nieuwe benadering om het verschil tussen beelden te
leren voor interactief zoeken in CBIR. We demonstreren dat in de literatuur gelijke-
nis vaak geleerd wordt via de kenmerkruimte door kenmerkselectie, kenmerkweging
of een geparameteriseerde functie van de kenmerken. Anders dan bestaande tech-
nieken gebruiken we relevante terugkoppeling om in plaats van de gelijkenisruimte
de verschilruimte aan te passen, zonder terug te gaan naar de kenmerkruimte. Dit
heeft het grote voordeel dat directe manipulatie op de verschillen plaatsvindt. Om
de verschilruimte te creren gebruiken we de methode van Pekalska. Nadat de ge-
bruiker terugkoppeling geeft passen we een n-klasse SVM classificatiemethode toe om
de ruimte zo aan te passen dat relevante beelden bij elkaar blijven, terwijl irrele-
vante beelden weggeduwd worden volgens de techniek in [39]. Resultaten op de Corel
dataset van 10.000 beelden en de TrecVid collectie van 43.907 beelden laten zien dat
onze voorgestelde oplossing niet alleen intutief is, maar dat het de zoekresultaten ook
significant verbetert.

Tot slot, om vraag Q2: “Hoe de saillantheid van kenmerken, namelijk punten,
regio’s, of lijnen, te bepalen opdat het context- en gebruikersinterpretatie-afhankelijk
is?” te beantwoorden, beschrijven we in hoofdstuk 5 interactie met in het oog sprin-
gende details, in het bijzonder punten, regio’s en lijnen in beelden. In de literatuur
focusseert men vooral op interactie met veranderende globale beeldkenmerken. De
interactieve saillante detail definitie gaat verder dan een samenvatting van het beeld
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in saillante details. We verbeteren de gebruikers- en contextafhankelijke definitie
van saillante details dynamisch met behulp van relevante terugkoppeling. Om dat
te bereiken stellen we een interactieraamwerk voor waarbij veelzeggende details va-
nuit het perspectief van de gebruiker worden bezien. Een aantal instantiaties van
het raamwerk worden gepresenteerd. We passen onze benadering toe op het verfijnen
van zoekvragen in detailgebaseerde beeldontsluiting met saillante punten en regio’s.
Experimentele resultaten bewijzen de effectiviteit van het aanpassen van saillantheid
op basis van gebruikersterugkoppeling in het zoekproces.

Concluderend: in dit proefschrift hebben we een nieuwe generatie van gea-
vanceerde zoekmechanismen voor beelden gentroduceerd. Een optimaal zoeksysteem
dat zowel visualisatie als terugkoppelingstappen integreert is voorgesteld. We hebben
kenmerken en gelijkenis naar de gebruiker gebracht en op die manier een smalle brug
over de semantische kloof geslagen. Verder onderzoek langs de voorgestelde richtingen
zal deze brug verder versterken zodat druk verkeer mogelijk wordt.
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