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Abstract

T
he state-of-the-art image analysis algorithms offer a unique opportunity to extract
semantically meaningful features from medical images. The advantage of this ap-
proach is automation in terms of content-based image retrieval (CBIR) of medical

images. Such an automation leads to more reliable diagnostic decisions by clinicians as the
direct beneficiary of these algorithms.

Digital pathology (DP), or whole slide imaging (WSI), is a new avenue for image-based
diagnosis in histopathology. WSI technology enables the digitization of traditional glass
slides to ultra high-resolution digital images (or digital slides). Digital slides are more
commonly used for CBIR research than other modalities of medical images due to their
enormous size, increasing adoption among hospitals, and their various benefits offered
to pathologists (e.g., digital telepathology). Pathology laboratories are under constant
pressure to meet increasingly complex demands from hospitals. Many diseases (such as
cancer) continue to grow which creates a pressing need to utilize existing innovative machine
learning schemes to harness the knowledge contained in digital slides for more effective and
efficient histopathology.

This thesis provides a qualitative assessment of three popular image analysis techniques,
namely Local Binary Pattern (LBP), Bag of visual Words (BoW), and Convolution Neu-
ral Networks (CNN) in their abilities to extract the discriminative features from gigapixel
histopathology images. LBP and BoW are well-established techniques used in different im-
age analysis problems. Over the last 5-10 years, CNN has become a frequent research topic
in computer vision. CNN offers a domain-agnostic approach for the automatic extraction
of discriminative image features, used for either classification or retrieval purposes. There-
fore, it is imperative that this thesis gives more emphasis to CNN as a viable approach for
the analysis of DP images.

A new dataset, Kimia Path24 is specially designed and developed to facilitate the
research in classification and CBIR of DP images. Kimia Path24 is used to measure
the quality of image-features extracted from LBP, BoW, and CNN; resulting in the best
accuracy values of 41.33%, 54.67%, and 56.98% respectively. The results are somewhat
surprising, suggesting that the accuracy score of handcrafted feature extraction algorithm,
i.e., LBP can reach very close to the deep features extracted from CNN. It is unanticipated,
considering that CNN requires much more computational resources and efforts for designing
and fine-tuning. One of the conclusions is that CNN needs to be trained for the problem
with a large number of training images to realize its comprehensive benefits. However,
there are many situations where large, balanced, and the labeled dataset is not available;
one such area is histopathology at present.
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Chapter 1

Introduction

“ The last thing that we find in making a book is to know what we must
put first. ”

— Blaise Pascal

1.1 Motivation

D
uring the late 1999s, Institute of Medicine (IOM) released a report titled “To Err
is Human: Building a Safer Health System” [7]. Following is an excerpt from the
report

“..as many as 98,000 people die in any given year from medical errors.
..that’s more than deaths from motor vehicle accidents, breast cancer, or AIDS. [7]”

The report establishes “mistake” as the third most significant reason for deaths in the
US. For many obvious reasons, it gathered plenty of media attention raising questions
regarding the competency of healthcare professionals. However, the original intent of the
report was often lost in the blame game that emanated from the rhetoric of media. We,
humans, by nature, make mistakes, and healthcare is no different. What is more important
is to learn from the mistakes and use available information to prevent or reduce future
errors.

1



The advent of digitization in medicine has opened new horizons for integration of inno-
vative Machine Learning (ML) solutions into clinical practices. It aspires to make health-
care safer, traceable, and of better quality. The motivation for the thesis comes from the
desire to apply state-of-the-art ML algorithms on the current subjective task of image-
based diagnosis. Computer algorithms, especially based on Artificial Intelligence (AI),
offer a unique opportunity to extract useful features from medical images. The advantage
of this approach includes automated search of similar medical images in extensive archives
of hospitals and laboratories. Displaying the similar images from past patients who have
been diagnosed and treated, provides useful information to medical practitioners leading
to improved accuracy and precision of diagnostic interpretations.

1.2 Problem Statement

This thesis is concerned with irreducible error rate that comes from the current practices in
diagnostic pathology. The errors can occur during different stages of diagnosis; including
biopsy, sample preparation, and final interpretation — affecting patient’s safety as well as
reputation of the healthcare provider.

Diagnostic pathology involves many complex image analysis tasks, such as detecting
and counting mitotic events (cells divisions) for identifying breast cancer [8], segmentation
of nuclei, and tissue classification (e.g., cancerous vs. non-cancerous) based on compli-
cated patterns and morphology seen under microscopes at different magnification levels.
Furthermore, there is high variability in slide preparations (e.g., staining and scanning
across different vendors), variance permeating due to different grades of a same disease,
and vendor-specific platforms. These variables make pathology-based diagnosis even more
challenging.

Majority of the errors in diagnostic pathology are human errors, caused mainly due to
the biological limitations of humans in handling complicated image-analysis tasks. Some
of these limitations are — (i) humans are capable of distinguishing only 30 levels of gray
shades [9] whereas electronic standard is 256, (ii) human brain cannot comprehend a
complex scientific image analysis, systematically and tenaciously, which can be processed
in an automated manner through computer algorithms, and (iii) humans efficiency can
be affected by several factors, such as emotions, stress; however, computer algorithms are
objective and operative all times. These factors make the human-related errors irreducible
yet unavoidable. At present, the best course of actions to prevent the diagnostic mistakes
are re-assessment and re-evaluation of your own work, or to seek a second opinion by
consulting with others.
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Over the last decade, ML algorithms have evolved considerably. With progress in the
field of Deep Learning (DL), machines have become highly efficient in automated image
analysis and feature extraction, primarily in recognition of natural scenes, almost ap-
proaching the human-level performance [10]. However, ML methods in histopathology
image analysis are relatively less prominent and have many unexplored potentials. The
principal challenge of the research is to develop a pragmatic ML solution which is capable
of understanding the ontological status of histopathology indicators for diagnostic pur-
poses; thus ensuring more confident interpretation in diagnosis by enabling streamlined
and efficient workflow for pathologists.

1.3 Background

Histopathology is based on analyzing and interpreting different shapes, sizes, and architec-
tural patterns of cells and tissues can be combined with patient’s clinical records, and vari-
ous other factors in order to study the manifestation of disease. The word “histopathology”
originates from the combination of two branches of science “histology” and “pathology.”
Histology is the study of microscopic structures of tissues whereas pathology involves the
diagnosis of diseases through microscopic examinations of surgically removed specimens.

Histopathology is one of the essential disciplines throughout the healthcare delivery
system. It is studied and practiced by the medical experts known as pathologists. The
primary clinical duty of pathologists involves conducting a microscopic analysis of glass
slides containing tissue specimens to render pathology reports. The reports created by
pathologists are used for many clinical decisions, such as screening for diseases, developing
diagnostic plans, monitoring progression of diseases, and managing various therapies and
their prognosis.

Interpreting images of tissues and cells at high resolutions is the core of histopathology.
Over centuries, the microscope has been the only available instrumentation for this under-
taking; providing live images at an increasing resolution through ever improving-optics [11].
With the increased digitization of clinical practices, histopathology is also leading its way
in utilizing a digital imaging technology as the “digital-age” alternative to conventional
light microscopy. Pathology routines conducted in a digital image based environment, in-
cluding management, sharing, and interpretation of pathological information is known as
Digital Pathology (DP).

Robotic microscopic scanners are used to digitize glass slides into gigapixel images
through a process known as Whole Slide Imaging (WSI) or virtual microscopy. The gi-
gapixel images obtained from WSI are digital slides. WSI technology simulates the light
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microscopy for pathologists (digital slides combined with software systems provide the same
functionality as a microscope but on computer screens) [12]. Figure 1.1 shows a sample
digital slide obtained from a WSI scanner, compared with an aerial map of entire city of
Waterloo in ON, Canada. The figure establishes an impression of the complexity of tasks
involved in diagnostic pathology.

DP is one of the recent significant achievements in integration of modern computational
practices within traditional medicines [13]. Digital slides are used for primary diagnosis,
telepathology (remote access of glass slides as the digital slides), quality assurance (e.g.,
proficiency testing and validations), archiving, as a tool for education among pathologists
in training, and for digital image analysis [12, 14]. During recent times, WSI technology is
rapidly growing due to the continuous improvement in capabilities and throughput of WSI
scanners, development of user-friendly software systems for managing and viewing digital
slides, and vendor neural storage solutions.

1.3.1 Current State of histodiagnosis

Researchers in histopathology study and identify the correlation between the manifestation
of disease and the presence of specific histological patterns. Upon statistical verification
of their analysis, researchers present their findings to a professional community as a peer-
reviewed publication. Eventually, over the course of time, these new findings are estab-
lished as the “truth.” Now, the subsequent task for pathologists around the world (highly
disparate regarding their training, practices, and experiences) is to apply these results to
their diagnosis routines while carefully following all the guidelines in the peer-reviewed
paper. This entire process can have many sources of errors leading to misdiagnosis.

The current practice of histodiagnosis usually involves a pathologist examining tissue
slides and rendering a report. Depending on the regulations followed within the pathology
facility, another pathologist may or may not verify the observations of the first pathologist.
The report from the pathologist facility is given to the referring clinician, who may or may
not ask for further verification of the findings. A single mistake in these interrelated events
is critical and can cause undesirable harm to the patient.

It is important to mention that pathology laboratories are under tremendous pres-
sure to meet increasingly complex demands from hospitals. As many diseases (such as
cancer) continue to grow, complexity and number of pathology tests have simultaneously
increased1. Therefore, it is needed that pathologists work as efficient as possible to support
the consistent quality of patient care.

1Cancer is expected to increase 40% by 2030 within Canada, Canadian Cancer Statistics, 2015
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(a) A sample histopathology digital slide

(b) The City of Waterloo in Ontario, Canada

Figure 1.1: An exemplary to acquaint readers with an enormous resolution of a regular
histopathology digital slide. (a) is a sample histopathology digital slide with two high-
lighted regions under different magnification levels; less magnified region shows multiple
tissue types and more magnified area shows individual nuclei of a single tissue type, simi-
larly (b) shows map of entire city of Waterloo, ON, Canada taken from Google Earth; less
magnified area is entire student’s residential complex at University of Waterloo and more
magnified area is single office building in university. The two images are of not exact same
resolutions, insight of the figure is that intricacies within digital slides are at the same scale
as locating a single building in city.
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One of the important issue that is usually not discussed in quality assurance of histopathol-
ogy is that errors occur even at the time of the research establishing a particular diagnostic
procedure. In fact, critiquing a research work in histopathology can be very difficult if it is
one’s opinion against other without having a method more objective than the one already
available. This discussion brings us to conclude that there is a strong need to quantify the
salient histological patterns and structures used by pathologists, whether they are during
the research or at the time of actual diagnosis. If machines are taught to recognize the
same histological-markers as pathologists then research and diagnosis in histopathology
can become more reliable and assertive.

With increase in application of DP for research, teleconsultation, and external quality
assurance practices [15]; the amount of digital histopathology data has simultaneously
increased. In this context, the thesis research work is pursued to apply computer vision
and ML algorithms for the quantitative image-based analysis of DP images. The idea is
that a complex arrangement and patterns of pixels in digital slides tie in with the semantic
cues used by experts in the field, i.e., pathologists. Since most of the current diagnostic
pathology is based on the subjective (but educated) opinion of pathologists, there is an
urgent need for quantitative image-based assessment. The machine extracted features are
not only important from a diagnostic perspective but they also facilitate the underlying
reasoning for rendering a specific diagnosis (driven by existing medical knowledge).

1.4 Thesis Objectives and Contributions

The central objective of the thesis is to provide a qualitative assessment of three different
image analysis techniques — Local Binary Pattern (LBP), Bag of visual Words (BoW), and
Convolution Neural Network (CNN). The experiments are designed to quantify the quality
of the image analysis methods in their abilities to extract the discriminative image-features
from digital histopathology slides, suitable for classification and retrieval purposes.

To some extent, this thesis contributes to the ambitious and long-term goal of biomed-
ical community to integrate AI assistants into primary histodiagnosis. For the widespread
acceptance of AI in pathology, it is essential that the underlying image analysis algorithms
capture the similar level of semantic-knowledge from digital slides as that of a pathologist.

Content-based Image Retrieval (CBIR) is a prime example of assistive technology in
medical fields. One of the clinical use of CBIR is illustrated in Figure 1.2. CBIR is the
primary focus for evaluating the image analysis algorithms used in this thesis. The two
significant contributions of the thesis are (i) an assessment of three image analysis ap-
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proaches commonly used in the literature, and (ii) a new dataset, Kimia Path24, specially
designed and developed to facilitate the research in classification and CBIR of DP images.

The performance of LBP, BoW, and CNN is evaluated using the images from Kimia
Path24 dataset. The results suggest that all the three techniques are capable of extracting
significant image-features from histopathology images. Tuning of different hyperparam-
eters for each of the three methods has a compelling effect on the quality of extracted
features. Furthermore, the discriminative power of handcrafted algorithms, such as LBP
reaches very close to the deep CNN, based on the benchmarks of Kimia Path24. This
result is particularly surprising as CNN is more complicated from designing and training
perspectives. However, the architecture of CNN offers way more flexibility than other two
approaches. Presently, CNN is a prevalent topic of research and there are many existing
pre-trained CNN models in the literature. Three different types of CNN models are utilized
in this thesis, two of them are famous pre-trained models (namely VGG16 and Inception
v3), and the third one is trained and designed from scratch. Other popular networks, such
as ResNet-51, U-nets were not tested due to time limitation.
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Figure 1.2: Schematic illustrates a CBIR system provding assistance to a pathologist during
a common routine in diagnosis.
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Chapter 2

Literature Review

“ The opposite of a correct statement is a false statement. But the opposite
of a profound truth may well be another profound truth. ”

— Neils Bohr

2.1 Introduction

T
his chapter discusses the four general themes that are essential for the thesis. Firstly,
the current state of Digital Pathology (DP) is briefly reviewed from the standpoint
of acceptance by pathologists, clinical relevance, as a tool for “future proofing”

pathology, precision & reliability, and legality & regulations surrounding its clinical usage.
Secondly, to understand different causes of mistakes or misdiagnosis in histopathology, and
possible solutions provided by adoption of DP. Thirdly, a literature survey to examine the
extent of work done in integrating computer vision algorithms in histopathology fields,
and compelling opportunities Machine Learning (ML) brings to the “objective” side of
histopathology. Finally, we go back to the “subjective” nature of medical image analysis,
and understand the answer for a question like — can machines replace pathologists?

These are particularly exciting times for writing this thesis. On April 12th, 2017, USA
Food and Drug Administration (FDA) declares the clearance of first ever Whole Slide
Imaging (WSI) scanner, Phillips IntelliSite Pathology Solutions, for the primary diagnostic
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use in the USA1. This action of FDA creates the significant milestone in compliance of DP
in traditional pathology services in the U.S. It also opens a new horizon in computational
pathology for the entire world. With the U.S., many companies and hospitals provide their
support to WSI technology, thus, bringing increased funding, industrial collaborations, and
higher awareness and interest within research community for computational pathology. In
the foreseeable future, diagnostic pathology is expected to undergo a paradigm shift with
the focus on comprehensive integration of Computer Assisted Diagnosis (CAD) (just like
the current state of CAD in radiology).

2.2 Histopathology Glass Slide Preparation

Before starting a discussion on DP, it is vital to understand the process of preparing
pathology glass slides. According to [16], there are four steps involved in the preparation
of glass slides before they are digitized or used for diagnosis. These four steps are as follows:

(i) Collection: Tissue samples (specimens) are collected from the affected area of a
patient using surgery or needle biopsy.

(ii) Embedding: Tissues samples are embedded into paraffin wax to allow cutting them
into thin sections (sometimes frozen sections are used, e.g., for surgical pathology).

(iii) Sectioning: Embedded samples are cut into thin sections with special equipment
called “microtome.”

(iv) Staining2: Different stains and dyes are used to highlight different components of the
“sectioned” tissue. The most common type of staining method is H&E (hematoxylin
and eosin)3.

2.3 Digital Pathology and Whole Slide Imaging

The primary and widely popular imaging technology used in DP is WSI. In fact, the two
terms “digital pathology” and “whole slide imaging” have been used interchangeably in

1 https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm552742.htm
2Living tissues are colorless, staining aims to reveal cellular components of tissues whereas counter-

stains provide contrast for highlighting different biological structures [3].
3In H&E staining technique, H is acidophilic and colors cell nuclei in (dark) purple, and E is basophilic

and colors extracellular cytoplasm in shades of pink (see §A.1.1 on pp. 89).

10

https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm552742.htm


the literature. WSI has been long recognized as a research and education tool [17, 11] since
its introduction in the early 1980s. However, only very recently (after almost 35 years),
the healthcare industry has indicated the increased levels of interest in the total or partial
adoption of DP for diagnostic purposes [18]. This section contains the literature survey to
provide readers with insight into the current state of WSI in real-world clinical practices,
and its potency for replacing the traditional light microscopy.

2.3.1 WSI Scanners

WSI, also commonly referred to as virtual microscopy, is an imaging technology used for
digitization of a regular glass slide to a digital slide or whole-slide image. The digital slides
are used for viewing by humans through specialized software systems, or for performing
digital image analysis. WSI scanner (a device used for WSI) uses robotic microscopes to
scan glass slides. It employs a sophisticated software system to stitch different pieces of
scanned images from the glass slide into a composite digital image, i.e., whole-slide image
or digital slide [17].

Recent advancements in image acquisition and control systems have resulted in sig-
nificant improvements in WSI technology. The enhanced capabilities of WSI scanners
include, reduction in average time for scanning glass slide (about few minutes per slide),
and autonomous processing of up to 300 glass slides [19, 20, 21].

Nowadays, WSI scanners are highly portable, generally, set-up on the table-tops within
premises of diagnostic centers. The modern WSI scanners produce digital slides in the time
efficient manner, often automating all intermediate steps, such as localization of tissue, and
focus plane selection [22].

2.3.2 WSI Files and Format

WSI files generated by WSI scanners (digital slides or whole-slide images) are often much
larger than other typical modalities of medical images [17]. Generally speaking, resolution
of a single WSI is more than 50, 000 × 50, 0000. Even with proprietary encryption and
compression, size of each WSI file is around 1–4 GB.

Unlike a conventional digital image file, which usually contains a single static view, the
whole-slide image is comprised of multiple “tiles” of image-data arranged in a pyramid-like
structure [11, 23], as shown below:
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Figure 2.1: Tiles (image data) of different resolutions arranged as “pyramid” in a WSI
file. The base tile contains a image data of highest resolution whereas topmost tile is a
thumbnail-sized image.

The bottom tile is of the highest resolution (e.g., ×20) whereas the top tile is a
thumbnail-sized image for entire whole-slide image. The magnification of ×20 is the most
commonly used in WSI, sufficient for most of the diagnostic cases [24, 22]. The WSI scan-
ners with magnification levels of ×40, ×60, and even ×80 are available [25]. However, the
real-world usage of WSI scanners beyond ×20 magnification levels is sporadic [22].

The pyramid structuring of tiles within a WSI file makes it apt for simulating virtual
microscopy. These files are viewed using the specialized software (usually vendor specific)
systems that can appropriately determine the tile based on the magnification level selected
by a user. These software systems provide fluid interaction and user-friendly interfaces to
visualize whole-slide images [20, 22].

The primary advantage of WSI technology is —WSI files can be accessed remotely, e.g.,
over the internet [17]. The remote access to WSI files allows pathologists to assess, consult
and diagnose cases remotely. The remote consultation of pathology cases is also known as
teleconsultations. WSI technology is becoming progressively robust with facilities, such as
virtual three-dimensional microscopy [26], often necessary for studying and analyzing cell
structures [20].
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2.3.3 Current State of WSI

This section contains a brief literature survey on the current state of WSI technology.

Acceptance of WSI by pathologists: The literature suggests that there is a widespread
reluctance in the adoption of WSI technology by pathologists [20, 27]. This reluctance is
acting as a barrier to the broad adoption of DP in real clinics. Various factors come into
play for pathologists to prefer traditional glass slides over digital slides, some of the factors
include — high setup cost for WSI related equipment and infrastructure, limited control of
focus in viewing digital slides (compared to the light microscopy), uncertainty about the
quality of digital slides versus traditional glass slides, and inexperience of pathologists in
using WSI related software systems [18].

Validation of WSI as a tool for primary diagnosis: The major factor restricting
the complete adoption of WSI for primary diagnosis is not legal regulations but rather the
suspicion of its quality. Can digital slides compete with original microscopic glass slides
regarding efficiency and reliability for the primary diagnostics? This question is of the
significant concern within pathology community. Several studies demonstrate the non-
inferiority of WSI [28, 22, 29, 30]. For many years, WSI technology is used in Canada and
Europe for primary diagnosis purposes. Majority of the data on real-world deployment
of DP comes from these two countries [31, 32], which further assures the efficacy of WSI
technology as the tool for primary diagnosis.

Recently, U.S. Food and Drug Administration (FDA) conducted one of the largest and
most comprehensive investigations thus far on the evaluation of WSI scanners developed
by Phillips [33]. This inquiry by FDA has resulted in the first-ever clearance of a WSI
scanner for primary diagnostic use in the U.S., provides compelling evidence in favor of
WSI technology.

Clinical studies on the efficacy of WSI: An article [34] suggests that adoption of
DP resulted in up to 13% increase in diagnostic efficiency of pathologists. This increased ef-
ficiency is a cumulative outcome due to the efficiency gains from the organization, querying,
searching, and consultation of pathology cases digitally rather than handling & managing
fragile glass slides [34].

Interestingly, literature also contains experiences of the real pathology laboratories
around the world that have adopted “fully digital” workflow, revealing the positive outlook
towards DP as “promising” technology [28, 22]. Like any other technology, WSI has its
pros and cons — some major ones are listed in Table A.1 on pp. 90 along with their
supporting citations from literature. The adoption of DP seems inevitable with the ever-
increasing demand of healthcare sector. DP can offer a platform for improving the service
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efficiency and effectiveness of diagnosis in histopathology. In fact, it has been called vital
for “future-proofing” of diagnostic pathology [18].

Remarks: From the literature review on the current state of WSI, it is concluded that
WSI technology is not any lesser than traditional light microscopy. Full or even partial
adoption of digital workflow in pathology has many gains to hospitals — positive influence
from the patient’s security, service quality, training of new pathologists, management, and
even strategic (e.g., turnaround time, and increase capacity) perspectives without adversely
affecting the diagnostic accuracy and efficiency. However, at present, use of DP is mostly
widespread for education, training, and research purposes than for the primary diagnosis
in pathology clinics.

2.4 Histopathology Mistakes

Mistakes and errors happen, in pathology as in any other field. There are various sources of
errors in diagnostic pathology. According to [35], pathology errors occur during the three
phases of diagnosis, as follows:

(i) Pre-analytic phase: Test selection by a referring clinician and sending the specimen
to a pathology lab.

(ii) Analytic phase1: Preparation of a glass slide and assessment by a pathologist.

(iii) Post-analytic phase: The clinician receives and interprets the report and takes
required action.

The tasks involved in diagnostic pathology are very complicated and partly subjec-
tive, making mistakes and misjudgments inevitable. There are many reasons other than
the complexity of tasks that are accountable for histopathology errors. The following
paragraphs discuss various reasons for pathology mistakes and explain how DP acts as a
promising platform to prevent such mistakes.

Rigorous nature of work in diagnostic pathology: The goal of a diagnostic
pathology is to render the complete and correct diagnosis in an appropriate and timely
manner [35]. Both, punctuality and correctness (though subjective) are two significant
attributes of pathologist’s daily conducts; departing from the internal restrictions set by a
healthcare institution, pathologists may face legal implications.

1For this thesis, the discussion of pathology mistakes is limited only to the analytic phase.
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Increasing workload pressure: A trend in the literature suggests that the errors
in diagnostic pathology occur, not only because of the complicated nature of involved
tasks but also due to the ever-increasing demand in working environment of pathologists.
Pathology laboratories are under tremendous pressure to manage large workload volume,
fast turnaround times, and also to train new pathologists [18]. ML-driven DP is, therefore,
an alluring platform to reduce pathologists’ workload by making their daily routines more
efficient and streamlined.

Lack of classification schemes for pathology errors: Most of the errors in pathol-
ogy diagnosis remain unreported as they are rectified somewhere down the treatment
pipeline. Moreover, the ones that get reported are very challenging to quantify. The
two mains reasons that make pathology mistakes challenging to quantify are — associated
subjectivity within diagnosis and lack of an appropriate error classification scheme [36].
ML methods enable quantitative analysis of DP images, allows a better understanding of
the relationship between of different image features and mechanisms of disease process.
Therefore, quantitative assessment of DP images facilitates researchers to develop more
objective error-classification schemes.

2.5 Applications of ML in Digital Pathology

Histopathology is the “gold standard” for diagnosis of many different diseases including
almost all the types of cancer [37]. Due to the increasing pressure in working environment
of pathologists, there is an urgent need to remove inefficiencies existing within the current
histopathology practices.

Studies show that strategies, such as double-reading, case conferences, and consultations
reduce diagnostic variation and interpretations errors during the analytic phase, ranging
from 1.2 to 50 errors per 1000 cases [38]. This reduced rate of errors in diagnosis suggests
that DP combined with ML algorithms can be a robust technology for the better future of
histopathology.

Rendering supporting “digital opinions”: Most of the errors in pathology are rec-
ognized early during the treatment, either by consultation or re-assessment [36]. However,
these errors still add upon the inconvenience of patients, and negatively affect the reputa-
tion of a healthcare provider. Survey on DP shows that — out of 5000 referral cases that
were reviewed by a second pathologist, 11.3% of the reviews had minor or major differences
in diagnosis from the original diagnosis, and 1.2% of all the reviews resulted in a change
in management of the patient [18]. Furthermore, DP allows easy access to digital slides,
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therefore, combining DP with ML methods can further facilitate the solicitation of second
“digital opinion” for pathologists resulting in more reliable diagnostic decisions.

Automatic prioritization of pending cases: A review article states that “approxi-
mately 80% of 1 million prostate biopsies performed in the U.S. every year are benign; this
suggests that prostate pathologists are spending 80% of their time sieving through benign
tissue” [3]. The time “wasted” by pathologists on “obvious cases” can be reduced if an
automated system prioritizes the pending cases. ML techniques utilize the knowledge ex-
tracted from the large historical cases (already diagnosed and treated) within archives of
hospitals, and can automatically infer the “urgency” of un-examined cases. This automatic
priority-based sorting of the pending cases can allow pathologists to focus on more critical
matters first.

Capitalizing upon growing digital archives: Utilization of digital platform for
handling pathological information eases institution-wide communication among patholo-
gists. Furthermore, it facilitates pathologists to write their comments and annotations
on a central digital platform which is integrated with hospital’s digital archives [39, 18].
Access to the growing digital information containing the annotations and notes from the
real pathologists are highly beneficial for supervised training of ML algorithms. Over the
time these ML tools can become “smarter” and better at providing digital assistance to
pathologists.

2.6 Machine Learning for Histopathology

This section discusses recent developments in image analysis tools and ML techniques
used in DP images from feature extraction, content-based retrieval, segmentation, and
tissue classification perspective.

Contrary to popular belief, one of the earliest pursuits in the adoption of digital image
analysis was not for the face recognition, but rather for the study of medical images [40]. A
survey [3] states that the widespread use of CAD can be traced back to the development
of digital mammography during the early 1990s. In fact, CAD is now integral to many
clinical routines for diagnostic radiology and recently becoming imminent in diagnostic
pathology as well.

With an astounding increase in the workload of pathologists, there is compelling need
to integrate the CAD systems for pathology routines [41, 40, 42, 3]. Researchers in both
image analysis and pathology fields have recognized the importance of quantitative anal-
ysis of pathology images using ML techniques [3]. With continuous advancement of WSI
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scanners and their proliferation in clinics and laboratories (§2.3.1), this has resulted into
a substantial accumulation of histopathology images, justifying the increased demand for
their analysis for improvement of the current state of diagnostic pathology [40, 41].

2.6.1 Image Analysis in Digital Pathology

In DP, the large dimensionality of images pose a challenge for both computation and
storage; hence, contextually understanding regions of interest in images helps the faster
diagnosis and detection for implementing soft-computing techniques [43]. Over the years,
traditional image-processing tasks, such as filtering, registration, and segmentation, clas-
sification and retrieval have gained more significance.

Particularly for histopathology, cell structures, such as cell nuclei, glands, and lympho-
cytes are observed to hold prominent characteristics that serve as hallmarks for detecting
cancerous cells [44]. Researchers also anticipate that one can correlate histological patterns
with protein and gene expression, perform exploratory histopathology image analysis, and
perform CAD to provide pathologists with required support for decision making [44]. The
idea behind CAD to quantify spatial histopathology structures has been under investiga-
tion since the 1990s, as presented by Wiend et al. [45], Bartels et al. [46], and Hamilton et
al. [47]. However, due to limited computational resources, implementing such ideas have
been overlooked or delayed.

More recently, Bankhead et al. [48] provided open-source bio-imaging software, called
QuPath that supports WSI by giving tumor identification and biomarker evaluation tools
which developers can use to implement new algorithms to improve the further outcome of
analyzing complex tissue images.

2.6.2 Image Retrieval

Retrieving similar (visual) semantics of image requires extracting salient features that
are descriptive of image content. In its entirety, there are two main points of view for
processing whole-slide images [49]. First one is called sub-setting methods which consider
a small section of large pathology image as essential part such that processing of small
subset substantially reduces processing time.

Majority of research-work in literature prefers sub-setting method because of its ad-
vantage of speed and accuracy. However, it needs expert knowledge and intervention to
extract proper subset. On the other hand, tiling methods break images into smaller and
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controllable patches and try to process them against each other [50] which naturally re-
quires more care in design and is more expensive in execution. However, it indeed is a
distinct approach toward full automation.

Traditionally, the extensive medical image database is packaged with textual annota-
tions classified by specialists; however, this approach does not perform well against ever
demanding growth of DP. In 2003, Zheng et al. [51] developed online Content-based Im-
age Retrieval (CBIR) system wherein the client provides query image and corresponding
search parameters to the server side. The server then performs similarity searches based
on feature types, such as color histogram, image texture, Fourier coefficients, and wavelet
coefficients, while using vector dot-product as a distance metric for retrieval. The server
then returns images that are similar to query image along with similarity scores and feature
descriptor.

Mehta et al. [52], on the other hand, proposed offline CBIR system which utilizes sub-
images rather than entire digital slide. Using scale-invariant feature transform (SIFT) [53]
to search for similar structures by indexing each sub-image, experimental results suggested,
when compared to manual search, 80% accuracy for the top-5 results retrieved from the
database that holds 50 IHC stained pathology images (immunohistochemistry), consisting
of 8 resolution levels. In 2012, Akakin and Gurcan [54] developed multi-tiered CBIR system
based on WSI, which is capable of classifying and retrieving digital slides using both multi-
image query and images at slide-level. Authors test proposed system on 1, 666 whole-slide
images extracted from 57 follicular lymphoma (FL) tissue slides containing three subtypes
and 44 neuroblastoma (NB) tissue slides comprised of 4 sub-types. Experimental results
suggested 93% and 86% average classification accuracy for FL and NB diseases respectively.

More recently, Zhang et al. [55] developed scalable CBIR method to cope with WSI by
using supervised kernel hashing technique which compresses a 10,000-dimensional feature
vector into only ten binary bits, which is observed to preserve the concise representation
of the image. These short binary codes are then used to index all existing images for
quick retrieval for of new query images. The proposed framework is validated on breast
histopathology data set comprised of 3,121 whole-slide images from 116 patients; experi-
mental results state accuracy of 88.1% for processing at a speed of 10ms for all 800 testing
images.

2.7 Final Remarks

Authors of [56] hypothesize that continuous developments and innovation in ML combined
with advances in raw computing power herald an age where well-designed Artificial Intel-
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ligence (AI) can be significantly used for complicated diagnostic interpretations of medical
images. With use of advance AI, recently, Google’s AlphaGo AI defeated a high-profile
player1, Lee Sedol, with the score of 4-1 in the game of Go (hugely complex ancient strategy
game). The AI of AlphaGo established the case that machines are smarter than humans,
at least in complex strategy games. The algorithm of AlphaGo’s AI is inspired by the
design of biological brain; such algorithms belong to the division of ML known as Deep
Learning (DL). The original paper describing the architecture of AlphaGo is published in
the Nature [57].

Besides all the accomplishments of ML, an article by Su. J [58] reveals that there are a
lot of shortcomings of these DL models, such as their high sensitive to tiny perturbations;
small yet specific changes to input images may “fool” even the most current state-of-the-
art DL models, i.e., the optical illusions for machines. Now, the question arises — can we
replace pathologists with AI? To this question, the answer at present times is — No, we
cannot. In fact, the question itself is an erroneous comparison between two very dissimilar
activities, i.e., high-level cognition (a human forte) versus high-level computation (an AI
forte, at least for now) [59]. G. Sharma in [59] states that a diagnosis is well-thought-out
cognitive opinion, encompassing years in training and experience subjected to high levels
of heuristics and biases. Therefore, it is not moral to leave the crucial decisions in diagnosis
entirely to machines. However, it is more favorable to use machines as an assistive tool
that leads to increased reliability in outcomes of critical clinical decisions.

In this thesis, CBIR of pathology images are studied as an approach for effective and
efficient histodiagnosis. CBIR is a crucial research area that involves analysis and inter-
pretation of medical information (e.g., patterns of cells and tissues) for reliable patient
diagnosis. The next chapter explains different components of a CBIR system.

1https://deepmind.com/research/alphago/alphago-korea/
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Chapter 3

Content-based Image Retrieval

“ Sooner or later all things are numbers, yes? ”
— Terry Pratchett

3.1 Introduction

C
ontent-based Image Retrieval (CBIR) is one of the most critical fields in
computer vision since the last decade. It allows a user to query an image and
retrieve the similar images from a vast repository of images. CBIR has many

practical applications in the real-world, and it is particularly a useful technology for medical
images, since textual features extracted from medical reports are often not the adequate
representation of the content of the associated medical images [60, 61, 62].

Figure 3.1 shows an interaction among different components a CBIR system. A vast
repository containing images I1, I2, . . . In is fed into an image descriptor yielding feature
vectors F1, F2, . . . Fn. These feature vectors are indexed (i.e., using red-black trees or
hashing algorithms) based on the pair-wise distances calculated with a distance metric.
Eventually, searching the images similar to a given query image Iq is a two step process.
Firstly, the query image Iq is transformed into a feature vector Fq using the same image
descriptor. Finally, the feature vector Fq is used to search the “closest” (smallest distance)
image within the indexed database, i.e., the most similar image.
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Figure 3.1: Illustration of the steps followed by a CBIR system.

Two main components that determine efficacy of a CBIR system are (i) image descrip-
tor or technique to extract a vector-representation of an image, and (ii) distance metric
used for comparing the similarity between two vectors (representations of images obtained
from the image descriptor). An ideal distance metric should yield a larger value by compar-
ing two different images than by comparing similar ones. At the same time, an ideal image
descriptor should capture crucial indicators within an image summarizing its content.

3.1.1 Types of similarity between Images

The “similarity” among images can be expressed in two aspects (i) visual and (ii) semantic.
Two images are visually similar if majority of their characteristics look identical to an
observer (e.g., color, shape, and texture). On other hand, the semantic similarity between
two images captures the similarity from the perspective of an expert in the field (e.g.,
pathologists for histopathology).

Two semantically similar images are likely visually similar but the opposite case may
not be necessarily valid. One of the example is illustrated in Figure 3.2 — shows cancerous
and non-cancerous images of the same tissue type (3.2a, 3.2b), visually same but vary a
lot in the structural organization of their cells.
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(a) Cancerous (b) Non cancerous

Figure 3.2: Exemplar of the visually similar but semantically different patches from the
brain tissue. The image in (a) is cancerous (gliomas) whereas, the image in (b) is inflamed
but non-cancerous. Both the images are adapted from [3].

3.1.2 Properties of useful CBIR

A useful CBIR system must employ an image descriptor capable of extracting the semanti-
cally significant visual features from the images. At the same time, selection of a distance
metric is equally essential to exploit the synergy between two.

Digital Pathology (DP), in particular, is challenging domain for CBIR as subtle and
localized differences, semantically discriminate pathology images. Moreover, pathology
images are captured at gigapixel resolutions, therefore, exhibit a considerable variability of
visual features which are more difficult to obtain than the natural images (e.g., plenty of
edges, intricate structures, and high gradient changes). The semantics of pathology images
and natural images are at two opposites ends, the pathology images are discerned only by
medical specialists whereas the natural images are seen all around us.

3.2 Image Descriptor

The image descriptor is a uni-variate operator that transforms a given image Iq ∈ X into a
d-dimensional vector Fq ∈ R

d such that d≪ |X | and the feature vector Fq is representative
of the image Iq in R

d.

What makes a useful image descriptor? An image descriptor plays a crucial role
in building an accurate and functional CBIR system. Ideally, an image descriptor should
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output a feature vector Fq that most precisely discriminates between the various semantic
and visual markers of an image. For CBIR in a histopathology domain, it is crucial that an
image descriptor should focus on the same bio-markers as used by the pathologist during
diagnosis. For example, a “good” image descriptor would be capable of discriminating
between two semantically different images (3.2a and 3.2b) in Figure 3.2.

In this thesis, three popular image descriptors are explored — (i) Local Binary Pattern
(LBP), (ii) Bag of visual Words (BoW), and (iii) Deep Image Descriptors (i.e., Convo-
lution Neural Network (CNN)). All the three image descriptors are well-established and
extensively studied techniques in computer vision fields, and offer the contrasting differ-
ences regarding their training and quality of the extracted features.

Feature Extractor Trainable? Defined

Local Binary Pattern (LBP) No §5.2, pp. 43
Bag of visual Words (BoW) Yes §5.3, pp. 47

Deep Descriptors Partially yes §5.4, pp. 52

Table 3.1: Image descriptors used in this thesis.

In the table above, CNN approach is denoted as “Partially yes” because CNN allows
three type of feature extraction schemes for a given problem (i) pre-trained CNN models
(already trained on existing datasets not necessarily from the same domain as the given
problem), (ii) fine-tuned CNN models (already trained but fine-tuned with the images
from the current problem), and (iii) training a CNN model from scratch.

3.3 Distance Measures

A distance d : X × X 7→ R
+ is a bi-variate operator (i.e., its takes two arguments, e.g.,

x ∈ X and y ∈ X ) and outputs a value in R
+ = [0,∞].

What makes a useful distance measure? A useful distance measurement must
capture the “right” characteristics of input vectors x and y (e.g., χ2 distance is better suited
for the histograms than any other distance measurements). The distance measurement is
the critical choice for optimal performance of a CBIR system. The wrong decision of a
distance metric can result in the sub-optimal performance of CBIR (even for the highly
optimized image descriptors). For this thesis, three distance metrics ℓ1, ℓ2 and χ2 (chi-
square) are used for conducting all the CBIR related experiments. These three distance
metrics are explained in the next following section.
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Figure 3.3: Unit balls in R
2 for ℓ1 (orange) and ℓ2 (blue) distance metrics

3.3.1 Distance Calculations

3.3.1a. ℓ1 Distance

Consider two vectors x = (x1, x2, ..., xd) and y = (y1, y2, ..., yd) in R
d then, ℓ1 distance dℓ1

between x and y is calculated as

dℓ1(x, y) =‖ x− y ‖ℓ1=
d

∑

i=1

(xi − yi) (3.1)

The ℓ1 distance is also known as “Manhattan” distance since it is a sum of lengths on
each coordinate axis; distance for walking in a planned city like Manhattan with straight
pedestrian roads forming a virtual coordinate axis system.

3.3.1b. ℓ2 Distance

ℓ2 distance (dℓ2) is interpreted as the Euclidean or “ordinary” straight-line distance between
two vectors. For two d-dimensional vectors (i.e., x, and y), dℓ2 between them is calculated
as

dℓ2(x, y) =‖ x− y ‖ℓ2=

√

√

√

√

d
∑

i=1

(xi − yi)2 (3.2)

Figure 3.3 shows the unit balls for ℓ1 and ℓ2 in orange and blue color respectively. Both
unit balls touch points, a unit distance from the origin along each of the axis. However,
the unit ball for ℓ1 distance is smaller than ℓ2 distance.
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3.3.1c. χ2 (chi-squared) Distance

Chi-squared distance dχ2 is a distance between two histograms, x = [x1, .., xd] and y =
[y1, ..., yd], each with d bins, calculated as

dχ2(x, y) =

d
∑

i=1

(xi − yi)
2

(xi + yi)2
(3.3)

Moreover, both histograms must be normalized such that their entries sum up to one. χ2

distance is often used in computer vision problems for computing distances between the
histogram representations of images. The Name of the distance is derived from Pearson’s
chi-squared test statistic (used for comparing discrete probability distributions).

3.4 Summary

This chapter reviewed the essential components of a CBIR system, i.e., image descrip-
tor (§3.2) and distance measure (§3.3). An image descriptor convert a given image into
a feature vector, whereas a distance measure is used to calculate the “distance” between
two vectors. The right choice of both the components are crucial for optimal functioning
of a CBIR system. The different distance calculations used in the thesis were discussed
in §3.3.1. The three image descriptors used for this thesis are LBP, BoW, and deep descrip-
tors (see Table 3.1). Deep descriptors are based on CNN (the specialized deep networks
for extracting descriptive image-features). The next chapter discusses various essential
architectural components used for designing CNN.
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Chapter 4

Convolution Neural Networks

“ Never worry about theory as long as the machinery does what it’s sup-
posed to do. ”

— Robert A. Heinlein

4.1 Introduction

E
xperiments in this thesis are conducted using the deep networks specialized for
classifying and extracting discriminative local features from images, known as Con-
volution Neural Network (CNN). The chapter discusses the background and theory

of CNN.

Deep Learning (DL) overview: DL is a sub-field of Machine Learning (ML) based
on the algorithms inspired by structure and functions of the biological brain, known as
Artificial Neural Network (ANN). CNN is a type of ANN specialized for data with spatial
information (e.g., images). Five major reasons for success of Deep Learning (DL) over the
last few years are (i) state-of-the-art achievements in the field of computer vision, natu-
ral language processing, visual reasoning, and voice recognition, (ii) transfer learning or
reusability of the learned parameters in a different domain, (iii) radical improvement in
chip processing abilities (e.g., GPUs), (iv) reduction in cost of data storage and computa-
tional hardware, and (v) acceptance within the industry which brings generous investments
and populous community of researchers.
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CNN overview: A standard reference for the invention of CNN’s architecture and
its training with backpropagation is credited to the paper by LeCunn et al. titled “Ob-
ject Recognition with Gradient-Based Learning” [63]. Before that time, an architecture
very similar to CNN known as Neocognitron existed, introduced during the early 1980s
by Fukushima in [64]. Neocognitron did not receive much attention due to lack of train-
ing algorithm (e.g., backpropagation). Neocognitron was based on the idea of simple and
complex cells ; where the simple cells perform convolution and the complex cells, average
pooling, akin to the operations in contemporary CNN architectures. It is fair to say that,
CNN’s architecture is the result of achievements in several research areas, such as graph-
ical models, neural networks, pattern recognition, optimization, digital signal processing,
feature engineering, and bio-inspired intelligent systems.

Like many machine learning algorithms, CNN takes the inspiration from biological
systems. Existing literature suggests that the architecture of CNN mimics a human vi-
sual system; both use a confined receptive field and multi-layered processing pipeline that
continuously extracts features with higher abstractions by going deeper into the layers [65].

4.2 Chapter Organization

Some of the preliminary concepts related to CNN’s architecture, such as layer, loss function,
regularizer, and gradient descent, are discussed in the next section (§4.3). The Forward
Pass (FP) and Backward Pass (BP) are two essential concepts in functioning and training
of CNN (§4.4).

The architecture of CNN is composed of multiple layers; four types of layers are germane
to this thesis (i) ReLU layer is a non-linearity layer (§4.6), (ii) convolution layer is the most
crucial layer for CNN’s functionality as the name implies (§4.7), (iii) pooling layer is a sub-
sampling layer that makes training CNN computationally in-expensive (§4.8), (iv) Dropout
layer is a regularization technique that penalizes connections between neurons to prevent
over-fitting (§4.10).

4.3 Preliminary

Below is the summary of high-level architectural components of CNN.

(i) Layer: A differentiable operation (parameterized or non-parameterized). CNN is
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a multi-layered structure with each layer capturing the different abstraction of an
image.

(ii) Error or loss function: A differentiable function. The goal of CNN during the
training phase is to optimize its loss function by changing parameters of its layers.

(iii) Regularizers: A form of penalties on the layer’s parameters or its activities. Reg-
ularizers are incorporated into the loss function or as a separate layer.

(iv) Stochastic Gradient Descent (SGD): An algorithm that changes parameters of
all the layers to achieve an optimal value of the loss function.

The architecture of CNN is interpreted as multiple layers stacked in a feed-forward manner
with a distinct loss function and some regularizers (combined into a single global loss
function), optimized by changing the parameters of its layers using SGD.

4.4 CNN in Nutshell

CNN is a composite structure built from different types of layers connected to each other in
a feed-forward manner. The input of CNN is usually a 3rd order tensor, e.g., an image. The
output of CNN is its final prediction and the size of output is a design choice (dependent
on the problem handled by CNN). Two fundamental concepts in functioning and training
of CNN are as follows:

• Forward Pass (FP) is an operation that computes the output of layer. An output
of intermediate layer becomes the input to the next layer. The output of last layer
constitutes the final prediction of CNN.

• Backward Pass (BP) updates internal parameters of a layer to optimize the loss (the
discrepancy between the computed and desired output).

CNN performs FP during the prediction phase whereas conducts both during the training
phase, i.e., FP to predict the output and then BP to update its parameters. Some layers
(e.g., activation layers and pooling layers) do not have any internal parameters yet they
have well-defined FP and BP.
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4.4.1 Forward Pass (FP)

FP is an operation that computes the output for any given input. The FP of CNN is a
chain of FP computed at each layer (starting from the first till the last, i.e., feed-forward
manner). FP of the last layer yields the final output of CNN, as shown below:

x1 → w1 → x2 →· · · → xN → wN → z

where,

xi : input to ith layer,

wi : parameters of ith layer

z : final output of CNN

(4.1)

Transforming x1 to x2 is FP of layer 1, and obtaining the final output (prediction) z from
the given input x1 is FP of entire CNN.

4.4.2 Backward Pass (BP)

Figure 4.1: Visual interpreta-
tion of gradient descent (4.3).
g represents the direction of
gradient.

In supervised learning, an input x1 has a desired output
or ground truth ẑ. The goal of BP is to reduce the dis-
crepancy between the final output (prediction) z and the
desired output (ground truth) ẑ. The discrepancy is quan-
tified using a loss function E, also known as the error
function.

The final output z is based on the parameters of layers
in CNN; these parameters are collectively denoted as φ
where φ = {w1, w2, ..., wN}. Now, the training of CNN is
formulated as the following minimization problem:

φ = argmin
φ

E(z, ẑ). (4.2)

For minimizing E(z, ẑ), parameters of each layer are up-
dated using gradient descent given by

wi ← wi − η
∂E(z, ẑ)

∂wi
(4.3)

29



The previous equation (4.3) updates the parameters wi of ith layer in the direction opposite
to the gradient ( ∂E

∂wi ). The update value is scaled by a parameter know as learning rate η.
The gradient descent is illustrated in Figure 4.1.

The process of updating the parameters of a layer in order to attain an optimal loss value
is known as parameter learning. The parameter learning of ith layer requires a gradient
∂E
∂wi (4.3) which is calculated by BP using the following two gradients:

(i) ∂E
∂wi is used to update the parameters wi of ith layer according to (4.3), and

(ii) ∂E
∂xi is not used by ith layer itself. However, it is passed to the previous layer (i− 1)th

as a prerequisite for the gradient calculations of that layer.

The flow of gradients during BP is illustrated below

w1
∂E

∂x2←−− w2
∂E

∂x3←−− · · ·
∂E

∂xN←−− wN
∂E
∂z←−− (4.4)

The ith layer simplifies the calculation of gradient ∂E
∂wi by multiplying two easy-to-obtain

gradients, i.e., ∂E
∂xi and ∂yi

∂wi . This simplification is derived by chain rule as follows:

∂E

∂xi
= bpi−1

=
∂E

∂xi+1
·
∂xi+1

∂xi

bpi−1 = bpi ·
∂yi

∂xi

(4.5)

∂E

∂wi
=

∂E

∂xi+1
·
∂xi+1

∂wi

= bpi ·
∂yi

∂wi

(4.6)

where,

bpi : gradient flowing into ith layer from (i+ 1)th layer,

yi : output of ith layer or input to (i+ 1)th layer xi+1, and

wi : parameters of ith layer

In the above equation (4.6), the gradient ∂E
∂xi+1 is obtained from the (i+1)th layer whereas

the gradient ∂yi

∂wi is calculated analytically (the layer’s output yi is a differentiable function
of its parameters wi). The ith layer calculates another gradient ∂E

∂xi (4.5) which is passed
to the (i − 1)th layer for gradient calculations of that layer. The very last layer receives
the gradient ∂E

∂z
which can be analytically calculated as well. The BP of CNN start at the

last layer and continues until the very first layer, updating parameters of each layer in the
process.
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4.5 Notations

Inputs, outputs and parameters: At the lth layer, the input is denoted as xl,
layer’s parameters as wl and output as yl. In CNN the output of lth layer becomes the
input for the next (l + 1)th layer; therefore, yl is interchangeably written as xl+1.

Feature maps: A given input xl with shape H×W×D is acknowledged as a collection
of D feature maps, each with the shape H ×W .

Size of input: At the lth layer, the input xl is of size H l ×W l ×Dl, and the output
yl or xl+1 is of size H l+1 ×W l+1 ×Dl+1.

Index notation: A tensor yi,j,d represents a single scalar value at the (i, j) spatial
location in the dth channel of a given 3rd order tensor y.

4.6 ReLU layer

Figure 4.2: ReLU function

Rectified Linear Unit (ReLU) is a non-linearity
layer for deep networks. ReLU operation does not
change the size of its input, i.e., xl is the same
size as yl. For a given input xl, the output yl is
obtained by FP of ReLU layer, it is computed as
follows

yli,j,d = max{0, xl
i,j,d} (4.7)

ReLU layer does not require any parameter
learning since there are no parameters. However,

it needs to calculate ∂yl

∂xl as a requirement for BP, calculated as follows

[

∂yl

∂xl

]

i,j,d

=

{

1 if xl
i,j,d > 0

0 otherwise
(4.8)

During FP, ReLU layer acts as a truncation operation by setting negative inputs to
zero (4.7). During BP, it serves as a gate by allowing the backpropagation only for positive
inputs and completely blocking it for negative inputs (4.8). The gating property of ReLU
layer resolves the vanishing or diminishing gradients problem for deep CNNs to some
extent.
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Figure 4.3: Convolution of a matrix f of size 4 × 4 with a kernel k of size 2 × 2, and the
output s of size 3× 3.

The semantic information of an image is a highly nonlinear function of its pixel val-
ues. The purpose of ReLU layer is to increase the non-linearity of CNN’s architecture.
However, ReLU layer has one caveat, i.e., it “dies” when the input xl is negative as the
backpropagation is completely blocked. It causes an issue if a large negative bias is learned
in the previous layer, resulting mostly in a negative output (given as the input to ReLU
layer). The “dead” ReLU layer will hence output zero for almost all the activities of CNN.
In fact, ReLU layer is unable to recover from the problem as zero gradient values result in
no updates and CNN goes in a state of unrecoverable corruption.

4.7 Convolution Layer

Convolution layer (also known as conv layer) is the most important layer of CNN re-
garding the contributions to its functionality. Convolution of a function f with a kernel k
is donated by f ∗ k. Figure 4.3 shows convolution of a 2nd order tensor f with a kernel k
resulting in another tensor s. The value at the location (x, y) of the output s (i.e., sx,y) is
calculated by the overlapping the kernel k on the top of input f at the same location (x, y)
and then computing a dot product of overlapping areas. The entire output s is rendered
by moving the kernel k to all the possible locations of input f . A convolution operation
for a higher order tensor (> 2) is defined similarly.

Both input and output of a convolution layer are 3rd order tensors, known as feature
maps. The depth of output Dl+1 is determined by the number of convolution kernels in
the layer. The size of individual feature map in the output is determined by the method
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of boundary treatment during a convolution operation; various boundary treatments are
as follows:

- Zero padding: A input is padded with zeros, such that the size of its feature map
is divisible by the kernel’s dimensions (it is the most widespread method also known
as SAME padding).

- Nearest: It works the same way as the previous case. However, it pads with the
value of pixel closest to the boundary instead of the zeros.

- Valid: The size of feature map in the output is reduced depending on the size of
kernel. The size of output becomes (H l−H+1)× (W l−W +1)×n given the stride
of 1.

Stride is another important parameter that determines the size of output. It represents the
number of steps by which a convolution kernel moves on input feature maps. In Figure 4.3,
a kernel is convolved with an input at all the possible spatial locations within that input;
this corresponds to the stride of 1. For the case where s > 1, a convolution operation skips
every s− 1 cells while moving in the horizontal or vertical direction which reduces the size
of the final output.

There are three hyperparameters in a convolution layer: (i) number of kernels Dl+1 ∈
N11, (ii) height and width of a kernel H,W ∈ N11, commonly chosen to be equal, i.e.,
H = W = k, and (iii) stride s ∈ N11.

FP of a convolution layer is illustrated in Figure 4.4. In precise mathematics, the nth

feature map (out of the Dl+1 number of feature maps) of the output yl of a convolution
layer (with zero padding and stride s = 1) after FP is given by

yli,j,n =
H
∑

a=0

W
∑

b=0

Dl
∑

c=0

ka,b,c,n × xl
i+a,j+b,c

where,

k : convolution kernels

(4.9)

The above computation is repeated for all the Dl+1 kernels. A bias bd is also added to all
the output feature maps. However, it is excluded for simplicity (the bias b is a 1st order
tensor of length Dl+1).

BP of a convolution layer is beyond the scope of this thesis. It requires computing

the partial derivative ∂yl

∂xl , i.e., the output yl (4.9) w.r.t to the input xl. Such derivative is
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Figure 4.4: Schematic diagram for FP of a convolution layer. An input xl to the lth layer
is convolved with n convolution filters f to create the output of n feature maps.

calculated by converting the output (4.9) as a matrix multiplication which is explained by
Wu J. in [66] on p. 15 – p. 22. Zhang Z has written another good article explaining BP of
convolution layer [67].

4.8 Pooling Layer

Pooling layer (also referred as pool or sub-sampling layer) is a down-sampling layer that
summarizes p× p sub-regions of an input xl. The hyperparameters for a pooling layer is p
which defines the spatial extent of sub-sampling operation.

Pooling operation in the layer divides each of the H l×W l input feature map into p× p
non-overlapping sub-regions and then applies either a maximum or average operation on
them; depending on the choice of operation, i.e., max or avg, the pooling procedure is
known as max-pooling or avg-pooling respectively. Figure 4.5 shows the max-pooling with
p = 2 on an input tensor xl of shape 4 × 4 × n which results in another tensor of shape
2× 2× n. The shape of output tensor after a pooling operation is given as

H l+1 =
H l

p
, W l+1 =

W l

p
, Dl+1 = Dl (4.10)
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Figure 4.5: Illustration of the 2× 2 max pooling operation.

The dth feature map obtained in the output of max-pooling layer after FP is given as

yli,j,d = max
n,m∈[0, p)

xl
i×p+n,j×p+m,d , (4.11)

which is repeated Dl times to render the entire output yl. Similarly, FP for avg-pooling
is calculated by replacing max operation with avg operation. BP of a max-pooling layer
computes a partial derivative of the output yl (4.11) w.r.t the input xl. It is explained in
detail by J. Wu in [66] on pages 23 – 25.

A pooling layer is inserted in between successive convolution layers (convolution layers
are followed by non-linearity and then pooling layers). Its function is to summarize the p×p
areas of input. It selectively routes features from the p × p non-overlapping sub-regions
of input based on either maximum or average operation. Multiple pooling layers make
CNN insensitive to location-specific features. This behavior is suitable for histopathology
images as a general requirement of histopathology is to identify presence of malignant
pattern without knowing its exact location. The two primary purposes of a pooling layer
are:

(i) Dimensionality reduction: A p × p pooling layer reduces the size of input data
by 1

p2
thus preventing the curse of dimensionality and makes CNN computationally

inexpensive.

(ii) In-variance against rotation, position, and minor local changes: Pooling
operation extracts robust and invariant features from input feature maps. E.g., p×p
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max-pooling operation extracts the maximum value of a p × p spatial region which
resists the small translation of changes of that small region.

4.9 Fully Connected Layer

A fully connected layer is added to utilize the entire representation of an input for the sub-
sequent classification and higher level understanding of a given image. The fully connected
layer have connections to all the “activations” of input as seen in a regular ANN. A fully
connected layer is placed after convolutions layers.

A fully connected layer is a special case of convolution layer; a convolution layer with an
input xl (size of H l×W l×Dl) with D convolution kernels (each of the size H l×W l×Dl)
is a fully connected layer with D neurons. The hyperparameters of a fully connected layer
is D which represents the number of neurons in the layer.

4.10 Dropout layer

Dropout is a regularization technique, first introduced by Hinton et al. in [68] and explained
further in [69]. It removes connections between neurons with a probability p as illustrated
in Figure 4.6. Dropout layer is active only during the optimization phase of CNN (i.e.,
during the training of CNN) and it is completely deactivated during the prediction phase.

FP for Dropout layer requires a special tensor D of the same shape as the input xl

such that D ∈ {0, 1} and each element of D, i.e., di is sampled from Bernoulli distribution
B(1, p). FP is defined as element-wise multiplication of the input xl and the special tensor
D; to compensate for the “dropped” connections, the output is multiplied by 1

1−p
, given as

yl =
1

1− p
∗ (D ◦ xl) with di ∼ B(1, p)

where,

◦ : Hadamard product,

di : Any given element in D,

p : “dropout” probability

(4.12)

Just like ReLU layer, BP of Dropout layer acts as the “gate” entirely blocking the back-
propagation for certain connections between neurons. It “gates” the backpropagation for
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Figure 4.6: Illustration of connections as seen during the optimization step of a network
with Dropout regularization.

the parameters that collides with the locations of zero in D. Although D is a stochastic
variable, it is redefined at every training step.

A model trained with Dropout is regarded as ensemble learning of the models with
different number of neurons and their inter-connections [70]. Dropout is usually applied
between two fully-connected layers. Summarizing, Dropout is an excellent regularization
technique used to prevent overfitting and co-adaptations of neurons within CNN.

4.11 CNN as Feature Extractor

sCNN is a powerful feature extractor capable of understanding semantic concepts in images
by end-to-end training. CNN encodes semantic concepts in its multi-layered architecture —
every successive layer abstracts the higher level representation of an image. Image-features
can be extracted from any layer of CNN. The feature extraction involves two steps. Firstly,
FP of CNN is performed for a given image. Secondly, CNN is “cut” at the desired layer
(from where the features needs to be extracted) and its activation maps are extracted.
These activation maps constitute the feature vector for the given image. The initial layers
encode low-level image features whereas the deep layers contain semantic information.
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(a) Original image (b) Smoothed image (c) Horizontal edge

Figure 4.7: Application of different convolution kernels on (a) and input image, resulting
in (b) obtained by applying a 2 × 2 Gaussian kernel, and (c) obtained by performing
convolution with a horizontal edge detection kernel.

The most important layer of CNN is its convolution layer. A convolution layer performs
a convolution operation which is a type of linear image filter. Figure 4.7 shows an example
of a colored histopathology image (4.7a) and the resultant images as obtained after applying
convolution operation with two different kernels (4.7b, 4.7c). One of the image (4.7c)
highlights the horizontal edges in the input image because a 3× 3 kernel used to create it,
as follows

has a high correlation with the patterns representing horizontal edges. Such high corre-
lation results in a large and positive pixel value in presence of horizontal edges; referred
as maximal activation for a feature (in the case, horizontal edges). Similarly, different
convolution kernels maximally activate on different kinds of low-level patterns.

Stacking multiple layers: The architecture of CNN is highly flexible. Multiple layers
can be stacked together as both the input and output are tensors of same order (3rd order).
Multiple convolution layers along with non-linearity and pooling layers learn to activate
for the complex but specific patterns, e.g., groups of edges forming a particular shape. By
adding even more layers these complex patterns assemble to activate on a semantically
meaningful information within an image, e.g., a malignant pattern in a histopathology
image.
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Parameter sharing provides translation invariance and better feature vis-
ibility: In a convolution layer, all spatial locations share the same convolution kernels,
increasing the parameter sharing while reducing the overall quantity of parameters (com-
pared to fully connected layers). It also provides the translation in-variance and increases
the visibility of features. For example, if a malignant pattern appears at multiple places
within a pathology image, then the convolution kernel responsible for activating for such
malignant pattern would fire multiple times. Even if this malignant pattern moves some-
where else within the image, the convolution kernel activates but at the different location
in the output activation map1.

Distributed representation of semantic concepts: CNN encodes semantic con-
cepts, such as presence of cancer cells or malignant patterns within an image as M number
of feature maps (also known as activation values). It is the essential characteristic of
CNN, especially for Content-based Image Retrieval (CBIR) systems. E.g., in a context of
histopathology images, if a specific neuron activates in presence of many closely-located
cell nuclei, and another neuron activates in presence of irregular cell structures; then a
disease which is identified by the two features, the irregular cells and the closely-located
cell nuclei, can be recognized very effectively by CNN. Summarizing, semantic information
within an image is a distribution of various abstract patterns and CNN is good at encoding
distributed representations of such abstract patterns through its multi-layer architecture.

4.12 CNN Training

Training CNN for a classification problem requires the output z to be a probability dis-
tribution. The output is normalized as a probability distribution using Softmax function,
given by

z̃i =
ezi

∑

j e
zj
, (4.13)

The above equation transforms z into a probability distribution z̃ such that argmax z̃ is
the predicted class label.

1Single convolution kernel is not responsible for understanding semantic concepts in image. Instead, it
is manifestation of series of activations that are carried forward through multiple stacked layers in CNN.
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4.12.1 Cross-Entropy Loss Function

Cross-entropy is the most common loss function used for training CNN for a classification
scenario. In information theory, cross-entropy H(p, q) between two distributions p and q
is given by

H(p, q) = −
∑

x

p(x) log q(x). (4.14)

It quantifies the discrepancy between the “true” distribution p and the “estimated” dis-
tribution q. The output of CNN z̃ (normalized with Softmax) represents the “estimated”
distribution of the predicted class. Whereas, the “true” probability distribution is obtained
by setting the probability value of desired class to 100% and rest all to 0, also known as
one-hot encoding. Therefore, cross-entropy loss in CNN is simplified to the follow equation

L = − log z̃j, (4.15)

which is simply the −log of element at the jth index of output z̃ such that j is the desired
class label.

4.12.2 SGD with Momentum

In the practice, training CNN uses mini-batch strategy version of SGD. In that case, an
input to CNN xl is a 4th order tensor with the shape H l ×W l ×Dl ×N , where N is the
size of “mini-batch”. In other words, instead of feeding a single image to CNN, N images
are fed. In the mini-batch gradient decent, a regular SGD (4.3) is changed as follows

wi ← wi −
η

N

N
∑

j=1

∂Ej

∂wi

where,

Ej : loss for jth input within mini-batch

(4.16)

In this chapter, all the layers were explained assuming N = 1. However, most of the
discussed formulas can be easily adapted to a higher value of N without changing the
underlying mathematics.

For this thesis, mini-batch SGD with momentum is used to train all the CNN models.
Momentum term ∆wi(t− 1) is added to a regular mini-batch SGD as given

∆wi(t) =
η

N

N
∑

j=1

∂Ej

∂wi
+ α∆wi(t− 1), (4.17)

40



allowing the update step to “move” in the direction of last gradient ∆wi(t−1). The update
step is scaled by a parameter known as “decay” α. To understand “momentum” consider a
situation — a ball rolling down a hill and when it reaches the minimum point, it continues
to move upward due to the attained “momentum”. The addition of momentum helps SGD
to ovoid local minima thus increasing exploration capacity of the algorithm in the error
landscape.
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Chapter 5

Implementation of Image Descriptors

“ It would be possible to describe everything scientifically, but it would make
no sense; it would be without meaning, as if you described a Beethoven
symphony as a variation of wave pressure. ”

— Albert Einstein

5.1 Introduction

T
his chapter explains the implementation details of three different types of image
descriptors used in this thesis. The chapter is broken down into three sections. The
first section (§5.2) discusses Local Binary Pattern (LBP), the second section (§5.3)

covers Bag of visual Words (BoW), and the third section (§5.4) covers deep descriptors.
The third section on the deep descriptors (§5.4) discusses three different deep Convolution
Neural Network (CNN) models regarding their training, architectures, and the fine-tuning
protocols. Out of these three CNN models, one is implemented and trained from scratch
whereas other two are popular pre-trained models, namely VGG16 and Inception v3. The
material presented in the chapter is mostly self-contained; however, readers can refer to
Chapter 4 to understand various architectural components of CNN.
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5.2 Local Binary Pattern (LBP)

LBP is a feature extraction technique, first introduced by Ojala and Pietikainen et al. in
1994 [71]. However, its texture spectrum model was proposed much earlier in 1990 [72].
It is a simple yet competitive technique for image classification and segmentation. LBP
approach does not require training before using it for extracting features from images;
therefore, it comes under category of hand-crafted image descriptors.

Several versions of LBP algorithms exist in the literature with different in-variance ca-
pabilities (e.g., invariant to rotation and translation), making them suitable for a broad
range of applications [73, 74, 75]. The variant of LBP used for the thesis work is called
uniform LBP. The main reasons for choosing uniform LBP is due to its simple imple-
mentation, good performance in various fields of computer vision, and high popularity as
learned from the literature [73, 74, 75].

5.2.1 Implementation Details

The local binary-pattern of a pixel in a gray scale image is a pattern formed by an arrange-
ment of pixels in the local neighborhood of the given pixel. These local binary-patterns
are quantified using an LBP operator. The feature extraction pipeline for a general LBP
algorithm consists of two steps (i) apply an LBP operator to all the pixels of an image,
and (ii) aggregate all the quantified binary-patterns (obtained from the LBP operator) to
a histogram. The obtained histogram constitutes as the final feature vector for the image.
Different variants of LBP algorithms mostly differ in the second (aggregation) step.

Uniform LBP (the one used for this thesis work) uses a circular LBP operator (§5.2.1a.)
for the first step and uniform LBP codes (§5.2.1b.) to construct a histogram as required
by the second step.

5.2.1a. Circular LBP operator

A circular LBP operator, the one used in this thesis work, is a type of LBP operator that
employs a circular region as its local neighborhood. It is denoted by LBPp,r, where p
controls discretization of the neighboring pixels and r defines the radius of the circular
region. Figure 5.1 shows three circular LBP operators (parameterized differently w.r.t p
and r) applied to a center pixel gc (red dot) of an image (represented by a mesh). Each
pixel of the image is represented as a square region within the mesh, and the p number of
neighboring pixels (black dots) are denoted by {g0, g1, . . . , gp−1}.
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(a) p = 4, r = 1 (b) p = 8, r = 1 (c) p = 8, r = 1.5

Figure 5.1: Illustration of an LBP operator with different p and r values. p controls
discretization of local angular space and r sets spatial resolution of the operator.

The parameter p controls the number of neighbors, resulting in 4, 8, 8 number of
neighbors in figures 5.1a, 5.1b, 5.1c respectively. Every ith neighbor gi lies on the imaginary
circle C with the center at gc and the radius of r pixels (the second parameter of circular
LBP operator). The neighbors are separated by equal distances across the perimeter of
the imaginary circle. In precise mathematics, the coordinates of ith neighbor gi are given
by

gi =

(

− rsin

(

2πi

p

)

, rcos

(

2πi

p

))

(5.1)

If a neighbor gi, does not fall in the center of a square region, its value is interpolated.
Otherwise, the value of the neighbor is assigned same as the intensity of the enclosed pixel,
i.e., the enclosed square region. The output of circular LBP operator LBPp,r for a center
pixel gc is a single scalar value, given by

LBPp,r =

p−1
∑

i=0

2i × s(gp − gc)

where,

s(x) =

{

1 if x ≥ 0

0 otherwise

(5.2)

The mechanism of circular LBP operator is further illustrated in Figure 5.2. The idea
is that each neighboring pixel is assigned a binary value of 1 if larger than the center
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(a) LBP operator with (p = 8, r = 1)

(b) Quantization of “binary-pattern” formed by neighbors of gc

Figure 5.2: Illustration summarizing the steps performed by an LBP operator gc; (a) shows
an LBP operator with a center pixel gc (red) and neighboring pixels (gray), and (b) shows
quantification of the “binary-pattern” formed by the neighboring pixels.

pixel and 0 otherwise. By doing so, a binary number of p bits is obtained such that the
most significant bit comes from comparing gp−1 with gc and the least significant bit from
comparing g0 with gc. A p-bit binary number obtained from a circular LBP operator for a
given pixel is the LBP code of that pixel.

5.2.1b. Uniform LBP codes

An LBP code of a pixel is a p-bit binary number which in decimal number system ranges
between [0, 2p]. An LBP code is “uniform” if its binary representation contains at most
two transitions from either 0→ 1 or 1→ 0. E.g., 11100001 is a uniform LBP code whereas,
10010101 is a non-uniform LBP code. The total number of uniform LBP codes is denoted
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by nµ,p (where µ represents the uniform coding scheme), and it is given by:

nµ,p = p× (p− 1) + 2 (5.3)

In uniform LBP feature extraction model all the non-uniform LBP codes are grouped into
a single class, whereas each of the uniform LBP code forms a class of its own (i.e., nµ,p

number of classes). Therefore, the total number of classes in uniform LBP algorithm is
nµ,p + 1 (i.e., 1 class for all the non-uniform LBP codes and nµ,p classes for uniform LBP
codes).

5.2.2 Feature Extraction

The feature extraction in uniform LBP algorithm requires a special mapping Up. It maps
all the possible LBP codes to their associated classes. For a given parameter p, the output
of a circular LBP operator LBPp,r is a single number from set A such that

A = {0, 1, . . . , 2p−1}

and all the classes (under the uniform classification scheme) belong to another set B such
that

B = {0, 1, . . . , nµ,p + 1}

then Up maps all the LBP codes in the set A to their associated classes in the set B, given
by

Up : A→ B,

such that for a given LBP code a, its associated class is b = Up(a). Now, extracting a
feature vector Fq from a given image Iq involves the following steps:

(i) Build the mapping Up (can be cached for a given value of p).

(ii) Apply a circular LBP operator LBPp,r to every location (x, y) of the image Iq and
store all the resultant LBP codes in an array fq

1.

(iii) Apply mapping Up on every element of fq and create another array cq.

1The neighbors beyond the extent of local neighborhood are set to intensity of −∞ resulting in a zero
bit on comparing with the center pixel.
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(iv) The final feature vector Fq is calculated by aggregating all unique values in cq as a
histogram.

The length of the feature vector Fq is same as the number of classes nµ,p (5.3). There are
two parameters in a uniform LBP approach, i.e., radius r and the number of neighbors p.
Changing either of the parameters has a significant impact on the captured semantics of
an image. Moreover, the parameter p affects the length of feature vector Fq. Summarizing,
LBP is a simple approach as it does not require any prior training and it is a fast feature
extraction method with time complexity of O(m), for a given image with m number of
pixels.

5.3 Bag of visual Words (BoW)

A bag of visual words (BoW) model is a powerful computer vision tool. It has proven
to be a useful method for reducing the semantic gap in features obtained from low-level
image descriptors [76]. Many variations of BoW are extensively applied in the field of
histopathology image classification [77, 4, 78, 79]. Unlike LBP, BoW requires training
before extracting feature vectors from an image.

5.3.1 Implementation Details

A general BoW model has two phases, training and feature extraction phase. The two
phases are discussed below.

Training phase of a BoW model builds a structure called codebook. It is built from
images in training data. The training pipeline of BoW approach consists of (i) sampling
a large number of local and low-level features from different locations within training
images (§5.3.1a. and §5.3.1b.), and (ii) clustering the extracted features using K-means
clustering algorithm. An individual cluster center obtained from the clustering algorithm
is called visual word, whereas all the k cluster centers are collectively known as codebook
or visual vocabulary (§5.3.1c.).

Feature extraction phase of a BoW model uses the codebook constructed during the
training phase. The codebook is used to generate feature vectors for unseen images. The
pipeline of feature extraction phase consists of (i) extracting local and low-level feature
vectors from different locations within a given image using the same protocol as the training
phase (§5.3.1a. and §5.3.1b.), and (ii) building the final feature vector for the image using
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the learned codebook. It involves successive applications of encoding and pooling operations
(§5.3.1d.).

5.3.1a. Location sampling

The first step of a BoW framework defines a location sampling scheme. The sampled
locations are used to extract local features from them. In the literature, two different
types of location sampling schemes are suggested (i) Interest Points (IP) and (ii) dense
sampling [76].

IP sampling scheme is based on extracting low-level features from the “interesting”
locations within an image (5.3a). These interesting locations can be either corners, blobs,
or selected based on some other criteria. Dense sampling scheme, on the other hand,
collects low-level features from an entire image. It divides the image into a mesh and local
features are extracted from each square region formed within the mesh (5.3b). These two
methods are shown below; however, for this thesis only the dense sampling scheme is used.

(a) Interest Point (IP) sampling (b) Dense Sampling

Figure 5.3: Illustration of two location sampling techniques. Low-level features are ex-
tracted from white-outlined regions. In (a) only interesting location points are selected
shown with red stars, whereas in (b) entire image in split into equal sized squares.

5.3.1b. Local features extraction

After sampling the locations, the next step is to extract local features from the sampled
locations. Many choices of the local features exist in the literature, such as Scale Invariant

48



Feature Transform (SIFT) [80], Speed Up Robust Features (SURF) [81], and Binary Robust
Independent Elementary Features (BRIEF) [82].

In this thesis, LBP (§5.2) features are used as the local features. Although it is un-
conventional to use higher-order features (e.g., LBP histograms) as the local features, the
two main reasons to select LBP features for this thesis are — (i) to reduce the compu-
tational expense by processing the condense LBP histograms instead of the raw pixels,
and (ii) using the BoW with LBP as the local feature extractor provides a comparative
baseline against the LBP approach alone.

5.3.1c. Codebook construction

The most common approach for constructing a codebook is by clustering the local features
using K-means clustering algorithm [76].

A set of n local features,
x1, x2, ..., xn ∈ R

D,

are extracted from training images. These local features are clustered using K-means
algorithm. The clustering algorithm provides k number of vectors (cluster centers),

µ1, µ2, ..., µk ∈ R
D,

and data-to-cluster assignments,

q1, q2, ..., qn ∈ {1, 2, ..., k},

such that the squared distance d between each data point xi and their respective cluster
µqi , given by

d =
N
∑

i=1

‖ xi − µqi ‖
2,

is minimized. The k vectors or the cluster centers obtained from K-means algorithm
{µ1, µ2, ..., µk}, individually represents a “visual word”, and collectively called codebook.
Figure 5.4 shows an example of a codebook learned from histopathology images [4].

5.3.1d. Encoding and pooling

After the codebook construction step, the next step allows transforming a given image into
the final feature vector. Representation of an image as the feature vector in BoW framework
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Figure 5.4: An example of a codebook with 150 visual words created using histopathology
images. Image is taken from [4].

is composed of two successive steps of encoding and pooling. The encoding step assigns the
local features onto the visual words in the codebook. Whereas, the pooling step aggregates
the assigned words into a histogram. The obtained histogram is the final feature vector
for the image.

In the most general form of BoW, the one implemented for this thesis, the histogram
obtained from encoding-pooling step represents frequency distribution of the sampled local
features w.r.t visual words in the codebook. The histogram thus created contains the
information of an image in a compact form. The process of successive encoding-pooling is
known as vector quantization. The steps involved in the vector quantization are below:

Given:

C = {c1, c2, ..., ck}

X = {x1, x2, ..., xn}

where,

C : codebook containing k visual words

X : set of n local features extracted from a given image

Encoding phase calculates a vector αn for each element in X, as given

αn,k = 1 iff j = argmin
j∈{1..k}

‖ xn − cj ‖
2 .
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Figure 5.5: Schematic diagram of the feature extraction with Bag of visual Words (BoW)
model.

The vector αn has size k (number of visual words in codebook) and the jth element of
vector αn is set to one (rest all are zeros) such that cj (the jth visual word) has the least
squared distance to xn (the nth local feature).

Pooling phase calculates a vector γ of size k. The ith element of γ is given as

γi =
∑

j∈{1..n}

αj,i

Finally, the vector γ is normalized using ℓ2 norm, i.e., γ = γ

‖γ‖2
.

5.3.2 Feature Extraction

The two parameters of BoW approach are: (i) a low-level feature extraction method and
(ii) the size of codebook defined by the parameter k of K-means algorithm. Both the
choices are very crucial for optimal working of a BoW approach. Figure 5.5 shows an
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overview of training and feature-extraction phases of a BoW approach as used in this
thesis1.

5.4 Deep Descriptors

# Type # filters @ patch size/stride Parameters Output size

0 Image 1× 128× 128
1 Convolution 64 @ 3× 3/1 640 64× 128× 128
2 Convolution 64 @ 3× 3/1 36, 928 64× 128× 128
3 Max pooling 2× 2 0 64× 64× 64

4 Convolution 128 @ 3× 3/1 73, 856 128× 64× 64
5 Max Pooling 2× 2 0 128× 32× 32

6 Convolution 256 @ 3× 3/1 295, 168 256× 32× 32
7 Max pooling 2× 2 0 256× 16× 16

8 FC 1024 67,108,864
Dropout(p = 0.5) 0

9 FC 24 24, 576
∑

67,540,042

Table 5.1: Architecture of the CNN model trained from scratch (CNN1). The dotted line
divides the model of into multiple conceptual blocks. The dropout probability is 0.5.

For a very long time, the handcrafted feature engineering had dominated as the ideal choice
for the image descriptor. However, now, it is germane to only certain image analysis fields
that benefit from the meticulous nature of hand-crafted features. The major weakness of
handcrafted features is their brittle quality. They do not generalize well for a large and
diversified image analysis problem [83]; some of the problems are best approached with
flexible solutions like CNN that adapts to the problem by training and achieves better
performance.

1For this thesis, LBP is used as the local-feature extractor in BoW model as opposed to the raw pixels
(shown in the figure).
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5.4.1 Implementation Details

Three different CNN models are used in this thesis, referred to as “Deep Descriptors”.
CNN models are used to extract representations of histopathology images. These image
representations are extracted in form of the activation values from a layer of a CNN model1.

CNN models: Out of the three models, one CNN model, namely, CNN1 is trained
from scratch and other two models, namely, VGG16 and Inception-v3 are popular pre-
trained models existing in the literature. The architecture of CNN1 model in shown in Ta-
ble 5.1, and architecture of VGG16 and Inception-v3 are presented in Table B.1, Table B.2
respectively of Appendix B.

Image features: Image features can be extracted from any layer in CNN model.
However, usually activations from the last pooling layer are used. In this thesis, image-
features from the CNN models are extracted as follows:

• For CNN1 (Table 5.1), activation values from the layer 8 (FC) are extracted (the
output size of 1024) as image-features.

• VGG16 (Table B.1, pp. 92) is “cut” at the 18th layer, its activation values (with the
output size of 512× 7× 7) are extracted, and then a 7× 7 avg-pooling operation is
applied, giving a image-feature vector of length 512.

• For Inception-v3 (Table B.2, pp. 94), activation values from the last pooling layer
with the output size of 2048 are extracted as image-feature vectors.

Fine tuning: CNN models are fine tuned for a domain adaption. VGG16 and
Inception-v3 used in this thesis are pre-trained on the natural images from ImageNet
dataset [84]. Therefore, fine-tuning allows these CNNmodel to adapt towards a histopathol-
ogy domain. When a deep network is fine-tuned, an optimal setup varies between the
applications. For this thesis, the final convolutional block (layer 15 – 18 both included) of
VGG16 and the final two inception blocks within Inception-v3 are re-trained.

1Refer to §4.11 in Chapter 4 for the details regarding various concepts of CNN as feature extractor.
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Chapter 6

New Dataset – Kimia Path24

“ If you focus your mind on the freedom and community that you can build
by staying firm, you will find the strength to do it. ”

— Richard M. Stallman

6.1 Introduction

T
his chapter describes a new and open dataset, Kimia Path24, specially developed
for conducting the experiments undertaken in this thesis1. The dataset is designed
at Kimia Lab, University of Waterloo. It was first introduced in [85] at CVPR

workshops in 2017. The dataset facilitates the research in image classification and content-
based retrieval of histopathology images.

Kimia Path24 dataset is provided as a single HDF52 file of size 29 GB. The dataset
contains 24 whole-slide images from different types of tissues and stained with different
types of dyes. The total of 1, 325 test patches (each sized 1000 × 1000) are extracted
from the 24 whole-slide images. The test patches are manually selected with the special
attention to textural differences among the patches. Weighted accuracy measurements are
provided to enable a unified benchmark for future works (§6.4).

1Available at http://kimia.uwaterloo.ca/kimia_lab_data_Path24.html
2https://support.hdfgroup.org/HDF5/
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Each of the 24 whole-slide image in the dataset is captured by TissueScope LE 1.0 1.
The Whole Slide Imaging (WSI) for each slide was performed in the bright field using a
0.75 NA lens. The resolution of a given whole-slide image is determined by checking its
description tag in its header, e.g., if the resolution is 0.5µm then the magnification is 20×
and if the resolution is 0.25µm then the magnification is 40×.

The proposed dataset is structured to mimic the retrieval tasks in real clinical practices.
The dataset allows the algorithm designers to have the flexibility to create their own
training patches from the provided 24 whole-slide images. One could create 27, 000 to over
50, 000 number of training patches each of size 1000× 1000.

6.2 Motivation

The dataset is created especially for the research of Content-based Image Retrieval (CBIR).
Kimia Path24 differs from other existing Digital Pathology (DP) datasets as the visual
attention is employed on the diversity of patterns and not on the anatomies or malignancies.
Therefore, it is preferably a computer vision dataset as in contrast to a pathological dataset.
The dataset contains whole-slide images stained with different dyes, taken from different
part of bodies, and also offer a significant variability regarding the grades and malignancies
thereby making it very suitable for CBIR experiments. Another motivation behind creating
this dataset is to provide a fixed number of testing samples. The fixed testing samples
facilitate a standard benchmark but enables the design freedom of algorithm designers to
generate their own training data.

6.3 Dataset Creation

For designing Kimia Path24, 24 whole-slide images were manually picked from a large pool
of digital slides, purely based on the visual distinction (from a non-clinical perspective).
In the selection process the conscious effort was made to represent the different textural
patterns and the different types of tissues. Figure 6.1 shows thumbnails of six whole-slide
images from the dataset. Figure 6.2 displays the magnified portion of each of the 24 whole-
slide image. There is a substantial inter and intra-class variability among the 24 whole-slide
images as shown in Figure 6.3.

1http://www.hurondigitalpathology.com/tissuescope-le-3/
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Figure 6.1: Thumbnails of six whole-slide images (aspect ratios changed for convenient
display) from Kimia Path24 dataset.
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Figure 6.2: 24 sample patches for each of the 24 whole-slide images within Kimia Path24
dataset.
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Figure 6.3: Examples of a large intra-slide textural variability in Kimia Path24. Each row
shows three sample patches from a individual whole-slide image of Kimia Path24.
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The following steps were performed to design and create Kimia Path24 :

(i) The total of 1325 number of testing patches were selected (each sized 1000 × 1000
pixels that correspond to 0.5mm× 0.5mm of the actual size).

(ii) The ni patches were manually selected per whole-slide image such that i = {1, 2, . . . , 24}.
The visual patch selection aimed to extract a small number of patches that represent
all the dominant tissue textures in each whole-slide image.

(iii) Each of the selected patch was then removed from the whole-slide image and saved
separately as a testing patch.

(iv) The remaining parts of the whole-slide image is used to construct the training dataset.

Scan # Dimensions # of Test Patches(nΓs
)

0 40,300 × 58,300 65
1 37,800 × 50,400 65
2 44,600 × 77,800 65
3 50,100 × 77,200 75
4 26,500 × 13,600 15
5 27,800 × 32,500 40
6 38,300 × 51,800 70
7 29,600 × 34,300 50
8 40,100 × 41,500 60
9 40,000 × 50,700 60
10 47,500 × 84,700 70
11 44,100 × 52,700 70
12 45,400 × 60,100 70
13 79,900 × 56,600 60
14 42,800 × 58,200 60
15 20,200 × 57,100 30
16 35,300 × 46,300 45
17 48,700 × 61,500 45
18 26,000 × 49,600 25
19 30,700 × 70,400 25
20 48,200 × 81,400 65
21 38,500 × 40,500 65
22 40,500 × 45,700 65
23 36,900 × 49,000 65

Table 6.1: Properties of different scans in Kimia Path24 dataset.

scan #3 scan #11 scan #23

15

40

75

Fr
eq

ue
nc

y 
of
 o
cc
ur
re
nc

e

Figure 6.4: Class distribution of test data within Kimia Path24 dataset.
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6.4 Accuracy Calculation

The final accuracy calculation for the Kimia Path24 dataset is based on two types of
accuracy calculations, namely path-to-scan and whole-scan accuracies.

Notation: The total number of test patches is denoted by ntot and for the dataset
ntot = 1, 325. There are 24 different classes (one for each whole-slide image) denoted by set
S, i.e., S = {0, 1, . . . 23}. Any given test patch from the dataset is denoted by P i

s , where
s ∈ S represents its class and j ∈ [0, nΓs

] is index to identify it among all the patches
associated with class s. The Γs is set of patches P i

s that belongs to class s such that
Γs = {P

i
s |s ∈ S, i = 1, 2 . . . , nΓs

} with nΓs
is number of patches in sth class, as reported in

last column of Table 6.1.

Accuracy measurements: Looking at a set of retrieved images R for any given CBIR
experiment, the patch-to-scan accuracy ηp is given as

ηp =

∑

s∈S

|R ∩ Γs|

ntot

, (6.1)

which represents the standard accuracy measurement, i.e. ratio of number of correct pre-
dictions to total samples in the test data.

The whole-scan accuracy ηW as

ηW =
1

24

∑

s∈S

|R ∩ Γs|

nΓs

, (6.2)

which measures average of normalized ratio of number of correct predictions per class to
total number of samples in that class (average of normalized accuracy per class). Whole-
scan accuracy is not greater than patch-to-scan accuracy ηp, and it is highly dependent of
distributions of class labels within testing data (see nΓs

in Table 6.1).

And finally, the total accuracy ηtotal as

ηtotal = ηp × ηW (6.3)

which takes into the account both the accuracy measurements, i.e., patch-to-scan and
whole-scan accuracy.

Remark: Python code for the accuracy calculations for Kimia Path24 dataset is
provided (§C.1.1 of Appendix C).

60



6.5 Summary

The chapter discussed Kimia Path24, a new dataset for retrieval and classification of
histopathology images. The dataset contains 24 whole-slide images from a large pool of
digital slides. These 24 whole-slide images are selected mostly through visual inspection,
i.e., selecting the texturally different images. Hence, the proposed dataset is a computer
vision dataset (as in contrast to a pathological dataset) because visual attention is spent
on the diversity of patterns and not on the anatomies and malignancies. The dataset also
establishes the accuracy measurements for assessing the quality of retrieval experiments
(§6.4). The next chapter describes various experiments performed with Kimia Path 24
using Local Binary Pattern (LBP), Bag of visual Words (BoW), and Convolution Neural
Network (CNN).
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Chapter 7

Comparative Study

“ The important thing is not to stop questioning. Curiosity has its own
reason for existing. ”

— Albert Einstein

7.1 Introduction

T
his work intends to design the experiments capable of providing a comparative
evaluation of three image analysis models, i.e., Local Binary Pattern (LBP), Bag
of visual Words (BoW), and Convolution Neural Network (CNN). Kimia Path24

dataset is used as the primary dataset for performing all the experiments. The non-
overlapping patches of size 1000 × 10000 are extracted from each of the 24 whole-slide
images in the dataset. A simple homogeneity measurement is used to filter out the irrele-
vant patches (with mostly the white background); these filtered patches are converted into
a training data which is stored separately. With the newly created training data, the image
analysis models are trained and qualitatively assessed on their retrieval performances using
the benchmark technique of Kimia Path24. Each of the image analysis algorithm contains
a range of hyperparameters, tuning these hyperparameters result in feature-vectors of dif-
ferent sizes (encoding different semantic information within images). Therefore, changing
the hyperparameters affects the benchmark results. This chapter presents the results and
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discussion of three series of experiments, designed to explore and investigate the effec-
tiveness of LBP, BoW, and CNN in extracting the discriminative image-features for the
classification and retrieval of histopathology images.

7.2 Materials

The Kimia Path24 dataset is used for conducting all the experiments; it can be obtained
from the website of Kimia Lab1. Different aspects of the dataset have been thoroughly
explained in Chapter 6.

7.2.1 Software Resources

Python 3.6 is used as the primary computer language for conducting all the experiments.
The development environment for the research was setup using Anaconda Distribution1

which comes pre-installed with many Python-compatible libraries for the data science and
machine learning fields. The following are the essential libraries used in this thesis:

(i) Numpy and SciPy [86]: These are two widely popular scientific computing libraries
in Python. They provide fast array manipulations and some common algorithms in
algebra. For this thesis they are used in implementing KD-Trees.

(ii) Scikit Learn [87]: It is a machine learning library in Python that provides simple
and efficient implementation of many common classification, clustering, preprocess-
ing, dimensionality reduction algorithms. For this thesis Support Vector Machines
(SVM), K-Nearest Neighbors (KNN), K-Means, and some common data preprocess-
ing routines are used directly from this library.

(iii) Scikit Image [88]: It is a Python package that provides a collection of image processing
algorithms. it is used for the implementation of uniform LBP and various other image
preprocessing algorithms.

(iv) TensorFlow [89]: It is a symbolic math library for implementing and training deep
neural networks. For this thesis it is used for implementing and training various CNN
models on GPU clusters.

1http://kimia.uwaterloo.ca/kimia_lab_data_Path24.html
1https://anaconda.org/
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(v) Keras [1]: It is a high-level neural networks API, written in Python and capable of
running on the top of TensorFlow. It is extensively used for conducting CNN related
experiments, and it is also used for augementing images.

7.2.2 Computational Resources

The experiments conducted in the thesis are computationally expensive as they require
processing gigapixel histopathology images. Furthermore, training and fine-tuning CNN
models need powerful GPUs. Two primary computational platforms used for the experi-
ments are (i) Sharcnet and (ii) Microsoft Azure Cloud. Most of the CPU intensive tasks
are carried on Sharcnet whereas GPU intensive tasks are conducted on both the platforms.

Sharcnet is a cluster computing platform, accessible to all Canadian researchers1. For
this thesis Copper cluster2 of Sharcnet is used for conducting the CPU intensive exper-
iments. The CPU intensive tasks are related to LBP, BoW, preprocessing images, and
creating Kimia Path24 dataset whereas the GPU intensive tasks mainly involve training
and tuning CNN models. For every computational job on Copper, around (but not limited
to) 10 CPUs (Intel Xeon E5-2630 v3 2.4 GHz each) and around 150 GB RAM can be
allocated. The Copper cluster also has GPUs and one could ask up to 4 NVIDIA Tesla
K80 GPU (8 GB memory each) for every single GPU computing job.

Microsoft Azure Cloud3 is an online platform that allows to create GPU enabled virtual
machines. These virtual machines can be accessed, managed and used remotely. For this
thesis, two virtual machines each containing 12 CPUs, 112 GB RAM, and 2 Nvidia Tesla
K-80 (8 GB GPU memory each) are used for conducting the GPU intensive experiments.

7.3 Experimental Setup and Design

Three series of experiments are conducted for the comparative study. The experimental
series are designed to analyze the image analysis algorithms for the unbiased assessment
of their effectiveness in extracting the discriminative image-features from histopathology
images. Three major steps in a experiment series are:

1https://www.sharcnet.ca/
2https://www.sharcnet.ca/my/systems/show/108
3https://azure.microsoft.com/en-ca/
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(i) Patch selection and construction of training dataset: Kimia Path24 contains
24 full resolution whole-slide images. The large resolution of a whole-slide image
makes it impossible to directly apply to directly feed it to an image analysis or ma-
chine learning algorithm. Therefore, firstly a training dataset is created by selecting
only the “useful” image-patches from each of the 24 whole-slide images. The selected
image-patches are of manageable sizes yet provide the useful and relevant information
for training the image analysis models.

(ii) Training image analysis models: BoW and CNN models are trained or fine-tuned
using the training data created in the previous step.

(iii) Performing retrieval experiments: The training data contains image patches
and their corresponding class labels. This training data constitutes the repository
of images which is used for performing CBIR queries. In each experimental series,
the training data is indexed using one of the three image analysis algorithm, i.e.
LBP, BoW or CNN. Every experiment in a series usually differs in the choice of
hyperparameters. In an experiment, CBIR is performed on the indexed dataset with
the test patches as a query image. The different distance measurements, i.e., ℓ1, ℓ2, χ

2

are used for the retrieval. All the experiments are evaluated based on the standard
accuracy calculations of Kimia Path24.

7.3.1 Training Data

For creating the training data, whole-slide images in Kimia Path24 are converted to
grayscale and non-overlapping patches (each sized 1000× 1000 pixels) are extracted from
them. A homogeneity measurement is used to filter out the patches with mostly the back-
ground pixels (i.e. “white” patches). A homogeneity measurement of a gray-scale image
I, denoted by h(I) ∈ [0, 1] is given as

h(I) = 1−
1

H ×W

H,W
∑

h=1,w=1

|Ih,w − vec(I)|, (7.1)

The above equation measures an average variability between the intensities of pixels of an
image I and the median value vec(I). The patches obtained after the homogeneity-based
filtering are referred as “non-white” patches. The “non-white” patches contain significant
textural information allowing an optimal training of an image analysis algorithm.

The process of extracting “non-white” patches from a given whole-slide image is referred
as patch-selection (shown in Figure 7.1). The homogeneity measurement proves to be a
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(a) A Whole-slide image (b) Visualization of patch selection

(c) Selected patches (h < 0.99)

Figure 7.1: Illustration of patch-selection process; (a) is a sample whole-slide image from
Kimia Path24, and (b) is the visualization of its patch selection. White squares are selected
for testing. The grey region can be used to generate training/indexing dataset. (c) Shows
six samples “non-white” patches, each of size 1000× 1000 and grey-scaled, extracted from
the whole-slide image.
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Figure 7.2: Class distribution within the training data obtained from patch-selection pro-
cess.

powerful technique for patch-selection in Kimia Path24 dataset. The patches with a ho-
mogeneity measurement above 99% are excluded and the remaining patches constitute the
training data. The training data thus created contains 27, 055 number of patches. There
are 24 whole-slide images in Kimia Path24, therefore, training patches are distributed
among the 24 different classes where each class represent an individual whole-slide image.
The class distribution of training data is shown in Figure 7.2; there is a high class imbal-
ance within the training data. However, no extra effort is invested in balancing the class
distribution; since the training data is same across all the experiments, therefore, the class
imbalance does not introduce any inter-experimental bias instead it makes the problem
more challenging.

7.4 Experiment Series 1: Uniform LBP

For the first experiment series, uniform LBP feature extraction method is implemented
using Scikit Image library( in §5.2 of Chapter 5). LBP used for the experiments has two
hyperparameters, i.e, radius r and neighbors p. Both testing and training data are used in
their original dimensions (i.e., 1000× 1000) and no pre-processing is applied.

The total of nine experiments are performed in this experimental series. Each of the
nice experiment consists of different configuration for LBP’s parameters and distance mea-
surement for the retrieval. The LBP operator with radii 1, 2 and 3 with neighbors 8, 16 and
24 respectively are applied to create histograms of length 59, 243 and 555. The descriptors
are created for both testing and training data for each of the configuration. After that,
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LBP Descriptor Accuracy

# Parameters Length Distance ηp ηW ηtotal

1
(p = 8, r = 1) 59

χ2 62.49 58.92 36.82
2 ℓ1 61.13 57.50 35.15
3 ℓ2 56.45 52.95 29.89

4
(p = 16, r = 2) 243

χ2 63.62 59.51 37.86
5 ℓ1 62.26 58.19 36.23
6 ℓ2 55.77 52.12 29.07

7
(p = 24, r = 3) 555

χ2 64.67 61.08 39.50
8 ℓ1 66.11 62.52 41.33
9 ℓ2 59.01 55.94 33.01

Table 7.1: Performance of LBP on Kimia Path24 using different distance measures (ℓ1, ℓ2
and χ2) in different configurations (p, r) for p neighbors and radius r. The length of
descriptor is p× (p− 1) + 3. Best results for ηtotal are highlighted in bold.

discriminative power of the descriptors are evaluated against Kimia Path24 using k-NN
search (with k = 1) to find the similar patches. SciKit-Learn’s implementation of k-NN
algorithm is directly used without any modification. The test images with original sizes
(1000× 1000 each) are fed to an LBP model to extract their feature vectors. The 27, 055
number of training images are compared against each of the test patch for the benchmark
of dataset using three different kinds of distance measurements ( i.e, ℓ1, ℓ2 and χ2).

The results are reported in Table 7.1, showing path-to-scan ηp, whole-scan-accuracy
ηW , and total-accuracy ηtotal for all the nine experiments. Varying the radius r helps LBP
to capture textural information in different scales. As shown in Table 7.1, a large radius
contributes to the higher accuracy values (2% – 3% at most). The highest total-accuracy
achieved is with the longest descriptor (the length of 555). For all the experiments with
descriptors of length 59, the maximum accuracy achieved is ηtotal = 36.82% whereas the
descriptor of length 555 achieved the highest accuracy of ηtotal = 41.33; this corresponds
to increase of ∼ 4.51% in the accuracy scores for about ∼ 840% increase in the descriptor
length. Therefore, selecting the parameter p of LBP is a design choice, selecting a large
value may result in slightly better accuracy however it also comes at the cost of increased
storage requirements (needs more space for storing all the feature vectors). If storage cost
is not a problem then the choice of the higher value of p is preferable over the smaller value
of p.

68



7.5 Experiment Series 2: BoW

For the second experiment series, BoW is used as image descriptor (§5.3 of Chapter 5).
The local features used for BoW model is extracted from uniform LBP with the parameters
r = 1 and p = 8; one may refer the implemented BoW model as “Bag of LBP words” (since
each word in the visual vocabulary is an LBP histogram).

Two main reasons for choosing LBP as local feature extractor are (i) to save the
computation expense required for training a codebook; the length of local feature vectors
obtained from LBP is 59 which is considerably smaller than the raw pixels, and (ii) to
maintain the generality of experiments since LBP method has been used already, therefore,
it is more compelling to compare the two approaches (the LBP alone and the BoW with
an LBP as local feature).

SciKit Learn’s implementation of K-Means algorithms is directly used for construct-
ing a codebook. K-Means in SciKit Learn provides a parameter n jobs which can be set
to greater than one for better support on multi-CPU environment. The dense sampling
strategy is used rather than the interesting point (IP) for the following reasons: (i) the
computational complexity of IP detection, e.g., via SIFT and SURF is generally high;
(ii) an imbalanced distribution of IP for different patches would be an issue, i.e., patches
with different types of textures will probably lead to a different number of IP; (iii) redun-
dancy of neighboring IP is high. As more IP are likely to be detected around the strong
texture regions than the weak texture regions, reduction of the redundancy of samples
from dense IP regions is a challenge.

Before extracting descriptors and training a codebook, 300 patches are randomly se-
lected from all the available patches such that their homogeneity is larger than the average
homogeneity value of all the patches for each whole-slide image. To accelerate dictionary
training, all 7,200 = 24 × 300 patches are down-sampled to 500 × 500 and meshed into
windows of sizes 16 × 16 and 32 × 32 grids without an overlap. Raw pixel descriptors
and LBP features are extracted from these sub-patches. The extracted descriptors are
used to train dictionaries whose size is set to 250, 500, or 1000 (§5.3.1c., pp. 49). The
word-frequency histogram of each patch is then extracted using a successive application
encoding-pooling (§5.3.1d., pp. 49).

The total of 18 experiments are performed with different configurations of windows szize
(w × w), codebook size (k), and distance measurement. The experiments are conducted
using the same protocol as described in the previous section (§7.5). The different accuracy
values obtained from all the 18 experiments are provided in Table 7.2. The size of image
descriptors from BoW approach is same as the size of codebook, i.e. k. The best performing
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Codebook Window size Accuracy

size (k) # (w × w) Distance ηp ηW ηtotal

k
=

25
0

1
w = 16

χ2 48.53 46.61 22.61
2 ℓ1 50.26 48.17 24.21
3 ℓ2 52.45 49.92 26.18

4
w = 32

χ2 46.11 43.39 20.00
5 ℓ1 46.57 43.31 20.16
6 ℓ2 46.57 42.74 19.90

k
=

50
0

7
w = 16

χ2 65.36 48.53 31.71
8 ℓ1 66.94 50.26 33.64
9 ℓ2 66.04 52.45 34.63

10
w = 32

χ2 60.23 56.85 34.24
11 ℓ1 60.08 52.45 31.51
12 ℓ2 58.72 54.53 32.02

k
=

1
0
0
0

13
w = 16

χ2 75.77 72.16 54.67
14 ℓ1 74.04 70.18 51.96
15 ℓ2 71.77 64.47 46.27

16
w = 32

χ2 71.55 67.43 48.24
17 ℓ1 71.02 66.99 47.57
18 ℓ2 72.15 63.14 45.55

Table 7.2: Performance of BoW on Kimia Path24 using different distance measures (ℓ1, ℓ2
and χ2) in different configurations varying codebook size and window size for local feature
extraction. The length of the descriptor is same as codebook size s (second column). Best
results for ηtotal are highlighted in bold.
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BoW model on Kimia Path24 dataset has the following parameters: codebook size k =
1000, window size w = 16, and distance measurement using χ2.

7.6 Experiment Series 3: CNN

# Model Remarks Descriptor Length ηp ηW ηtotal

1 CNN1 Trained from scratch 1024 64.98 64.75 41.80

2
VGG16

Pre-trained
512

65.21 64.96 42.36
3 Fine-tuned 63.85 66.23 42.29

4
Inception-v3

Pre-trained
2048

70.94 71.24 50.54
5 Fine-tuned 74.87 76.10 56.98

Table 7.3: Performance of three CNN models on Kimia Path24, (i) CNN1, is trained from
scratch, (ii) VGG16 with both pre-trained and fine-tuned scheme, and (iii) Inception-v3
again with both schemes. The best score for each model are highlighted in bold, whereas
best performing model is highlighted in first column.

For the last experiment series, CNN are used for extracting image-features. Three different
CNN models are used, and their implementation details are explain in §5.4.1 of Chapter 5.

7.6.1 CNN1 Model

Training data is re-sized to 128 × 128 using bi-cubic interpolation (from SciPy library).
The mini-batch SGD with momentum with learning rate of 0.1 and large momentum of
0.9, along with cross-entropy loss function are used to train the CNN1 model. The CNN1

model is presented with Kimia Path24 and its classification accuracy is calculated directly
from its Softmax predictions. The final total accuracy ηtotal obtained from CNN1 model is
41.80%, other accuracy values are reported in Table 7.3.

7.6.2 VGG16 Model

VGG16 is implemented using Keras library and it is initialized with pre-trained weights.
The training data is first resized to (224 × 224) and then (103.939, 116.779, 123.68) is
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subtracted from each of the red, green and blue channel respectively (each pixel is between
0.0 – 255.0 floating point number). The two sets of experiments are conducted using
VGG16 network.

The pre-trained network is first used as a feature extractor without any fine-tuning.
As pre-trained networks are trained in other domains (very different image categories) and
hence cannot be used as classifier, therefore the deep features are used to train a linear
Support Vector Machine (SVM) for classification. The Python package scikit-learn as well
as LIBSVM are used to train SVM classifiers with a linear kernel. Both NumPy and SciPy
were leveraged to manipulate and store data during these experiments.

For the second expeirment, VGG network is fine-tuned with Kimia Path24 dataset.
Using the Keras library, the convolutional layers were first separated from the top fully
connected layers. The training patches were fed through the model to create a set of
“bottleneck” features1 to initially pre-train the new fully-connected layers. These features
were used to initialize the weights of a fully connected MLP consisting of one 256 full-
connected layer followed by ReLu layer and another 24-neuron fully connected layer with
Softmax normalized outputs.

The accuracy were calculated based on the classification accuracy of the fine-tuned
VGG16 model. The total accuracy ηtotal from both the models, pre-trained and fine-tuned,
are 42.36% and 42.29% respectively. Apparently, pre-trained model performs better, the
reason could be linear SVM is a better classifier than the MLP trained during the fine-tune
process. All the final accuracy for both experiments on VGG16 are reported in Table 7.3.

7.6.3 Inception-v3 Model

Inception-v3 model is implemented using Keras library and initialized with pre-trained
weights. The training data is first resized (299 × 299) and every pixel value is scaled to
[−1, 1]. Just like VGG16, two sets of experiments are performed for Inception-v3 as well,
one with pre-trained networks and second with fine-tuned network.

For fine-tuning, the fully connected layers were replaced with one 1024 dense ReLU
layer and a Softmax classification layer. The fully connected layers were pretrained on
bottleneck features and then attached to the convolutional layers and training on the final
two inception blocks was then performed. The fine-tuned Inception-v3 model performed
best out of all with total accuracy ηtotal = 56.98, as reported in Table 7.3. The class

1Large dimensional features are projected to low dimensional space and then to solution space, the
intermediate low dimensional features are known as bottleneck features.
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Image Descriptor Remarks Descriptor Length ηp ηw ηtotal

CNN Fine tuned Inception-v3 2048 74.87 76.10 56.98
BoW k = 1000, w = 16 1000 75.77 72.16 54.67
LBP p = 24, r = 3 555 66.11 62.52 41.33

Table 7.4: Comparison of performance of Kimia Path24 for each of the image descriptor
achieving best total accuracy ηtotal.

activation mappings (CAMs) for the fine-tuned Inception-v3 network on randomly selected
test patches are illustrated in Figure 7.3, CAM images are generated using GRAD-CAM
algorithm from [5].

7.7 Analysis and Discussion

The results demonstrate that Kimia Path24 is a challenging dataset since most of the Ma-
chine Learning (ML) techniques scored less than 60% accuracy. The fine-tuned Inception-
v3 model achieved the best total accuracy score of 56.98% followed by the BoW model with
the accuracy score of 54.67%. CNN models can improve even further if a more training
images can be extracted from the whole-slide images.

It was surprising to find out that using the features from the pre-trained CNN models
deliver the results comparable with the CNN network (CNN1) trained with considerable
effort and resources. Another surprising effect was that the transfer learning via fine-tuning
VGG16 was not able to provide any improvement compared to the deep features extracted
from the pre-trained network. However, for Inception-v3 the improvement was immediate.
Perhaps, the most obvious reaction to this finding is that if there were larger quantity
of samples, i.e., millions of histopathological images, and there were enough computation
resources to train them, then the fine-tuned CNN would deliver much better results than
the transfer learning. Although this statement is supported by the comparable empirical
evidence, it remains speculation for a sensitive field like medical imaging.

LBP performed surpsingly well and reached closed to both the approaches in the ac-
curacy scores. One should bear in mind that LBP did in fact process the images in their
original dimensions whereas CNNs and BoW required substantial downsampling. Taking
into account the training complexity, one may prefer LBP over CNNs since the former is
intrinsically simple and fast. As well, LBP has been designed to deal with textures at the
spatial level.

73



Figure 7.3: Activation maps using randomly selected patches from the Kimia Path24
testing data. The patches within each column are the same class and the labels per column
are 4 and 8 respectively. The activation maps are created using the Keras Visualization
Toolkit and the Grad-CAM algorithm [5]. Red areas has more influence on the label
prediction (seen best in color).
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Chapter 8

General Conclusion

“ Problems worthy of attack prove their worth by fighting back. ”
— Piet Hein

A
ll three image analysis approaches, Local Binary Pattern (LBP), Bag of visual
Words (BoW), and Convolution Neural Network (CNN) are able to capture dis-
criminative visual features in pathology images as reflected in the benchmark mea-

surements on Kimia Path24 dataset. Testing different hyperparameters demonstrate the
design flexibility of the three approaches, and also help in understanding the effects of
hyperparameters on the quality of extracted image features.

The proposed dataset, Kimia Path24 may be regarded easy because the benchmark is
based on matching patches that come from the same scan/patient. However, as the results
demonstrate, this is clearly not the case (total accuracy scores are under 60%). The best
total accuracy ηtotal scores achieved by LBP, BoW, and CNN are 41.33%, 54.67%, and
56.98% respectively.

Fine-tuned Inception-v3 (CNN) achieved the best total-accuracy ηtotal = 56.98% fol-
lowed by BoW (dictionary size of k = 1000 and window size of w = 16) with ηtotal = 54.67%.
Interestingly, the best CNN model scored slightly less on the patch-to-scan accuracy
(ηp = 74.87%) compared to the second best by BoW (ηp = 75.77%). However, the whole-
scan accuracy of the best CNN approach is ηw = 76.10% whereas for the BoW is much
lesser, i.e. ηw = 72.16%. The higher whole-scan accuracy suggests that the CNN approach
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has better generalization capabilities — reason could be the MLP connected at the end of
the CNN model which provides an advantage in terms of classification capabilities.

The experiments on BoW reveal that a small codebook is not as capable of describing
image information as a large codebook. The total-accuracy drastically improved from
26.18% to 54.67% by increasing the codebook size k from 250 to 1000. In all the experiments
with BoW, window size of w = 16 outperformed the w = 32, suggesting that a smaller
windows size is a preferable option for the BoW feature extraction model.

One of the surprising result is that the total-accuracy score of self trained CNN model
(CNN1) and LBP (number of neighbors p = 24 and radius r = 3) are very close to each
other — 41.80% and 41.33% respectively. CNN1 model scores better than LBP due to the
higher whole-scan accuracy (ηw = 64.75% vs 62.52%), i.e. better classification accuracy due
to the attached MLP at the end. In fact, the other pretrained CNN models are not superior
than LBP approach, i.e., VGG16 (ηtotal = 42.36%) and Inception-v3 (ηtotal = 50.54%).
These results suggest that using off the shelf CNN models for feature extraction (common
approach in the community at the present time) perform equally well as the handcrafted
methods, such as LBP. This serves as a reminder to the community that black box methods
(i.e., CNN) should be used with caution and similar results can be achieved with a good
understanding of the problem domain even with the simpler methods.

8.1 Recommendations

In the practice of medical imaging, class labels of images are generally a priori information
as it is known that an image is depicting a breast or prostate tissue. Hence, the accurate
retrieval algorithms appear to be more needed than the classification methods (even if a
class contains all malignant cases, we still need to find the most similar case). The LBP
approach lacks the training, therefore, it cannot take the benefit of knowledge existing in
the training data. Although the BoW approach has a training phase yet it does not exploit
the known class labels. Perhaps, information about class labels can be incorporated in the
codebook construction step of BoW. One can even hypothesize that the extra information
about class labels might confuse the Machine Learning (ML) algorithms. But there is no
such evidence from the results in this thesis.

Comparing to natural images and other biomedical image categories, the histopathology
images are generally acknowledged to be more complicated in structure, dimensionality,
and texture. The overlapped clustered or tightly clumped nuclei in histopathology image
make them more difficult to recognize or classify. As in case with high image resolution and
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large scale dataset, LBP was used in the BoW approach, to minimize the computational
expense. The BoW model can be tested with various different local-level extractor to study
its full potential for the retrieval in histopathology images.

A significant pitfall of Kimia Path24 is the missing pathological indicators and anno-
tations. The pathological indicators include disease type, and region of interests (ROIs),
but they require expert opinions from real pathologists making them difficult to acquire.

CNNs are more scalable than the other two approaches. Hypothetically, with an avail-
ability of a large amount of annotated and labeled pathological data, CNNs can be very a
powerful approach. However, such dataset at present is not available in the histopathology
domain.
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Appendix A

A.1 Background Information

A.1.1 Hematoxylin-Eosin (H&E) staining

Hematoxylin-Eosin (H&E) is most common staining method used by pathologists at present [28,
22]. Hematoxylin stains cell nuclei blue, while Eosin stains cytoplasm and connective tissue
in pink, as shown in Figure A.1. Due to the long history of H&E, and many supporting
data and research for its efficacy, there is a strong belief among many pathologists that
H&E will continue to be the common practice over the next 50 years [3].

Figure A.1: A sample digital slide stained with Hematoxylin-Eosin (H&E). Hematoxylin
stains cell nuclei in blue whereas Eosin stains connective tissue in pink.
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A.1.2 Pro and cons of WSI technology

Advantages

1. Primary diagnosis [22, 28, 90, 24]
2. Education, training and mentoring

[17, 91, 18]
• Easy access to students and pathologists in training
• Sharing of instructive and unusual cases digitally
• Promotes interactive teaching environment

3. Telepathology

[21, 18, 32]
• Receive a second opinion remotely
• No need to transport glass slides physically
• As a part of quality assurance protocol
• More educated and assertive decisions for difficult cases

4. Archiving interesting and legal cases

[22, 18]
• Digital slides are not subjected to degradation
• Easy access to patient’s previous histology
• Improves traceability for misdiagnosis or legal matters

5. Image analysis and computational pathology Section TODO
6. Improved patient safety

[18, 20, 21]
• Integration with Laboratory Information System (LIS)
• Prevent wrongful labeling and transportation errors
• Prevent damage to valuable and irreplaceable glass slides

(a)

Disadvantages

1. Costly for initial setup

[27, 20, 18]
• A single WSI scanner can cost around $135, 000 [92]
• Requires upgrade to IT infrastructure
• High initial costs discourages small pathology labs

2. Limited focus control [19]
3. Massive file size

[91, 19]• A single whole-slide image can be up to 1 gigabyte or more
• Imposes storage, archiving and transmission challenge

4. Different vendors and their standards
[91, 19]• Limited interoperability between different vendors

• However, DICOM standard for digital slides exists ([93])
5. Pathologists reluctance to adapt [27, 20]

(b)

Table A.1: Pros and cons of WSI technology are respectively discussed in (a) and (b).
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Appendix B

B.1 Pretrained CNNs used for the experiments

B.1.1 VGG 16

The VGG-16 is very popular CNN model developed by Visual Geometry Group at the
University of Oxford [84]. It has 16 layers which can learn total of around 138 million
parameters. Detailed textual description of the VGG-16 architecture is given in Table B.1.

B.1.2 Inception-v3

Inception-v3 is third version of the Inception architectures created at Google’s DeepMind.
First Inception module was introduced by M. Szegedy et al (DeepMind) around 2014 in [6].
The key insight of the Inception module is the realization that conventional convolutional
filters can only learn linear functions of their inputs, therefore, need is to increase their
learning abilities and abstraction power by having more complex filters.

The earliest Inception module computes 1 × 1 filters, 3 × 3 filters and 5 × 5 filters
in the parallel, then applies the bottleneck 1 × 1 filters [6]. However, architecture of
Inception-v3, introduced within a year of time from the first version of the Inception,
removed the 5× 5 filters and replaced them by two successive layers of 3× 3 filters along
with batch normalization layers [2]. Full textual description of the Inception-v3 is given
in Table B.2 and different Inception modules that creates the Inception-v3 have been
presented in Figure B.1.

91



# Type # filters @ patch size/stride Parameters Output size

0 Image 3× 224× 224
1 Convolution 64 @ 3× 3/1 1729 64× 224× 224
2 Convolution 64 @ 3× 3/1 36, 928 64× 224× 224
3 Max pooling 2× 2 0 64× 224× 224
4 Convolution 128 @ 3× 3/1 73, 856 128× 112× 112
5 Convolution 128 @ 3× 3/1 147, 584 128× 112× 112
6 Max Pooling 2× 2 0 128× 56× 56
7 Convolution 256 @ 3× 3/1 295, 168 256× 56× 56
8 Convolution 256 @ 3× 3/1 590, 080 256× 56× 56
9 Convolution 256 @ 3× 3/1 590, 080 256× 56× 56
10 Max pooling 2× 2 0 256× 28× 28
11 Convolution 512 @ 3× 3/1 1, 180, 160 512× 28× 28
12 Convolution 512 @ 3× 3/1 2, 359, 808 512× 28× 28
13 Convolution 512 @ 3× 3/1 2, 359, 808 512× 28× 28
14 Max pooling 2× 2 0 512× 14× 14
15 Convolution 512 @ 3× 3/1 2, 359, 808 512× 14× 14
16 Convolution 512 @ 3× 3/1 2, 359, 808 512× 14× 14
17 Convolution 512 @ 3× 3/1 2, 359, 808 512× 14× 14
18 Max pooling 2× 2 0 512× 7× 7
19 FC 4096 102,764,544

Dropout 0
20 FC 4096 16, 781, 312

Dropout 0
21 FC 1000 4, 097, 000
∑

138,357,544

Table B.1: VGG-16 architecture: All the convolutions are zero padded to prevent changes
in the sizes. ReLU activation functions is used applied after Max pooling. The channels
mean is subtracted from each pixel as a preprocessing step (103.939, 116.779, 123.68) [1].
The dropout probability is 0.5.
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(a) 3×Inception module (b) 2×Inception module

(c) 5×Inception module

Figure B.1: Different Inception modules used in architecture of Inception-v3. Image is
taken from [6]
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Type patch size/stride Output size

Input 3× 299× 299
Convolution 3× 3/2 32× 149× 149
Convolution 3× 3/1 32× 147× 147

Convolution Padded 3× 3/1 64× 147× 147
Max Pooling 3× 3/2 64× 73× 73
Convolution 3× 3/1 80× 71× 71
Convolution 3× 3/2 192× 35× 35
Convolution 3× 3/1 288× 35× 35

3×Inception (Fig. B.1a) 768× 17× 17
5×Inception (Fig. B.1c) 1280× 8× 8
2×Inception (Fig. B.1b) 2048× 8× 8

Max Pooling 2048× 1× 1
Global Average Pooling 1000× 1× 1

Softmax 1000

Table B.2: Inception-v3 network. Taken from [2]
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Appendix C

C.1 Kimia Path24 Dataset

C.1.1 Accuracy calculation code

import numpy as np
import h5py as h5
import sys
from s k l e a rn . met r i c s import accuracy sco re , con fu s i on mat r ix

d a t a f i l e p a t h = sys . argv [ 1 ]
c s v f i l e p a t h = sys . argv [ 2 ]

data = h5 . F i l e ( d a t a f i l e p a t h , ’ r ’ )
c o r r e c t l a b e l s = data [ ’ / t e s t d a t a / t a r g e t s ’ ]
p r e d i c t e d l a b e l s = np . genfromtxt ( c s v f i l e p a t h )

np = accu ra cy s co r e ( c o r r e c t l a b e l s , p r e d i c t e d l a b e l s )∗100 .
cnf mat = con fu s i on mat r ix ( c o r r e c t l a b e l s , p r e d i c t e d l a b e l s )
e = cnf mat . d iagona l ( )
nw = ( e/ cnf mat .sum( ax i s =0)) .mean ( )∗100 .
n t o t a l = (nw∗np )/100 .

print n t o t a l
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Glossary

Blame game A situation in which one party blames others for something bad or unfor-
tunate rather than attempting to seek a solution 1

Biopsy An examination of tissue removed from a living body to discover the presence,
cause, or extent of a disease 2, 10

Light microscopy A type of microscopy that uses visible light and a system of lenses to
magnify images of small subjects 3, 11, 13, 14

Histodiagnosis A diagnosis made from examination of the tissues, esp. by use of mi-
croscopy 4, 6, 19

Hyperparameters In machine learning, a hyperparameter is a parameter whose value is
set before the learning process begins 7, 33, 34, 36, 62, 65, 67, 75

Radiology Radiology is the science that uses medical imaging to diagnose and sometimes
also treat diseases within the body. For e.g. X-ray, ultrasound 10, 16
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