18 research outputs found

    Optimización de rutas de transporte público urbano

    Get PDF
    RESUMEN: Este artículo muestra el proceso de optimización de rutas de transporte público urbano basado en las técnicas de investigación de operaciones. Éste muestra en el contorno del desarrollo e importancia de la planificación del transporte público colectivo, sus etapas, diseño y modelos. Se presenta el diseño de redes de rutas de buses donde se muestran las generalidades y antecedentes de los modelos de optimización aptos para el sistema de transporte público colectivo. Se desarrolla un modelo de optimización minimizando transbordos y se discuten sus resultados de acuerdo a la teoría planteada. El artículo finaliza con las principales conclusiones y recomendaciones encontradas en el estudio para mejorar la optimización de rutas del transporte público urbano.ABSTARCT: In this paper we show the optimization process of urban public transportation routes based on operations research techniques. This is shown in the outline of the development and importance of public transportation planning, its stages, its design and models. We present the design of networks of bus routes showing the overview and background of suitable optimization models for the public transportation system. We developed an optimization model minimizing transfers and we discuss the results according to the proposed theory. The article ends with the main conclusions and recommendations found in the study to improve the route optimization of urban public transportation

    Designing Rapid Transit Network Design with Alternative routes

    Full text link
    The aim of this paper is to propose a model for the design of a robust rapid transit network. In this paper, a network is said to be robust when the effect of disruption on total trip coverage is minimized. The proposed model is constrained by three different kinds of flow conditions. These constraints will yield a network that provides several alternative routes for given origin–destination pairs, therefore increasing robustness. The paper includes computational experiments which show how the introduction of robustness influences network desig

    Designing robust rapid transit networks with alternative routes

    Get PDF
    The aim of this paper is to propose a model for the design of a robust rapid transit network. In this paper, a network is said to be robust when the effect of disruption on total trip coverage is minimized. The proposed model is constrained by three different kinds of flow conditions. These constraints will yield a network that provides several alternative routes for given origin–destination pairs, therefore increasing robustness. The paper includes computational experiments which show how the introduction of robustness influences network design.Unión Europea FP6-021235-2Ministerio de Fomento PT2007-003-08CCPPMinisterio de Educación y Ciencia TRA2005-09068-C03-01 MTM2006-15054Ministerio de Ciencia e Innovación TRA2008-06782-C02-01Natural Sciences and Engineering Research Council of Canada 39682-0

    Urban Rapid Transit Network Capacity Expansion

    Get PDF
    This paper examines a multi-period capacity expansion problem for rapid transit network design. The capacity expansion is realized through the location of train alignments and stations in an urban traffic context by selecting the time periods. The model maximizes the public transportation demand using a limited budget and designing lines for each period. The location problem incorporates the user decisions about mode and route. The network capacity expansion is a long-term planning problem because the network is built over several periods, in which the data (demand, resource price, etc.) are changing like the real problem changes. This complex problem cannot be solved by branch and bound, and for this reason, a heuristic approach has been defined in order to solve it. Both methods have been experimented in test networks

    Improved rapid transit network design model: considering transfer effects

    Get PDF
    The rail rapid transit network design problem aims at locating train alignments and stations, maximizing demand coverage while competing with the current existing networks. We present a model formulation for computing tight bounds of the linear relaxation of the problem where transfers are also introduced. The number of transfers within a trip is a decisive attribute for attracting passengers: transferring is annoying and undesirable for passengers. We conduct computational experiments on different networks and show how we are able to solve more efficiently problems that have been already solved; sensitivity analysis on several model parameters are also performed so as to demonstrate the robustness of the new formulation

    Improved rapid transit network design model: considering transfer effects

    Get PDF
    The rail rapid transit network design problem aims at locating train alignments and stations, maximizing demand coverage while competing with the current existing networks. We present a model formulation for computing tight bounds of the linear relaxation of the problem where transfers are also introduced. The number of transfers within a trip is a decisive attribute for attracting passengers: transferring is annoying and undesirable for passengers. We conduct computational experiments on different networks and show how we are able to solve more efficiently problems that have been already solved; sensitivity analysis on several model parameters are also performed so as to demonstrate the robustness of the new formulation

    Calculation Model of Railway Capacity Price in the Czech Republic

    Get PDF
    This paper presents a pricing model of railway infrastructure capacity allocation functioning as a regulatory measure while fulfilling the regulatory requirements on railway infrastructure capacity allocation. The prices of railway infrastructure capacity allocation will be modelled with regard to all economically justifiable costs of railway infrastructure capacity allocation. The structure of model has been developed as a set of calculation sheets in Microsoft Excel. The recommended prices for railway capacity have been found by simulation of a set of variants and the recommendation is done for different operational conditions in an individual way. It analyses different products offered by the railway infrastructure capacity allocator both in the annual working timetable mode, and in the individual ad hoc mode. The aim of the proposed model is to motivate not only railway undertakings, but also the railway infrastructure capacity allocator to submit requests for railway infrastructure capacity in the annual working timetable mode rather than in the individual ad hoc mode. The total price is then verified to the cost of railway infrastructure capacity allocation. This process then ensures the regulation of the demand of railway undertakings on the given route and can influence the decision about the use of the product offered

    Covering a line segment with variable radius discs

    Get PDF
    The paper addresses the problem of locating sensors with a circular field of view so that a given line segment is under full surveillance, which is termed as the Disc Covering Problem on a Line. The cost of each sensor includes a fixed component f, and a variable component that is a convex function of the diameter of the field-of- view area. When only one type of sensor or, in general, one type of disc, is available, then a simple polynomial algorithm solves the problem. When there are different types of sensors, the problem becomes hard. A branch-and-bound algorithm as well as an efficient heuristic are developed for the special case in which the variable cost component of each sensor is proportional to the square of the measure of the field-of-view area. The heuristic very often obtains the optimal solution as shown in extensive computational testing
    corecore