6,763 research outputs found

    Alternating Back-Propagation for Generator Network

    Full text link
    This paper proposes an alternating back-propagation algorithm for learning the generator network model. The model is a non-linear generalization of factor analysis. In this model, the mapping from the continuous latent factors to the observed signal is parametrized by a convolutional neural network. The alternating back-propagation algorithm iterates the following two steps: (1) Inferential back-propagation, which infers the latent factors by Langevin dynamics or gradient descent. (2) Learning back-propagation, which updates the parameters given the inferred latent factors by gradient descent. The gradient computations in both steps are powered by back-propagation, and they share most of their code in common. We show that the alternating back-propagation algorithm can learn realistic generator models of natural images, video sequences, and sounds. Moreover, it can also be used to learn from incomplete or indirect training data

    Globally-Coordinated Locally-Linear Modeling of Multi-Dimensional Data

    Get PDF
    This thesis considers the problem of modeling and analysis of continuous, locally-linear, multi-dimensional spatio-temporal data. Our work extends the previously reported theoretical work on the global coordination model to temporal analysis of continuous, multi-dimensional data. We have developed algorithms for time-varying data analysis and used them in full-scale, real-world applications. The applications demonstrated in this thesis include tracking, synthesis, recognitions and retrieval of dynamic objects based on their shape, appearance and motion. The proposed approach in this thesis has advantages over existing approaches to analyzing complex spatio-temporal data. Experiments show that the new modeling features of our approach improve the performance of existing approaches in many applications. In object tracking, our approach is the first one to track nonlinear appearance variations by using low-dimensional representation of the appearance change in globally-coordinated linear subspaces. In dynamic texture synthesis, we are able to model non-stationary dynamic textures, which cannot be handled by any of the existing approaches. In human motion synthesis, we show that realistic synthesis can be performed without using specific transition points, or key frames

    Modeling Dynamic Swarms

    Full text link
    This paper proposes the problem of modeling video sequences of dynamic swarms (DS). We define DS as a large layout of stochastically repetitive spatial configurations of dynamic objects (swarm elements) whose motions exhibit local spatiotemporal interdependency and stationarity, i.e., the motions are similar in any small spatiotemporal neighborhood. Examples of DS abound in nature, e.g., herds of animals and flocks of birds. To capture the local spatiotemporal properties of the DS, we present a probabilistic model that learns both the spatial layout of swarm elements and their joint dynamics that are modeled as linear transformations. To this end, a spatiotemporal neighborhood is associated with each swarm element, in which local stationarity is enforced both spatially and temporally. We assume that the prior on the swarm dynamics is distributed according to an MRF in both space and time. Embedding this model in a MAP framework, we iterate between learning the spatial layout of the swarm and its dynamics. We learn the swarm transformations using ICM, which iterates between estimating these transformations and updating their distribution in the spatiotemporal neighborhoods. We demonstrate the validity of our method by conducting experiments on real video sequences. Real sequences of birds, geese, robot swarms, and pedestrians evaluate the applicability of our model to real world data.Comment: 11 pages, 17 figures, conference paper, computer visio

    Livrable D2.2 of the PERSEE project : Analyse/Synthese de Texture

    Get PDF
    Livrable D2.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D2.2 du projet. Son titre : Analyse/Synthese de Textur

    Geometric deep learning: going beyond Euclidean data

    Get PDF
    Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them. Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field
    • …
    corecore