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the stochastic characteristics of temporal shape variation. . . . . . . . . . 75

5.2 Examples of the nested ring structure of fire regions. (a) A fire region with

a single core. (b) A fire region with two cores. . . . . . . . . . . . . . . . 81

5.3 Selected fire images used in experiments. . . . . . . . . . . . . . . . . . . 84

5.4 Our procedure for synthesis of dynamic 2D shape. . . . . . . . . . . . . . 88

5.5 Leftmost image: A nested ring structure models the fire region. Second

image: An example fire image from the given video sequence. Others:

Selected frames of the synthesized fire image sequence. . . . . . . . . . . 90

5.6 The green contour is predicted by our dynamic shape model, and the red

contour is the optimal contour of the previous image frame with predicted

translation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.1 The similarity plot of a human running sequence. . . . . . . . . . . . . . 99

6.2 In each row, the leftmost image is an example image frame of the query

sequence of a dynamic object. The corresponding four most similar se-

quences are shown in the right. . . . . . . . . . . . . . . . . . . . . . . . 103

xiii



CHAPTER 1

INTRODUCTION

1.1 Motivation

This thesis is motivated by the objective of modeling a variety of spatiotemporal variations

in video sequences. These include variations in raw color values as well as certain mappings of

these values. Further, since an arbitrary scene consists of distinct objects occupying different

parts at different times, video sequences possess different properties in different spatiotemporal

segments. Therefore, our goal is local rather than global spatiotemporal modeling. The models

we plan to develop will indeed apply to not just video but a variety of multivariate multi-

dimensional data encountered in everyday life. For example, a one-dimensional (1D) waveform

may be a sleep (electroencephalograph, or EEG) signal, a blood pressure record, or an elec-

trocardiogram (ECG) profile over time (Figure 1.1). Ordinary photographs and sonograms

are examples of two-dimensional (2D) data. A video sequence is three-dimensional (3D) data.

Four-dimensional (4D) data are encountered, for example, as temporal records of dynamic 3D

structures such as magnetic resonance volume images of heart.

Let us define a multivariate function y = f(x), where y ∈ Rn and x ∈ Rm, that represents

a set of n-dimensional data y defined in a m-dimensional domain x. In this thesis, we are

interested in the case where multi-dimensional value y is color, or properties computed from
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Figure 1.1 A one-dimensional waveform can be a sleep signal, a heart beating or a blood
pressure record over time.

Figure 1.2 A 2D slice of a brain (CT brain image).

these values such as shape and texture, and the multivariate domain x can be space, time, or

a combination of them, and we must partition the space such that the variation within each

part is linear although not necessarily independent. For example, consider a video sequence

of moving people. The pose of a given face changes linearly. However, this linear change has

different parameters in regions occupied by different faces. Thus the ensemble of face regions

in the video sequence can be modeled by locally linear models of pose variation. Similar locally

linear models can be obtained for a video sequence of a dynamic texture where y represents

texture properties.

As another example, consider an objet embedded within a 3D space domain, and adjacent

2D slices of the object, e.g., a brain, collected at a series of points along a particular axis.

Suppose a specific 3D structure in the slice is represented by its 2D contour (see Figure 1.2).

2



Figure 1.3 Motion capture technique is used to reproduce realistic motion sequences for video
games, animation production, etc. Images are acquired from Motion Analysis Corporation.

If the 2D contour is represented by a set of N parameters (e.g. Fourier coefficients), then y is

a N -dimensional vector. Since the brain structure is a continuous 3D surface, the 2D contours

of two adjacent slices are very likely to be similar, and the contour representation y would

therefore be continuous and locally linear along the axis x. A sequence of visual images of a

fire can also be represented in a similar way, with y as an N -dimensional 2D contour and x the

time each image is taken. However, fire contours exhibit a stochastic behavior, like dynamic

texture video sequences, so not the contour but certain of its properties (e.g., contour center)

are continuous.

Another example of multiple-object, locally linear variation is human motion data. One

widely used method capturing such data is by recording a sequence of 3D locations of specific

body parts by placing a number of optical/magnetic markers on a human actor and the 3D

positions of these markers are measured over time (see Figure 1.3). If N markers are attached

to the human actor, then the motion capture data can be expressed as a function with 3N -

dimensional values y in the time domain x. Note that the vector data y represent multiple

objects (body parts), each of which undergoes a continuous and locally linear motion (e.g.

3



points located on hand, knee, foot). Some of the objects move under strong mutual constraints

(e.g., shoulder and elbow, and knee and ankle are at fixed distances) whereas others move

relatively independently (e.g. head and feet). The goal of modeling here is to partition the data

and identify the locally linear model of each part. The global model exploits the relationships

among parts, and thus is more efficient (lower-dimensions) than a union of independent linear

models.

Another aspect of locally linear modeling concerns whether the models are obtained for the

data in the original domain x or after reducing its dimensionality by rasterizing and obtaining

models for lower dimensional x. Clearly, reducing the dimensionality obscures the true variation

in the data, however, it has been often used in applications where the obscured characteristics

are not important, or only for its simplicity. Consider an image volume with T frames of

M -by-N gray-scale images. In its original space, the image volume can be expressed by a

function defined in the domain x ∈ R3 within a M × N × T volume, and the function has a

one-dimensional gray-scale value y at any given x. Using this representation, properties of each

pixel can be investigated in both spatial and temporal domain. If only temporal properties are

relevant, it suffices to reexpress the data in terms of a (M × N)-dimensional vector y of gray

values, obtained, for example, by rasterizing each image, and the variation to be modeled as

that of the rasterized vector with respect to time. Examples of such linear modeling of video

data include [1, 2] in the temporal domain and [3] in the spatio-temporal domain.

We focus on developing models that capture variations in continuous, locally-linear, multi-

dimensional data. We evaluate our models on the tasks of (i) prediction of dynamic object

appearance, (ii) reproduction of dynamic object shape, appearance and motion, and (iii) recog-

4



nition of dynamic object based on its temporal variation in shape. The proposed approaches can

be easily used in spatial only or spatiotemporal domain, and be used in different applications.

1.2 Problem Definition

In this thesis, we investigate continuous, locally-linear models of visual data. For a given

visual data sequence {y1, y2, . . . , yn}, we learn a modelM that characterizes temporal variations

in {yt} which are continuous and locally linear. We then use the learned model M to perform

the following visual tasks:

1. Prediction: predict the most probable yn+1 based on the learned model M.

2. Reproduction: generate a new sequence {y′1, y′2, . . . , y′T } given {y1, y2, . . . , yn} based on

the learned model M of a given {y1, y2, . . . , yn}.

3. Recognition: recognize a previously unseen member of a class of dynamic objects in terms

of certain temporal features of the object motion selected based on the model M of the

class.

In the following, we define each specific task for which we use locally linear modeling in this

thesis.

5



1.2.1 Tracking of Objects

Given a video sequence of an object undergoing unknown pose changes, learn the appearance

model of the object. Given another video sequence, locate the object and estimate its pose in

each image frame.

In this task, we predict an object’s 2D location and appearance over time. The object in

each image is circumscribed in a bounding box which is described by its center and its width

and height. The appearance of the object is captured by the image content in the bounding

box, scaled to a standard size k-by-k. Each yi is the image inside the box along with 2D location

(center) and scale (width and height) of the object. Therefore, each yi is a (k2 +4)-dimensional

vector. Linear models are widely used to capture data sets with small variations. For large

variations, a linear model may not suffice. However, if the object undergoes a continuous

movement, its appearance change over a short period will be small, and therefore could be

modeled as locally linear.

We apply our model to tracking human faces. Most other trackers track only the 2D location

and the scale of a face. At time t + 1, they sample/search possible bounding boxes in the four-

dimensional space (i.e. location and scale) and select the one with image content having the

highest likelihood of being the target face. We track the face pose as well which means we

search for not only a high-likelihood face but also a high-likelihood pose. When multiple faces

are present in the scene, tracking face pose prevents the tracker from drifting to a nearby face

and thus facilitates more reliable tracking. Using a piecewise-linear model to characterize a face

helps to better distinguish between poses.

6



1.2.2 Synthesis of Dynamic Textures

Videos of dynamic textures exhibit statistical variations with time. Given such a video

sequence, model its temporal variations, and then generate a new video sequence based on the

learned model.

Dynamic textures exhibit statistically repeated patterns in the temporal domain. Examples

include wavy ocean, flapping flags, smoke, etc. Since we are concerned with the temporal

relationships between successive images, we represent the input video as a sequence of image

vectors over time. Here each of yi’s is a (M × N)-dimensional vector if the video contains a

sequence of M -by-N gray-scale images.

Previous works in the literature focus on linear modeling of such data, assuming the textural

variation is small and the change in rasterized vector y over time is linear. In the real world,

however, changes in the environment may cause changes in dynamic textures in different ways.

Take a flag in the wind for example. When there is a light breeze, the flag might hang limp

or move slowly. As the wind becomes stronger, the flag starts to fly, and flaps vigorously

when the winds blow very strongly. Adding the directional changes of the wind, the flag shows

distinguishable shapes, appearances and dynamics over time. When the direction and the speed

of the wind remain constant, the flag motion may be characterized using linear models. Often

times, the wind changes unpredictably, therefore linearity of dynamic textures occurs only in

short time periods.

We employ a locally linear model to describe motion sequences of dynamic textures that

involve large variations. Each linear component of the model captures a small variation within

a subset of images acquired during a sufficiently short time period. Synthesis is achieved by

creating images according to the learned model.
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1.2.3 Synthesis of Articulated Motion

Given a sequence of 3D positional data of multiple objects that move under kinematic con-

straints, model their temporal variations and then generate a new motion sequence of these

objects based on the learned model.

We use sequences of data representing 3D motion of human joints measured from a human

actor wearing markers on joints. As mentioned in Section 1.1, we treat multiple objects moving

under constraints as a single data vector at each time. Therefore, the input data y is a 3N -

dimensional vector if N markers are used. Example human motions include dancing, hand

gestures, etc.

Previous works in the field of computer graphics have used locally linear models for human

motion synthesis. The general solution is to identify some transition points for locally linear

models, which pose extra constraints on the model. These transition points are analog to key

frames and the synthesized motion is forced to go through transition points. Without transition

points, however, their models do not ensure continuous motion because two successive data

vectors may be captured by different linear components.

We parameterize our locally-linear model with a global coordinate system. Although two

successive data vectors may be captured by different linear components, their representations

in our model are still continuous. The continuous representation naturally corresponds to

continuous variation of input data.
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1.2.4 Recognition of Objects from Video

Given a video sequence of an object undergoing complex shape changes, learn the model that

characterizes variations in object shape over time. Given other video sequences of the object,

recognize the object based on the parameters of the learned model.

The visual data in this task are 2D shape representations of an object derived from images

over time. As mentioned earlier, if a set of N parameters are used to describe a 2D shape,

the input data y will be N -dimensional shape representation over time. We use a locally-linear

model to describe the dynamic shape changes over sufficiently short time periods.

The model parameters can then be used as discriminating features for recognition of the

dynamic object. Of course, using a locally-linear model for recognition is more complex than a

linear model.

1.3 Thesis Overview

The general goal of our work is to develop models to capture variations in continuous, locally-

linear, multi-dimensional data. We demonstrate the use of the models mainly in the temporal

domain, though it can also be used in spatial and spatio-temporal domains. The applications

shown in this thesis include tracking, synthesis, recognitions and retrieval of dynamic objects

based on shape, appearance and motion of dynamic objects.

In Chapter 2, we first relate our problem to nonlinear dimensionality reduction and in-

trinsic manifold learning. We use a global coordination model that enables us to model high-

dimensional nonlinear data in a mixture of globally-coordinated linear subspaces. A two-stage

learning algorithm is adopted for the global coordination model, where we first learn a mixture

of linear subspaces for the input data and then align these linear subspaces in a probabilistic
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formulation. We extend the model to a dynamic global coordination model and compare it

with other linear or nonlinear dynamical models. We also validate the capability of the model

to characterize continuous, locally-linear multi-dimensional data.

Chapter 3 instantiates the use of the dynamic global coordination model for data prediction.

We develop an approximate inference algorithm for this dynamical model with an application

to nonlinear appearance based object tracking. Specifically, we approximate the nonlinear

manifold of object appearance using a mixture of locally linear models. These local models

are then aligned so that we obtain a coherent representation to parameterize the nonlinear

manifold. Unlike conventional tracking methods that track only 2D position and the scale

of the object in videos, our model allows us to simultaneously track object pose in the low-

dimensional subspace. As a result, our proposed method is robust in the presence of similar

objects or temporary occlusion as explained earlier.

Chapter 4 proposes non-parametric dynamic models that operate in globally-coordinated

locally-linear subspaces for different types of motion parameters. We demonstrate applications

to dynamic texture synthesis and human motion synthesis. We are able to synthesize non-

stationary dynamic textures which are beyond the capabilities of existing approaches based on

linear dynamical models. We also relax the transition constraints that have been posed by other

nonlinear models used for human motion synthesis. We show that our model captures contin-

uous, complex motion as a continuous, low-dimensional trajectory in the globally-coordinated

subspace.

Chapter 5 investigates a special case where a linear model is adopted to capture temporal

variations in dynamic 2D object shape under the assumption that the dynamics are linear over

a short period of time [4]. We represent 2D region shape in terms of the spatial frequency con-
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tent of the region contour using Fourier coefficients. The temporal changes in these coefficients

are used as the temporal signatures of the shape changes. Specifically, we use an autoregressive

model of the Fourier coefficient series. The efficacy of the model is evaluated by several applica-

tions. First, we use the model parameters as discriminating features for object recognition and

classification. Second, we show the use of the model for synthesis of dynamic shape using the

model learned from a given image sequence. A nonlinear model for synthesis is also employed

to enrich synthesis results. Third, we show that, with its capability of predicting shape, the

model can be used to predict contours of moving regions which can be used as initial estimates

for the contour based tracking methods.

In chapter 6, we show that various forms of temporal variations in image content, when

used together, have the potential to provide important information for content based video

retrieval. We explore the use of different motion representations and evaluate them in retrieving

various motion patterns. Our approach assumes that each dynamic object has been tracked

and circumscribed in a minimal bounding box in each video frame. We represent the motion

attributes of each object in terms of changes in the image context of its circumscribing box,

which we call a 2D motion model. We demonstrate the use of the proposed 2D motion model

in retrieving objects undergoing complex motion [5].

In chapter 7, we conclude the thesis and present some future directions in which the current

work could be extended.

The electronic version of this thesis, experimental results, videos and related publications

are available at http://vision.ai.uiuc.edu/~cbliu/.
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1.4 Contributions

This thesis makes major contributions to the modeling and analysis of continuous, locally-

linear, multi-dimensional spatio-temporal data.

• Our approach has a better descriptive power than linear models because our approach is

capable of capturing nonlinear but locally-linear variations.

• Toward locally-linear modeling, our approach has advantages over those using mixtures of

linear subspaces in that our approach aligns the linear subspaces within the same global

coordinate system. As a result, we are able to represent continuous multi-dimensional

data using continuous low-dimensional coordinates.

• Our approach is also different from those that use nonlinear embedding which also projects

continuous multi-dimensional data onto a low-dimensional subspace while preserving the

original continuity properties. Whereas nonlinear embedding has no mapping function

to back-project data from the low-dimensional subspace, our model provides a two-way

mapping between the original data space and its corresponding set of low-dimensional

subspaces. Therefore, while we have the advantage of analyzing multi-dimensional data

in low-dimensional subspaces, we can map the results of the analysis back to the original

data space, which is essential for many computer vision tasks such as tracking or synthesis

that are defined in the original space.

• Our approach extends the previous work on the global coordination model to temporal

analysis of continuous, multi-dimensional data. By contrast, the previous work has ad-

dressed monolithic modeling of multi-dimensional variation in the data, and further, has

been demonstrated on only synthetic data sets. We have developed algorithms for time-
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varying data analysis, applied them to full-scale, real-world data sets, and used them in

new applications.

We show that the new modeling features of our approach improve the performance of existing

approaches in many different applications.

• In object tracking, our approach is the first one to track nonlinear appearance variations

by using low-dimensional representation of the appearance change in globally-coordinated

linear subspaces.

• In dynamic texture synthesis, we are able to model non-stationary dynamic textures,

which cannot be handled by any of the existing approaches.

• In human motion synthesis, we show that synthesis can be performed without using

specific transition points, or key frames.

Finally, we use a linear model for recognition of dynamic objects by using locally-linear

models of temporal shape variations over short time periods. We demonstrate this simple

model in an involving application in fire detection.
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CHAPTER 2

DYNAMIC GLOBAL COORDINATION MODEL

In this chapter, we present a global parameterization approach and extend it to a dynamical

model to capture variations of multi-dimensional data on a nonlinear manifold. A nonlinear

manifold can usually be approximated by a mixture of locally linear models. In such mixture

models, each linear component has its own mapping between the high-dimensional input space

and the low-dimensional embedding, which results in different coordinate systems and causes

difficulties for many computer vision task such as object tracking and motion synthesis. There

are also methods in nonlinear dimensionality reduction that map a manifold into a single low-

dimensional coordinate system. But these methods preserve only spatial relationships among

manifold points, and therefore do not provide a mapping that infers values of manifold points

in the input space from the low-dimensional representation.

To overcome the aforementioned problems, we employ a global coordination model [6]. we

first use a mixture of linear subspaces to model the input data. We then align these linear

subspaces in a probabilistic formulation so as to parameterize the nonlinear manifold within

a global coordinate system. We extend the global coordination model to a dynamic Bayesian

network. This extended model serves as the foundation of our thesis that enables us to model

the temporal variations of continuous, locally-linear, high-dimensional visual data.
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2.1 Introduction

Often times, high-dimensional data lie on or near a low-dimensional manifold embedded in

the input space. It is a common assumption and has been empirically validated, particularly

in visual images taken from a single object or multiple interactive objects. Therefore, given a

set of high-dimensional data, we want to learn the intrinsic structure of its manifold.

To find the intrinsic structure of a manifold is a dimensionality reduction problem. When

the input data lie on or near a linear subspace, classical techniques such as principal component

analysis (PCA) are effective to find such a low-dimensional embedding. However, many real-

world data yield large variations and their manifolds are more likely to be nonlinear and cannot

be fully captured by a simple PCA model.

The existing methods for nonlinear dimensionality reduction are generally in two categories:

(1) global nonlinear projection, or (2) locally linear projection. Methods using global nonlinear

projection aim at preserving spatial relationships among the input data on the manifold. They

map a nonlinear manifold into a low-dimensional global coordinate system, in the hope of

discovering the intrinsic degrees of freedom of the input data. Examples of these methods

include Isomap [7] and Locally Linear Embedding (LLE) [8]. However, the high-dimensional

coordinates in the input space are not preserved when mapping from the input space to the

low-dimensional embedding. For many applications in computer vision, a mapping from the

embedding to the input space is needed to reconstruct data in the original space.

Methods using locally linear projection characterize a nonlinear manifold by fitting multi-

ple locally linear models (e.g. mixtures of Probabilistic PCA (MPPCA) [9]). Their mappings

preserve information in the original space, so data can be reconstructed given low-dimensional

representations. However, each local model has its own mapping between data and its corre-
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Figure 2.1 A mixture of locally linear model offers a two-way mapping, but lacks a coherent
coordinate system. Nonlinear embedding offers a global coordinate system, but lacks the map-
ping from the global coordinate to the input space. We can map a mixture of linear subspaces
into a new coordinate system to achieve an ideal two-way manifold mapping.

sponding linear subspace, resulting in different coordinate systems. For the lack of a single and

coherent coordinate system, these methods are not appropriate to describe continuous motions.

Figure 2.1 depicts different approaches for nonlinear dimensionality reduction. An ideal

approach should have a single coherent coordinate system and provide a two-way mapping

between the input space and the low-dimensional manifold coordinate. To achieve such a

mapping, we use a two-stage mapping approach through a mixture of linear subspaces. The

essential idea is to align internal coordinate systems of different locally linear models into a

single global coordinate system.

2.2 Global Coordination Model

Roweis et al. [6] present the first global coordination model shown in Figure 2.2. They use

a mixture of factor analyzers (MFA) for the locally linear models. The joint distribution over
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Figure 2.2 The global coordination model proposed by Roweis et al. If given s and zs, the
mappings to high-dimensional input data y and to low-dimensional global coordinate g are both
linear. Since s and zs are latent variables, the mapping between y and g is nonlinear.

observed and hidden variables in the MFA is expressed as

P (y, s, zs) = P (y|s, zs)P (zs|s)P (s), (2.1)

where y is the high-dimensional observed variable, s is the discrete hidden variable indexing

different linear models, and the continuous hidden variable zs is the internal coordinate of the

s-th linear model. The MFA model assumes data are sampled from different linear models

with prior probabilities P (s), and within each component, the local coordinates of data are

Gaussian: P (zs|s) ∼ N (0, I). The linear mapping from data to local coordinate is expressed as

y = Λszs + µs + us, (2.2)

where Λs is the transformation matrix, µs is the mean, and us ∼ N (0, Ψs) is the noise term.

Conventional learning algorithms for the MFA model estimate parameters {Λs, µs, Ψs, P (s)}

without encouraging models that align their local coordinates. Therefore, when traversing a

continuous path on the manifold in the high-dimensional space, the internal representations in

the MFA model can change unpredictably.
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Assume that there is a global coordinate g that parameterizes the manifold everywhere.

Based on the graphical model in Figure 2.2, we have

P (g, s, zs) = P (g|s, zs)P (zs|s)P (s). (2.3)

We further assume that the global coordinate is a linear mapping from local coordinates with

the transformation matrix As, the mean κs, and the noise1 vs ∼ N (0, Φs) as

g = Aszs + κs + vs. (2.4)

From (2.1) to (2.4), we have

P (y|s, zs) ∼ N (Λszs + µs,Ψs),

P (g|s, zs) ∼ N (Aszs + κs,Φs).

With zs being integrated out, we also have

P (y|s) ∼ N (µs, Ψs + ΛsΛT
s ),

P (g|s) ∼ N (κs, Φs + AsA
T
s ).

The inference about the global coordinate g conditioned on an input data y can be written as

P (g|y) =
∑

s

P (g|y, s)P (s|y), (2.5)

1Noise is ignored in [6], which results in a deterministic mapping between local and global coordinates.
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where

P (g|y, s) =
∫

P (g|s, zs)P (zs|s, y)dzs. (2.6)

Note that both P (g|s, zs) and P (zs|s, y) are Gaussians, so is P (g|y, s). And since P (s|y) ∝

P (y|s)P (s) can be computed and be viewed as a weight, P (g|y) is a mixture of Gaussians.

That is, in spite of the linear mapping between the mixture model {s, zs} and the global

coordinate g, the mapping between g and input data y is nonlinear.

Roweis et al. [6] propose an EM algorithm to learn the global coordination model. The

algorithm penalizes disagreement on global coordinates mapped from different local models, if

the likelihoods of a data point being generated from these local models are all high. However,

their algorithm suffers from inefficient training and serious local minima problems.

2.3 Two-Stage Learning of Global Coordination Model

Instead of using the EM algorithm proposed by Roweis et al. [6] to learn the global co-

ordination model, we adopt post-coordination methods proposed by Teh [10] and Brand [11],

where global coordination is invoked after conventional algorithms are used to learn the mixture

of locally linear models. We call such an approach a two-stage learning algorithm because it

sequentially performs two tasks: mixture model learning and local model alignment.

2.3.1 Learning Mixtures of Probabilistic PCA

Unlike conventional PCA that does not correspond to a probability density, we use prob-

abilistic PCA (PPCA) [9] which is formulated within a maximum likelihood framework. For
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complex input data, we use a mixture of PPCA model (MPPCA) whose parameters can be

estimated by using an EM algorithm.

For a PPCA model, the observed data y is mapped to a latent variable z as

y = Wz + µ + ε, (2.7)

where y ∈ Rq, z ∈ Rd, q > d, W is a linear projection matrix, µ is the mean of observation y,

and ε ∼ N (0, σ2I) is an isotropic noise. Therefore, we have

y ∼ N (µ, σ2I + WW T ),

and

P (y) = (2π)−q/2|C|−1/2 exp{−1
2
(y − µ)T C−1(y − µ)}, (2.8)

where C = σ2I + WW T . For a mixture model with S PPCA models, we have

P (y) =
S∑

s=1

πsP (y|s), (2.9)

where P (y|s) is the s-th PPCA model as (2.8) and πs is the corresponding mixing parameter

with πs ≥ 0 and
∑

s πs = 1.

To obtain model parameter {πs, µs,Ws, σ
2
s}, we can maximize the log-likelihood of observed

data y:

L(y) =
N∑

n=1

ln(
S∑

s=1

πsP (yn|s)), (2.10)
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where N is the number of observed data. Details of EM learning of MPPCA model parameters

can be found in [9]. Practically, the algorithm converges to a good estimate of model parameters

within 15 to 30 iterations, depending on data complexity. A rough initialization usually leads

to a good parameter estimation and reduces the number of iterations.

2.3.2 Local Model Alignment of MPPCA

After learning a MPPCA model, we use a post-coordination method proposed in [10] to

align its local PPCA models, which results in a global coordination model. Given a learned

mixture of S PPCA models, for each data point yn, the s-th PPCA has a d-dimensional internal

coordinate zns for yn and an associated responsibility rns, where rns = P (yn|s) and
∑

s rns = 1.

We assume there is a linear mapping between local representations and global coordinates, with

linear projection Ls and mean l0s . The global coordinates gn are defined as the weighted sum

of the projections by each local model:

gn =
∑

s

rnsgns =
∑

s

rns(Lszns + l0s)

=
∑

s

d∑

i=0

rnsz
i
nsl

i
s =

∑

j

unjlj ,

(2.11)

where lis is the i-th column of Ls, zi
ns is the i-th entry of zns, and z0

ns = 1. After vectorizing

index pair (i, s) into a single index j and defining matrix U as unj = rnsz
i
ns and j-th row of L

as lj = lis, we can write a linear equation system

G = UL, (2.12)

where j = j(i, s), unj = rnsz
i
ns and lj = lis, with fixed U and unknown L.
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To determine L, we need to minimize a cost function that incorporates the topological

constraints that govern gn. Hence, the cost function is selected based on LLE’s idea [8]: pre-

serving the same neighborhood structure between the high-dimensional input space and the

low-dimensional embedding. For each data point yn, we denote its nearest neighbors as ym

(m ∈ Nn) and minimize

E(Y,W ) =
∑

n

‖ yn −
∑

m∈Nn

wnmym ‖2 (2.13)

with respect to W subject to
∑

m∈Nn
wnm = 1. The weights wnm are unique and can be

estimated by constrained least squares. These weights represent the locally linear relationships

between yn and its neighbors. Accordingly, we define a similar cost function

E(G, W ) =
∑

n

‖ gn −
∑

m∈Nn

wnmgm ‖2

= trace(GT (I −W T )(I −W )G)

= trace(LT AL)

(2.14)

with respect to G, where A = UT (I −W T )(I −W )U . Since E is invariant to translations and

rotations of G, and E scales as G is scaled, we define the following two constraints

1
N

∑
n

gn =
1
N

−→
1 T G =

1
N

−→
1 T UL = 0 (2.15)

and

1
N

∑
n

gngT
n =

1
N

GT G = LT BL = Id, (2.16)
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Figure 2.3 The graphical model of our dynamic global coordination model (DGCM).

where B = 1
N UT U . Now that the cost function (2.14) and the constraint (2.16) are both

quadratic, we can determine the optimal L, without local minima problems, by solving gener-

alized eigenvalue system Aυ = λBυ subject to 1
N

−→
1 T UL = 0. The solution for L is the matrix

with its columns formed by the second to (d + 1)-th smallest generalized eigenvectors.

Note that the entire learning algorithm does not involve temporal information associated

with the input data. Since we limit the input data of concern to be temporally continuous, the

learning algorithm ensures that the temporal neighbors of an input data yt are among the spatial

neighbors of its global coordinate gt. Therefore, a sequence of temporally continuous input data

corresponds to a continuous trajectory of low-dimensional coordinates on the manifold.

2.4 Dynamic Global Coordination Model

If we model the temporal dynamics of our intrinsic parameters using the Markovian as-

sumption, for intrinsic parameters gt, we will have P (gt|gt−1, . . . , g1) = P (gt|gt−1). With this

assumption, we can concatenate the global coordination model as a dynamic Bayesian network

as shown in Figure 2.3. We call this dynamical model a dynamic global coordination model

(DGCM).
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2.4.1 Comparisons to Other Dynamical Models

Our dynamic global coordination model has a similar structure to a linear dynamical system

(LDS) as illustrated in Figure 2.4(a). Compared to a LDS, we replace the hidden state variable

x with global coordinate g, and the inference from g to the input data y is nonlinear through

the mixture model {s, z}. Since latent variables (st, z
s
t ) are temporally independent, they can

be marginalized out at each time t as shown in Figure 2.4(b).

A general switching LDS (SLDS) [12] illustrated in Figure 2.4(c) consists of multiple linear

dynamical systems and a transition probability P (st|st−1) to select the current local model.

Our dynamical model is very similar to a SLDS since both are based on a mixture of locally

linear models. The difference is that our state variable st is temporally independent, and

we switch local models depending on state g in the globally-coordinated space. Therefore,

our dynamical model ensures data continuity. To ensure data continuity in SLDS, transition

constraints between locally linear models have to be posed [13].

2.5 Model Validation

Before evaluating the proposed model in different application scenarios in following chapters,

we will validate the capability of the model to characterize continuous, locally-linear multi-

dimensional data.

We validate the model by analyzing images acquired from a video where the pose of a human

face changes over time. Figure 2.5 shows some selected frames of the video. We use a baseline

appearance based tracker to crop out face images and scale these images to 19 by 19 pixels.

The pose variations are large enough so that the baseline tracker loses track quickly. Therefore,

we restart the tracker every 50 frames and obtain 2, 200 frames of face images. That is, we use
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Figure 2.4 The graphical models of three dynamical models.
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Figure 2.5 Selected frames of the face video used to construct a globally-coordinated mixture
of linear subspaces for the face.

2, 200 time-varying, 361-dimensional image vectors in the experiment. Note that the cropped

face images do not well align, compared to the hand-cropped training images used by most of

the face-related research, which makes this sequence of face images even more challenging.

We learn a two-dimensional global coordination model using these cropped face images

with a mixture of five 13-dimensional probabilistic PCA (PPCA) models. To obtain a better

mixture model, we initialize the learning by hand-picking five images corresponding to the face

looking forward, upward, downward, left, and right, and performing single PPCA learning for

300 closest images for each hand-picked image. After learning the mixture model, the mean

images of the five local models are shown in Figure 2.6(a). Using the face images y and their

corresponding local coordinates {s, zs} in the mixture of PPCA models, we learn the mapping

between local latent variables {s, zs} and the two-dimensional globally-coordinated intrinsic

variable g based on the algorithm described in Section 2.3.2.

The learned two-dimensional global coordinates of the face images are depicted in Fig-

ure 2.6(b). The color of each point denotes the assigned cluster label of the mixture of PPCA

26



(a) The mean faces of the five local PPCA models.

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Two-dimensional globally-coordinated mixture of five local PPCA
models.

Figure 2.6 (a) The means of the five learned local PPCA models corresponding to different
image clusters. The five models (from left to right) correspond to faces that look upward, right,
forward, left, and downward. (b) The two-dimensional global coordinates of the cropped face
images. Points of the same color are from the same local PPCA model. Models from left to
right in (a) associate with colors yellow, green, magenta, blue and red, respectively.
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models, which is determined by comparing P (s|y). The colors assigned to the PPCA models,

from left to right in Figure 2.6(a), are yellow, green, magenta, blue and red, respectively. It

shows that the property of local linearity in input images is well captured in the mixture model.

We also notice that the three PPCA models, corresponding to looking upward, forward and

downward, are collapsed together in the globally-coordinated space. This is because we have to

scale face images to a same size for learning, and the images corresponding to the these three

models, in particular, become more similar. It can be further verified by comparing their means

in Figure 2.6(a) (the first, third and fifth images).

Next, we validate that the model does capture the continuity properties of the input data.

To help visualize the dynamics in the globally-coordinated space, we link global coordinates of

successive face images with line segments and add a time axis to the two-dimensional globally-

coordinated space, resulting in Figure 2.7. It shows that the continuous face motion does

correspond to a continuous trajectory in the two-dimensional globally-coordinated space, thus

validates our earlier assumption.
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Figure 2.7 Continuous face motion as a continuous, low-dimensional trajectory in the globally-
coordinated space.
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CHAPTER 3

DYNAMIC GLOBAL COORDINATION MODELS

OF DYNAMIC OBJECT APPEARANCE WITH

APPLICATION TO OBJECT TRACKING

In this chapter, we present a dynamic inference algorithm for object tracking using the

dynamic global coordination model that we present in Chapter 2. We assume that the object

undergoes a complex motion which involves large variations in object appearance, so a mixture

of linear appearance models is better to capture such large variations than a single linear model.

Unlike other nonlinear models such as a SLDS that has been employed for visual tracking,

our dynamical model captures complex motion as a continuous trajectory in a low-dimensional

globally-coordinated space. Since our model has a similar structure to a LDS, we are also able to

derive an efficient approximate inference algorithm for our dynamic global coordination model.

We track the object using a Rao-Blackwellized particle filter to integrate out part of the latent

variables in our dynamical model and reduce the dimensionality needed for particle sampling.

Experimental results demonstrate the improved performance of the proposed model on face

tracking in scenes with significant clutters and temporary occlusions which pose difficulties for

other tracking methods.
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3.1 Introduction

The objective of this work is to develop a model for object tracking on nonlinear appearance

manifolds. An appearance manifold refers to a collection of raw images of an object taken under

different viewing parameters (e.g. varying poses and illuminations) forming a continuous set of

points in high-dimensional space [14]. When the viewing parameters contain large variations,

the appearance manifold is likely to be nonlinear. Although appearance images of an object

are in a high-dimensional space, these images usually lie on or near a low-dimensional manifold

embedded in the input space. Therefore, given a set of appearance images, we can learn

the intrinsic structure of their appearance manifold. Since we are interested in temporally

continuous motions, tracking an object can be done by tracking a continuous trajectory on the

appearance manifold.

As mentioned in Chapter 2, manifold learning is a dimensionality reduction problem, and

there are two main types of algorithms for nonlinear dimensionality reduction. Mixtures of linear

subspace methods are generative models with good probabilistic interpretation. A problem

with subspace methods is that when mixtures of linear subspaces are used, parameters in each

subspace are expressed using respective local coordinates. By contrast, nonlinear embedding

methods map the input images into a low-dimensional space where there is a global coordinate

system describing the spatial relationships among any two images. However, their mappings

do not preserve appearance information of each image.

For applications in visual tracking, both methods possess attractive properties. Mixture of

linear subspace methods are good candidates for measurement functions, while nonlinear em-

bedding methods are good for modeling appearance dynamics in a low-dimensional coordinate

system.

31



In this work, we use the global coordination model to represent appearance images, which

retains the advantage of both mixture of linear subspaces and nonlinear embedding approaches.

This generative model allows us to map to and from appearance images and their intrinsic

structures in a low-dimensional, globally-coordinated space. We extend the model to a dynamic

Bayesian networks (DBN) for object tracking. Due to the complexity of our model, exact

inference on our DBN is intractable, so an efficient approximate inference algorithm is proposed.

We also show that the inference can be carried out by using a Rao-Blackwellized particle filter

which facilitates efficient tracking.

3.2 Related Work

Tracking moving objects based on their appearance has been an ongoing research area

in computer vision [15, 16]. Early work on appearance based tracking use appearance models

mainly as a measurement function [17, 18]. The appearance dynamics are not taken into account

in their tracking algorithms. Recently, Khan et. al. [19] present an approach with appearance

parameters included in their dynamical model. They use the probabilistic PCA (PPCA) [20]

model to reduce the dimensionality of appearance images, and apply Kalman filter to model

the dynamics of the latent variables of PPCA. Their model fits nicely into a Rao-Blackwellized

particle filter for efficient tracking. Comparing with Khan’s method, our approach uses a

mixture of PPCA models to better model the appearance variations. A mixture model breaks

down the Gaussian property, making it difficult to directly apply a Rao-Blackwellized particle

filter to tracking problems.

There has been some work that tries to obtain globally-coordinated latent variables of

mixture models and use those variables for object tracking [21]. But most of them are based on
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switching linear dynamical systems (SLDS). Some SLDS-based tracking approaches use only

a single linear subspace, but with switching linear dynamics [22]. Our globally-coordinated

DBN is different from these approaches because we track the latent variables directly without

resorting to any state switching models. As a result, our model is capable of more accurately

describing the actual underlying appearance dynamics as a continuous process.

3.3 Tracking on a Globally-coordinated Appearance Manifold

In Chapter 2, we present our generative model and explain the graphical inference between

appearance images and their corresponding globally-coordinated intrinsic parameters in a low-

dimensional space. With this inference method, given a sequence of appearance images, we can

infer intrinsic parameters of these images and track appearance variations using these parame-

ters. Because the spatial relationships among appearance images are preserved in this intrinsic

globally-coordinated space, a continuous appearance variation is analogous to a continuous tra-

jectory in this space. This property allows us to use simple dynamics models, such as Brownian

motion, to describe appearance dynamics.

3.3.1 Complete Dynamic Global Coordination Model for Ob-

ject Tracking

In this work, we predict an object’s 2D location and appearance over time. The object in

each image is circumscribed in a bounding box which is described by its center and its width

and height. The appearance of the object is captured by the image content in the bounding

box. As described in Section 2.4, we extend the global coordination model to a dynamic
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Figure 3.1 The graphical model of our dynamic global coordination model.
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Figure 3.2 Our complete dynamic global coordination model for tracking the appearance, 2D
location and scale of an object in a video.

global coordination model as in Figure 3.1 to track the continuous appearance change of an

object. However, this graphical model does not take into account the 2D location (center of

the bounding box) and the scale (width and height of the bounding box) of the tracked object

in the video. Let lt denote the location variable describing the 2D location and the scale of

the tracked object at video frame t. By including the location variables, our graphical model

becomes the one shown in Figure 3.2, where inference on this dynamical model is nontrivial.
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3.4 Dynamic Inference for Dynamic Global Coordination Model

For the dynamic inference for our dynamic global coordination model, we need to estimate

the posterior distribution P (gt|y1:t). We will show that the probability distribution P (g|y) can

be approximated as a Gaussian in spite of its formulation in a mixture model. As a result, the

posterior distribution can be recursively estimated by using a Bayes filter as

P (gt|y1:t) = κP (yt|gt)
∫

P (gt|gt−1)P (gt−1|y1:t−1)dgt−1. (3.1)

In Equation (3.1), if we have P (gt|yt), P (yt|gt) can be computed using the Bayes rule:

P (yt|gt) =
P (gt|yt)P (yt)

P (gt)
. (3.2)

And because a continuous object motion corresponds to a continuous trajectory in the globally-

coordinated space, we can use simple models, such as a Brownian motion model, to capture the

dynamics of gt.

Exact inference on our graphical model is impossible since the probability distribution P (g|y)

is a mixture of Gaussians as shown in Equation (2.5). In our dynamical model, as time pro-

gresses, the number of model parameters in the distribution P (gt|y1:t) increases exponentially,

which makes exact inference intractable. Including the location variables further complicates

the inference problem, since P (gt, lt|yt) is unlikely to be any analytical parametric distributions.

Under such circumstances, using a particle filter is a good option for approximate inference

for our graphical model. However, directly applying particle filter to our model is infeasible.

Since our latent variables contain (gt, lt), a large number of particles are needed to approximate

probability distributions in this joint latent variable space. Nevertheless, if we can integrate

35



out part of the latent variables to reduce the number of dimensionality needed for sampling,

particle filter approach can be incorporate into our dynamical model, which is the central idea

of a Rao-Blackwellized particle filter.

3.4.1 Approximate Inference

Ideally, the mapping between y and g should be a one-to-one mapping so that when Gaus-

sian noise is added, the distribution P (g|y) would be a Gaussian. When learning the global

coordination model, we do impose constraints to preserve locally spatial relationship between

appearance images (see Equation (2.14)). Therefore, even though distribution P (g|y) is a

mixtures of Gaussians, the overall distribution should still be a Gaussian. This observation

motivates us to approximate P (g|y) using a single dynamic Gaussian.

Denote (µt, Σt) as the mean and the covariance matrix of the Gaussian that we use to

approximate P (g|y), and denote (µs
t , Σ

s
t ) as the mean and the covariance matrix for Gaussian

distribution P (g|y, s). From Equation (2.5), we re-write P (g|y) as

P (g|y) =
∑

s

N (g;µs
t , Σ

s
t )P (s|y).

To ensure N (µt,Σt) well approximate P (g|y), we minimize the weighted KL-distance be-

tween N (µt, Σt) and P (g|y, s) of different local models:

(µt, Σt) = arg min
µ,Σ

∑
s

P (st|yt)KL(N (µs
t , Σ

s
t )||N (µ,Σ)). (3.3)
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Figure 3.3 When P (g|y) is approximated as a Gaussian, our dynamic global coordination
model is like a Kalman filter. But our measurement model P (yt|gt) changes over time, in
contrast to a fixed measurement model P (yt|xt) in a Kalman filter model.

The solution of (µt,Σt) can be written as

µt =
∑

s

P (st|yt)µs
t ,

Σt =
∑

s

P (st|yt)(Σs
t + (µt − µs

t )(µt − µs
t )

T ).

(3.4)

With P (g|y) being approximated as a Gaussian, our dynamic global coordination model is like

a Kalman filter. However, unlike a Kalman filter that has a fixed measurement model P (yt|xt)

representing the probability of observing image yt given hidden state xt, our measurement

model P (yt|gt) changes dynamically.

3.4.2 Rao-Blackwellized Particle Filter

In a Rao-Blackwellized Particle Filter (RBPF), part of the latent variables are integrated out

and are represented by an analytical distribution. The likelihood P (gt, lt|Yt) can be decomposed

37



as

P (gt, lt|Yt) = P (gt|lt, Yt)P (lt|Yt) (3.5)

where Yt = {y1, y2, . . . , yt}. We have shown that P (gt|lt, Yt) is an analytical distribution in our

dynamical model by dynamically approximating P (gt|yt) as a Gaussian. We can also apply a

particle filter to approximate the distribution of P (lt|Yt). At the same time, we expand the

particle filter to become three tuples so as to include the analytical distribution P (gt|lt, Yt). That

is, a Rao-Blackwellized particle filter is a set of N particles {(s(i), w(i), α(i)(g))}N
i=1, where s(i)

is a sample of l, w(i) is its associated weight and distribution α(i)(g) corresponds to P (gt|lt, Yt).

In a Rao-Blackwellized particle filter, the likelihood P (gt|lt, Yt) is approximated as

P (gt, lt|Yt) ≈
∑

i

w(i)δ(s(i))α(i)(g). (3.6)

According to the Bayes filter, given a sequence of observations Yt, we estimate the current

object location and scale as

P (lt|Yt) = κ

∫

gt

P (Yt|gt, lt)
∫

lt−1

∫

gt−1

P (gt, lt|gt−1, lt−1)P (gt−1, lt−1|Yt−1). (3.7)

In our model, we assume the dynamics of g and l are independent. That is,

P (gt, lt|gt−1, lt−1) = P (gt|gt−1)P (lt|lt−1). (3.8)
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We also use Brownian motion models for both dynamics:

P (gt|gt−1) ∼ N (gt−1, Q), (3.9)

P (lt|lt−1) ∼ N (lt−1, R), (3.10)

where Q and R are predefined covariance matrices.

With all the model parameters being defined, our Rao-Blackwellized particle filter is de-

scribed as Algorithm 3.1.

Algorithm 3.1 A Rao-Blackwellized particle filter for tracking using DGCM

Starting with particles {(s(i)
t−1, w

(i)
t−1, α

(i)
t−1(gt−1))}N

i=1:

1. Re-sample the particles from {s(i)
t−1}N

i=1 according to {w(i)
t−1}N

i=1, and denote the new se-

lected particles as {s(i)
t }N

i=1.

2. Drift {s(i)
t }N

i=1 according to P (lt|lt−1).

3. Update distributions α
(i)
t−1(gt−1) to {α(i)

t (g)} according to P (gt|gt−1) and P (yt|s(i)
t , gt):

α
(i)
t (g) = κ(i)P (yt|s(i)

t , gt)
∫

P (gt|gt−1)α
(i)
t−1(gt−1)dgt−1 (3.11)

4. Set w
(i)
t = κ(i).

3.5 Experiments

We test our globally-coordinated dynamical model by tracking human faces. To collect

training images, we take a video of a face undergoing large pose variations in a clear, white

background as shown in Figure 2.5. As described in Section 2.5, we obtain 2, 200 face images

by interactively using a baseline tracker. These face images are then scaled to the same size

(19 by 19 pixels) and used to learn a two-dimensional globally-coordinated space.
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Figure 3.4 Tracking results of frame 811, 831, 846, 859, 869 in the training video.

3.5.1 Tracking Performance Evaluation

Before demonstrating our tracker in more challenging scenarios, we first evaluate its tracking

performance with a basic setup. We choose to track the training video because we can take

the known data and parameters (2D locations and scales of the bounding window and 2D

global coordinates as face poses) as the ground truth and assess the tracking performance by

comparing our tracking results to the the ground truth.

For this experiment, instead of using the mixture model that we learned in Chapter 2,

we learn a new mixture of five 15-dimensional PPCA models largely correspond to different

poses from left to right. We initialize a tracking window around the face in the first frame of

the training video using the ground-truth data. We use 500 particles to track the face in the

remaining video frames. Figure 3.4 shows tracking results from some selected frames.

There are two variables in our graphical model (Figure 3.2) that infer the observed face

image y in the entire image: location and scale of the tracking window (l) and appearance

parameters in the globally-coordinated space (g). Therefore, we evaluate the accuracy of our

tracker in terms of the similarity in tracked regions and appearance parameters between our

tracker and the ground truth.

The location parameter in our model represents the configuration of the tracking window

as l = (x, y, w, h), where (x, y) denotes the center of the window and (w, h) denotes the width

and height of the window. Note that it is trivial in our model to include rotation and skew
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parameters to configure the tracking window in that it only requires a larger number of particles

to be sampled in a larger parameter space.

Let lT = (lTx , lTy , lTw, lTh ) and lG = (lGx , lGy , lGw , lGh ) denote the tracking window and ground-

truth region, respectively. We use L2 distance Sd =
√

(lTx − lGx )2 + (lTy − lGy )2 and area ratio

Sa = (lTwlTh )/(lGw lGh ) to measure the similarity between the tracking window and ground-truth

region. These measurements are plotted in Figure 3.5 over time. The 2D location deviations

are usually very small and the area ratios between the tracking region and ground-truth region

are usually around one, which shows that our tracker follows the target very well.

In Figure 3.6 we plot both tracked trajectory and ground-truth trajectory for two short

periods of about two seconds for each. Figure 3.7 shows both trajectories in each dimension vs

time and Figure 3.8 displays the L2 distance between the tracked pose and the ground truth in

the globally-coordinated space at each image frame. For the most of time, our tracker is very

accurate in pose estimate. We also observe that the ground-truth trajectories are smoother

and our track sometimes over-shoots. It is mainly because we define a larger covariance Q in

Equation (3.9), which is necessary to track new video sequences since they might contain faster

face movement.

3.5.2 Face Tracking in the Presence of Other Faces

Our second experiment tests our tracker by tracking a target face in a cluttered background

where multiple faces are present in the scene. All faces in the images undergo obvious pose

variations. We initialize a tracking window of the target face in the first frame of the test

video, and use 500 particles to track target face in the remaining image frames. We use the
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Figure 3.5 (a) 2D location deviation of the tracking window from the ground-truth region
measured in pixels over time. (b) Area ratio of the tracking window over ground-truth region
over time.
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(b) Frame 1071 to 1130

Figure 3.6 The trajectory plots in the globally-coordinated space during two short periods.
The red trajectories are the ground-truth trajectories, while the blue ones are tracked by our
tracker.
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Figure 3.7 The trajectory vs time plots in X-T and Y-T views. The red trajectories are the
ground-truth trajectories, while the blue ones are tracked by our tracker.
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Figure 3.8 Deviation of tracked pose against ground truth measured by L2 distance in the
globally-coordinated space over time.

globally-coordinated space that we learn in Chapter 2. Note that the environments of training

scene and test scene are different.

Although multiple similar objects moving nearby makes tracking a challenging problem,

our tracker tracks the target face very well. Figure 3.9 shows several snapshots of our tracking

process. Below each image frame we show the learned globally-coordinated space with the

projection of the tracked face at each step. In the bottom, the yellow dots are the projected

training face images. The green dots represent the tracking trajectory till ten frames back, and

the blue dots show the path of the most recent ten frames.

Our graphical model for visual tracking provides extra robustness for trackers because we

track object position as well as its pose (appearance coefficients). The current pose estimation

becomes a strong prior while tracking the next frame and prevents our tracker from being

distracted by other objects with similar appearances. Some other trackers may perform well,

but they do not simultaneously provide positional and pose information at each frame.
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Figure 3.9 We model the appearance manifold of a face using a mixture of five globally-
coordinated linear subspaces. We demonstrate the use of the model by tracking a face in the
presence of other faces. In each sub-figure, the top half shows our tracking window. The bottom
half shows the intrinsic coordinates of input face images (yellow) and the tracked poses (green,
and blue for the last 10 image frames) in the globally-coordinated space.
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3.5.3 Face Tracking with Temporary Occlusion

Our third experiment examines the robustness of our tracker with temporary occlusion. In

the current implementation, we use a threshold for the likelihoods of the particles, and reject

tracking results if all particles have small likelihoods. This method works very well to detect

occlusion. However, the main problem is how to find the target face when it appears in the

scene again.

One way to handle this problem is to expand the ranges of searching parameters over time

due to the increasing uncertainty under occlusion. Under occlusion for τ frame, we rewrite (3.5)

as

P (gt+τ , lt+τ |Yt+τ ) = P (gt+τ |lt+τ , Yt+τ )P (lt+τ |lt) (3.12)

where t denotes the time of last observation without occlusion. Therefore, we need to drift

particles in a large spatial space and update their distributions with larger covariances with

increasing τ from those of time t. This means more particles are needed to find the target after

occlusion.

In the current experiment, we use the same number of particles and do not change the

covariances of appearance distributions because our test videos involve only short periods of

occlusion and we assume the appearance of the target does not change significantly. Figure 3.10

shows our tracking results with temporary occlusion. In the test, the target face moves around

the same location, and another face moves in front of the target face. When the likelihoods

of all particles are small, we declare occlusion. We then sample particles in a larger space as

the occlusion lasts. Notice that the second person has a very different face pose (facing to the
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Figure 3.10 Green-colored window indicates occlusion is detected. The yellow dots show
sampled particles with their associated 2D positions. The longer the occlusion lasts, the larger
space the particles are sampled.

right) from the target face (facing forward). Since our approach tracks appearance coefficients,

it does prevent the tracker from being distracted by the second face.

3.6 Conclusions

In this chapter, we present a dynamic inference algorithm for nonlinear appearance based

object tracking using the dynamic global coordination model that we propose in Chapter 2.

We also apply a Rao-Blackwellized particle filter to facilitate efficient object tracking. Our

dynamical model captures continuous motion as a continuous low-dimensional trajectory. By

tracking appearance on a nonlinear low-dimensional manifold in addition to the object’s location

and scale, the tracking performance is more robust in the presence of other similar objects.

Our main goal is to develop a generative model capable of describing the process of ap-

pearance variation over time. That is, we aim at tracking and understanding simultaneously.

The tracker understands the underlying process that causes appearance changes and uses this

information for robust tracking. Our experiments validate our proposed model and that the

inference procedure is correct.
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CHAPTER 4

DYNAMIC GLOBAL COORDINATION MODELS

OF DYNAMIC MOTION DATA WITH

APPLICATION TO COMPLEX MOTION

SYNTHESIS

In this chapter, we formulate the problem of motion synthesis as a nonlinear manifold

learning and traversing problem. The motions of interest are characterized by changes in

spatial or spectral parameters. For continuous changes of such parameters, it is commonly

assumed that all these parameters lie on or close to a low-dimensional manifold embedded in

the original input space. For complex motions, the manifolds are usually nonlinear. We use

the dynamic global coordination model as the generative model for the input data. With the

nonlinear manifold being globally parameterized, we overcome motion discontinuity encountered

in switching linear dynamical models. We use a nonparametric method to describe the complex

dynamics of motions on the manifold. We test our approach in both spatial (motion capture

data) and spectral (dynamic textures) domains. The experimental results suggest that our

approach is able to synthesize smooth, complex, articulated human motion and texture motions,

and has potential applications to other motion synthesis problems.
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4.1 Introduction

In this chapter, we use the term motion to refer to the temporal changes in spatial or

spectral parameters of objects or image sequences. This definition includes independent point

motion, single rigid body motion, single articulated body motion, motions of multiple rigid

bodies, etc. There is a broad interest in modeling changes in the parameters of different types

of motions. For example, research in human motion analysis concerns temporal changes of the

configurations of human body parts. These configurations include the 3D position, orientation,

or rotation parameters of a hierarchical kinematic model. Also, research in dynamic texture

analysis concerns temporal changes in pixel intensities in an image sequence. By complex

motions, we refer to model parameters that have multi-modal distributions, which can be often

seen in the real world. For instances, a person may hop, skip, jump, tiptoe, leap, etc., in a

dancing sequence, and a flapping flag may exhibit various distinguishable shapes with changes in

wind. In this work, we are interested in developing a general framework to model and synthesize

complex motions. In particular, we present and evaluate our approach to learning and synthesis

of human motions and dynamic textures, which represent the classes of articulated motions and

independent point motions, respectively.

4.1.1 Previous Work on Dynamic Textures

In the literature, depending on the techniques or applications, dynamic textures are also

called temporal textures, video textures, graphcut textures, and dynamic scenes. Regardless the

names, their ultimate goals are the same: to provide a continuous, infinitely varying sequence

of images given a finite set of images [23]. Unlike conventional 2D image textures, dynamic

textures stress on temporal stationarity instead of spatial stationarity.
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Beyond stationary dynamic textures, people are also interested in non-stationary dynamic

textures. There are many examples of non-stationary dynamic textures. For example, a flapping

flag displays different types of motions in response to changing speeds or directions of wind

blows. If the configuration of the wind blow is fixed in a short period of time, the flag motion

would be temporally stationary during the period. However, an observer is more likely to see

a flag exhibiting a piecewise temporal-stationary motion. This observation applies to most

natural phenomena.

The existing methods for dynamic texture synthesis can be categorized into two classes:

parametric and non-parametric. The non-parametric methods are mostly extended from tech-

niques used for 2D image texture synthesis. For example, Wei and Levoy [24] synthesize new

video pixel-by-pixel in the raster scan order. They ignore the underlying texture dynamics.

It can generate novel images, but is limited to only both spatially and temporally stationary

textures. Kwatra et al. [25] propose a graph-cut based seam optimization scheme to synthe-

size video sequences from example videos. This method is arguably the best method to date

in terms of generating high-quality images with minimal spatial and temporal discontinuity.

However, it takes a great deal of time in synthesis, so this method is impractical for many

real-world applications. Also, to encourage continuity in synthesized video, it might distort or

break object structures in videos, which sometimes results in worse perception than spatial or

temporal discontinuity. Schödl et al. [23] generate long video sequences by rearranging original

frames from given videos. The basic idea is to identify smooth transitions from frames to frames

so that they can synthesize an endless video by looping the input video. However, the synthe-

sized video contains only images from the input video 1. In general, non-parametric methods

1Graph-cut method generates new video with only images from the input video when it performs
only temporal translation for textures without spatial stationarity.

51



reuse segments of original videos with optional image processing during frame transitions (e.g.

spatial graph cut, morphing), so the synthesized video quality is perceptually almost the same

as original videos. They can also handle non-stationary video textures because they simply

reuse original video segments. But they need to store entire original video clips in memory, and

may either require intensive computation or cannot produce novel images.

The parametric methods usually involve dimensionality reduction of example videos [1, 2,

26, 27], and are commonly referred to as dynamic texture analysis. It is assumed that the

images of a video example lie on or near a low-dimensional manifold embedded in the image

space, usually called an appearance manifold [14]. They use principal component analysis

(PCA) to construct a linear subspace, approximating the appearance manifold, that denotes

the appearance of images in a given video. The evolution of images, as a sequence of PCA

coefficients, is modeled by an autoregressive process (AR). The generative model of dynamic

textures can be viewed as a linear dynamical system (LDS) as Figure 4.2(a), and can be written

as 



xt = Axt−1 + vt, vt ∼ N (0, Q)

yt = Cxt + wt, wt ∼ N (0, R)
(4.1)

where y is the observed image, x is the hidden state variable, C is the output matrix mapping

observations to state variables, A is the transition matrix of AR process, v and w are zero-mean

Guassian noise sources, and the subscript t denotes time (or image index). Szummer and Pi-

card [3] do not model video textures at image level, but use a spatio-temporal autoregressive

(STAR) model at the pixel level to represent the relationships between a pixel and its neigh-

borhoods. Such pixel-level dynamical models experience difficulties in selecting the appropriate

size and topology of the neighborhood. A good model of this approach also requires a large
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number of model parameters. Most importantly, such a model is not capable of synthesizing

rotation-like motion patterns. Although LDS based models require much fewer model param-

eters and has a greater capability of capturing different motion types, the visual quality of

synthesized video is usually unsatisfactory when the scenes contain large temporal appearance

variation and/or shape variation. Regardless the types of given video, these methods tend to

suffer a decreasing image quality as synthesis proceeds.

As Yuan [27] points out, the LDS based method produces good-quality dynamic textures

only if it is an oscillatory system. That is, for all eigenvalues σi of A, |σi| ≤ 1 and there exists j

such that |σj | = 1. Otherwise, the synthesized dynamic textures will gradually decay or diverge.

To overcome this problem, they incorporate a feedback control that results in a non-causal

system. Therefore, they first need to generate reference states {x1, x2, . . . , xN} by patching

video segments, and then iteratively smooth out the discontinuity in the sense of system fitting.

Although using this method one will obtain better results, it does not predict new states on

the fly. Furthermore, this improved dynamics model still cannot well model videos with large

temporal appearance variation and/or shape variation. Non-stationary dynamic textures are

left out as well. As Fitzgibbon [2] suggests, nonlinear component analysis might enhance the

performance of video texture modeling. An important fact is that the appearance manifold of

a given video example is rarely linear.

4.1.2 Previous Work on Human Motion Synthesis

In human motion synthesis, generating realistic, continuous and new motion sequences using

motion capture data has been of great interest. Generally, versatile human poses are divided

into different clusters resulting in multi-modality in data distribution. A major issue of human
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motion synthesis is how to generate smooth transitions between different clusters. For example,

motion graph [28, 29] has been created to characterize possible transitions between clusters of

similar poses. The transition points are predetermined, and novel motions are generated by

looping and reordering given motion capture data [30, 31]. By specifying initial and final poses,

a minimal-cost path of poses can be determined by dynamic programming [32]. However, these

methods do not involve new poses.

Dimensionality reduction for multi-modal motion data has been adopted for human motion

synthesis [33, 34] using K-means clustering and PCA. But these methods do not find intrinsic,

low-dimensional manifold of the motion data. Li et al. [13] modify switching LDS by setting end

constraints for each LDS to ensure continuous transitions between local models. These end con-

straints represent transition points that connect different linear subspaces. Synthesized motions

have to go through these pre-selected transition points in order to correctly convert coordinate

systems between subspaces, which limits its descriptive capability for motion transitions.

4.1.3 System Overview

The investigations in the above two research fields give hints to successful synthesis of

complex motions. First, dimensionality reduction is essential for capturing high-dimensional

data, and providing means for generating new configurations in the original data space. Second,

multiple models are needed for complex multi-modal data. Third, smooth transitions between

different models have to be ensured for realistic motion synthesis. Accordingly, we formulate

the problem of complex motion synthesis, for human motion and dynamic textures, or other

motion synthesis tasks, as an intrinsic nonlinear manifold learning and traversing problem.
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Figure 4.1 Overview of our approach to learning and synthesis of a given motion sequence.

Our approach is conceptually illustrated in Figure 4.1. In the learning stage, we learn a

mixture of PCA models that best represents the entire motion sequence. The different PCA

subspaces are then aligned into a globally-coordinated space within a maximum likelihood

framework. The motion data are projected onto this globally-coordinated space to form a

continuous trajectory, and their projected coefficients are stored, not raw data. In the synthesis

stage, we pick an initial point, usually a projection of given motion data, in the global subspace.

We synthesize motion sequences by traversing in the globally-coordinated space, according to

the local dynamics of projected motion data. For each point g in the globally-coordinated space,

we find the most probable PCA model associated with the point, and compute its mapping z in

the selected PCA subspace. This PCA model then reconstructs a frame of motion data using

the mapping z.
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Our model is similar to a general SLDS in the sense that we use a mixture of linear sub-

space representations. But we do not have to deal with explicit model switchings and coordinate

conversions. This is because we align the linear models and obtain a global coordinate repre-

sentation. Our underlying nonlinear manifold still uses a switching linear model, but it is done

implicitly via the nonlinear mapping between the globally-coordinated space and original data

space. A continuous, multi-modal motion has a continuous coordinate representation in our

globally-coordinated space. As a result, our approach is suitable for continuous, multi-modal

motion synthesis, and it requires no constraints, or specific transition points, for model transi-

tions.

4.2 Dynamics Model in Global Subspace

We use the dynamic global coordination model (Figure 4.2(c)) that we present in Chapter 2

as our generative model for continuous, multi-modal motion data synthesis. Compared to the

LDS (Figure 4.2(a)), we replace the hidden state variable x with global coordinate g, and the

inference from g to y is nonlinear through the mixture model {s, z}. Compared to a general

SLDS (Figure 4.2(b)), where it defines a transition probability p(st|st−1) to select the current

local model, we implicitly switches model depending on state g so the synthesized motion is

continuous. Compared to the constrained SLDS [13], where it switches model only at transition

points (pre-determined states) to avoid random switches like SLDS, our state variable g has no

constraints.

Note that the SLDS has been employed for tracking without problems of random model

switches. This is because in the tracking problem we have current observations that can be

used to update the predicted current model st and state x
(st)
t . In a motion synthesis problem,
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we must ensure the prediction is good enough in the sense of generating continuous and realistic

motion data.

4.2.1 Nonparametric Dynamics

With our generative model, next, we need to determine the dynamics model p(gt|gt−1) in the

global subspace. The purpose of this work is to synthesize complex motions, where in general it

is reasonable to assume that the dynamics are piecewise linear. The problem with using linear

dynamics is that the motion data sequences may be chopped into many small subsequences. In

addition, we determine the mixture model without fitting dynamics at the same time so that

we can keep a smaller number of local models. Therefore, we adopt a nonparametric dynamics

model that learns or samples local motions. This also makes our approach suitable for more

general motions.

The essential idea of our nonparametric dynamics is to traverse along the learned trajectory

in the global subspace without drifting far away from it. Therefore, we sample and learn motions

captured in the given motion data with spatial locality and temporal similarity constraints.

Figure 4.3 helps to visualize our motion prediction process. We denote the projections of given

motion data as g with subscripts indicating temporal indices. We also denote the current

position in the global subspace as xt, conventionally representing the current state in dynamic

models.

To advance xt to xt+1, we first find the nearest neighbors of xt among {g}. We prefer using

motions of these neighbors (spatial locality) while encouraging temporal smoothness (temporal

similarity). In Figure 4.3, although gi is closer to xt, we prefer using the motion from gj to

gj+1 because the motion used to advance gj−1 is more similar to that of xt−1. After advancing
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Figure 4.2 Three dynamical models for motion data synthesis. Previous work on dynamic
texture synthesis usually uses the LDS model. The SLDS model is used for human motion
synthesis. We use the proposed DGCM model for general motion data synthesis.
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Figure 4.3 An illustration of our nonparametric dynamics in the globally-coordinated subspace.

to x′t, we perturb it with noise for motion variations. However, to avoid drifting away from the

given projected trajectory, we favor sample noise values that pull x′t toward given data (spatial

locality). In Figure 4.3, we eventually obtain the next position xt+1 as the predicted state in

that it is close to gk. The entire motion synthesis algorithm is described in Algorithm 4.1. Using

this algorithm, if we set the initial condition as x1 = g1 and x2 = g2, and let σh = σp = 0, we

are able to reconstruct the input motion data.

Alternatively, after step 2, we can select gi based on weights W
(1)
i W

(2)
i . Then we learn a

local p-order AR process, gt =
∑p

k=1 Akgt−k+w+vt, within a small time window around gi. We

then obtain xt+1 by computing xt+1 =
∑p

k=1 Akxt−k+1 +w +vt, where the noise term vt is now

used as a control parameter that pulls prediction toward input motion data. If we compare

these two methods, the first one is suitable for fast motion, and the second one discourages

novel motions and guides the synthesized sequence along the original trajectory. Therefore, the

decision to use which sampling method depends on the user.

Hundreds or a couple of thousands of motion data are a sparse data set in a global subspace,

normally no larger than 20 dimensions in our experiments. So we can speed up the sampling
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Algorithm 4.1 The motion synthesis algorithm for globally-coordinated subspace model

1. Sampling neighbors: At xt, find its K nearest neighbors {gi}, i ∈ Nt, with weights
W

(1)
i ∼ N (xt, σ

2
h).

2. Temporal smoothness: Compute the motion similarity between xt and each gi:

cos(θi) =
〈dxt, dgi〉√

〈dxt, dxt〉〈dgi, dgi〉
, (4.2)

where dxt = xt − xt−1, dgi = gi − gi−1, and 〈·, ·〉 denotes an inner product. Scale the
motion similarity to W

(2)
i = exp(α(cos(θi)− 1)) where α is a constant.

3. Noise perturbation: Sample noise {vj} ∼ N (0, σ2
p). For each (i, j) pair, we form position

candidates at time t + 1:
x

(i,j)
t+1 = xt + dgi+1 + vj . (4.3)

4. Drift prevention: Weigh each position candidate using the Parzen-window approach, so
we have

p(x(i,j)
t+1 ) = W

(1)
i W

(2)
i

∑

k

ϕ(
x

(i,j)
t+1 − gk

h
), (4.4)

where h is the window width and ϕ is the window function.

5. Normalization: Normalize weights so that
∑

i,j p(x(i,j)
t+1 ) = 1.

6. Prediction: Sample xt+1 with the weight p(x(i,j)
t+1 ).
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algorithm by ignoring outlying data. For instance, if the current position xt is closest to the

example gi, then we can take the nearest neighbors of gi as the nearest neighbors of xt, which

can be computed beforehand. In addition, in (4.4), we drop the summation operator and

compute the window function using only the nearest neighbor gk because when h is small, the

probability of the occurrence of additional examples is very small. Hence, the synthesis can be

performed in real time.

4.3 Experiments on Human Motion Synthesis

The input to the human motion synthesis algorithm are motion capture data which are given

in the form of 4x4 matrices of 3D transformations using homogeneous coordinate representa-

tions. The data contains rotation and translation parameters of 20 body parts of a hierarchical

kinematic model. We assume the translation parameters are fixed in the hierarchical model

except the one associated with the root which represents the global position of the human

body. We use the displacement instead of the global position to accumulate translations in

synthesis. We also convert 3x3 rotation matrices into exponential map representations, each

of which contains only three parameters encoding the rotation axis and angles. When express-

ing rotations in exponential maps, we ensure that the representation is continuous over time,

instead of enforcing the range [0, π) for rotation angles.

We represent human motion data with 60-dimensional rotation parameters. Translations

are not treated as a part of the aforementioned algorithms. We sample translation around

the nearest neighbors of the predicted rotation. We use four test sequences each of which

has between 200 and 500 frames. We use a mixture of two 12-dimensional PPCA models

for the danger sequence, and use mixtures of three 12-dimensional PPCA models for other
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Figure 4.4 Three selected frames of our synthesized bow sequence.

Figure 4.5 Three selected frames of our synthesized ballet sequence.

three sequences. Other than the bow sequence that has no repeated motion, we synthesize

1,000 frames for all other input data. A few frames of each rendered motion are shown in the

Figures 4.4, 4.5, 4.6 and 4.7. All these sequences contain easily distinguishable poses. The

results show that our method is able to produce smooth and realistic human motions.

It is also possible to mix different input sequences to train a globally-coordinated space. If

two sequences contain similar motions, these two sequences will be aligned automatically by our

approach. Path planning using dynamic programming also can be done within our proposed

framework. However, these are out of the scope of the thesis.
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Figure 4.6 Three selected frames of our synthesized disco sequence.

Figure 4.7 Three selected frames of our synthesized danger sequence.
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4.4 Experiments on Dynamic Texture Synthesis

For dynamic texture synthesis, the motion data are raw image vectors. The image se-

quences used in our experiment are taken from MIT temporal texture database [35]. Most

image sequences in the database have resolutions of 170 by 115 and contain 120 to 150 frames.

They include both stationary and non-stationary dynamic textures. Here, we will compare our

method to the LDS based method which is implemented by PCA+AR approach. The order

of AR model is automatically determined by Schwarz’s Bayesian Criterion [36]. Because the

example sequences are short, we use up to three PPCAs for each mixture model.

For stationary dynamic textures, we take a river sequence of 120 frames as an example. We

use a 20-dimensional PCA for the LDS method, and align two 20-dimensional PPCA models

into a 20-dimensional globally-coordinated subspace for our method. The synthesis results in

Figure 4.8(a) show that our method is able to produce high-quality images during extrapolation,

while the LDS method produces images with decreasing visual quality over time. Although a

closed-loop LDS (CLDS) [27] can fix this problem for stationary dynamic textures, we show in

Figure 4.9, 4.10 and 4.11 that, for non-stationary dynamic textures, using a single PCA model

results in obvious visual artefact even in image reconstruction, while a mixture model alleviates

the problem. The artefact is more serious when shape variations are significant (see Figure 4.12).

Synthesis results of this flag sequence are compared in Figure 4.13(a). Due to its fast motion,

there is still some small artefact around the flag produced by our method, although when being

displayed as a movie, this artefact looks like motion blur. It all thanks to our locally-linear mod-

els that confine the artefact to be local and minimal, in contrast to the videos synthesized by the

LDS method. All synthesized videos are available at http://vision.ai.uiuc.edu/~cbliu/.
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Figure 4.8(b) and 4.13(b) show the projected trajectories in the globally-coordinated sub-

spaces. Note that an input sequence has to form loops so that our synthesized sequence can

be longer than the original video sequence, which holds true for most approaches in motion

synthesis. Interpolated samples have been inserted to small gaps on projected trajectories, as

shown in both figures, to create additional loops.

4.5 Discussion

In Table 4.1, we compare our approach with other major approaches for dynamic texture

synthesis.

To illustrate the complexity in space, let m and n denote the number of pixels in an image

and the number of images in a video, respectively. We also assume that d-dimensional PCA

models are used whenever needed. We use k PCA models in our dynamical model and align

them to a d-dimensional space, where k, d < n and k, d ¿ m. And usually, k < d.

For non-parametric method, obviously, the space complexity is O(mn). For LDS based

methods, the space complexity is O(m) because it needs a linear transformations from image

to PCA subspaces, the mean of images, AR parameters, and noise covariances (md + m + d2 =

O(m)). For the CLDS based method, other than parameters of the PCA and AR models, it

needs to store all PCA coefficients of images. So its space complexity is md + m + d2 + nd =

O(m + n).

For our model, we need to store low-dimensional coordinates (nd), k linear transformations

for the PCA mixture (kmd), and k linear transformations from PCA subspace to the globally-

coordinated space (kd2). Isotropic noise in PPCA models and some Gaussians in the algorithm
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(a) Comparisons of synthesis result.
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Figure 4.8 (a) Frame 120, 160, 200 of the synthesized river sequences by our method with a
mixture of two PPCA models (top) and the LDS method (bottom). (b) The 20D trajectory of
the river sequence projected onto the first 2D of the globally-coordinated space.
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Figure 4.9 Selected frames of an original flag sequence from the temporal texture database.
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Figure 4.10 Reconstructed frames corresponding to Figure 4.9 using a single PCA model.
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Figure 4.11 Reconstructed frames corresponding to Figure 4.9 using our method with a mix-
ture of three PPCA models. These reconstructed images are significantly crisper than the ones
shown in Figure 4.10.
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Figure 4.12 Reconstructed frame 20, 40, 60 of the flag sequence by our method with a mixture
of three PPCA models (top) and the LDS method (bottom).

all take constant space. So our space complexity is O(m + n). Even when the image sequences

are short, we save about 50% in space for videos of 120-150 frames like those in MIT database.

4.6 Conclusions

In this chapter, we propose a new approach to learning and synthesizing continuous com-

plex motions. We have shown that realistic synthesis of complex motions can be carried out

by mixtures of linear subspace models with global coordination. Our underlying idea is similar

to SLDS, but our dynamic model ensures continuous motion and does not require constraints

for local model transitions. We have demonstrated our approach in two classes of motions:

articulated motions and independent point motions. In particular, compared to the literature

in dynamic texture analysis, our method enhances the visual quality in synthesis of station-

ary dynamic textures, and is able to model non-stationary dynamic textures which cannot be

handled by any of the existing approaches in the literatures.
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(a) Comparisons of synthesis result.
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Figure 4.13 (a) Frame 100, 210, 290 of the synthesized flag sequences by our method with a
mixture of three PPCA models (top) and the LDS method (bottom). The bottom-row images
are lighter due to Matlab display program which scales intensity values. (b) The 20D trajectory
of the flag sequence projected onto the first 2D of the globally-coordinated space.
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Table 4.1 Comparisons of different methods for dynamic texture synthesis.

Video
Textures

[23]

Graphcut
Textures

[25]

Dynamic
Textures

[1, 2]

Dynamic
Textures

with CLDS
[27]

Our
Method

Dimensionality
Reduction

No No Yes Yes Yes

Video Data
Storage

O(mn) O(mn) O(m) O(m + n) O(m + n)

High-quality
Synthesized

Images
Yes Yes No

Yes,
if input is
temporally
stationary

Yes

Fast/Large
Input Motion

Yes Yes No No Yes

Online
Synthesis

Yes No Yes No Yes

Novel Image
Synthesis

No
Yes,

around
seams

Yes Yes Yes

Non-
stationary
Textures

Yes Yes No No Yes
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CHAPTER 5

LINEAR MODELS OF DYNAMIC 2D SHAPE

AND APPEARANCE

In this chapter, we present an approach to model gradual changes in the 2D shape of an

object. We represent 2D region shape in terms of the spatial frequency content of the region

contour using Fourier coefficients. The temporal changes in these coefficients are used as the

temporal signatures of the shape changes. Specifically, we use an autoregressive model of the

Fourier coefficient series. We demonstrate the efficacy of the model on several applications.

First, we use the model parameters as discriminating features for object recognition and clas-

sification. Second, we show the use of the model for synthesis of dynamic 2D shape using the

model learned from a given image sequence. We also explore the use of a nonlinear dynamic

model to enhance synthesis results. Third, we show that, with its capability of predicting

shape, the model can be used to predict contours of moving regions which can be used as initial

estimates for the contour based tracking methods.

5.1 Introduction

Changes in the shape of a dynamic object offer important cues for object recognition. In

this chapter, we are concerned with models of gradual changes in the shape of a 2D region. We
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present a simple model of shape variation which was seen limited use in the past work. This

model models the changes in the 2D shape of a region in terms of the changes in its contour

representation. Specifically, an autoregressive time series model of the changes in the Fourier

coefficients of the region contour is used. We use it to model, recognize, and synthesize 2D

dynamic shape. We present applications to (i) modeling fire motion and detecting fire in video

sequences, (ii) classification of objects based on changes in 2D shapes, (iii) synthesis of novel

image sequences of evolving 2D shapes, and (iv) object boundary prediction for use by contour

tracking methods.

The 2D shape representation and its use has received much attention in computer vision. A

survey of shape analysis methods can be found in [37]. Pavlidis [38] proposed the following three

classifications for shape based methods using different criteria. (i) Boundary (or External) or

Global (or Internal): Algorithms that use region contour are classified as external and boundary,

such as Fourier transforms based approaches; Those that use interior region for the analysis are

classified as internal and global, such as moment based methods. (ii) Numeric or Non-numeric:

This classification is based on the result of the analysis. For instance, medial axis transform

generates a new image with a symmetric axis, and is categorized as non-numeric. In contrast,

Fourier and moment based methods produce scalar numbers, and thus are in numeric category.

(iii) Information Preserving or Non-preserving : Approaches that allow users to reconstruct

shapes from their shape descriptors are classified as information preserving. Otherwise, they

are information non-preserving.

We propose a dynamic shape model that describes shape at any given time using Fourier

transform coefficients and an autoregressive (AR) model to capture the temporal changes in

these coefficients. The Fourier description is boundary, numeric, and information preserving.
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Figure 5.1 System overview of our approach. For an observed contour sequence of length
T , we represent the contour at each time instant with its Fourier coefficients vt. The Fourier
coefficient series is then fitted in an autoregressive model. The estimated model parameters
{Âi, Σ̂n} are used to capture the stochastic characteristics of temporal shape variation.

The autoregressive model is a simple probabilistic model that has shown remarkable effective-

ness in the mapping and prediction of signals. Our analysis of dynamic shape is illustrated in

Figure 5.1. As Srivastava [39] points out, the temporal change of Fourier representation may

not be linear. However, a linear model is more manageable to approximate such a process, and

requires a small number of observations to estimate parameters. We also elaborate a nonlinear

dynamic model for synthesis of dynamic 2D shape to show a potential extension of our proposed

approach.

The remainder of this chapter is organized as follows. We review related work in Sec-

tion 5.2. In Section 5.3, we present our dynamic shape model and its parameter estimation.

In Section 5.4, we apply the proposed approach to modeling and detection of fire in video

sequences. In Section 5.5, we classify several objects and visual phenomena based on their

evolving region contours. In Section 5.6, we apply the learned model to synthesis of evolving

shape sequences. Section 5.7 uses our model to predict object shape in a video sequence for ob-

ject contour tracking. Section 5.8 discusses the limitations of the proposed model. Section 5.9

summarizes the contribution of this work.
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5.2 Related Work

Our proposed approach is related to models of active contour tracking, e.g. [40], that predict

contour motion and deformation to account for dynamic object shape. For example, Terzopoulos

and Szeliski [41] incorporate Kalman filtering with the original snake model [42]. Blake et al. [43]

propose a contour tracking method that works particularly well for affine deformation of object

shape. Snake based methods process the contour directly in the spatial domain and consider

local deformations [42, 44]. By contrast, in our representation, shape information is distributed

in each coefficient of FD. Thus, our approach works on global deformations. Only a few methods,

such as [43, 45], consider both local and global deformations. Local deformations of all contour

points comprise too large a data set to be convenient for shape recognition and classification.

In addition, models of active contour tracking predict inter-frame motion and deformation.

By contrast, we model global temporal characteristics of the entire contour sequence. Most

importantly, most work on deformable shape modeling is aimed at region contour identification

by using a deformable, evolving snake to converge on the desired contour. Instead, in our work,

the evolving shape description is aimed at describing a temporal changing shape.

There is some work using level sets to represent dynamic shape such as [46]. The advantage

of the level set based method is its ability to handle topology changes. However, as will be

shown later, our model requires significantly less computation.

We also relate our dynamic shape model to linear dynamical systems (LDS) as illustrated

in Figure 2.4(a). The LDS based approaches have been applied to modeling and synthesis of

dynamic textures [1, 2, 26]. These methods use principal component analysis (PCA) for the

mapping between observed images y and hidden states x. The dynamics of textures is carried
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out by an autoregressive model. Similar to LDS, we map between observed contours and hidden

states (Fourier coefficients) using Fourier transform.

5.3 Dynamic Shape Model

Our dynamic shape model includes two parts: a spatial representation of 2D shape and a

temporal representation of shape variation. The detailed model and its parameter estimation

are described in the following sections. The model is also illustrated in Figure 5.1.

5.3.1 Spatial Representation of Shape

Fourier Descriptors (FD), the Fourier Transform coefficients of the shape boundary, rep-

resents a 2D shape using an 1D function. There are several variations of Fourier based 1D

boundary representation in literature [47]. In this work, we use Persoon and Fu’s method [48]

for its simplicity.

Given an extracted region in an image, we first retrieve its boundary using eight-connected

chain code. Assume that we have N points from the chain code representation of the boundary.

We express these points in complex form: {zi|zi = xi + jyi}N
i=1 where (xi, yi) are the image

coordinates of boundary points as the boundary is traversed clockwise. The coefficients of the

Discrete Fourier Transform (DFT) of {zi}N
i=1 are

ak =
1
N

N∑

i=1

zi exp(−j
2π

N
ik), (5.1)

where k = −bN−1
2 c, . . . , bN

2 c. If M harmonics are used (M ≤ bN−1
2 c), the coefficients {am}M

m=−M

are the Fourier Descriptors used to characterize the shape.
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To reconstruct L boundary points {z̃l}L
l=1 using M harmonics, we perform inverse DFT as:

z̃l =
M∑

m=−M

am exp(j
2π

L
ml), (5.2)

where l = 1, . . . , L.

Note that a0 = 1
N

∑N
i=1 zi represents the center of gravity of the 1D boundary, which does not

carry shape information. We neglect this term to achieve translation invariance for recognition

and classification. We keep this term for synthesis and shape prediction because it accounts for

scale changes.

Most related works in Fourier based shape description discuss about similarity measures

that make FD invariant to relevant transformations, e.g., rotation, translation and scaling. The

requirement for each invariance depends on the applications. In this work, we have to avoid

rotation invariance because we need to reconstruct the 2D shape. Since rotation invariance is

not relevant, we can always choose the starting point as the topmost boundary pixel along the

vertical axis through the center of gravity of the entire shape. Our representation approximates

scale invariance (if we drop a0 term) since we have dense sampling of points along region

boundary using chain code. Chain code expression discretizes the arc and Equation (5.1)

normalizes the arc length 1.

5.3.2 Temporal Representation of Shape Variation

The stochastic characteristics of boundary motion are estimated by an autoregressive model

of changes in Fourier coefficients of the region boundary. The autoregressive (AR) model is

1Note: scale invariance is achieved if the distances between a pixel and its eight neighbors are con-
sidered as equal.
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used based on the assumption that each term in the time series depends linearly on several

previous terms along with a noise term [49]. In this work, the AR model is used to capture

different levels of temporal variation in FDs.

Suppose vk are the m-dimensional random vectors observed at equal time intervals. The

m-variate AR model of order p (denoted as AR(p) model) is defined as

vk = w +
p∑

i=1

Aivk−i + nk. (5.3)

The matrices Ai ∈ Rm×m are the coefficient matrices of the AR(p) model, and the m-dimensional

vectors nk are uncorrelated random vectors with zero mean. The m-dimensional parameter vec-

tor w is a vector of intercept terms that is included to allow for a nonzero mean of the time

series.

Our dynamic shape model uses FDs to represent shape, so the random vector vk is in a

form of FD at time k. To select the optimum order of the AR model, we adopt Schwarz’s

Bayesian Criterion [36] which chooses the order of the model so as to minimize the forecast

mean-squared error. We estimate the parameters of our AR model using Neumaier and Schnei-

der’s algorithm [50] which ensures the uniqueness of estimated AR parameters using a set of

normalization conditions.

5.4 Application I: Recognition

In this section, we will show that using the temporal information of shape variation improves

recognition results that use shape only. We choose the problem of fire recognition in video

sequences as an example because of its potential usefulness in the real world.

79



5.4.1 Vision Based Fire Detection

Fire has diverse, multi-spectral signatures, several of which have been utilized to devise

different methods for its detection. Most of the methods can be categorized into smoke, heat,

or radiation detection. A detailed survey can be found in [51]. Each fire detection method is

better suited to a distinct environment. Vision based fire detection has the following advantages

over the other methods. First, it has fast response to fires. As the radiation based method, it

detects fires as soon as they appear in sight. Second, it directly senses the location of fire (in

2-D), not just radiation which comes from its general vicinity. Third, it is capable of analyzing

existing images or image sequences so that it can be used for multimedia database retrieval.

Although it is a line of sight method, there are scenarios where fire is visible and is indeed a

strong cue, complementing any smoke and smouldering nearby.

However, there are only a few papers about fire detection in computer vision literature.

Healey et al. [52] use a purely color based model. Phillips et al. [53] use pixel colors and

their temporal variations. These methods have the following two drawbacks. First, a region

composed of fire-colored pixels is too simple a model of fire since fire also has spatial structure,

namely the core is brighter than the periphery. Second, temporal variation in image pixel color

does not capture the temporal property of fire which is more complex and requires a region

level representation. For example, pixels of the core of the fire exhibit less temporal variation

than the other pixels.

5.4.2 Fire Models

Fire has unique visual signatures. Color, geometry, and motion of fire region are all essential

for recognition. A region that corresponds to fire can be captured in terms of (1) spectral
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characteristics of the pixels in the region, and (2) the spatial structure defined by their spectral

variation within the region. The shape of a fire region usually keeps changing and exhibits

a stochastic motion, which depends on surrounding environmental factors such as burning

materials and air flow.

The pixels in a fire region have characteristic color spectra and the pixels with different

spectra have characteristic relative locations. In color images, we might see bright white color

in the core, and yellow, orange and red away from the core. In grayscale images, we see that

core is brighter than the periphery. Note that a fire region may include multiple bright cores

which correspond to multiple hot spots. This can be viewed as a large fire composed of multiple

sources of fires as illustrated in Figure 5.2. Thus, the fire region in a single image can be modeled

as follows: (i) It stands in high contrast to its surroundings; (ii) It exhibits a structure of nested

rings of colors, changing from white at the core to yellow, orange and red in the periphery.

(a) (b)

Figure 5.2 Examples of the nested ring structure of fire regions. (a) A fire region with a single
core. (b) A fire region with two cores.

A fire in motion has a relatively static general shape (determined by the shape of burning

materials) and rapidly changing local shapes in the unobstructed part of the border. The lower

frequency components of fire region boundary are relatively steady over time, and the higher
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frequency components change in a stochastic fashion. Accordingly, we can use a stochastic

model to capture the characteristic random motion of fire boundary over time.

5.4.3 Fire Detection Algorithms

Our fire detection algorithms include two main steps: (i) Extract potential fire regions in

each image; and (ii) Represent each extracted region using FD and AR parameters, and then

use a classifier to recognize fire regions.

We detect potential fire regions based only on the fire spectral and spatial models. We

first extract high intensity regions (in grayscale) possibly corresponding to fire cores, which we

called seed regions. We grow each seed region by following spectral gradients of the image and

adding neighbor pixels if they have colors given by the fire spectral model with sufficiently high

likelihood. The fire spectral model is represented by a mixture of Gaussian distributions of

interior fire color in HSV space [54].

For each potential fire region, we represent it independently by taking the magnitude of its

FDs. We then find spatially matching regions in previous images of the sequence, and estimate

parameters of the AR model for the corresponding fire regions. The FD and estimated AR

parameters are both used as features of current region. We use a two-class Support Vector

Machine (SVM) classifier [55] with radial basis function (RBF) as its kernel function for fire

region recognition. Accordingly, f(x) represents the decision whether feature vector x is fire:

f(x) =
N∑

i=1

αiyi exp(−γ|x− xi|2)− b (5.4)
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where {xi}N
i=1 are training data of two classes (fire or non-fire), yi ∈ {+1,−1} is the class label

of xi, αi is a Lagrange multiplier, and γ is the bandwidth of the kernel function. Finding an

optimal hyperplane to separate training data is equivalent to finding all the nonzero αi. A

training sample xi corresponding to nonzero αi is called a supported vector (SV) of the optimal

hyperplane. The classification result of x is determined by the sign of f(x).

5.4.4 Experimental Results

The video clips used in our experiments are taken from a random selection of commer-

cial/training video tapes. They include different types of fires such as residential fire, warehouse

fire, and wildland fire. We use images captured at day time, dusk or night time to evaluate

system performance under different lighting conditions. We also use other image sequences

containing objects with fire-like appearances such as sun and light bulbs as negative examples.

The video clips that we tested our algorithm on contain a total of 3956 image frames in 36

sequences. Figure 5.3 shows some selected fire images used in our experiments. The (red)

contours depicted in the images are the detected fire region contours.

In our test data, the potential region extraction algorithm extracted a total of 1319 fire-

like region contours, 1089 of which were true fire region contours. For shape representation in

terms of Fourier Descriptors, we find that using 40 coefficients (i.e. M = 20) is sufficient to

approximate the relevant properties of the fire region contours. In this experiment, we assume

that different FDs at any given time k are independent of each other, so we have diagonal

coefficient matrices in our AR model, where Ai(m,n) = 0 if m 6= n. Thus it can be viewed as

modeling 2M independent time series. We also find that the AR(1) model yields the minimal

83



Figure 5.3 Selected fire images used in experiments.
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forecast mean-squared error. Therefore, we use 40 AR coefficients to represent the stochastic

characteristics of the temporal changes in FDs.

Table 5.1 Recognition rate of fire and non-fire contour recognition.

Experiments Fire Contours Non-Fire Contours
Use shape only (FD) 0.996 0.904

Use shape + evolution (FD + AR) 0.999 1.0

We tested our algorithms in two ways: The first set of experiments with only spatial infor-

mation of region contours (FD only as the feature vector), and the second set of experiments

with spatial and temporal information of region contour evolution (FD and AR parameters

as the feature vector). In the second set of experiments, we required that a fire contour be

seen in at least previous four frames. Note that three frames are the minimum requirement to

estimate parameters of our AR(1) model. For each set of experiments, we repeated the test

ten times using 10% of fire and non-fire region contours to train the SVM classifier, and the

other 90% of region contours for test. In this way, we used many more fire examples than

counter examples on training. This was intended to tilt the detector in favor of false positives

vs false negatives as corroborated by the experimental results. The average recognition rate is

shown in Table 5.1. It is clear that temporal information of shape evolution indeed improved

the detection performance and significantly reduced the false alarm rate.

5.5 Application II: Classification

In this section, we demonstrate that the temporal information of shape variation alone is

a good discriminant for classifying several objects and visual phenomena. Under our proposed
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framework, we show that object shape variation is indeed an important visual cue for object

classification.

Follow the model presented in Section 5.3. Assume that M harmonics in the FDs are used

to represent the region boundary of an object in each image of the sequence, and AR(1) model

is used to describe boundary dynamics. We then have 2M AR coefficients to represent the

temporal characteristics of the evolving object shape in an image sequence. Let {an} and {bn}

be AR coefficients modeling a dynamic shape α and a dynamic shape β, respectively. We define

the distance between the two dynamic shape sequences as

d(α, β) = (
2M∑

n=1

|an − bn|2)1/2. (5.5)

A simple nearest-neighbor classifier using metric (5.5) is used for classification.

5.5.1 Experimental Results

The image sequences used in the experiments include two running human sequences, three

waving flag sequences, and two fire sequences. The fire contours are extracted as described

in [56]. The region boundaries of flags and running human are semi-automatically extracted

using active contour method [42] for each image frame. We use forty FDs to approximate each

object boundary. The AR parameters are estimated using each whole sequence. Therefore, the

estimated AR parameters represent the global dynamics of the object boundary in a sequence.

The experiments are done using the cross-validation method. Only one out of seven image

sequences is misclassified, where a running human sequence is classified as a waving flag sequence

(see Table 5.2).
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Table 5.2 Nearest-neighbor classification results.
Input test sequences # of input sequences labeled as

(for each, the nearest-neighbor is identified) Human Flag Fire
Running Human 1 1 0
Flapping Flag 0 3 0

Fire 0 0 2

5.6 Application III: Synthesis

In this section, we apply our model to synthesis of dynamic shape. In particular, we syn-

thesize fire boundary sequences, where the dynamic shape model is obtained from a fire image

sequence in as described Section 5.4. We choose fire as an example because fire region can be

modeled as nested subregions, where each subregion shows temporal variation.

Synthesis of dynamic shape is a novel topic in computer vision. The most relevant work

are those of image based dynamic/temporal texture synthesis. Some of them use only local

image structures and ignore the underlying dynamics [24]. Some other works that learn the

underlying dynamics in pixel level [3] or in image subspace [1] do not use region level image

structures. Instead, they learn the global dynamics of the whole image. In our method, we

learn the dynamics of regions using region boundaries.

Many physics based methods have been proposed to produce visual phenomena such as

fire [57, 58, 59]. However, since these methods do not learn dynamics from images, they are not

capable of generating subsequent images based on a given image. Image based method, such

as [1], generates an image sequence if given an initial image and the learned image dynamics.

But the resulting images will show significant artifacts if the region of motion is not fixed. Our

approach is image based, and it directly deals with temporal variation of regions.
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Figure 5.4 Our procedure for synthesis of dynamic 2D shape.

5.6.1 Synthesis Algorithm

We synthesize a new sequence by simulating the AR model learned from the given image

sequence. The synthesis process is illustrated in Figure 5.4. For a given initial image, we retrieve

the object boundary in the image and represent it using Fourier descriptors. We perform desired

number of iterations of the AR model to simulate FDs for the entire synthesis sequence. The

new 2D shape sequence is reconstructed using the simulated FDs by Equation (5.2).

5.6.2 Synthesis Using Nonlinear Dynamic Model

To enhance the synthesis capability of our proposed model, we can incorporate a nonlinear

dynamic model to replace our AR model. It is reasonable to consider that, in general, the

dynamics is piecewise linear. Therefore, we consult to a switching linear dynamical system

(SLDS). A SLDS includes m linear dynamical systems (LDS) and a discrete hidden Markov

model P (st|st−1) that selects one of the m LDSs at each time instant, as shown in Figure 2.4(c).

Within our proposed framework, the linear mapping between observed contours and hidden

states is provided by Fourier transform. As a result, we have a switching autoregressive (SAR)

model to describe changes in a Fourier coefficient series. Using the notations in Equation 5.3,

88



we can write a SAR model as

v
(j)
k = w(j) +

p∑

i=1

A
(j)
i v

(j)
k−i + n

(j)
k , (5.6)

where j = 1 . . . m.

In the case of fire, the shape of a fire region usually keeps changing, e.g., because of air flow.

The air flow, being unpredictable, lends a distinct character to the way in which the region

shape changes with time. Accordingly, a SAR model, being able to describe a set of different

dynamics, is more descriptive in such a situation.

5.6.3 Synthesis Results

In this experiment, we use a fire sequence as a training example. A fire region is modeled

as a nested ring structure where each ring is associated with a color spectrum. Although the

changes in color is continuous, we threshold the fire region (by grayscale intensity) into three

subregions. Each region boundary in the given image sequence are independently modeled

by our approach. The color spectra of each region are modeled as a mixture of Gaussian.

Once the parameters of three AR models have been estimated, we use the mean boundaries in

the given sequence as initial boundaries, and simulate the AR models to generate subsequent

boundaries. An inner region boundary is confined to its outer region boundary so that we

maintain the nested ring structure. To avoid spin-up effects, the first thousand time steps of

the AR models are discarded. The pixel colors of each region are drawn from respective color

models. Figure 5.5 shows the nested ring model, an example fire image of the input video and

some selected synthesized fire image frames.
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Figure 5.5 Leftmost image: A nested ring structure models the fire region. Second image: An
example fire image from the given video sequence. Others: Selected frames of the synthesized
fire image sequence.

Our method is capable of solving the following two problems: Given a fire image sequence,

(i) generate a new sequence of fire shapes, where both shapes and dynamics are similar to

the given image sequence; (ii) also given an initial fire shape, generate a new sequence of fire

shapes, where the dynamics is similar to the given image sequence. To achieve photo-realistic

fire rendering, since we can solve problem (i), we need only a more sophisticated model that

enforces spectral gradient to fill colors in the synthesized fire region. For non-photo-realistic

fire rendering, such as cartoon drawing, we ask artists to draw fire regions as nested rings and

assign a color for each subregion. Our approach will automatically generate subsequent images

based on the learned dynamical model. The synthesized sequence can then be overlaid into

other image sequences.

5.7 Application IV: Shape Prediction

The capability of predicting shape comes naturally in our dynamic shape model. In this

section, we apply our method to tracking deformable objects. The contour based tracking

methods consist two parts: obtaining an initial contour and conforming the initial contour to
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object boundary. A good initial contour estimate provides a predicted contour closer to true

object boundary in both geometry and position.

Most works on contour tracking are based on the active contour model (or snake model)

proposed by Kass et al. [42]. Some works assume that the motion of the object is slow and its

deformation is small [60]. So the optimal contour estimate in the previous image frame is used

as the initial contour in the current frame. When the changes in shape are large, these methods

are very likely to fail. Other works that estimate motion and deformation are compared to our

method in Section 5.2.

Using our proposed framework, the contours are again represented by FDs. To account for

large changes in shape, we estimate our AR model locally using a small number of previous

image frames. A first-order AR model is estimated. Then the initial contour is predicted by

Equation 5.3 with nk = 0. Note that the zeroth term of FDs has positional information. So

our dynamical model simultaneously predicts the 2D position and shape for the current image

frame. Any contour based tracking methods can then be used to conform the contour to object

boundary.

5.7.1 Experimental Results

We test our algorithms using a Bream sequence, where a fish initially swims to the right,

makes a sharp turn, and then swims to the left. We choose this image sequence because there are

large changes in shape when the fish makes a sharp turn, which makes the tracking challenging.

We compare our method to the method that predicts only shape translation but not shape

deformation.
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Figure 5.6 The green contour is predicted by our dynamic shape model, and the red contour
is the optimal contour of the previous image frame with predicted translation.

Figure 5.6 shows the estimated initial contours of both methods. It is clear that our method

accounts for scale change in horizontal dimension, but the other method does not. The fin on

the upper right side of the fish is partially occluded in the previous image frame. Both methods

do not predict this discontinuous change in shape. But our method does move the fin upward

according to its appearance in previous image frames. The quality of the converged contour by

any snake model will benefit from a better initial shape prediction.

5.8 Limitations

In Section 5.3.1, we approximate scale invariance for FD by densely sampling along the

boundary to obtain the chain-code. However, for small regions, the spatial quantization is

likely to introduce considerable noise to the FD. To avoid this problem, we eliminate regions

smaller than a certain size. Consequently, our model does not detect small or far away fires.

Small regions are expected to increase misclassification rate and synthesis results are better for

larger regions.
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The AR model is a linear dynamical system. There may be cases where linear model is

not sufficient. In such cases, nonlinear dynamical model can be adopted under the proposed

framework. For example, we have shown that a switching AR model can be used to enhance

synthesis results. Similarly, any other shape description method with boundary, numeric, and

information preserving properties may be used in place of FD.

5.9 Conclusion

In this chapter, we have proposed a novel model for dynamic shape. Although both FD and

AR model have been well established, using them together to analyze temporal shape variation

is not discussed in literature. Traditional shape analysis focuses on spatial similarity, but not

temporal similarity. The autoregressive model has been applied mainly to model 1D signals [49]

and 2D pixel interdependences [1, 3]. We are not aware of any work on AR modeling of region

shape changes.
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CHAPTER 6

MOTION MODELS OF 2D OBJECTS

In this chapter, we will show that temporal variations in image content provide useful

information for content based video retrieval. In particular, we explore the use of three motion

representations and apply and evaluate them in retrieving a variety of motion patterns. Our

approach assumes that each dynamic object has been tracked and circumscribed in a minimal

bounding box in each video frame. We represent the motion attributes of each object in

terms of changes in the image context of its circumscribing box, which we call a 2D motion

model. The changes are described via motion templates [61], self-similarity plots [62], and image

dynamics [1]. Initially, defined criteria of the retrieval process are interactively refined using

relevance feedback from the user. Experimental results demonstrate the use of the proposed

2D motion models in retrieving objects undergoing complex motion.

6.1 Introduction

Recently, some motion representations have been proposed to recognize different motion

patterns such as human gaits, activities, periodic motions and texture motions. However, the

existing content-based video retrieval (CBVR) approaches focus on low-level motion features

such as pixel-level optical flow or affine parameters for motion content indexing, in addition
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to other visual features such as color, shape or texture. The main disadvantage of using low-

level motion features lies in the recognition of complex motion patterns such as gaits. Such

complex motion patterns can be effectively tackled using higher-level motion representations,

which might be region based or image based, for example. But such an extension is not

straightforward for video retrieval and often depends on many assumptions.

6.1.1 Motivation and Approach

According to the motion classification tree of objects proposed by Kambhamettu et al. [63],

most real-world motions can be classified as rigid, articulated, elastic (deformable motion

with topological invariance), or fluid. For example, vehicle movement is a rigid motion; an-

imal/human movements are articulated motions in general; deformable objects affected by

external force such as a dropping sheet of paper exhibit elastic motion; motions exhibiting

topological variations and turbulent deformations are viewed as fluid motion.

These different types of movements become apparent via different characteristics of motion

extracted from images and can then be used for retrieval. For instance, articulated motion can

be characterized through periodicity of motion observed in videos and can be found in many

biological movements, such as human or animal gaits. Apart from gaits, articulated motion also

includes interesting kinds of movements, such as moving body parts like a man swimming in

sports video, that people are interested in querying. These movements are generally localized

in nature and can be characterized through region based motion features like motion presence

and motion recency, which we will discuss in the later sections of this chapter. Elastic and fluid

motion, on the other hand, varies continuously across objects. The difference between these

two classes of motions lies in the continuity of the object itself. When observing these types
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of motions, people usually have prior knowledge about the object and pay attention to the

deformations or topological changes of the observed object. Either deformation or topological

change is usually an important signature of object identity. Rigid motion characterizes poses

and translations of rigid objects and it corresponds to affine parameter estimation in image

analysis that has no information about object identification. To recognize a rigid object, people

consult to shape, color or other visual cues other than motion to determine the object class.

Based on the aforementioned visual properties, we investigate four motion properties: peri-

odicity, presence, recency, and image dynamics. To represent these movements, we also adopt

appearance based methods, rather than model based approaches, because (1) the types of

dynamic objects of interest are unknown, and (2) the dynamic objects present in the video

database may have huge variety so that no single model fits well all dynamic objects. In this

work, we represent motion periodicity using modified similarity plots [62] where we use nor-

malized cross-correlation to measure image similarity. Then we proceed to represent motion

presence and motion recency using temporal template approach [61] that reveals the tendency

of movement and have been successfully used to recognize human activities. Following which

we use image-level dynamics, motivated by [1] that characterizes the temporal changes between

image frames, to capture variations of the object motion without object models. These motion

properties can be harnessed to cover a wide range of interesting motion patterns and can be

used to retrieve videos by queries that analyze the high-level motion content in videos.

Our system makes two assumptions. First, we assume that the dynamic objects in an

image sequence have been tracked so that a minimal bounding box circumscribed for each

dynamic object is available in any given video frame. Second, we assume that there is only

one foreground object in each circumscribing box, and that the backgrounds do not change
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significantly over a short time period. There have been some tracking techniques which find a

minimal bounding box for a moving object. Although in some cases tracking methods might

fail to locate moving objects, we maintain the first assumption by interactively working with

tracking methods. The second assumption can be removed if the dynamic object can be au-

tomatically segmented. However, this is a very difficult problem, especially when the types

of moving objects are unknown. Therefore, our second assumption ensures that the dynamic

objects in corresponding bounding boxes can be reasonably matched (or aligned). With these

two assumptions, our objective becomes: given a sequence of bounding boxes whose changes

in the image context representing the motion properties of a dynamic object, we find similar

dynamic object sequences based on the similarity of changes in their image contexts.

6.2 Method

Assume that a dynamic object has been tracked and a minimal bounding box around the

object in any give video frame is available. Note that the bounding boxes of a moving object

may have different sizes in different video frames. Therefore, we first align the bounding boxes

so that the appearances of the object are best matched. We then capture the motion content

of the bounding box sequence using three representations described later. To retrieve similar

sequences, we first compute the similarity measures between the representations of the given

sequence and those in database. The similarity between sequences is interactively refined by

integrating similarity measures according to user’s feedbacks.
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6.2.1 Image Alignment of Dynamic Objects

Normalized cross-correlation (NCC) [64] is used to match the appearances of dynamic ob-

jects in the bounding boxes. This method shifts a template image t over a search image f ,

measuring normalized cross-correlation at each point. The NCC value at (u, v) over the win-

dow Wx,y is defined as

γ(u, v) =

∑
x,y[f(x, y)− f̄u,v][t(x− u, y − v)− t̄]

{∑
x,y[f(x, y)− f̄u,v]2

∑
x,y[t(x− u, y − v)− t̄]2

}0.5 (6.1)

The point associated with the maximal NCC value is selected as the best match. Although

the original method requires that the search image be larger than the template image in both

dimension, we extend the search region to include some neighbor pixels of the target bounding

box. To help finding best match by NCC, we place spatial constraints on the search window

to prune the candidate matches. This alignment process is fully automatic. The computations

for all motion representations in the following are done in overlap regions of bounding boxes.

6.2.2 Self-Similarity Plots

Cutler et al. [62] developed an approach to detection of periodic motion by using similarity

plots, where they analyze periodic signals using an auto-correlation function. The idea is to

use similarity plot to encode the projection of spatio-temporal dynamics of moving objects, and

then analyze similarity plot for object classification.

Figure 6.1 shows the similarity plot of a twenty-frame human running sequence. The value

at pixel (x, y) of the plot represents the similarity, defined in this work as the value of normalized

cross-correlation, between overlap regions of the bounding boxes in image frame x and y. The
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Figure 6.1 The similarity plot of a human running sequence.

bright gray lines parallel to the white diagonal in the plot indicate periodic motion in the given

sequence.

Two features of a similarity plot are defined in this work. These are concerned with if the

given sequence is periodic, and second, the length of a periodic cycle. For instance, as indicated

in Figure 6.1, the motion of the object is periodic with a cycle length about six image frames,

which corresponds to a half gait, or a stride.

6.2.3 Temporal Templates

Davis et al. [65, 61] introduced two temporal templates, motion-energy image (MEI) and

motion-history image (MHI), to respectively represent the presence and the recency of object

movement. Let D(x, y, t) be a binary value indicating regions of motion at frame t. An MHI

Hτ is defined as

Hτ (x, y, t) =





τ, if D(x, y, t) = 1;

max(0,Hτ (x, y, t− 1)− 1), otherwise,
(6.2)

where τ denotes the desired length of history. An MEI Eτ is defined as

Eτ (x, y, t) =





0, if Hτ (x, y, t) = 0;

1, if Hτ (x, y, t) > 0.

(6.3)
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In our system, we obtain D using image differencing. To distinguish between motion patterns,

seven of Hu’s moments are computed over MHIs and MEIs respectively, which are translation-

and scale-invariant. Then the Mahalanobis distance of Hu’s moments of two MHIs or MEIs is

used to measure the similarity between motions of τ image frames. Note that different motion

patterns may need different lengths of history to be best described by these temporal templates.

Therefore, we compute MHI and MEI with four different lengths (τ = 5, 10, 15, 20).

Image sequence registration is a problem when using this method to compare motion pat-

terns in two sequences. We overcome this problem by shifting one sequence and computing

motion similarity for every possible sequence alignment. The measurement of the best similar-

ity in temporal templates for the eventual similarity integration is chosen.

6.2.4 Image Dynamics

We model image-level dynamics in image subspace, which is similar to Soatto’s [1] and

Brand’s [66] approaches. The image subspace is spanned by a set of basis images. The input

image sequence is projected onto the subspace frame by frame and the projections form a

trajectory in the subspace. We model the evolution of this trajectory using a first-order auto-

regressive (AR) model. Therefore, the temporal behavior of an image sequence is captured by

the evolution of the moving trajectory in image subspace.

Assume that we have n frames in an image sequence, and each image frame of the sequence is

represented as a column vector Ii ∈ Rm in the raster scan order. Let µ be the mean of the images

and I ′i = Ii − µ. We use a matrix X = [I ′1I
′
2 . . . I ′n] to denote the whole input image sequence

around the mean image. Using the algorithm in [67], we find the eigenvectors {ej}j=1...k,

which correspond to the largest k eigenvalues, of the covariance matrix XXT . Therefore, we
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represent each image frame as Ii = V Pi + µ, where V = [e1e2 . . . ek] and Pi = V T (Ii − µ). Pi

is the projection of Ii in the subspace spanned by V . Furthermore, we treat the projections Pi

as the k-dimensional random vectors observed at equal time intervals. The first-order k-variate

AR model is defined as Pi = APi−1 + ni. The matrices A ∈ Rk×k are the coefficient matrices

of the AR model, and the k-dimensional vectors ni are uncorrelated random noise with zero

mean. Note that the AR model for each sequence are defined in different subspaces. Therefore,

to measure the similarity between image sequences, we compute Martin’s distance between AR

models defined by {A, V } pairs [68].

6.2.5 Integration of Similarity Measures

The respective similarity measures for three motion representations are all integrated to

measure motion-content similarity in the circumscribing boxes of dynamic objects. Since the

quality of retrieval results is subjective to user’s visual perception, the ways to integrate different

similarity measures may vary depending on the dynamic object of query. There have been some

systems that require users to specify weights for their queries, which often leads to unsatisfactory

results. In our system, we linearly combine similarity measures and dynamically adjust their

weights according to user’s interactive feedback [69]. Such relevance feedback based retrieval

approach has been empirically proved to be very effective.

6.3 Experimental Results

The video clips used in our experiments were randomly collected from TV programs or

recordings of street scenes. In most cases, the videos involve camera motions. Currently, fifty

image sequences have been used in our experiments. All images are converted into gray-level

101



before we apply the algorithms. The retrieval results of five queries of different motion patterns

are shown in figure 6.2.

The first test is a human walking video. Such motion pattern is periodic and has important

signatures in motion presence and motion recency, where the MEI shows the motion is around

the lower part of the object and the MHI indicates the major movement is toward right. The

third best sequence of this query involves walking with an angle to the camera plane, which

decreases the similarity in motion presence to the test sequence. The forth best sequence

involves walking toward the opposite direction of the test sequence, and the features for motion

recency show the differences.

In the second test, we use a tennis video where a player back to the camera performs a right-

handed swing including his follow-through. This is a full body motion, but the motion in image

context has emphasis on arm swing (including the racket) and leg movement. The similarity

measures in motion presence and motion recency are most relevant in retrieving similar videos.

Note that the videos of left-handed swings or swings of a player facing the camera are not

retrieved.

The third test video is about the movement of a bird’s wings. Although the motion of

flapping wings is periodic, in most cases the movement is too fast for the system to detect its

periodicity. As a result, motion presence is much more relevant to such fast movement in the

retrieval process than the other properties. The forth test is a flowing river sequence. Our

system relies on image-level dynamics to retrieve similar videos of such a no-where static scene.

The last test is a video of a moving car exhibiting a rigid motion. Our system is able to

separate rigid motion from non-rigid motion, but has no discrimination among rigid objects.

The system retrieves vehicle sequences because they are the only rigid objects in our database.
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Figure 6.2 In each row, the leftmost image is an example image frame of the query sequence
of a dynamic object. The corresponding four most similar sequences are shown in the right.

6.4 Discussion

In this chapter, we propose to use 2D motion models to retrieve dynamic objects in videos.

The motion content in terms of changes in the image context of the circumscribing box of

dynamic objects is considered. Although a few assumptions have been made to implement the

system, the results suggest that higher-level motion representations certainly help to retrieve a

wide range of similar motion patterns. Other video contents such as color and shape are not

considered in this work, though using them will surely improve overall performance. For videos

of multiple moving objects, the relationships between the corresponding circumscribing boxes
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can be further explored so that a query with higher-level concept such as ”object A chasing

object B” can be answered. Future research should include other motion representations in

order to cover more real-world motion patterns.
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CHAPTER 7

CONCLUSIONS

In this thesis, we have considered the problem of modeling and analysis of continuous,

locally-linear, multi-dimensional spatio-temporal data. Our work extends the previously re-

ported theoretical work on the global coordination model to temporal analysis of continuous,

multi-dimensional data. We have developed algorithms for time-varying data analysis and used

them in full-scale, real-world applications. The applications demonstrated in this thesis include

tracking, synthesis, recognitions and retrieval of dynamic objects based on their shape, appear-

ance and motion. Experiments show that the new modeling features of our approach improve

the performance of existing approaches in most applications.

A major direction for future research beyond this thesis will be to exploit the temporal

correlation of the input data to learn their nonlinear manifolds and mappings. Most applications

shown in this thesis involve time series analysis, but the temporal correlation of the data is

currently not used for nonlinear manifold learning. Although promising results have been

demonstrated using our current approach, using temporal correlation might improve manifold

learning and further enhance the performance of our algorithms.

The proposed approach in this thesis has advantages over existing approaches to analyzing

complex spatio-temporal data. We believe it would find more applications in the future.
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