898 research outputs found

    Daily minimum and maximum temperature simulation over complex terrain

    Full text link
    Spatiotemporal simulation of minimum and maximum temperature is a fundamental requirement for climate impact studies and hydrological or agricultural models. Particularly over regions with variable orography, these simulations are difficult to produce due to terrain driven nonstationarity. We develop a bivariate stochastic model for the spatiotemporal field of minimum and maximum temperature. The proposed framework splits the bivariate field into two components of "local climate" and "weather." The local climate component is a linear model with spatially varying process coefficients capturing the annual cycle and yielding local climate estimates at all locations, not only those within the observation network. The weather component spatially correlates the bivariate simulations, whose matrix-valued covariance function we estimate using a nonparametric kernel smoother that retains nonnegative definiteness and allows for substantial nonstationarity across the simulation domain. The statistical model is augmented with a spatially varying nugget effect to allow for locally varying small scale variability. Our model is applied to a daily temperature data set covering the complex terrain of Colorado, USA, and successfully accommodates substantial temporally varying nonstationarity in both the direct-covariance and cross-covariance functions.Comment: Published in at http://dx.doi.org/10.1214/12-AOAS602 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Extrapolation of Stationary Random Fields

    Full text link
    We introduce basic statistical methods for the extrapolation of stationary random fields. For square integrable fields, we set out basics of the kriging extrapolation techniques. For (non--Gaussian) stable fields, which are known to be heavy tailed, we describe further extrapolation methods and discuss their properties. Two of them can be seen as direct generalizations of kriging.Comment: 52 pages, 25 figures. This is a review article, though Section 4 of the article contains new results on the weak consistency of the extrapolation methods as well as new extrapolation methods for α\alpha-stable fields with $0<\alpha\leq 1

    Half-tapering strategy for conditional simulation with large datasets

    Full text link
    Gaussian conditional realizations are routinely used for risk assessment and planning in a variety of Earth sciences applications. Conditional realizations can be obtained by first creating unconditional realizations that are then post-conditioned by kriging. Many efficient algorithms are available for the first step, so the bottleneck resides in the second step. Instead of doing the conditional simulations with the desired covariance (F approach) or with a tapered covariance (T approach), we propose to use the taper covariance only in the conditioning step (Half-Taper or HT approach). This enables to speed up the computations and to reduce memory requirements for the conditioning step but also to keep the right short scale variations in the realizations. A criterion based on mean square error of the simulation is derived to help anticipate the similarity of HT to F. Moreover, an index is used to predict the sparsity of the kriging matrix for the conditioning step. Some guides for the choice of the taper function are discussed. The distributions of a series of 1D, 2D and 3D scalar response functions are compared for F, T and HT approaches. The distributions obtained indicate a much better similarity to F with HT than with T.Comment: 39 pages, 2 Tables and 11 Figure

    Characterizing large-scale weak interlayer shear zones using conditional random field theory

    Get PDF
    The shear behavior of large-scale weak intercalation shear zones (WISZs) often governs the stability of foundations, rock slopes, and underground structures. However, due to their wide distribution, undulating morphology, complex fabrics, and varying degrees of contact states, characterizing the shear behavior of natural and complex large-scale WISZs precisely is challenging. This study proposes an analytical method to address this issue, based on geological fieldwork and relevant experimental results. The analytical method utilizes the random field theory and Kriging interpolation technique to simplify the spatial uncertainties of the structural and fabric features for WISZs into the spatial correlation and variability of their mechanical parameters. The Kriging conditional random field of the friction angle of WISZs is embedded in the discrete element software 3DEC, enabling activation analysis of WISZ C2 in the underground caverns of the Baihetan hydropower station. The results indicate that the activation scope of WISZ C2 induced by the excavation of underground caverns is approximately 0.5–1 times the main powerhouse span, showing local activation. Furthermore, the overall safety factor of WISZ C2 follows a normal distribution with an average value of 3.697

    High-resolution truncated plurigaussian simulations for the characterization of heterogeneous formations

    Get PDF
    Integrating geological concepts, such as relative positions and proportions of the different lithofacies, is of highest importance in order to render realistic geological patterns. The truncated plurigaussian simulation method provides a way of using both local and conceptual geological information to infer the distributions of the facies and then those of hydraulic parameters. The method (Le Loc'h and Galli 1994) is based on the idea of truncating at least two underlying multi-Gaussian simulations in order to create maps of categorical variable. In this manuscript we show how this technique can be used to assess contaminant migration in highly heterogeneous media. We illustrate its application on the biggest contaminated site of Switzerland. It consists of a contaminant plume located in the lower fresh water Molasse on the western Swiss Plateau. The highly heterogeneous character of this formation calls for efficient stochastic methods in order to characterize transport processes.Comment: 12 pages, 9 figure

    A Generalized Convolution Model and Estimation for Non-stationary Random Functions

    Full text link
    Standard geostatistical models assume second order stationarity of the underlying Random Function. In some instances, there is little reason to expect the spatial dependence structure to be stationary over the whole region of interest. In this paper, we introduce a new model for second order non-stationary Random Functions as a convolution of an orthogonal random measure with a spatially varying random weighting function. This new model is a generalization of the common convolution model where a non-random weighting function is used. The resulting class of non-stationary covariance functions is very general, flexible and allows to retrieve classes of closed-form non-stationary covariance functions known from the literature, for a suitable choices of the random weighting functions family. Under the framework of a single realization and local stationarity, we develop parameter inference procedure of these explicit classes of non-stationary covariance functions. From a local variogram non-parametric kernel estimator, a weighted local least-squares approach in combination with kernel smoothing method is developed to estimate the parameters. Performances are assessed on two real datasets: soil and rainfall data. It is shown in particular that the proposed approach outperforms the stationary one, according to several criteria. Beyond the spatial predictions, we also show how conditional simulations can be carried out in this non-stationary framework.Comment: 24 pages, 10 figures, 2 table

    A review of non-stationary spatial methods for geodetic least-squares collocation

    Get PDF
    This paper reviews a field that is herein termed spatial ?non-stationarity?, which is specifically concerned with non-stationarity in the geodetic theory of least-squares collocation (LSC). In practice, many geodesists rely on stationary assumptions in LSC, i.e., using a constant mean and isotropic and spatially invariant covariance for estimation and prediction of geodetic quantities. However, new theories in spatial statistics and geostatistics allow for better statistical methodologies to be used in geodesy. The aim of this paper is to introduce these methodologies and adapt them for dealing with non-stationarity in LSC
    corecore