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ABSTRACT 

This paper reviews a field that is herein termed spatial “non-stationarity”, which is 

specifically concerned with non-stationarity in the geodetic theory of least-squares 

collocation (LSC).  In practice, many geodesists rely on stationary assumptions in LSC, i.e., 

using a constant mean and isotropic and spatially invariant covariance for estimation and 

prediction of geodetic quantities.  However, new theories in spatial statistics and geostatistics 

allow for better statistical methodologies to be used in geodesy.  The aim of this paper is to 

introduce these methodologies and adapt them for dealing with non-stationarity in LSC.  
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INTRODUCTION 

Stationarity is an in-built assumption in [standard] geodetic least-squares collocation (LSC), 

where the mean value of a dataset is taken as a constant and the covariance function is taken 

to be both isotropic (uniformly shaped in all directions) and spatially invariant (e.g., Moritz, 

1980).  Non-stationarity, on the other hand, means that the mean value of a dataset is not 

necessarily constant and/or the covariance is anisotropic (varies with direction) and spatially 

variant.  In the discipline of spatial statistics, for instance, this is called weak or second-order 

non-stationarity (Armstrong, 1998). 

 

Figure1. Gravity anomalies over the Darling Fault in Western Australia: to a first 

approximation, the region is divided between low gravity anomalies to the west, and high 

gravity anomalies to the east, which shows the spatial non-stationarity in the dataset. 
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Gravity anomalies (differences between observed and model values) over the Darling 

Fault in Western Australia (Lambeck, 1987) provide a nice illustration of non-stationarity in 

geodetic data (Figure 1).  It is caused by the mass-density contrast of -0.4 3/kg m  (Boschetti 

et al., 1997) across the fault.  Using a single covariance structure across the whole dataset, for 

instance to interpolate the spatial data, will not be representative.  Thus, there is a necessity to 

develop non-stationary covariance functions (i.e., ones that are spatially variable) to better 

predict the spatial random field (SRF) among dissimilar areas (cf. Darbeheshti and 

Featherstone, 2009, 2010). 

Research disciplines other than geodesy, mostly environmental studies (e.g., Nychka 

and Saltzman, 1998; Fuentes, 2001; Lloyd and Atkinson, 2002), have studied the problem of 

non-stationarity in spatial or time-series data.  Among these, the disciplines of geostatistics 

and spatial statistics are more compatible with geodetic LSC theory (cf. Moritz, 1980).  

Regardless of the dataset involved, the fundamental principles and concepts in one research 

field have frequently been applied to problems in other research fields.  This paper will 

introduce non-stationary approaches to best linear unbiased estimation (BLUE) problems, 

some from geodesy, but most from geostatistics and spatial statistics.   

The SRF estimation and prediction scheme successfully implemented in geodesy is 

LSC, which can be used to: (i) account for systematic effects in the data (trends); (ii) predict 

the SRF between data points (interpolation); and estimate the SRF at other points (filtering).  

The generalised model of LSC in geodesy is given by 

l = A x + y + n                                                              (1) 

where l is the vector of observations, A is the design matrix with full column rank, x is the 

vector of unknown parameters, y is the predicted signal vector, and n is the error vector of 

observations.  The BLUE solution of Eq. (1) is obtained by (Moritz, 1980) 

𝐱𝐱� = (𝐀𝐀𝑇𝑇(𝐂𝐂𝑙𝑙𝑙𝑙 + 𝐂𝐂𝑛𝑛𝑛𝑛 )−1𝐀𝐀)−1𝐀𝐀𝑇𝑇(𝐂𝐂𝑙𝑙𝑙𝑙 + 𝐂𝐂𝑛𝑛𝑛𝑛 )−1𝐥𝐥                (2) 
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𝐲𝐲� = 𝐂𝐂𝑦𝑦𝑙𝑙 (𝐂𝐂𝑙𝑙𝑙𝑙 + 𝐂𝐂𝑛𝑛𝑛𝑛 )−1(𝐥𝐥 − 𝐀𝐀 𝐱𝐱� )                                         (3) 

𝐧𝐧� = 𝐂𝐂𝑛𝑛𝑛𝑛 (𝐂𝐂𝑙𝑙𝑙𝑙 + 𝐂𝐂𝑛𝑛𝑛𝑛 )−1(𝐥𝐥 − 𝐀𝐀 𝐱𝐱� )                                        (4) 

where   �  refers to the LSC-estimated quantity, 𝐂𝐂𝑛𝑛𝑛𝑛  is the variance-covariance matrix of the 

noise (a diagonal matrix), 𝐂𝐂𝑙𝑙𝑙𝑙  is the auto-covariance matrix of the vector of the observations l, 

and 𝐂𝐂𝑦𝑦𝑙𝑙  is the cross-covariance matrix between observation l and prediction y. 

In standard LSC, it is assumed that the observation l and prediction y have an 

expected value equal to zero: i.e., E{l} = 0 and E{y} = 0, with the expectation E{.} being the 

average or mean value in the sense of probably theory.  As can be seen from Eq. (3), the 

prediction is a function of not only the auto-covariances 𝐂𝐂𝑙𝑙𝑙𝑙  of the observed quantities, but 

also the cross-covariances 𝐂𝐂𝑦𝑦𝑙𝑙  of the predicted quantity with the observed quantity.  As such, 

LSC can take observations with errors assigned, and then generate quantities at the same or 

other points with an error estimate for those predicted values. 

This review paper covers the substantial literature dealing with non-stationarity in 

spatial data.  The aim is to select, from a wide range of options, those that are most applicable 

to geodetic LSC.  The sources are classified among three categories: geodesy, geostatistics 

and spatial statistics.  The advantages and disadvantages of each method are presented, and 

the justification given as to why the kernel convolution method of Higdon et al. (1999) from 

spatial statistics should be chosen for non-stationary covariance modelling in geodetic LSC.  

A simulated numerical example is given to demonstrate the effectiveness of the non-

stationary methods, when applied to non-stationary data.  
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NON-STATIONARY BLUE SOLUTIONS FROM GEODESY 

Trend removal 

Trend removal is the most common approach in geodetic LSC to deal with non-stationarity in 

the mean of geodetic data: “The LSC solution is giving the minimum mean square error in a 

very specific sense, namely as the mean over all data-configurations which by a rotation of 

the Earth's centre may be mapped into each other. So if this should work locally, we must 

make all areas of the Earth look alike, seen from the gravity field standpoint” (Tscherning, 

1994). 

In geodesy, this is often known and implemented as the remove-restore method, and 

involves removing as much as we know about the input data, and later adding it back to get 

the final result, thereby using a SRF that is statistically more homogeneous than before.  In 

the LSC procedure for gravity field modelling, first, the contribution from a high degree 

(typically 360) spherical harmonic expansion is removed.  Secondly, the effect of the local 

topography is reduced.  This leaves a residual field, with a smoothness in terms of standard 

deviation of between 50% and 25% less than the original signal (Tscherning, 1994). 

Other methods of trend removal have been tried in the geodetic literature, which vary 

depending upon the application; these are: 

• Equation (2) can be used for modelling a trend in LSC (Moritz, 1980); 

• Some authors (e.g., Tscherning, 1994) simply subtract the mean value as a trend from the 

data, which basically comes from geostatistics.  [However, Cressie (1993) suggests using 

the median instead, because by removing the mean, there is a danger of adding a bias]; 

• Goad et al. (1984) use a linear polynomial (tilted plane) to remove the trend from 

Bouguer gravity anomalies over the continental United States; 
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• Stopar et al. (2006) present a method employing the artificial neural network 

approximation to obtain a trend surface in LSC for geoid determination, although 

Tscherning (2006) disagrees with this; 

• In the case of coordinate transformations by LSC, the residual is regarded as a distortion 

that remains after the application of a conformal datum transformation (e.g., Ruffhead, 

1987; Collier et al., 1997, 1998; You and Hwang, 2006). 

Trend removal has some disadvantages, however: 

• It adds extra steps to the computation: first the trend is removed from the input data and 

after the interpolation or prediction it is added back to the result; 

• LSC is based on a zero-mean assumption in the input data (Moritz, 1980), but there is no 

guarantee that this condition is satisfied after trend removal; 

• Trend removal itself may introduce errors and biases into the input data (Cressie, 1993). 

 

Riesz representers 

Tscherning (1999) proposed a non-stationary geodetic covariance model based on replacing 

stationary degree variances of the anomalous potential T in Eq. (5) with non-stationary degree 

variances.  From Tscherning and Rapp (1974), the covariance function K(P,Q) of the 

anomalous potential T at points P and Q has been chosen as the basic covariance function 

𝐾𝐾�𝑇𝑇𝑃𝑃 ,𝑇𝑇𝑄𝑄�  that has the solid scalar spherical-harmonic expansion of 

𝐾𝐾�𝑇𝑇𝑃𝑃 ,𝑇𝑇𝑄𝑄� = ∑ 𝜎𝜎𝑙𝑙∞
𝑙𝑙=0 (𝑇𝑇,𝑇𝑇) � 𝑅𝑅2

𝑟𝑟𝑃𝑃𝑟𝑟𝑄𝑄
�
𝑙𝑙+1

𝑃𝑃𝑙𝑙(cos𝜓𝜓)                                       (5) 

where 𝜎𝜎𝑙𝑙  are the degree variances of the anomalous potential, 𝑃𝑃𝑙𝑙 are Legendre polynomials, R 

is the radius of the Bjerhammar (1964) sphere, and 𝑟𝑟𝑃𝑃 , 𝑟𝑟𝑄𝑄 are the geocentric radii to points 

P(𝜙𝜙𝑃𝑃 , 𝜆𝜆𝑃𝑃) and Q�𝜙𝜙𝑄𝑄 , 𝜆𝜆𝑄𝑄� , which are separated by the spherical distance 𝜓𝜓 (Heiskanen and 

Moritz, 1967): 
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𝜓𝜓 = cos−1 (cos𝜙𝜙𝑃𝑃 cos𝜙𝜙𝑄𝑄 cos(𝜆𝜆𝑃𝑃 − 𝜆𝜆𝑄𝑄) + sin𝜙𝜙𝑃𝑃 sin𝜙𝜙𝑄𝑄)                         (6) 

This approach uses heterogeneous sets of basis functions associated with point masses, where 

the point masses are buried at varying depths covering the whole Earth (cf. Barthelmes et al., 

1991; Vermeer, 1995).  

The finite set of functions is linearly independent because they may be regarded as a 

set of Riesz representers (Tscherning, 1984) of the evaluation functionals associated with the 

point masses.  Riesz representers exist for all linear functionals in separable Hilbert spaces.  

However, for the reproducing-kernel Hilbert space (RKHS), the inner product of the 

representer and an arbitrary function gives the value of the quantity represented by it.  A 

RKHS of functions, which are harmonic (i.e., satisfy Laplace’s equation) in the set outside a 

sphere with radius 𝑅𝑅0, having a reproducing kernel 𝐾𝐾0 (equal to the covariance function), is 

considered.  The degree variances of this kernel are denoted by 𝜎𝜎0𝑙𝑙 . 

The set of Riesz representers associated with the evaluation functionals related to 

distinct points 𝑃𝑃𝑙𝑙 , 𝑙𝑙 = 1, … , 𝐿𝐿, on a 2D surface surrounding the bounding sphere will be 

linearly independent.  These functions are used to define a new L-dimensional RKHS with 

kernel 𝑎𝑎𝑙𝑙>0 

𝐾𝐾𝑙𝑙(𝑃𝑃,𝑄𝑄) = ∑ 𝐾𝐾0(𝑃𝑃𝑙𝑙 ,𝑃𝑃)𝐿𝐿
𝑙𝑙=1 .𝐾𝐾0(𝑃𝑃𝑙𝑙 ,𝑄𝑄).𝑎𝑎𝑙𝑙                                                                     (7) 

with P, Q and 𝑃𝑃𝑙𝑙  being points in the set of harmonicity.  If all the points are located on a 

concentric Bjerhammar (1964) sphere with radius 𝑅𝑅1 > 𝑅𝑅0, and form a net covering the 

sphere, and 𝑎𝑎𝑙𝑙  are area elements (depending on L), then this kernel will converge towards an 

isotropic kernel with degree variances given by 

𝜎𝜎𝑙𝑙2 = (2𝑙𝑙 + 1)𝜎𝜎0𝑙𝑙
2 . (𝑅𝑅0

𝑅𝑅1
)2𝑙𝑙+1. (constant)                                                                 (8) 

If 𝐾𝐾𝑙𝑙(𝑃𝑃,𝑄𝑄) is required to represent an isotropic covariance function C(P,Q), 𝜎𝜎0𝑙𝑙  can 

be selected so that 𝜎𝜎𝑙𝑙  is equal to the empirical degree variances.  If the points are chosen at 

varying radial distances 𝑅𝑅1 > 𝑅𝑅0, then an anisotropic covariance function can be constructed.  
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This approach effectively introduces non-stationary covariance models on a global scale, but 

it first needs to find the optimum position of point masses to match the external gravity field, 

which introduces the complication of non-uniqueness (any set of point masses can be selected 

to generate the same external gravity field).  Principally because of this, Riesz representers 

have never been applied practically in geodesy. 

 

Wavelet approaches 

The space-localisation properties of wavelets (e.g., Daubechies, 1992) make them an efficient 

and useful tool for spectral studies of non-stationary signals, and have attracted three 

principal studies in geodesy: 

Kotsakis and Sideris (1999) show that the method of spatio-statistical (non-

probabilistic) collocation, expressed by the optimal estimation criterion and the translation-

invariance condition, leads to signal-approximation models similar to those encountered in 

multiresolution analysis (MRA) theory.  The classical MRA formalism (Mallat, 1989) lies at 

the very core of some of the approximation principles traditionally used in geodetic problems. 

Kotsakis (2000) shows that the use of a spatio-statistical minimum mean square error 

criterion, for linear estimation of deterministic signals, always gives a generalised MRA in 

the Hilbert space 𝐿𝐿2(𝑅𝑅), under some mild constraints on the covariance function and the 

power spectrum of the SRF under consideration.  Using the theory and approximation 

algorithms associated with statistical collocation, a constructive (frequency-domain-based) 

framework for building generalised MRA in 𝐿𝐿2(𝑅𝑅) was presented, without the need of the 

usual dyadic restriction that exists in classical wavelet theory.  Although Kotsakis’s (2000) 

work introduced a wavelet framework for non-stationary LSC, there is no practical 

computation algorithm, so it has not been used in geodesy. 
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In a different wavelet approach, Keller (1998, 2000, 2002) gives a numerical solution 

based on the Haar (1910) wavelet’s equivalence to the Wiener-Kolmogorov equations in 

stationary LSC (cf. Brovelli et al., 2003).  Keller’s wavelet approach solves the problem of 

filtering non-stationary errors from a stationary signal by LSC, i.e., when the variance of the 

data errors differs in different areas.  Filtering of stationary errors is classically solved by 

Wiener-Kolmogorov equations using the discrete Fourier transform (DFT).  For non-

stationary errors, the equations cannot be transformed into the frequency domain and solved 

by DFT.  As such, Keller’s approach has a somewhat limited application, with it only being 

applied to the filtering of non-stationary errors from stationary signal by LSC. 

 

NON-STATIONARY BLUE SOLUTIONS FROM GEOSTATISTICS 

Locally adaptive Kriging 

Non-stationary models of the spatial mean have been applied in geostatistics for many years 

(e.g., Wackernagel, 2003).  One of the most useful methods is the adaption of ordinary 

Kriging (OK) to account for non-stationarity of the mean, which was introduced by Deutsch 

and Journel (1998) as part of the GSLIB software. 

OK amounts to re-estimating, at each new location s, the mean m as used in the 

simple Kriging (SK) expression.  Since the only difference between SK and LSC is that SK 

assumes that the mean is known, while LSC is based on the zero-mean assumption of the 

observation vector (Moritz, 1980), the LSC Eq. (3) is recalled for SK: 

𝐲𝐲� = 𝐂𝐂yl𝐂𝐂ll
−𝟏𝟏𝐥𝐥                                (9) 

Because OK is most often applied within moving search neighbourhoods (Deutsch and 

Journel, 1998), i.e., using different datasets for different locations s, the implicit re-estimated 

mean depends on the location s.  Thus, the OK estimator of 

𝐲𝐲� = 𝐂𝐂yl𝐂𝐂𝐥𝐥l−𝟏𝟏𝐥𝐥 + �1 − ∑(𝐂𝐂yl𝐂𝐂ll
−𝟏𝟏�𝑚𝑚(𝐥𝐥)            (10) 



10 
 

is SK, where the constant mean value m is replaced by the location-dependent estimate. 

If m(l)=0, all formulations of LSC, SK and OK (Eqs. (3), (9) and (10)) degenerate to 

the same case.  Hence, OK as applied within moving data neighbourhoods is a partly non-

stationary algorithm, in the sense that it corresponds to a non-stationary SRF model with 

varying mean, but a stationary covariance.  This ability to locally rescale the SRF model to a 

different mean explains the robustness of the OK algorithm (Chilès and Delfiner, 1999). 

The idea of using neighbouring data is derived from Kriging.  Most Kriging 

algorithms consider a limited number of nearby conditioning data.  The first reason for this is 

to limit the CPU and computer memory requirements.  Furthermore, adopting a global search 

neighbourhood would require knowledge of the covariance for the largest separation distance 

between data points.  The covariance is typically poorly determined for distances beyond 

around one-half or one-third of the size of a study area.  Another reason for a limited search 

neighbourhood is to allow for local rescaling of the covariance parameters for each 

computation point (Deutsch and Journel, 1998). 

 

Segmentation 

Non-stationary covariance modelling in Kriging is usually accounted for by developing local 

variograms and performing a piecewise interpolation (e.g., Atkinson and Lloyd, 2007).  In 

other words, it involves dividing the region of interest into smaller segments within which the 

covariance function is assumed stationary.  [Segmentation is also used indirectly in geodesy: 

Tscherning et al. (1987) considered segmentation for merging regional geoid models, and 

Knudsen (2005) used segmentation for satellite radar altimeter data processing.] 

There are some problems with the segmentation approach, however.  In some 

subdivisions, the data may not be sufficiently dense to properly estimate the local covariance 

functions.  It is difficult to justify which covariance parameters should be chosen at the 
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boundary of two regions.  Segmentation methods also need to subsequently patch the 

covariances or results at the boundaries of the sub-regions, which will cause edge effects 

resulting from discontinuities in the statistical parameters at the borders of neighbouring areas 

(cf. Knudsen, 2005; Tscherning et al. 1987).  As such, segmentation is not always such an 

attractive option for use in non-stationary LSC.  

 

NON-STATIONARY BLUE SOLUTIONS FROM SPATIAL STATISTICS 

There is a huge body of literature in spatial statistics on methods for modelling non-

stationarity, which has never been pointed out in geodesy before.  A number of modelling 

and inference methods were introduced in the early 1990s, beginning with Sampson and 

Guttorp’s (1992) spatial deformation approach.  The majority of literature concerns methods 

that are semi-parametric: they are non-parametric with respect to the way that the spatial 

variation in covariance is described, but the local covariance structure is described by 

conventional parametric models.  Much of this literature discusses Bayesian modelling 

strategies that enable the uncertainty in the covariance structure to be reflected in the 

estimation and prediction. 

This section gives a review of the non-stationarity methods from spatial statistics, 

which should only be considered as a quick introduction to each, with the aim of opening up 

a new path in statistical geodesy.  The pros and cons of each method with regards to their 

application to LSC in geodesy are discussed, to finally justify why the kernel convolution 

method of Higdon et al. (1999) should be chosen for non-stationary modelling of covariances 

in geodetic LSC (cf. Darbeheshti and Featherstone, 2009, 2010). 
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Spatial deformation models 

Sampson and Guttorp (1992) introduced an approach to handling non-stationarity through 

spatial deformation.  Instead of the original non-stationary space G, they define the 

correlation function by reference to a latent (transformed) space D, where stationarity holds. 

Suppose that temporally independent samples Z𝑖𝑖𝑖𝑖 = Z(𝐱𝐱𝑖𝑖 , 𝑖𝑖) are available at N 

sites, 𝐱𝐱𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 , typically in ℝ2 and at T points in time t = 1, … ,T.  𝐱𝐱 = [𝑋𝑋1   𝑋𝑋2] 

represents the matrix of locations.  The underlying spatio-temporal process is written as 

Z(𝐱𝐱, t) = 𝜇𝜇(𝐱𝐱, 𝑖𝑖) + ν(𝐱𝐱)
1
2𝐸𝐸𝑖𝑖(𝐱𝐱) + 𝜀𝜀(𝐱𝐱, 𝑖𝑖),                                                    (11) 

where 𝜇𝜇(𝐱𝐱, 𝑖𝑖) is the mean field, ν(𝐱𝐱) is a smooth function representing spatial variance, and 

𝐸𝐸𝑖𝑖(𝐱𝐱) is a zero-mean, variance-one, second-order continuous Gaussian spatial process, 

i.e. C(𝐸𝐸𝑖𝑖(𝐱𝐱),𝐸𝐸𝑖𝑖(𝐲𝐲)) → 1 as 𝐱𝐱 → 𝐲𝐲.  𝜀𝜀(𝐱𝐱, 𝑖𝑖) represents measurement error and/or very short-

scale spatial structure (in comparison with the spatio-temporal process being modelled), 

which is assumed to be both Gaussian and independent of 𝐸𝐸𝑖𝑖 .  

The correlation structure of the spatial process is expressed as a function of Euclidean 

distances between site locations after a bijective (“one-to-one” and “onto”) transformation of 

the geodetic coordinate system, 

𝑅𝑅(E𝑖𝑖(𝐱𝐱), E𝑖𝑖(𝐲𝐲)) = 𝑅𝑅𝜃𝜃(‖𝑓𝑓(𝐱𝐱)− 𝑓𝑓(𝐲𝐲)‖),       (12) 

where 𝑓𝑓(. ) is the one-to-one transformation that expresses the non-stationarity, and 𝑅𝑅𝜃𝜃  

belongs to a parametric family with unknown parameters 𝜃𝜃. 

For mappings from one ℝ2 onto another ℝ2, the geodetic coordinate system has been 

called the “G-plane” and the space representing the images of these coordinates under the 

transformation the “D-plane”.  Perrin and Meiring (1999) prove that this spatial deformation 

model is identifiable for mappings from one ℝ𝑘𝑘  to another ℝ𝑘𝑘  assuming only differentiability 

of the isotropic correlation function 𝑅𝑅𝜃𝜃 . 
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Thus, from Eq. (12) there are two unknown functions to estimate: f and 𝑅𝑅𝜃𝜃 .  The latter 

is a parametric choice from a standard class of covariance functions.  To determine the 

former is a challenging fitting problem of choosing a class of transformations and to obtain 

the best member from this class.  Sampson and Guttorp (1992) employ thin plate splines and 

optimise a version of a 2D non-metric multi-dimensional scaling criterion, providing an 

algorithmic solution.  However, this solution is generally not well behaved, in the sense that f 

will be bijective, often folding over itself.  Smith (1996) embedded this approach within a 

likelihood setting, but worked instead with radial basis functions. 

Damian et al. (2001) formulated a Bayesian approach to implement Eq. (11).  They 

still work with thin plate splines, but place priors over an identifiable parameterisation, which 

depends upon the number of points, n, being transformed.  They elected not to model f 

directly, but instead model the transformed locations.  The set of n-transformed locations are 

modelled as n realisations from a bivariate Gaussian spatial process and a prior is placed on 

the process parameters.  That is, f (x) arises as a random realisation of a bivariate process at x 

rather than the value at x of a random bivariate transformation. 

Figure 2 presents an illustration of the G-plane and D-plane for rainfall observation 

sites in southern France, as presented by Damian et al. (2001). 

The limitations of these spatial deformation approaches are: 

• The implementation requires independent replications of the process in order to obtain an 

estimated sample covariance matrix.  In practice, such replications of a spatial process 

are rarely obtained.  If a repeated measurement is obtained at a particular location, it is 

typically collected over time (e.g., satellite remote sensing); 

• Spatial deformation techniques, like trend removal, allow for a reduction to a stationary 

covariance structure; i.e., they are not actually methods to specifically model non-

stationarity. 
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Figure 2: An illustration of (left) the G-plane (original surface) and (right) D-plane 

(transformed surface) for the spatial deformation method (from Damian et al. (2001)) 

 

Kernel smoothing of empirical covariance matrices 

Perhaps the simplest approach to deal with non-stationarity begins either from the perspective 

of local stationary models, which are empirically smoothed over space, or from the 

perspective of the smoothing and/or interpolation of empirical covariances estimated among a 

finite number of observation sites.  Fuentes (2001) and Nott and Dunsmuir (2002) propose 

approaches for representing non-stationarity in terms of spatially weighted combinations of 

stationary covariance functions to represent the local covariance structure in different regions. 

There is a distinct difference between kernel smoothing and the segmentation method 

(described earlier under the geostatistics section).  In kernel smoothing, the covariance 

function is constructed based on segmented covariances, and eventually one single LSC or 

Kriging operation is performed for the whole region. 

Fuentes’s approach: This involves dividing the spatial domain D into k subregions 𝑆𝑆𝑖𝑖 , 

each with a sufficient number of points to estimate a stationary covariance function 𝐾𝐾𝜃𝜃𝑖𝑖 .  
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Fuentes (2001) represents the spatial process Z(x) (defined over the entire region) as a 

weighted average of orthogonal local stationary processes 𝑍𝑍𝑖𝑖(𝐱𝐱): 

𝑍𝑍(𝐱𝐱) = ∑ 𝜔𝜔𝑖𝑖(𝐱𝐱)𝑍𝑍𝑖𝑖𝑘𝑘
𝑖𝑖=1 (𝐱𝐱)                                                                                              (13) 

where 𝜔𝜔𝑖𝑖(𝐱𝐱) is the weight function, such as the inverse-squared distance between x and the 

centre of subregion 𝑆𝑆𝑖𝑖 , and 𝑍𝑍𝑖𝑖(𝐱𝐱) denotes a spatial process with the covariance function 𝐾𝐾𝜃𝜃𝑖𝑖 .  

The non-stationary spatial covariance structure is given by 

𝐶𝐶�𝑍𝑍(𝐱𝐱),𝑍𝑍(𝐲𝐲)� = ∑ 𝜔𝜔𝑖𝑖
𝑘𝑘
𝑖𝑖=1 (𝐱𝐱)𝜔𝜔𝑖𝑖(𝐲𝐲)𝐶𝐶�𝑍𝑍𝑖𝑖(𝐱𝐱),𝑍𝑍𝑖𝑖(𝐲𝐲)�  

                          = ∑ 𝜔𝜔𝑖𝑖
𝑘𝑘
𝑖𝑖=1 (𝐱𝐱)𝜔𝜔𝑖𝑖(𝐲𝐲)𝐾𝐾𝜃𝜃𝑖𝑖(𝐱𝐱 − 𝐲𝐲)     (14) 

Fuentes (2001) chooses the number of subgrids, k, using a BIC (Bayes Information 

Criterion) as a weight function.  The stationary processes 𝑍𝑍𝑖𝑖(𝐱𝐱) are actually local only in the 

sense that their corresponding covariance functions, 𝐾𝐾𝜃𝜃𝑖𝑖(𝐱𝐱 − 𝐲𝐲), are estimated locally, and 

they are orthogonal by assumption only, so as to represent the overall non-stationary simply 

as a weighted sum of covariances.  Fuentes (2001) estimates the parameters within the 

context of Bayesian estimation with predictive distributions accounting for uncertainty in the 

parameter estimates.  

Fuentes and Smith (2001) extend the finite decomposition of Z(x) of Fuentes (2001) 

to a continuous convolution of local stationary processes.  It is an alternative kernel-based 

approach in which the process is taken to be the convolution of a fixed kernel over 

independent stationary processes, 𝑍𝑍𝜃𝜃(𝑢𝑢)(. ) 

𝑍𝑍(𝐱𝐱) = ∫𝐾𝐾(𝐱𝐱 − 𝑢𝑢)𝑍𝑍𝜃𝜃(𝑢𝑢)(𝐱𝐱)𝑑𝑑𝑢𝑢.                                                   (15) 

The resulting covariance is expressed as 

C(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗 )=∫𝐾𝐾( 𝐱𝐱𝑖𝑖 − 𝑢𝑢)𝐾𝐾�𝐱𝐱𝑗𝑗 − 𝑢𝑢�C𝜃𝜃(𝑢𝑢)�𝐱𝐱𝑖𝑖 − 𝐱𝐱𝑗𝑗 �𝑑𝑑𝑢𝑢.              (16) 

For each u, C𝜃𝜃(𝑢𝑢)(. , . ) is a covariance function with parameters 𝜃𝜃(𝑢𝑢), where 𝜃𝜃(𝑢𝑢) is a 

multivariate spatial process that induces non-stationarity in Z(.).  Estimation and prediction 
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will require that the SRF of parameter vectors 𝜃𝜃(𝑢𝑢),  indexing the stationary Gaussian 

processes, be constrained to vary smoothly.  

This method has the advantage of avoiding the need to parameterise smoothly varying 

positive-definite matrices, as required in the Higdon et al. (1999) Gaussian kernel approach 

(described later).  One drawback is the lack of a general closed-form for (𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗 ) and the need 

to compute covariances by Monte Carlo integration.  The latter is of particular concern 

because of the numerical sensitivity of covariance matrices, where the inverse of the 

covariance matrices used in LSC could become ill-conditioned or even singular.  In addition 

to Bayesian methods, Fuentes and Smith (2001) and Fuentes (2001) describe spectral 

methods for fitting models when the data are (nearly) on a grid; these may be much faster 

than likelihood methods (Chilès and Delfiner, 1999). 

Nott and Dunsmuir’s approach: This has the stated aim of reproducing an empirical 

covariance matrix at a set of observation sites and describing the conditional behaviour given 

observation site values with a collection of stationary processes.  The same notation as above 

is used here, though for Nott and Dunsmuir (2002), i indexes the observation sites rather than 

a smaller number of subregions, and 𝐾𝐾𝜃𝜃𝑖𝑖  represents local residual covariance structure after 

conditioning from values at the observation sites.  These are derived from locally fitted 

stationary models.  

In their general case, Nott and Dunsmuir’s (2002) representation of the spatial 

covariance structure can be written as 

C�𝑍𝑍(𝐱𝐱),𝑍𝑍(𝐲𝐲)� = ∑ (𝐱𝐱,𝐲𝐲)𝑖𝑖=0 + ∑ 𝜔𝜔𝑖𝑖
𝑘𝑘
𝑖𝑖=1 (𝐱𝐱)𝜔𝜔𝑖𝑖(𝐲𝐲)𝐾𝐾𝜃𝜃𝑖𝑖(𝐱𝐱 − 𝐲𝐲)            (17) 

where ∑ (𝐱𝐱,𝐲𝐲)𝑖𝑖=0  is a function of the empirical covariance matrix at the observation sites, 

C=[𝑐𝑐𝑖𝑖𝑗𝑗 ], and the local stationary models computed so that C(Z(𝐱𝐱𝒊𝒊),Z(𝐲𝐲𝒊𝒊) )= cij .  This exact 

interpolation is relaxed by replacing the empirical covariance matrix C by the empirical 

Bayesian shrinkage estimator. 
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While the models introduced by Fuentes (2001) and Nott and Dunsmuir (2002) look 

similar (cf. Eqs. (14) and (17)), the details are substantially different.  Nott and Dunsmuir 

(2002) use hypothetical conditional processes, and assume an empirical covariance matrix 

computed from spatio-temporal data.  Fuentes (2001) uses unconditional processes and 

applies them to purely spatial data.  It involves Bayesian analysis without having to resort to 

computationally intensive Markov Chain Monte Carlo (MCMC) methods.   

While the kernel smoothing method is convenient for accommodating non-

stationarity, certain key elements of the approach (such as the number of locally stationary 

component models, or the size of the neighbourhoods for fitting the local models, and the 

nature of the weight or kernel) must be determined by somewhat ad hoc means. 

 

Basis-function models 

Another of the strategies for modelling non-stationarity in spatial statistics is based on 

decompositions of spatial processes in terms of empirical orthogonal functions (EOFs) 

(Sampson et al., 2001).  The original methodology received attention in Nychka et al. (2002) 

for using a wavelet basis for decomposition of the empirical covariance matrix. 

While most attention in the spatial statistics literature has focused on smoothing fields 

based on a single set of spatial observations, in many cases, replicates of the field are 

available, e.g., with environmental data collected over time.  This sort of data is becoming 

more common with the growing availability of remotely sensed data.  In this situation, one 

has multiple replicates for estimating the spatial covariance structure, albeit with certain 

restrictions, such as modelling only non-negative covariances. 

Briefly, using the same spatio-temporal notation as above, the 𝑛𝑛 × 𝑛𝑛 empirical 

covariance matrix may be written with a spectral decomposition as 

C = �́�𝐹𝛬𝛬𝐹𝐹 = ∑ 𝜆𝜆𝑘𝑘𝑛𝑛𝑇𝑇
𝑘𝑘=1 𝐹𝐹𝑘𝑘 F́𝑘𝑘                                                     (18) 
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where  𝑛𝑛𝑇𝑇 =min(n,T), and �́�𝐹 and 𝐹𝐹 are eigenfunctions.  The extension of this finite 

decomposition to the continuous spatial case represents the covariance function as 

C(𝐱𝐱,𝐲𝐲) = �́�𝐹𝛬𝛬𝐹𝐹 = ∑ 𝜆𝜆𝑘𝑘𝑛𝑛𝑇𝑇
𝑘𝑘=1 𝐹𝐹𝑘𝑘(𝐱𝐱)F́𝑘𝑘(𝐲𝐲)                               (19) 

where the eigenfunctions 𝐹𝐹𝑘𝑘(𝐱𝐱) and F́𝑘𝑘(𝐲𝐲) represent solutions to the Fredholm integral 

equation and correspond to the Karhunen-Loève (KL) decomposition (originally used in 

pattern recognition (Fukunaga, 1990)) of the mean-centred field as 

𝑍𝑍(𝐱𝐱, 𝑖𝑖) = ∑ 𝐴𝐴𝑘𝑘∞
𝑘𝑘=1 (𝑖𝑖)𝐹𝐹𝑘𝑘(𝐱𝐱)                                            (20) 

The modelling and computational task here is in a numerical approximation of the Fredholm 

integral equation, or equivalently, choosing a set of generating functions 𝑒𝑒1(𝐱𝐱), … , 𝑒𝑒𝑝𝑝(𝐱𝐱)  that 

are the basis for an extension of the finite eigenvectors 𝐹𝐹𝑘𝑘  to eigenfunctions 𝐹𝐹𝑘𝑘(𝐱𝐱). 

In Nychka and Saltzman (1998) and Holland et al. (1999), the covariance function is 

represented as the sum of a conventional stationary model and a finite decomposition in terms 

of EOFs.  This corresponds to a decomposition of the spatial process as a sum of stationary 

processes and a linear combination of M additional basis functions with random coefficients, 

the latter representing the deviation of the SRF structure from stationarity. 

Nychka et al. (2002) propose a method for smoothing the empirical covariance 

structure of replicated data by thresholding the decomposition of the empirical covariance 

matrix in a wavelet basis.  This approach has the advantages of allowing for very general 

types of covariance structure and of being very fast by virtue of the use of the discrete 

wavelet transform, with a computational focus on large problems with observations 

discretised to the nodes of a (large) N×M grid.  They use a W-wavelet basis with parent 

forms that are piecewise quadratic splines, which are neither orthogonal nor compactly 

supported.  These were chosen because they can approximate the shape of common 

covariance models such as the exponential and Gaussian, depending on the sequence of 

variances of the basis functions in the decomposition. 
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A first drawback to the basis-function approach is that it is not clear how much or 

what type of thresholding to apply, since there is no explicit model for the data.  Given the 

difficulties involved in modelling high-dimensional covariance structures, it is also not clear 

how well the resulting smoothed covariance approximates the true covariance in a 

multivariate sense, although Nychka et al. (2002) have shown - in simulations - that 

individual elements of the smoothed covariance matrix can closely approximate the elements 

of stationary covariance matrices. 

 

Kernel convolution methods 

Higdon et al. (1999) define a non-stationary covariance function based on the convolution of 

kernels centred on the sites of interest.  They propose a non-stationary spatial covariance 

function, defined by 

C�𝐬𝐬𝑖𝑖 , 𝐬𝐬𝑗𝑗 � = ∫ 𝐾𝐾s𝑖𝑖(𝑢𝑢)ℝ2 𝐾𝐾𝐬𝐬𝑗𝑗 (𝑢𝑢)𝑑𝑑𝑢𝑢,                                      (21) 

where 𝐬𝐬𝑖𝑖 , 𝐬𝐬𝑗𝑗 , and u are locations in ℝ2, and 𝐾𝐾s  is a kernel function (not necessarily non-

negative) centred at location s, with a shape depending on s.  This covariance function is 

positive-definite for spatially varying kernels of any functional form.  

Higdon et al. (1999) justify this construction as the covariance function of a process, 

Z(.), constructed by convolving a white noise process,  𝜔𝜔 (.), with a spatially varying kernel, 

𝐾𝐾s : 

𝑍𝑍(𝐬𝐬) = ∫ 𝐾𝐾s (𝑢𝑢)ℝ2 𝜔𝜔(𝑢𝑢)du                                                (22) 

The evolution of the kernels in space produces a non-stationary covariance, and the kernels 

are usually parameterised so that they vary smoothly in space, under the assumption that 

nearby locations will share a similar local covariance structure.   
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Higdon et al. (1999) use Gaussian kernels, which give a closed form for  C�𝐬𝐬𝑖𝑖 , 𝐬𝐬𝑗𝑗 �, the 

convolution in Eq. (21).  They use a bivariate Gaussian density function with a 2×2 

covariance matrix ∑ , which results in processes with a non-stationary Gaussian correlation 

function with the principal axes of ∑ determining the directions of the anisotropic structure. 

Higdon et al. (1999) demonstrate the particular case where the 𝐾𝐾s (. ) are bivariate 

Gaussian distributions characterised by the shapes of ellipses underlying the 2×2 covariance 

matrices ∑.  The kernels are constrained to evolve smoothly in space by estimating the local 

ellipses under a Bayesian paradigm that specifies a prior distribution on the parameters of the 

ellipse (the relative location of the foci) as a Gaussian random field with a smooth (in fact, 

Gaussian) covariance function.  The form of the kernel determines the shape of the local 

spatial correlation function, with a Gaussian kernel corresponding to a Gaussian covariance 

function. 

Figure 3, from the presentation in Swall (1999), illustrates the nature of a fitted model 

for analysis of the spatial distribution of Dioxin concentrations in their Piazza Road study 

area in Missouri, USA.  In this purely spatial example, Dioxin was transported through a 

small stream channel, which follows a curving path generally along the path of greatest 

concentration from top to bottom, as indicated in Figure 3.   

The solid ellipses in Figure 3 indicate the shape of the Gaussian kernels at the 

sampling sites, as given by the posterior distribution of the Bayesian analysis; the major axis 

of the ellipse indicates the direction of greater spatial correlation, which roughly parallels the 

direction of the stream channel.  The dotted ellipses represent the spatially varying estimates 

of these local kernels on a regular grid, in accordance with the Gaussian SRF prior for their 

parameters. 
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Figure 3: Estimated kernels of the process-convolution model for the Piazza Road data. Solid 

ellipses represent the kernels at the sampling sites and dotted ellipses the extension to a 

regular grid according to the random field prior model.  The underlying image shows the 

corresponding posterior mean estimates for the Dioxin concentrations (from Swall (1999)). 

 

Two key advantages of the non-stationary covariance model based on Higdon et al. 

(1999) is that it fully defines the covariance at unobserved as well as observed locations, and 

does not require a regular grid of observations.  This stands in contrast to the approach of 

Nychka et al. (2002), although they briefly suggested an iterative approach to deal with 

irregularly spaced observations.  This makes the Higdon et al. (1999) approach particularly 
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applicable to geodetic LSC, which is used for estimation and prediction at observed and 

unobserved locations.  

 

NUMERICAL SIMULATION OF NON-STATIONARY  

VERSUS STATIONARY COVARIANCES 

In this simulated case-study example, a small regular grid is provided to show how stationary 

and non-stationary covariances are computed in different ways and how they affect the 

predictions by LSC differently. 

Suppose that we want to estimate a quantity at point p on a regular 20 m × 20 m grid 

using the first two rings of neighbouring data (a ring means the nearest neighbouring points 

in a square grid).  To build the vector of observations, a set of 25 random numbers from a 

normal distribution with µ=0 and 𝜎𝜎=1 were selected.  Figure 4 shows the data set. 

 

 

Figure 4: (left) Stationary configuration of a sample data set. (right) Gaussian stationary 

covariances between point p and stationary data with d=245 m 
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For computing covariances between point p and each neighbouring point, we only 

need to know the two parameters of variance C0  and correlation length d.  In LSC practice, 

these two parameters are estimated by fitting empirical covariances to covariance models, but 

because of the randomness and limited extent of data here, this usual procedure is not 

possible.  Instead, C0=𝜎𝜎2=1 is fixed and the value of d is changed, until the minimum 

absolute error of  

𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑢𝑢𝑖𝑖𝑒𝑒 = 𝑃𝑃𝑟𝑟𝑒𝑒𝑎𝑎𝑙𝑙 − 𝑃𝑃𝑝𝑝𝑟𝑟𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑎𝑎𝑛𝑛                          (23) 

for point p is reached at d=245 m, or in other words lim𝑑𝑑→245 (𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑢𝑢𝑖𝑖𝑒𝑒 ) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚. 

The correlation length is rather large in this case, because a random set of data was 

used.  Figure 5 shows stationary covariances for point p based on a Gaussian stationary 

covariance model.   

   𝐶𝐶𝐺𝐺𝑎𝑎𝑢𝑢𝑎𝑎 (𝑟𝑟) = 𝐶𝐶0𝑒𝑒𝑒𝑒𝑝𝑝 �−
𝑟𝑟2

𝑑𝑑2�                                 (24) 

Note that stationary covariances change with the distance of the points from p (a result of the 

symmetric characteristic of a stationary covariance function); points with equal distances 

from p have the same covariances, and further points from p have smaller covariances. 

To simulate a non-stationary data configuration, two sets of random numbers from a 

normal distribution, 16 points with µ=0 and 𝜎𝜎=1 (dots in Figure 5) and nine points (circles in 

Figure 5) with µ=0 and 𝜎𝜎 =2 were selected.  Although the new grid is non-stationary (Figure 

5), standard stationary covariance modelling was first applied to estimate covariances 

between point p and the rest of the grid.  For computing stationary covariances, the same 

logic of the previous stationary grid applies.  The Gaussian stationary covariances for point p 

with variance of C0=𝜎𝜎2=1 and correlation length of d = 210 m is seen in Figure 5. 

For computing non-stationary covariances, according to Higdon et al. (1999), the 

parameters of ellipses (α, a and b) should first be defined at every point.  There is no sign of 

anisotropy in this data set, so α=0 was set for all ellipses.  Considering two groups of 
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statistical parameters for this grid, two parameter groups should be defined, each attributed to 

points belonging to the two separate regions. 

 

 

 

Figure 5: (top) Non-stationary configuration of a sample data set. (bottom left) Stationary 

covariances between point p and non-stationary data. (bottom right) Non-stationary 

covariances between point p and non-stationary data, elliptical kernels attributed to each 

location are used to construct the non-stationary covariances 

 

Here, like the stationary case, it is not possible to estimate non-stationary parameters 

from empirical covariances, so again the minimum absolute error for point p is used: 
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lim𝑎𝑎∙→210.01𝑚𝑚
𝑎𝑎∙→210.01𝑚𝑚
𝑎𝑎∘→220.39𝑚𝑚
𝑎𝑎∘→220.01𝑚𝑚

(𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑢𝑢𝑖𝑖𝑒𝑒 ) = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑢𝑢𝑚𝑚             (25) 

In Figure 5, ellipses for each point are based on the parameters in Eq. (24).  Accordingly, 

Gaussian non-stationary covariances of point p with the rest of the grid are printed in the 

centre of each ellipse. 

𝐶𝐶𝐺𝐺𝑎𝑎𝑢𝑢𝑎𝑎𝑁𝑁𝑆𝑆 �𝒔𝒔𝑖𝑖 , 𝒔𝒔𝑗𝑗 � = 𝐶𝐶0|Σi|
1
4�Σj�

1
4 �Σi +Σj

2
�
−1

2 exp�−𝑄𝑄𝑖𝑖𝑗𝑗 �                       (26) 

where  

𝑄𝑄𝑖𝑖𝑗𝑗 = �𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑗𝑗 �
𝑇𝑇
�Σi +Σj

2
�
−1
�𝒔𝒔𝑖𝑖 − 𝒔𝒔𝑗𝑗 �                                                             (27) 

Σ
1
2 = τ�𝑎𝑎      0

0    𝑎𝑎 ��
cos α      sin α

  −sin α   cos α�                                                                               (28) 

For the stationary and non-stationary spatial data configurations, stationary 

covariances are decreased by a ratio of distance, which is characterised by the correlation 

length (Figures 4 and 5).  For non-stationary covariance models, however, the covariances 

also depend on the location.  Figure 5 shows that non-stationary covariances between point p 

and points in the bottom-right corner are higher than rest of the grid, reflecting that the non-

stationary covariance function accounts for non-stationary data.  Table 1 shows the non-

stationary covariance model has improved the prediction of point p in the non-stationary 

configuration; 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑢𝑢𝑖𝑖𝑒𝑒  decreased from 1.4153 to 0.0331. 
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Table 1: Results of the predictions for point p based  

on stationary and non-stationary covariance models 

Data property 
 

Covariance model Parameter (m) 𝑒𝑒𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑢𝑢𝑖𝑖𝑒𝑒  

Stationary Stationary d=245 0.1549 
Non-stationary Stationary d=210 1.4153 
Non-stationary Non-stationary 𝑎𝑎∙=210.01 

𝑎𝑎∙=210.01 
𝑎𝑎∘=220.39 
𝑎𝑎∘=220.01 

0.0331 

 

Standard geodetic LSC, regardless of the stationarity or non-stationarity of the data, 

uses stationary covariances for the prediction.  This simulation (Table 1) has showed that 

using stationary covariances in LSC to predict values from non-stationary spatial data causes 

underestimation or overestimation in the predictions.  On the other hand, using non-stationary 

covariances based on the Higdon et al. (1999) method in LSC improves the prediction when 

the data are non-stationary.   

 

DISCUSSION AND SUMMARY 

The primary goal of this review paper was to document the appropriate selection of non-

stationary methods from the disciplines of geodesy, geostatistics and spatial statistics that can 

be applied to geodetic LSC.  This is summarised in Table 2.  This forms background for the 

non-stationary LSC application described in Darbeheshti and Featherstone (2009, 2010).  

Of the methods reviewed from the very large body of literature, spatial deformation 

needs replicated data, which is not always the case in geodesy, and is better suited for spatial 

time-series analysis.  Kernel smoothing models use Bayesian analysis and numerical 

approaches like Markov Chain Monte Carlo methods, which are very time consuming.  Basis 

function models need gridded data, which are rarely available in geodesy, or require the prior 
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interpolation of irregularly spaced data.  In such a case, non-stationary models would be 

needed in LSC to grid such datasets (cf. Darbeheshti and Featherstone, 2009).   

On the other hand, the kernel convolution method of Higdon et al. (1999) has been 

tested in Kriging for topographic data by Paciorek and Schervish (2006), which is very 

similar to the LSC application to geodetic data.  Therefore, this method does not have the 

disadvantages of other approaches from the geodetic perspective and the adaption of this 

method according to the similarity of LSC to Kriging is more likely (Dermanis, 1984).  This 

is one reason why it was selected by Darbeheshti and Featherstone (2009, 2010).  

 

Table 2: Summary and description of non- stationary methods 

Discipline Non-stationary method Description 
 
 
 
 

Geodesy 

Trend removal 
 

Adds extra steps to the computation and 
enforces biases to the input data 

Riesz representers 
 

Based on iterative approach to find the 
optimum position of point masses to match 
the gravity field 

Wavelet approach 
 

Limited application to the filtering of non-
stationary errors from stationary signal 

 
 
 
 

Geostatistics 

Locally adaptive Kriging 
 

A solution for non-stationary mean 

Segmentation 
 

Results in edge effects from discontinuities 
in the statistical parameters at the borders 
of neighbouring areas 

 
 
 
 

Spatial statistics 

Spatial deformation 
 

Requires independent replications of the 
process 

Kernel smoothing 
 

No closed-form expression for covariance 
models and needs gridded data 

Basis-function models 
 

Not clear how much or what type of 
thresholding to choose 

Kernel convolution 
 

Chosen by Darbeheshti and Featherstone 
(2009, 2010) to model non-stationary 
covariance modelling in geodesy 
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Through this review, spatial statistics - specifically recent research in environmental 

applications - offers a variety of non-stationary covariance models that appear to be new to 

the discipline of geodesy.  This has indicated that the kernel convolution of Higdon et al. 

(1999), among other methods in spatial statistics, has advantages so that it can be adapted for 

LSC in geodesy.  As such, we have applied them in the following two case-study examples.  

Firstly, non-stationary 2D LSC was used to interpolate gravity anomalies over the 

Darling Fault in Western Australia by Darbeheshti and Featherstone (2009), where this 

particular gravity field functional is highly anisotropic and non-stationary.  From internal and 

external error estimates, the non-stationary covariance models in LSC were consistently 

better than stationary LSC for interpolation; they also gave more realistic error estimates in 

areas where the SRF varies rapidly.  

Secondly, non-stationary covariance functions were used by Darbeheshti and 

Featherstone (2010) to create an iterative optimisation loop to tune a gravimetric quasigeoid 

model to a geometric quasigeoid at GPS-levelling points for the Perth region of Western 

Australia to within a user-prescribed level of tolerance.  

 

LIST OF MAJOR SYMBOLS 

a major axis of an ellipsoid  

b minor axis of an ellipsoid  

𝛼𝛼 geodetic azimuth  

C covariance  

𝐶𝐶0 variance  

d correlation length  

K convolution kernel  

𝜆𝜆 geodetic longitude 

m arithmetic mean   

µ expected value  

𝜙𝜙 geodetic latitude 

Q Mahalanobis distance  

R correlation   

r Euclidean distance  
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𝜓𝜓 spherical distance 

s spatial position  

T anomalous potential of the Earth  

Σ spatial kernel  
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