17,315 research outputs found

    Mapping constrained optimization problems to quantum annealing with application to fault diagnosis

    Get PDF
    Current quantum annealing (QA) hardware suffers from practical limitations such as finite temperature, sparse connectivity, small qubit numbers, and control error. We propose new algorithms for mapping boolean constraint satisfaction problems (CSPs) onto QA hardware mitigating these limitations. In particular we develop a new embedding algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set of interactions, and propose two new decomposition algorithms for solving problems too large to map directly into hardware. The mapping technique is locally-structured, as hardware compatible Ising models are generated for each problem constraint, and variables appearing in different constraints are chained together using ferromagnetic couplings. In contrast, global embedding techniques generate a hardware independent Ising model for all the constraints, and then use a minor-embedding algorithm to generate a hardware compatible Ising model. We give an example of a class of CSPs for which the scaling performance of D-Wave's QA hardware using the local mapping technique is significantly better than global embedding. We validate the approach by applying D-Wave's hardware to circuit-based fault-diagnosis. For circuits that embed directly, we find that the hardware is typically able to find all solutions from a min-fault diagnosis set of size N using 1000N samples, using an annealing rate that is 25 times faster than a leading SAT-based sampling method. Further, we apply decomposition algorithms to find min-cardinality faults for circuits that are up to 5 times larger than can be solved directly on current hardware.Comment: 22 pages, 4 figure

    Relational Width of First-Order Expansions of Homogeneous Graphs with Bounded Strict Width

    Get PDF
    Solving the algebraic dichotomy conjecture for constraint satisfaction problems over structures first-order definable in countably infinite finitely bounded homogeneous structures requires understanding the applicability of local-consistency methods in this setting. We study the amount of consistency (measured by relational width) needed to solve CSP(?) for first-order expansions ? of countably infinite homogeneous graphs ? := (A; E), which happen all to be finitely bounded. We study our problem for structures ? that additionally have bounded strict width, i.e., for which establishing local consistency of an instance of CSP(?) not only decides if there is a solution but also ensures that every solution may be obtained from a locally consistent instance by greedily assigning values to variables, without backtracking. Our main result is that the structures ? under consideration have relational width exactly (2, ?_?) where ?_? is the maximal size of a forbidden subgraph of ?, but not smaller than 3. It beats the upper bound: (2 m, 3 m) where m = max(arity(?)+1, ?, 3) and arity(?) is the largest arity of a relation in ?, which follows from a sufficient condition implying bounded relational width given in [Manuel Bodirsky and Antoine Mottet, 2018]. Since ?_? may be arbitrarily large, our result contrasts the collapse of the relational bounded width hierarchy for finite structures ?, whose relational width, if finite, is always at most (2,3)

    Constraint consistency techniques for continuous domains

    Get PDF
    Constraint Satisfaction Problems (CSPs) are ubiquitous in computer science. Many problems, ranging from resource allocation and scheduling to fault diagnosis and design, involve constraint satisfaction as an essential component. A CSP is given by a set of variables and constraints on small subsets of these variables. It is solved by finding assignments of values to the variables such that all constraints are satisfied. In its most general form, a CSP is combinatorial and complex. In this thesis, we consider constraint satisfaction problems with variables in continuous, numerical domains. Contrary to most existing techniques, which focus on computing a single optimal solution, we address the problem of computing a compact representation of the space of all solutions that satisfy the constraints. This has the advantage that no optimization criterion has to be formulated beforehand, and that the space of possibilities can be explored systematically. In certain applications, such as diagnosis and design, these advantages are crucial. In consistency techniques, the solution space is represented by labels assigned to individual variables or combinations of variables. When the labeling is globally consistent, each label contains only those values or combinations of values which appear in at least one solution. This kind of labeling is a compact, sound and complete representation of the solution space, and can be combined with other reasoning methods. In practice, computing a globally consistent labeling is too complex. This is usually tackled in two ways. One way is to enforce consistencies locally, using propagation algorithms. This prunes the search space and hence reduces the subsequent search effort. The other way is to identify simplifying properties which guarantee that global consistency can be enforced tractably using local propagation algorithms. When constraints are represented by mathematical expressions, implementing local consistency algorithms is difficult because it requires tools for solving arbitrary systems of equations. In this thesis, we propose to approximate feasible solution regions by 2k-trees, thus providing a means of combining constraints logically rather than numerically. This representation, commonly used in computer vision and image processing, avoids using complex mathematical tools. We propose simple and stable algorithms for computing labels of arbitrary degrees of consistency using this representation. For binary constraints, it is known that simplifying convexity properties reduces the complexity of solving a CSP. These properties guarantee that local degrees of consistency are sufficient to ensure global consistency. We show how, in continuous domains, these results can be generalized to ternary and in fact arbitrary n-ary constraints. This leads to polynomial-time algorithms for computing globally consistent labels for a large class of constraint satisfaction problems with continuous variables. We describe and justify our representation of constraints and our consistency algorithms. We also give a complete analysis of the theoretical results we present. Finally, the developed techniques are illustrated using practical examples

    Robust Processing of Natural Language

    Full text link
    Previous approaches to robustness in natural language processing usually treat deviant input by relaxing grammatical constraints whenever a successful analysis cannot be provided by ``normal'' means. This schema implies, that error detection always comes prior to error handling, a behaviour which hardly can compete with its human model, where many erroneous situations are treated without even noticing them. The paper analyses the necessary preconditions for achieving a higher degree of robustness in natural language processing and suggests a quite different approach based on a procedure for structural disambiguation. It not only offers the possibility to cope with robustness issues in a more natural way but eventually might be suited to accommodate quite different aspects of robust behaviour within a single framework.Comment: 16 pages, LaTeX, uses pstricks.sty, pstricks.tex, pstricks.pro, pst-node.sty, pst-node.tex, pst-node.pro. To appear in: Proc. KI-95, 19th German Conference on Artificial Intelligence, Bielefeld (Germany), Lecture Notes in Computer Science, Springer 199

    A Partial Taxonomy of Substitutability and Interchangeability

    Get PDF
    Substitutability, interchangeability and related concepts in Constraint Programming were introduced approximately twenty years ago and have given rise to considerable subsequent research. We survey this work, classify, and relate the different concepts, and indicate directions for future work, in particular with respect to making connections with research into symmetry breaking. This paper is a condensed version of a larger work in progress.Comment: 18 pages, The 10th International Workshop on Symmetry in Constraint Satisfaction Problems (SymCon'10
    • …
    corecore