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Abstract
Solving the algebraic dichotomy conjecture for constraint satisfaction problems over structures first-
order definable in countably infinite finitely bounded homogeneous structures requires understanding
the applicability of local-consistency methods in this setting. We study the amount of consistency
(measured by relational width) needed to solve CSP(A) for first-order expansions A of countably
infinite homogeneous graphs H := (A; E), which happen all to be finitely bounded. We study our
problem for structures A that additionally have bounded strict width, i.e., for which establishing
local consistency of an instance of CSP(A) not only decides if there is a solution but also ensures
that every solution may be obtained from a locally consistent instance by greedily assigning values
to variables, without backtracking.

Our main result is that the structures A under consideration have relational width exactly (2,LH)
where LH is the maximal size of a forbidden subgraph of H, but not smaller than 3. It beats the
upper bound: (2m, 3m) where m = max(arity(A) + 1,L, 3) and arity(A) is the largest arity of a
relation in A, which follows from a sufficient condition implying bounded relational width given
in [10]. Since LH may be arbitrarily large, our result contrasts the collapse of the relational bounded
width hierarchy for finite structures A, whose relational width, if finite, is always at most (2, 3).
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1 Introduction

The constraint satisfaction problem (CSP) is one of the most important problems in theoretical
and applied computer science and at the same time it is a general framework in which many
other computational problems may be formalized. Given a number of constraints imposed on
variables one asks if there is a global solution, i.e., a function assigning values to variables so
that all the constraints are simultaneously satisfied. Boolean satisfiability and graph colouring
are among the most prominent examples of NP-hard problems that can be formalized as
CSPs and hence the CSP is NP-hard in general. Thus, one considers the problem CSP(A)
parametrized by a relational structure (called also a constraint language, a language or a
template) A. (In this paper, A is always over a finite signature). A longstanding open
problem in this area was to verify the Feder-Vardi [20] conjecture which states that for every
finite A the problem CSP(A) is either in P or it is NP-complete. After over thirty years of
work and a number of important partial results this so-called Dichotomy Conjecture was
confirmed independently in [26] and [16]. In both cases the proof was carried out in the
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so-called universal-algebraic approach to the complexity of CSPs [22, 17]. The approach not
only provided appropriate tools but also suggested the delineation. This so-called algebraic
dichotomy conjecture [17] saying that CSP(A) is hard under the condition that the algebra
corresponding to A lacks interesting operations also has been confirmed in both proofs.

The universal-algebraic approach to finite-domain constraint satisfaction problems has
been generalized to capture the computational complexity in many other similar settings. In
particular, the complexity of CSP(A) depends on the algebra corresponding to A when A is
ω-categorical [11], i.e., all countable models of the first-order theory of A are isomorphic. In
particular, all structures first-order definable in (reducts of) (countably infinite) homogeneous
structures over finite signatures are ω-categorical structure. (A structure is homogeneous if
every isomorphism between its finite substructures may be extended to an automorphism of
a structure.) Considering these infinite structures significantly broadens the class of problems
that may be captured within the CSP framework. In particular, the order over rational
numbers (Q, <), which is homogeneous, gives rise to CSP(Q;<) that can be seen as the
digraph acyclicity problem. The latter cannot be expressed as the CSP over a finite template.
Furthermore a number of problems of interest in qualitative reasoning may be captured by
CSP(A) where A is a reduct of a homogeneous structure B. It concerns constraint satisfaction
problems in formalisms such as Allen’s interval algebra or RCC-5, see [6] for a survey. Many
of the homogeneous structures B of interest are finitely bounded, i.e., there exists a finite
unique minimal set FB of finite structures over the signature of B such that a finite structure
∆ embeds into B if and only if none of the structures in FB embeds into ∆. A dichotomy
for algebras corresponding to reducts of countably infinite finitely bounded homogeneous
structures was proved in [3]. As in the finite case, it suggests the delineation between
polynomial-time solvable and NP-hard CSPs. Although the complexity dichotomy is still
far from being obtained, the algebraic dichotomy conjecture for reducts of finitely bounded
homogeneous structures is known to hold in the number of cases including the reducts of
(N,=) [7], (Q, <) [8], the random partial order [23] or a countably infinite homogeneous
graph [13, 14, 9].

Theoretical research on CSPs is focused not only on providing classifications of computa-
tional complexity but also on settling the limits of applicability of widely known algorithms
or algorithmic techniques such as establishing local consistency. This method is used not only
for finite CSP but is also considered to be the most important (if not the only) algorithmic
technique for qualitative CSPs [25]. The algebraic characterization of finite structures A with
bounded width [2], i.e., for which CSP(A) can be solved by establishing local consistency, is
considered to be an important step towards solving the Feder-Vardi conjecture. Thus, in
order to understand the complexity of CSPs for reducts A of finitely bounded homogeneous
structures, we need to characterize A with bounded width and to understand how different
notions of consistency relate to each other for templates under consideration. The focus of
this paper is on the latter.

The amount of consistency needed to solve CSP(A) for A with bounded width is measured
here [1] and here [15] by relational width. The relational width of A is a pair of numbers
(k, l) with k ≤ l (for the exact definition we refer the reader to Section 4). The following
question was of interest for finite structures.

I Question 1. What is the exact relational width of A with bounded width?

Question 1 for finite A was completely answered in [1] where it was proved that A
with bounded width has always either relational width (1, 1) or (2, 3), see [15] for another
proof. Both proofs rely, however, on the algebraic characterization of structures A with
bounded width. Although the notion of bounded width has been generalized to ω-categorical
structures [5], according to our knowledge, no algebraic characterization of bounded width for
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such structures is within sight. Nevertheless the algebraic characterization of strict bounded
width has been quite easily lifted from finite [20] to infinite domains [5]. (Again, for a detailed
definition we refer the reader to Section 4.) A reduct of a finitely bounded homogeneous
structure has bounded strict width if and only if it is preserved by so-called oligopotent quasi
near-unanimity operation. This algebraic characterization gives us a hope to answer the
following question analogous to Question 1.

I Question 2. What is the exact relational width of reducts A of finitely bounded homogeneous
structures with bounded strict width?

In this paper we answer Question 2 for first-order expansions of countably infinite
homogeneous graphs. We believe that our method may be used to provide the general
answer in the near future. We note that the answer to Question 2 would be not only a nice
theoretical result but should be also of particular interest for structures that give rise to
constraint satisfaction problems in qualitative reasoning. In this context strict width is called
local-to-global consistency and has been widely studied see, e.g., [19].

1.1 Our results
In contrast to all homogeneous structures, all countably infinite homogeneous graphs are
well understood and have been classified in [24]. It happens that every such graph H is also
finitely bounded, i.e., in each case there exists a finite unique minimal set of finite graphs FH
such that a finite graph G embeds into H if and only if none of the graphs in FH embeds
into G. We will write LH for the maximum of the number 3 and the size of the largest finite
structure in LH. Perhaps the best known example of a homogeneous graph is the random
graph that is determined up to isomorphism by the two properties of being homogeneous
and universal (i.e., it contains all countable graphs as induced subgraphs). Equivalently, the
random graph is a unique countably infinite graph which has this extension property: for all
disjoint finite subsets U,U ′ of the domain there exists an element v such that v is adjacent
to all members of U and to none in U ′. In this case the finite set of bounds consists of a
single directed edge and a loop, and hence LG for the random graph G is 3. Furthermore,
the family of homogeneous graphs contains universal countable k-clique free graphs Hk with
k ≥ 3, called also Henson graphs, in which case FHk

contains also a k-clique, and hence
LHk

is k or the graphs Csn that are disjoint sums of n cliques of size s where 1 ≤ n, s ≤ ω

and either n or s equals ω. Observe that FCs
n
contains a graph on three vertices with two

edges and one non-edge as well as a null graph over n + 1 vertices in case n is finite or a
(s+ 1)-clique in the case where s is finite. Thus, LCs

n
is either 3, n+ 1 or s+ 1. All remaining

homogeneous graphs are the complements of graphs Hk or Csn. In this paper we prove the
following.

I Main Result. Let A be a first-order expansion of a countably infinite homogeneous graph
H such that A has bounded strict width. Then A has relational width (2,LH).

In fact, we obtain a more general result. Some sufficient conditions implying that a first-
order expansion of a homogeneous graph H has relational width (2,LH) are given in Section 5.
In particular, the conditions cover all languages under consideration preserved by binary
canonical operations considered in [13, 14, 9] where an analysis of algebras corresponding to
reducts of homogeneous graphs and the computational dichotomy is provided. Our result:
relational width (2,LH) beats the upper bound (2m, 3m), where m = max(arity(A) + 1,L, 3)
and arity(A) is the largest arity of a relation in A, that can be easily obtained from the proof
of Theorem 4.10 in [10].

STACS 2020
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We believe that measuring relational width of structures with bounded width is interesting
in its own rights. Nevertheless, our research has complexity consequences. As in the finite
case, it was proved in [5] that CSP(A) for an ω-categorical A with strict width k may
be solved by establishing (k, k + 1)-consistency and hence in time O(nk+1) where n is the
number of variables in an instance. Our main result implies that such CSP(A) for a first-order
expansion A of a homogeneous graph H may be solved by establishing (2,LH)-minimality,
and hence in time O(nm) where m = max(LH, arity(A)).

1.2 Outline of the paper

We start with general preliminaries in Section 2. Then we review canonical operations
providing tractability for reducts of homogeneous graphs, Section 3. Bounded (relational)
width, strict width and other notions related to local consistency are provided in Section 4.
There we also give a number of examples explaining the applicability of our main result. The
proof of the main result is divided into Section 5 and Section 6. In the former one, we give a
number of sufficient conditions implying relational width (2,LH), while in the latter one we
show that the sufficient conditions are satisfied whenever a first-order expansion of H has
bounded strict width. In Section 5 we additionally show that the sufficient condition are also
satisfied by first-order expansions of homogeneous graphs preserved by the studied binary
canonical operations. As a consequence, we obtain that all tractable (whose CSP is solvable
in polynomial time) reducts of H where H is Cω1 , C1

ω, C
ω
ω or Hk with k ≥ 3 have bounded

relational width (2,LH) and hence can be solved by establishing (2,LH)-minimality.

2 Preliminaries

We write t = (t[1], ..., t[n]) for a tuple of elements and [n] to denote the set {1, . . . , n}.

2.1 Relations, languages and formulas

In this paper we consider first-order expansions A := (A;E,R1, . . . , Rk) over a finite signature
τ of homogeneous graphs, called also (constraint) languages or templates, where all R1, . . . , Rk
have a first-order definition in (A;E). We assume that A constains = and N whenever N is
pp-definable in A. Relations E and N refer always to a homogeneous graph H known from
the context. For the sake of presentation we usually do not distinguish between a relation
symbol R in the signature of A and the relation RA and use the former symbol for both. We
often write O,O1, O2, . . . for elements of {E,N,=} and E,N,O,O1,O2 to denote relations
(E∪ =), (N∪ =), (O∪ =), (O1∪ =), (O2∪ =), respectively.

For a structure A over domain A and a tuple t ∈ Ak, the orbit of t in A is the relation
{(α(t[1]), . . . , α(t[k])) | α ∈ Aut(A)} where Aut(A) is the set of automorphisms of A. In
particular, E,N and = are orbits of pairs, called also orbitals. We would like to note that
all structures considered in this paper are ω-categorical. By a theorem proved independently
by Ryll-Nardzewski, Engeler and Svenonius, a structure A is ω-categorical if and only if its
automorphism group is oligomorphic, i.e., for every n the number of orbits of n-tuples is
finite. See [21] for a textbook on model theory.

A primitive-positive (pp-)formula is a first-order formula built exclusively out of existential
quantifiers ∃, conjunction ∧ and atomic formulas R(x1, . . . , xk) where R is a k-ary relation
symbol and x1, . . . , xk are variables, not necessarily pairwise different.
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2.2 The universal-algebraic approach

We say that an operation f : An → A is a polymorphism of an m-ary relation R iff for any m-
tuples t1, . . . , tn ∈ R, it holds that the tuple (f(t1[1], . . . , tn[1]), . . . , f(t1[m], . . . , tn[m])) is also
in R. We write f(t1, . . . , tn) as a shorthand for (f(t1[1], . . . , tn[1]), . . . , f(t1[m], . . . , tn[m])).
An operation f is a polymorphism of A if it is a polymorphism of every relation in A. If
f : An → A is a polymorphism of A, R, we say that f preserves A, R, otherwise that f violates
A, R. A set of polymorphisms of an ω-categorical structure A forms an algebraic object
called an oligomorphic locally closed clone [4], which in particular contains an oligomorphic
permutation group [18].

I Theorem 1 ([11]). Let A be a countable ω-categorical structure. Then R is preserved
by the polymorphisms of A if and only if it has a primitive-positive definition in A, i.e., a
definition via a primitive-positive formula.

We say that a set of operations F generates a set of operations G if every g ∈ G is in the
smallest locally-closed clone containing F . We wite Aut(A) to denote the clone generated
by the automorphisms of the structure A. An operation f of an oligomorphic clone F is
called oligopotent if {g} where g(x) := f(x, . . . , x) is generated by the permutations in F .
We say that a k-ary operation f is a weak near-unanimity operation if f(y, x, . . . , x) =
f(x, y, x, . . . , x) = · · · = f(x, . . . , x, y) for all x, y ∈ A and that f is a quasi near-unanimity
operation (short, qnu-operation) if it is a weak near-unanimity and it additionally satisfies
f(x, . . . , x) = f(x, . . . , x, y) for all x, y ∈ A. We say that a k-ary operation f is a weak
near-unanimity operation modulo Aut(A) if there exist e1, . . . , ek ∈ Aut(A) such that:
e1(f(y, x, . . . , x)) = e2(f(x, y, x, . . . , x)) = · · · = ek(f(x, . . . , x, y)) for all x, y ∈ A.

2.3 The constraint satisfaction problem

We define the CSP to be a computational problem whose instance I is a triple (V, C, A)
where V = {v1, . . . , vn} is a set of variables, C is a set of constraints each of which is of the
form ((vi1 , . . . , vik ), R) where {vi1 , . . . , vik} ⊆ V is the scope of the constraint and R ⊆ Ak.
The question is whether there is a solution s : V → A to I satisfying (s(vi1), . . . , s(vik )) ∈ R
for all ((vi1 , . . . , vik ), R) ⊆ C. Further, we define CSP(A) for a constraint language A to be
the CSP restricted to instances where all relations come from A. 1

We define the projection of ((vi1 , . . . , vik ), R) to the set {w1, . . . , wl} ⊆ {vi1 , . . . , vik}
to be the constraint ({w1, . . . , wl}, R′) where the relation R′ is given by (R′(w1, . . . , wl) ≡
∃x1 . . . ∃xm R(vi1 , . . . , vik )) and {x1, . . . , xm} = {vi1 , . . . , vik} \ {w1, . . . , wm}. Let W ⊆ V.
An assignment a : W → A is a partial solution to I if a satisfies all projections of constraints
in I to variables in W .

It is very well known that adding pp-definable relations to the template does not change
the complexity of the problem.

I Proposition 2. Let A = (A;R1, . . . , Rl) be a relational structure, and let R be a relation
that has a primitive-positive definition in A. Then CSP(A) and CSP(A,R,R1, . . . , Rl) are
log-space equivalent.

1 Equivalently, one defines an instance of CSP(A) as a conjunction ϕ of atomic formulae over the signature
of A. Then the question is whether ϕ is satisfiable in A.

STACS 2020
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B1 = E N

= = E N
E E E E
N N E N

B2 = E N

= = E E
E E E E
N E E E

B3 = E N

= = N N
E N E N
N N N N

Figure 1 Three examplary binary behaviours: B1, B2, and B3.

2.4 Efficient entailment
We say that a formula ϕ1 entails a formula ϕ2 both over free variables x1, . . . , xn if
(∀x1 · · · ∀xn (ϕ1(x1, . . . , xn) =⇒ ϕ2(x1, . . . , xn))) is a valid sentence. Furthermore, we
say that an n-ary relation R entails ϕ over free variables x1, . . . , xn if R(x1, . . . , xn) entails
ϕ. These definitions are quite standard but for the purposes of this paper we need a stronger
notion of entailment.

I Definition 3. We say that a quaternary relation R efficiently entails ψ := (S1(x1, x2) =⇒
S2(x3, x4)) where S1, S2 are binary relations if R entails ψ and R contains
1. a tuple t1 such that (t1[1], t1[2]) ∈ S1 and (t1[3], t1[4]) ∈ S2, and
2. a tuple t2 such that (t2[1], t2[2]) /∈ S1 and (t2[3], t2[4]) /∈ S2.

We say that a quaternary relation R is a [(S1(x1, x2) =⇒ S2(x3, x4)), (ϕ)]-relation if R
efficiently entails (S1(x1, x2) =⇒ S2(x3, x4)) and entails ϕ or that a quaternary relation R is
a [(S1(x1, x2) =⇒ S2(x3, x4))]-relation if R efficiently entails (S1(x1, x2) =⇒ S2(x3, x4)).

3 Canonical Operations over Reducts of Homogeneous Graphs

The polymorphisms that appear in the complexity classifications of CSPs of reducts of
homogeneous graphs display some regularities in the sense defined below.

Let f : Ak → A, and let G be a permutation group on A. We say that f is canonical with
respect to G if for all m ∈ N,α1, . . . , αk ∈ G and m-tuples a1, . . . , ak, there exists β ∈ G
such that βf(α1(a1), . . . , αk(ak)) = f(a1, . . . , ak). Equivalently, this means that f induces
an operation ξtyp(f), called a k-ary behaviour, on orbits of m-tuples under G, by defining
ξtyp(f)(O1, . . . , Ok) as the orbit of f(a1, . . . , ak) where ai is any m-tuple in Oi. In what
follows we are mainly interested in operations that are canonical with respect to Aut(H)
where H is a homogeneous graph. Therefore we usually say simply canonical. See [12] for a
survey on canonical operations. Three simple binary behaviors are presented in Figure 1.
According to Definition 6, a binary injection f such that ξtyp(f) is

B1 is said to be of behavior max and balanced,
B2 is said to be E-constant,
B3 is said to be of type min and N -dominated.

We introduce the following notation. Let R1, . . . , Rk ⊆ A2 be binary relations. We write
R1 · · ·Rk for the binary relation on Ak defined so that: R1 · · ·Rk(a1, a2) holds for k-tuples
a1, a2 ∈ Ak if and only if Ri(a1[i], a2[i]) holds for all i ∈ [k]. Here, we can find the list of all
binary behaviours of interest.

I Definition 4. Let (A,E) be a countably infinite homogeneous graph. We say that a binary
injective operation f : A2 → A is

balanced if for all a, b ∈ A2 we have that E=(a, b) and =E(a, b) implies E(f(a), f(b)) as
well as N=(a, b) and =N(a, b) implies N(f(a), f(b)),
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E-dominated (N -dominated) if for all a, b ∈ A2 with 6==(a, b) or =6=(a, b) we have that
E(f(a), f(b)) (N(f(a), f(b)));
of behaviour min if for all a, b ∈ A2 with 6= 6=(a, b) we have E(f(a), f(b)) iff EE(a, b);
of behaviour max if for all a, b ∈ A2 with 6= 6=(a, b) we have N(f(a), f(b)) iff NN(a, b);
of behaviour projection if there exists i ∈ [2] such that for all a, b ∈ A2 with 6= 6=(a, b) we
have E(f(a), f(b)) iff E(a[i], b[i]),
of behaviour xor if for all a, b ∈ A2 with 6= 6=(a, b) the relation E(f(a), f(b)) holds iff
EN(a, b) or NE(a, b) holds;
of behaviour xnor if for all a, b ∈ A2 with 6= 6=(a, b) the relation E(f(a), f(b)) holds iff
EE(a, b) or NN(a, b) holds;
E-constant if the image of f is a clique,
N-constant if the image of f is an independent set.

We now turn to ternary behaviours of interest.

I Definition 5. Let (A;E) be a countably infinite homogeneous graph. We say that a ternary
injective operation f : A3 → A is of behaviour

majority if for all a, b ∈ D3 satisfying 6= 6= 6= (a, b) we have that E(f(a), f(b)) if and only
if EEE(a, b), EEN(a, b), ENE(a, b), or NEE(a, b),
minority if for all a, b ∈ D3 satisfying 6=6=6= (a, b) we have that N(f(a), f(b)) if and only
if NNN(a, b), EEN(a, b), ENE(a, b), or NEE(a, b).

Furthermore, let B be a binary behavior. A ternary function is hyperplanely of behaviour
B if the binary functions (x, y)→ f(x, y, c), (x, z)→ f(x, c, z), and (y, z)→ f(c, y, z) have
behavior B for all c ∈ D.

4 Consistency and Minimality

This section is devoted to the formal introduction of consistency and width notions. The
main algorithm we are interested in is based on establishing minimality.

I Definition 6. Let l ≥ k > 0 be natural numbers. An instance I = (V, C, A) of the CSP is
(k, l)-minimal if:
1. Every at most l-element set of variables is contained in the scope of some constraint in I.
2. For every set W with |W | ≤ k and every pair of constraints C1 and C2 in C whose scopes

contain W , the projections of the constraints C1 and C2 to W are the same.
We say that I is trivial if it contains a constraint with an empty relation. Otherwise, we say
that I is non-trivial.

As in the finite case, one may transform an instance I into an equivalent instance, i.e.
with the same set of solutions by simply introducing at most O(|V|l) new constraints so that
the first condition in Definition 6 was satisfied and then by repeatedly removing orbits of
tuples from constraints until the second condition is satisfied. Similarly to the finite CSP we
have the following.

I Proposition 7. Let A be an ω-categorical relational structure. Then for every instance
I of CSP(A) and l ≥ k > 0 there exists an instance I ′ of the CSP with the same sets of
solutions as I such that I ′ is (k, l)-minimal.

For fixed (k, l) and A, the process of establishing (k, l)-minimality, i.e., transfoming I
into I ′ takes time O(|V|m) where m = max(l, arity(A)) is the maximum of l and the greatest
arity of a relation in A. If I ′ is trivial, then both I and I ′ have no solutions.

We are now ready to define the relational width.

STACS 2020
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I Definition 8. We say that A has relational width (k, l) if and only if I has a solution
provided any (k, l)-minimal instance of the CSP equivalent to I is non-trivial. We say that A
has (relational) bounded width 2 if there exist (k, l) such that A has relational width (k, l).

Finite structures with bounded relational width admit an algebraic characterization [2].
It is known that a finite structure A has bounded (relational) width if and only if it has
a four-ary polymorphism f and a ternary polymorphism g that are weak near-unanimity
operations and such that f(y, x, x, x) = g(y, x, x) for all x, y ∈ A. We have a similar sufficient
condition for reducts of finitely bounded homogeneous structures.

I Theorem 9 ([10]). Let A be a finite-signature reduct of a finitely bounded homogeneous
structure B. Suppose that A has a four-ary polymorphism f and a ternary polymorphism g that
are canonical with respect to Aut(B) and are weak near-unanimity operations modulo Aut(B),
and such that there are operations e1, e2 ∈ Aut(B) with e1(f(y, x, x, x)) = e2(g(y, x, x)) for
all x, y ∈ A. Then CSP(A) has bounded relational width.

A slight change in the proof of the above theorem gives us the upper bound for relational
width of infinite structures under consideration.

I Corollary 10. Let A be a finite-signature reduct of a finitely bounded homogeneous structure
B. Suppose that A has a four-ary polymorphism f and a ternary polymorphism g that are
canonical with respect to Aut(B), that are weak near-unanimity operations modulo Aut(A),
and such that there are operations e1, e2 ∈ Aut(B) with e1(f(y, x, x, x)) = e2(g(y, x, x)) for
all x, y ∈ A. Then A has relational width (2m, 3m) where m = max(arity(A) + 1, arity(B) +
1,LB, 3).

We now use Corollary 10 to provide the upper bound of the relational width for reducts
of homogeneous graphs preserved by binary canonical operations considered in [13, 14, 9].

I Proposition 11. Let A be a reduct of a countably infinite homogeneous graph H preserved
by a binary injection:
1. of behaviour max which is either balanced or E-dominated, or
2. of behaviour min which is either balanced or N -dominated, or
3. which is E-constant, or
4. which is N -constant.
Then it has relational width (2m, 3m) where m = max(arity(A) + 1,LH, 3).

In Section 6.1, we use our approach to show that the exact relational width of structures
under consideration in Proposition 11 is (2,LH). The same is proved for first-order expansions
of homogeneous graphs with bounded strict width.

Strict width is defined as follows. A (k, l)-minimal instance I of the CSP is called globally
consistent, if every partial solution of I can be extended to a total solution of I.

I Definition 12. We say that A has strict width k if for some l ≥ k ≥ 2 all instances of
CSP(A) that are (k, l)-minimal are globally consistent. We say that A has bounded strict
width if it has strict width k for some k. 3

We have the following algebraic characterization of ω-categorical structures with bounded
strict width.

2 We note that the definition of bounded width provided in [5] is equivalent to ours.
3 Our definition of strict width slightly varies from a definition in [5] but again both definitions are

equivalent.
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I Theorem 13 ([5, 4]). Let A be an ω-categorical language. Then the following are equivalent.
1. A has strict width k.
2. A has an oligopotent (k + 1)-ary quasi near-unanimity operation as a polymorphism.

For a (2, k)-minimal instance over variables V = {v1, . . . , vn} we write Ii,j with i, j ∈ [n]
to denote a subset of {E,N,=} such that the projection of all constraints having vi, vj in its
scope to {vi, vj} equals

⋃
O∈Ii,j

O. We will say that an instance is simple if |Ii,j | = 1 for all
i, j ∈ [n].

We will now show that a simple non-trivial (2,LH)-instance of CSP(A) for a first-order
expansion A of a homogeneous graph H always has a solution and that this amount of
consistency is necessary.

I Observation 14. Let I be a simple non-trivial (2,LH)-minimal instance of the CSP
equivalent to an instance of CSP(H′) where H′ is the expansion of H containing all orbitals
pp-definable in H. Then I has a solution.

On the other hand, for every homogeneous graph H there exists a simple non-trivial
(1,LH)-minimal instance I1 equivalent to an instance of CSP(H′) and a simple non-trivial
(2,LH−1)-minimal instance I2 equivalent to an instance of CSP(H′) that have no solutions.

Proof. We start from proving the first part of the observation. Define ∆ to be a finite structure
over the domain consisting of variables {v1, . . . , vn} in I and the signature τ ⊆ {E,N,=}
such that (vi, vj) ∈ R∆ for i, j ∈ [n] and R ∈ τ if ϕI contains a constraint ((vi, vj), R). Since
I is (2, 3)-minimal, we have the following.

I Observation 15. The binary relation ∼:= {(vi, vj) | Ii,j ⊆ {=}} ∪
⋃
i∈[n]{(vivi)} is an

equivalence relation.

We claim that there is an embedding from ∆/ ∼ to H′. Assume the contrary. Since H
is finitely bounded, there exists G over variables {w1, . . . , wl} in FH′ such that G embeds
into ∆/ ∼ and l ≤ LH. Since I is (2,LH)-minimal, there is a constraint C in I whose
scope contains {w1, . . . , wl} and the corresponding relation is empty. It contradicts with the
assumption that I is non-trivial. Thus, ∆/ ∼ embeds into H, and in consequence I has a
solution. It completes the proof of the first part of the observation.

For the second part of the observation, we select I1 to be {((v1, v2), E), ((v1, v2), N)}.
Indeed, every subset of variables of I1 is in the scope of some constraint. The projection
of each constraint to {v1} or {v2} is the set of all vertices in H. It follows that I1 is
(1,LH)-consistent. Clearly I1 has no solutions.

We now turn to I2. If LH > 3 and G = ([n], E) is a forbidden subgraph of size n = LH
consider an instance I ′

2 over variables {v1, . . . , vn} containing a constraint ((vi, vj), E) if
(i, j) ∈ EG and a constraint ((vi, vj), N) if (i, j) /∈ EG. Let I2 be a (2,LH−1)-minimal
instance of the CSP equivalent to I ′

2. By the minimality of FH, we have that no induced
subgraph of G is in FH. It follows that I2 is non-trivial but, clearly, I2 has no solutions.
If LH = 3, then we select I2 to be an instance such that C = {((v1, v2),=), ((v2, v3),=
), ((v1, v3), E). It is again straightforward to check that I2 is (2, 2)-minimal. Yet, it has no
solutions. It completes the proof of the observation. J

We complete this section by giving some examples of first-order expansions of homogeneous
graphs with bounded strict width.

I Proposition 16. Let A be a first-order expansion of the random graph H = (A;E) such
that every relation in A is pp-definable as a conjunction of clauses of the form:

(x1 6= y1 ∨ · · · ∨ xk 6= y1 ∨R(y1, y2) ∨ y2 6= z1 ∨ · · · ∨ y2 6= zl),

where R ∈ {E,N}. Then A has bounded strict-width.
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And here comes another example.

I Proposition 17. The constraint language A = (A;E,N,R) where (A;E) is Cω2 and
R(x1, x2, x3) ≡ ((E(x1, x2) ∧N(x2, x3)) ∨ (N(x1, x2) ∧ E(x2, x3))) has bounded strict width.

5 Conditions Sufficient for Low Relational Width

In order to show that a non-trivial (2,LH)-minimal instance I of CSP(A) for first-order
expansions A of a homogeneous graph H has a solution, we always use one scheme. We take
advantage of the fact that certain quaternary and ternary relations are not pp-definable in A
and we carefully narrow down Ii,j for i, j ∈ [n] so that we end up with a simple non-trivial
instance I ′ which is a ’subinstance’ of I in the following sense: for every C = ((x1, . . . , xr), R)
in I we have C ′ = ((x1, . . . , xr), R′) ∈ I ′ such that R′ ⊆ R. Since I ′ is simple, by
Observation 14, it has a solution. This solution is clearly a solution to the orginal instance I.

We shrink an instance of CSP(A) using one of three different sets of relations presented
in the three lemmas below.

I Lemma 18. Let {O1, O2} be {E,N} and A be a first-order expansion of a homogeneous
graph H such that none of the following types of relations is pp-definable in A:
1. [(O1(x1, x2) =⇒ O2(x3, x4))]-relations,
2. [(O1(x1, x2) =⇒ x3 = x4)]-relations, and
3. [(O2(x1, x2) =⇒ x3 = x4), (O2(x1, x2) ∧O2(x3, x4))]-relations.
Then A has relational width (2,LH).

Before we discuss the ’shrinking’ strategy that stands behind Lemma 18, consider
a non-trivial instance I of some A under consideration in the lemma and a constraint
((x1, . . . , xr), R) for which there are i1, j1, i2, j2 such that vi1 , vj1 , vi2 , vj2 ∈ {x1, . . . , xr}
and O1 ∈ Ii1,j1 , O1 ∈ Ii2,j2 . Since I is non-trivial and (2, 3)-minimal the relation
(R′(x1, . . . , xr) ≡ (R(x1, . . . , xr) ∧ O1(vi1 , vj1))) is non-empty. But also (R′′(x1, . . . , xr) ≡
(R(x1, . . . , xr)∧O1(vi1 , vj1)∧O1(vi2 , vj2))) is non-empty. Indeed, otherwise since O1 ∪O2 =
A2, the structure A would define a relation from Item 1 or Item 2. Generalizing the argument,
one can easily transform I to a non-trivial I ′ where every I ′

i,j = {O1} whenever Ii,j contains
O1. Using a similar reasoning and Item 3, and taking care of some details, we have to skip
here, one can then transform I ′ to I ′′ so that I ′′

i,j = O2 whenever I ′
i,j contains O2. Since

I ′′ is simple and non-trivial, we can use Observation 14 to argue that both I ′′ and I has a
solution.

The next lemma considers a specific situation where H is a disjoint sum of ω edges and
languages under consideration are preserved by oligopotent qnu-operations.

I Lemma 19. Let A be a first-order expansion of C2
ω preserved by an oligopotent qnu-operation

and such that none of the following types of relations is pp-definable in A:
1. [(N(x1, x2) =⇒ E(x3, x4))]-relations,
2. [(N(x1, x2) =⇒ E(x3, x4)), (E(x3, x4))]-relations,
3. [(N(x1, x2) =⇒ x3 = x4)]-relations,
4. [(O1(x1, x2) =⇒ O2(x3, x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relations where the set
{O1, O2} equals {E,=}.

Then A has relational width (2, 3).

The shrinking strategy for Lemma 19 is as follows. We start with a non-trivial (2, 3)-
minimal instance I and use Items 1–3 to transform it into a non-trivial (2, 3)-minimal I ′

such that I ′
i,j = {N} whenever Ii,j contains N . Since E fo-definable in C2

ω is transitive and
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I ′ is (2, 3)-minimal, it is easy to show that the graph over variables {v1, . . . , vn} and edges
I ′
i,j with i, j ∈ [n] is a disjoint union of components K1, . . . ,Kκ such that for all k ∈ [κ] and

all vi, vj ∈ Kk it holds that I ′
i,j ⊆ {E,=} and whenever vi, vj are in different components,

then I ′
i,j = {N}. Now, any I ′

Ki
– the instance I ′ restricted to variables in Ki, which is in

fact an instance of CSP(∆) for ∆ over two-elements (some edge in C2
ω, different for every

i ∈ [κ]) preserved by a near-unanimity operation, is shown to have a solution si. It follows by
the characterization of relational width for finite structure. In order to prove that solution
s :=

⋃
i∈[κ] si is the solution to I ′ and hence to I we use the fact that relations from Item 4

are not pp-definable in A.
Finally, we turn to the case where H is a disjoint sum of two infinite cliques and the

structures A have oligopotent qnu-operations as polymorphisms.

I Lemma 20. Let A be a first-order expansion of Cω2 preserved by an oligopotent qnu-operation
and such that A pp-defines neither N nor [(O(x1, x2)→ x3 = x4)] for any O ∈ {E,N}. Then
A has relational width (2, 3).

Clearly any tuple over Cω2 takes some of its values from one equivalence class in Cω2
and the remaining values from the other class. In order to prove Lemma 20, we consider
a non-trivial (2, 3)-minimal instance I of CSP(A) but this time we also assume without
loss of generality that there are no i, j with Ii,j = {=}. Since A does not define N we
have that for all i, j ∈ [n] the set Ii,j contains E. Then we transform I to IB of CSP(∆)
where ∆ is over the domain {0, 1} by replacing any tuple t in any relation in any constraint
in I by a tuple over {0, 1} so that all values in one equivalence class are replaced by 0
and all values in the other equivalence class are replaced by 1. Since ∆ is preserved by
a near-unanimity operation, and hence has bounded relational width we have that the
(2, 3)-minimal IB has a solution sB : {v1, . . . , vm} → {0, 1}. We use sB to transform I to I ′

so that we set I ′
i,j to {N} whenever sB(vi) 6= sB(vj). No [(N(x1, x2)→ x3 = x4)]-relations

are pp-definable in A, and hence we have that I ′
i,j for any i, j ∈ [n] contains E. Since B

pp-defines no [(E(x1, x2)→ x3 = x4)]-relations we may transform I ′ into I ′′ so that I ′′
i,j is

E whenever I ′
i,j 6= {N}. Thus, I ′′ is a simple non-trivial (2, 3)-minimal instance. It follows

by Observation 14 that both I ′′ and I have a solution. Again, we skipped many details but
our goal was rather to convey some intuitions that stand behind the proofs of the lemmas in
this section.

6 Constraint Languages with Low Relational Width

In this section we employ lemmas from Section 5 to provide the exact characterization
of relational width of first-order expansions of homogeneous graphs with bounded strict
width and first-order expansions of homogeneous graphs preserved by binary canonical
operations from Proposition 11. In order to prove the former, we also show which quaternary
relations of interest are violated by ternary injections used in the complexity classification
(see Subsection 6.2). To rule out some other relations, we have to use oligopotent qnu-
operations directly (see Subsection 6.3).

6.1 Binary Injections and Low Relational Width
We start with first-order expansions A of homogeneous graphs H whose tractability has
been shown in Proposition 8.22 in [13], Proposition 6.2 in [14] as well as Proposition 37 and
Theorem 62 in [9].
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I Lemma 21. Let A be a first-order expansion of a countably infinite homogeneous graph H
preserved by a binary injection:
1. of behaviour max which is either balanced or E-dominated, or
2. of behaviour min which is either balanced or N -dominated, or
3. which is E-constant, or
4. which is N -constant.
Then A has relational width (2,LH).

The above lemma gives an opportunity to reformulate the dichotomy results for reducts
A of C1

ω, C
ω
1 , C

ω
ω and Hk for any k ≥ 3.

I Corollary 22. Let A be a reduct of a homomorphism graph H which is C1
ω, C

ω
1 , C

ω
ω or Hk

for any k ≥ 3. Then either CSP(A) is NP-complete or A has relational width (2,LH).

Proof. We have that any tractable first-order expansion of (N; =, 6=) is preserved by a binary
injection [7]. It follows that every tractable reduct of Cω1 is either preserved by a constant
operation or is a first-order expansion of Cω1 and preserved by a binary injection which is
of behaviour max and E-dominated. A similar reasoning holds for reducts of C1

ω with a
difference that we replace E with N . Further, every reduct of Cωω is either homomorphically
equivalent to a reduct of (N; =) or pp-defines both E and N , see Theorem 4.5 [14]. In the
former case we are done, while in the latter a tractable A is preserved by a binary injection
of behaviour min and balanced, Corollary 7.5 in [14]. The corollary follows by Lemma 21.
By Proposition 15 and Lemma 17 in [9], a tractable reduct of Hk with k ≥ 3 is either
homomorphically equivalent to a reduct of (N; =) or pp-defines both E and N . In the former
case we are done while in the latter, we have that CSP(A) is in P when it is preserved by
a binary injection of behaviour min and N -dominated (see Theorem 38 in [9]). Again, the
corollary follows by Lemma 21. J

6.2 Types of Relations violated by Ternary Canonical Operations
Here we look at quaternary relations of interest violated by canonical ternary operations.
We start with ternary injections of behaviour majority.

I Lemma 23. Let A be a reduct of a countably infinite homogeneous graph preserved by a
ternary injection of behaviour majority which additionally is:

hyperplanely balanced and of behaviour projection, or
hyperplanely E-constant, or hyperplanely N-constant, or
hyperplanely of behaviour max and E-dominated, or
hyperplanely of behaviour min and N-dominated.

Then A pp-defines no [(O(x1, x2) =⇒ x3 = x4)]-relations with O ∈ {E,N}.

We continue with ternary injections of behaviour minority.

I Lemma 24. Let A be a reduct of a countably infinite homogeneous graph preserved by a
ternary injection of behaviour minority which additionally is:

hyperplanely balanced and of behaviour projection,
hyperplanely of behaviour projection and E-dominated, or
hyperplanely of behaviour projection and N-dominated, or
hyperplanely balanced of behaviour xnor, or
hyperplanely balanced of behaviour xor.

Then A does not pp-define [(O(x1, x2) =⇒ x3 = x4)]-relations with O ∈ {E,N}.
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We are already in the position to prove that another large family of CSP(A) under
consideration may be solved by establishing minimality.

I Corollary 25. Let A be a first-order expansion of Cω2 preserved by a canonical ternary
injection of behaviour minority which is hyperplanely balanced of behaviour xnor and an
oligopotent qnu-operation. Then A has relational width (2, 3).

Proof. By Lemma 24, the structure A does not pp-define [(O(x1, x2) =⇒ x3 = x4)]
with O ∈ {E,N}. Since a canonical ternary injection of behaviour minority which is
hyperplanely balanced of behaviour xnor does not preserve N , the result follows by appealing
to Lemma 20. J

The third lemma of this subsection takes care of the third kind of ternary operations that
occurrs in complexity classifications of CSPs for reducts of homogeneous graphs.

I Lemma 26. Let A be a reduct of a countably infinite homogeneous graph preserved by a
ternary canonical operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves
like a minority on {E,=}, i.e., h satisfies the behaviour B such that B(E,E,E) = B(E,=,=
) = B(=, E,=) = B(=,=, E) = E and B(=,=,=) = B(=, E,E) = B(E,=, E) = B(E,E,=)
equals =. Then A pp-defines none of the following types of relations:

[(N(x1, x2) =⇒ E(x3, x4))]-relations,
[(N(x1, x2) =⇒ x3 = x4)]-relations,
[(N(x1, x2) =⇒ E(x3, x4)), (E(x3, x4))]-relations.

6.3 Types of Relations violated by Oligopotent QNUs
Here we provide a list of quaternary relations of interest violated by ternary canonical
operations and oligopotent qnu-operations. We start with the case where the considered
homogeneous graph is the random graph.

I Lemma 27. Let A be a first-order expansion of the random graph preserved by a ternary
injection of behaviour majority which additionally satisfies one of the conditions in Lemma 23
or of behaviour minority which additionally satisfies one of the conditions in Lemma 24, and
an oligopotent qnu-operation. Then A pp-defines at most one of the following:
1. either a [(E(x1, x2) =⇒ N(x3, x4))]-relation or
2. a [(N(x1, x2) =⇒ E(x3, x4))]-relation.
Here comes the corollary.

I Corollary 28. Let A be a first-order expansion of the random graph preserved by a ternary
injection of behaviour majority which additionally satisfies one of the conditions in Lemma 23
or of behaviour minority which additionally satisfies one of the conditions in Lemma 24 and
an oligopotent qnu-operation. Then A has relational width (2, 3).

Proof. By appeal to Lemma 27, it follows that there are {O1, O2} = {E,N} such that A does
not pp-define a [(O1(x1, x2) =⇒ O2(x3, x4))]-relation. By Lemmas 23 and 24, A pp-defines
neither [(O1(x1, x2) =⇒ x3 = x4)]-relations nor [(O2(x1, x2) =⇒ x3 = x4)]-relations. Since
LH in the case where H is the random graph equals 3, the result follows by Lemma 18. J

We now turn to the case where the considered homogeneous graph is the disjoint union
of ω edges.
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I Lemma 29. Let A be a first-order expansion of C2
ω preserved by a ternary canonical

operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority on
{E,=} and an oligopotent qnu-operation. Then A pp-defines neither

a [(E(x1, x2) =⇒ (x3 = x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation nor
a [((x1 = x2) =⇒ E(x3, x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation.

Then we provide another similar lemma.

I Lemma 30. Let A be a first-order expansion of C2
ω preserved by a ternary canonical

operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority on
{E,=} and an oligopotent qnu-operation. Then A pp-defines neither

a [(E(x1, x2) =⇒ E(x3, x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation nor
a [((x1 = x2) =⇒ (x3 = x4)), (E(x1, x2) ∧N(x2, x3) ∧ E(x3, x4))]-relation.

Then comes the corollary.

I Corollary 31. Let A be a first-order expansion of C2
ω preserved by a ternary canonical

operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority on
{E,=} and an oligopotent qnu-operation. Then A has relational width (2, 3).

Proof. By Lemmas 26, 29 and 30 none of the types of relations mentioned in Lemma 19 is
pp-definable in A. Appealing to Lemma 19 completes the proof of the corollary. J

6.4 The Main Result

Here we prove our main result.

I Theorem 32. Let A be a first-order expansion of a countably infinite homogeneous graph
H which has bounded strict width. Then A has relational width (2,LH).

Proof. By the classification of Lachlan and Woodrow [24], we have that H is either the
random graph, a Henson graph Hk with a forbidden k-clique where k ≥ 3, a disjoint
set of n cliques of size s denoted by Csn or a complement of either Csn or Hk. The case
where H is Cω1 , C1

ω, Cωω or Hk with k ≥ 3 follows by Corollary 22. If Csn is such that
3 ≤ n < ω or 3 ≤ s < ω, then by Theorem 60 in [9], a first-order expansion A of Csn is
either homomorphically equivalent to a reduct of (N; =) or is not preserved by an oligopotent
qnu-operation and we are done. If A is a first-order expansion of Cω2 , then by Theorem 61
in [9] either it is homomorphically equivalent to a reduct of (N; =) or is not preserved by
an oligopotent qnu-operation or pp-defines both E and N and is preserved by a canonical
ternary injection of behaviour minority which is hyperplanely balanced of behaviour xnor
and then A has relational width (2, 3) by Corollary 25. If A is a first-order expansion of C2

ω,
then by Theorem 62 in [9], we have that either A is homomorphically equivalent to a reduct
of (N; =), or it is not preserved by an oligopotent qnu-operation or it pp-defines both E and
N and is preserved by a canonical binary injection of behaviour min that is N -dominated
or a ternary canonical operation h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which
behaves like a minority on {E,=}. In the former case the language A has relational width
(2, 3) by Lemma 21, in the latter by Corollary 31.

The remaining case is where A is a first-order expansion of the random graph G preserved
by an oligopotent qnu-operation. By Theorem 6.1 in [13] we have that a first-order expansion
of G is either homorphically equivalent to a reduct of (N; =) and then we are done or
pp-defines both E and N in which case, by Theorem 9.3 in [13], we have that:
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A is preserved by a binary injection of behaviour max which is either balanced or
E-dominated, by a binary injection of behaviour min which is either balanced or N -
dominated, by a binary injection which is E-constant, or a binary injection which is
N -constant, and then the theorem follows by Lemma 21, or
A is preserved by a ternary injection of behaviour majority which additionally satisfies
one of the conditions in Lemma 23 or of behaviour minority which additionally satisfies
one of the conditions in Lemma 24, and then the theorem holds by Corollary 28.

It completes the proof of the theorem. J

7 Summary and Future Work

In this paper we proved in particular that:
1. every first-order expansion of a homogeneous graph H preserved by a canonical binary

operation considered in [13, 14, 9] and
2. every first-order expansion of a homogeneous graph H with bounded strict width has

relational width exactly (2,LH).
A nice consequence of the former result is that all tractable reducts of C1

ω, C
ω
1 , C

ω
ω and Hk

with k ≥ 3 have relational width exactly (2,LH), and thus all tractable CSP(A) may be
solved by establishing (2,LH)-minimality. Nevertheless, we find the latter result to be the
main result of this paper. It is for the following reason.

Our general strategy is that we show that constraint languages A under consideration
do not express “too many implications”, i.e., quaternary relations that efficiently entail
formulas of the form (R1(x1, x2) =⇒ R2(x3, x4)), see definitions in Section 2.4 and lemmas
in Section 5 and then use these facts in order to find a strategy of how to shrink a non-trivial
(2,LH)-minimal instance of the CSP so that it became a simple instance. In this paper, in
order to show that certain relations are not pp-definable in A we employ in particular some
binary and ternary canonical operations. We believe that it is not in fact necessary and
theorems analogous to Theorem 32 may be obtained for large families of constraint languages
using only the fact that structures A under consideration are preserved by oligopotent
qnu-operations. Thereby we believe that Question 2 may be answered in full generality.
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