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Current quantum annealing (QA) hardware suffers from practical limitations such as
finite temperature, sparse connectivity, small qubit numbers, and control error. We
propose new algorithms for mapping Boolean constraint satisfaction problems (CSPs)
onto QA hardware mitigating these limitations. In particular, we develop a new embedding
algorithm for mapping a CSP onto a hardware Ising model with a fixed sparse set
of interactions and propose two new decomposition algorithms for solving problems
too large to map directly into hardware. The mapping technique is locally structured,
as hardware compatible Ising models are generated for each problem constraint, and
variables appearing in different constraints are chained together using ferromagnetic
couplings. By contrast, global embedding techniques generate a hardware-independent
Ising model for all the constraints, and then use a minor-embedding algorithm to generate
a hardware compatible Ising model. We give an example of a class of CSPs for which
the scaling performance of the D-Wave hardware using the local mapping technique
is significantly better than global embedding. We validate the approach by applying D-
Wave’s QA hardware to circuit-based fault diagnosis. For circuits that embed directly, we
find that the hardware is typically able to find all solutions from a min-fault diagnosis set
of size N using 1000N samples, using an annealing rate that is 25 times faster than a
leading SAT-based sampling method. Furthermore, we apply decomposition algorithms
to find min-cardinality faults for circuits that are up to 5 times larger than can be solved
directly on current hardware.

Keywords: Ising model, quantum annealing, discrete optimization problems, constraint satisfaction, penalty
functions, minor embedding, fault diagnosis, adiabatic quantum computing

1. INTRODUCTION

In the search for ever faster computational substrates, recent attention has turned to devices
manifesting quantum effects. Since it has long been realized that computational speedups may be
obtained through exploitation of quantum resources, the construction of devices realizing these
speedups is an active research area. Currently, the largest scale computing devices using quantum
resources are based on physical realizations of quantum annealing. Quantum annealing (QA) is
an optimization heuristic sharing much in common with simulated annealing, but which utilizes
quantum, rather than thermal, fluctuations to foster exploration through a search space (Finilla et al.,
1994; Kadowaki and Nishimori, 1998; Farhi et al., 2000).
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QA hardware relies on an equivalence between a physical
quantum model and a useful computational problem. The low-
energy physics of the D-Wave QA device (Berkley et al., 2010;
Harris et al., 2010; Johnson et al., 2011; Dickson et al., 2013)
is well captured by a time-dependent Hamiltonian of the form
H(t)=A(t)H0 +B(t)HP, where H0 =

∑
i∈V(G) σx

i includes off-
diagonal quantum effects, and where HP =

∑
i∈V(G) hiσ

z
i +∑

(i,j)∈E(G) Ji,jσ
z
i σ

z
j is used to encode a classical Ising optimiza-

tion problem of the form

min
s

E(s) ≡ min
s

 ∑
i∈V(G)

hisi +
∑

(i,j)∈E(G)

Ji,jsisj

 . (1)

On the D-Wave device, the connectivity between the binary
variables si ∈{−1, +1} is described by a fixed sparse graph
G= (V, E). The weights J ≡ {Ji,j}(i,j)∈E(G), and the linear biases
h≡ {hi}i∈V(G) are programmable by the user. The A(t) and
B(t) functions have units of energy and satisfy B(t= 0)= 0 and
A(t= τ )= 0, so that as time advances from t= 0 to t= τ the
Hamiltonian H(t) is annealed to a purely classical form. Thus,
the easily prepared ground state of H(0)=H0 evolves to a low-
energy state of H(τ )=HP, andmeasurements at time τ yield low-
energy states of the classical Ising objective equation (1). Theory
has shown that if the time evolution is sufficiently slow, i.e., τ is
sufficiently large, then with high probability the global minimizer
of E(s) can be obtained.

Physical constraints on current hardware platforms (Bunyk
et al., 2014) impact this theoretical efficacy of QA. Bian et al.
(2014) has noted the following issues that are detrimental to
performance:

1. Limited precision/control error on parameters h/J: problems
are not represented exactly in hardware, but are subject to
small, but noticeable, time-dependent and time-independent
additive noise.

2. Limited range on h/J bounds the range of all parameters relative
to thermal scales kbT: thus, very low effective temperatures
which are needed for optimization when there are many first
excited states are unavailable.

3. Sparse connectivity in G: problems with variable interactions
not matching the structure of G cannot be solved directly.

4. Small numbers of total qubits |V(G)|: only problems of up to
1100 variables can currently be addressed.

Bian et al. (2014) suggested approaches ameliorating these
concerns. The core idea used to address concerns 1–3 is the
construction of penalty representations of constraints with large
(classical) energy gaps between feasible and infeasible configura-
tions. The large energy gaps buffer against parameter error and
maximize energy scales relative to the fixed device temperature.
Sparse device connectivity was addressed using locally structured
embedding, which consists of placing constraints directly onto dis-
joint subgraphs ofG and routing constraints together using chains
of ferromagnetically coupled qubits representing the same logical
variable. This differs from the more common global approach in
which constraints are modeled without regard for local hardware
structure. We contrast the two approaches in §2.1 and provide

some experimental evidence that the locally structured approach
is well suited to current QA hardware.

With locally structured embedding, the number of qubits used,
size of the energy gaps, and size of chains all play an important
role in determining D-Wave hardware performance. Here, we
expand on the methods in Bian et al. (2014) and offer several
improvements. One way of reducing the required number of
qubits, described in §2.2, is by clustering constraints, thereby
reducing the number of literals in the CSP. To maximize energy
gaps, we follow the methods in Bian et al. (2014) but extend
them tomax-constraint-satisfaction problems (MAX-CSP): given
a set of constraints, find a variable assignment that minimizes
the number of constraints that are unsatisfied. §2.3 describes two
extensions: one that involves the explicit introduction of variables
to indicate the reification of the constraints, and one that does
not. Lastly, §2.4 describes how to reduce the size of the largest
chains by combining placement and routing of constraints into a
single, iterative algorithm. Using linear programing, we also find
effective lower bounds on the size of the largest chains, which
makes optimal routing faster.

To address the issue of a limited number of total qubits, Bian
et al. (2014) adapted two problem decomposition methods to
the Ising context, namely dual decomposition (DD) and belief
propagation (BP). However, these algorithms suffer from issues
of precision and a large number of iterations, respectively. In
§2.5, we give two alternatives. One is the well-studied Divide-
and-Concur algorithm (Gravel and Elser, 2008), which produces
excellent experimental results. The other is a novel message pass-
ing algorithm based on distributedminimization of the Bethe free
energy called Regional Generalized Belief Propagation; this offers
some of the potential benefits of BP with fewer calls to the QA
hardware.

A salient feature of D-Wave QA device is the low cost of sam-
pling low-energy configurations of equation (1). After a constant
overhead time to program h and J, additional i.i.d. samples can
be obtained at an annealing rate of 20µs/sample. Consequently,
problems where a diversity of ground states are sought form an
interesting application domain. As an application of our MAX-
CSP modeling techniques, we focus on the problem of model-
based fault diagnosis. In fault diagnosis, each constraint is realized
as a logical gate which defines the input/output pairs allowed
by the gate. A circuit of gates then maps global inputs to global
outputs. An error model is prescribed for each gate, and fault
diagnosis seeks the identification of a minimum number of faulty
gates consistent with observed global inputs and outputs and
error model. A diversity of minimal cost solutions is valuable
in pinpointing the origin of the faults. In §3, we test the ability
of the D-Wave hardware to generate a range of minimal cost
solutions and also use the hardware to test various decomposi-
tion algorithms on a standard benchmark set of fault diagnosis
problems.

2. MATERIALS AND METHODS

2.1. Approaches to Embedding
Modeling a constrained problem as aG-structured Ising objective
requires reconciliation of the problem’s structure with that of G.

Frontiers in ICT | www.frontiersin.org July 2016 | Volume 3 | Article 142

http://www.frontiersin.org/ICT
http://www.frontiersin.org
http://www.frontiersin.org/ICT/archive


Bian et al. Mapping Constrained Optimization to QA

Two approaches may be taken to accommodate the connectivity
required by G. In global embedding, we model each constraint
as an Ising model without regard for the connectivity of G, add
all constraint models, and map the structure of the aggregate
model onto G using the heuristic minor-embedding algorithm of
Cai et al. (2014). Previous examples of global embedding include
Bian et al. (2013), Douglass et al. (2015), Perdomo-Ortiz et al.
(2015), Rieffel et al. (2015), Venturelli et al. (2015b), and Zick
et al. (2015). Alternatively, when the scopes of constraints are
small, locally structured embedding (Bian et al., 2014) models
each constraint locally within a subgraph G ⊂ G, places the
local subgraphs G within G, and then connects (routes) variables
occurring in multiple local subgraphs. Figure 1 contrasts the two
approaches.

The methods offer different trade-offs. The former method
typically utilizes fewer qubits and has shorter chains of connected
qubits representing logical problem variables. The latter method
is more scalable to large problems, usually requires less preci-
sion on parameters, and offers lower coupling strengths used to
enforce chains. More precisely, assume an embedded Ising model
is parameterized by [h, J]= [h, JP +αJC], where [h, JP] describes
the encoded constraints, JC enforces the couplings within chains,
and α > 0 is a chain strength. In a satisfiable CSP that has

been embedded with the locally structured approach, the chains
representing a solution to the CSP will be a ground state of
[h, J] regardless of the choice of α.1 By contrast, for some global
embeddings, the chain strength required to enforce unbroken
chains can grow with system size, increasing the precision with
which the original problem must be represented and making the
dynamics of quantum annealing more difficult (Venturelli et al.,
2015a).

Whether the benefits of improved precision and lower chain
strengths outweigh the drawbacks of using more qubits depends
on the problem. Figure 2 gives an example of a problem class
(random XOR-3-SAT problems) for which the overall perfor-
mance and scaling of quantum annealing hardware is notice-
ably improved with locally structured embedding. For the fault
diagnosis problems studied here, the locally structured approach
also performs better, and we pursue improvements to the locally
structured algorithm of Bian et al. (2014).

1To see this, note that [h, JP] is a collection of penalty models for constraints on
independent variables, each of which achieves its ground state energy when the
constraint is satisfied, while [0, JC] achieves its ground state energy whenever no
chains are broken.

A

C D E

B

FIGURE 1 | Comparison of locally structured (top) and global (bottom) embeddings of a CSP with constraints {XOR(x1, x2, x3), XOR(x1, x4, x5),
NEQ(x3, x5)} in a D-Wave-structured hardware graph. (A) The penalty models for XOR and NEQ have an energy gap g= 2. (B) After locally structured
embedding with a chain strength of α= 1, the Ising model for the CSP has an energy gap of 2. Chain couplings are indicated with thick blue edges. (C) The given
penalty model for XOR using only 4 qubits has energy gap g= 1. (D) The aggregate Ising model for the CSP. Variable ai is an auxiliary variable used to define the i-th
constraint. (E) Global embedding of the aggregate model. The chain strength α= 2 was optimized experimentally, and the entire Ising model is scaled by a factor of
1/α to satisfy the range requirement −1≤ Jij≤1. After scaling, the Ising model for the CSP has an energy gap of g= 0.5. The global embedding uses fewer qubits
but requires more precision to specify and has a smaller energy gap.
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FIGURE 2 | Comparison of the D-Wave quantum annealing hardware performance in solving XOR-3-SAT problems (Jia et al., 2005), using global
(blue) and locally structured (red) modeling strategies. Each XOR-3-SAT instance is randomly generated subject to having a unique solution and a
clause-to-variable ratio of 1.0. Global embeddings: each constraint s1s2s3 = 1 (with si = ±1) is encoded in the 4-qubit penalty model in Figure 1C, which has energy
gap g= 1. The Ising model representing the sum of these constraints is then embedded using the heuristic in Cai et al. (2014). Local embeddings: each constraint is
mapped directly to the K3,3-structured Ising model in Figure 1A, which has energy gap g= 2. Constraints are then embedded using the rip-up and replace algorithm
in §2.4.2. Left: scaling of hardware performance with no post-processing. ST99 is the number of samples needed to find the ground state with 99% probability,
which, given a fraction p of all samples taken that are in the ground state, is given by the formula ST99= log(1−0.99)/log(1− p) (Rönnow et al., 2014). Bold lines
indicate the median across 50 instances of each problem size. For points not shown, the hardware failed to find a ground state. Middle: total number of qubits
required to embed the Ising model (median). Right: number of qubits in the largest chain in the embedding (median).

2.2. Preprocessing
For some CSPs, aggregating several small constraints into a single
larger one prior to modeling may lead to more efficient hardware
mappings and better hardware performance. The benefit stems
from the fact that variables appearing in multiple constraints
within a cluster need only be represented once (or perhaps not
at all). As an example, consider the Boolean-valued constraint
y=XOR(x1, x2). If XOR is represented using AND/OR/NOT
gates, for example, as {a1 =AND(x1,¬ x2), a2 =AND(x2,¬ x1),
y=OR(a1, a2)}, at least 9 literals are needed. On the other hand,
by clustering the three gates, XOR can be represented by an Ising
model directly using only 4 qubits (see Figure 1C).

Unfortunately, as constraints become larger it becomes more
difficult to find Ising models to represent them. This upper limit
on the practical cluster size requires straightforwardmodifications
to standard clustering methods such as agglomerative clustering
(Tan et al., 2005). When the CSP is derived from a combinational
circuit, cone-based clustering (Siddiqi and Huang, 2007; Metodi
et al., 2014) can also be adapted to accommodate bounds on
the cluster size. Both agglomerative and cone clustering can be
performed in polynomial time.

2.3. Mapping Constraints to Ising Models
Regardless of whether or not constraints are clustered, the next
step in mapping to hardware is identifying an Ising model to
represent each constraint. We assume a constraint on n binary
variables is characterized by a subset of {0, 1}n, which indicates
valid variable assignments. Since quantum hardware uses spin
variables with values in {−1,+1}, we identify 0with−1 and 1with
+1, and assume that the feasible set F is a subset of {−1, +1}n.
Our goal is to find an Ising model that separates the feasible
solutions F from the infeasible solutions {−1, +1}n\F based on
their energy values. In particular, the ground states of the Ising
model must coincide with the feasible solutions F. Furthermore,

to improve hardware performance, we seek Isingmodels forwhich
the gap, i.e., the smallest difference in energy between feasible
and infeasible solutions, is largest. Note that we are maximizing
the energy gap in the final Hamiltonian, rather than the smallest
energy gap throughout quantum annealing, which determines the
fastest theoretical annealing time in an ideal, zero-temperature
environment (Farhi et al., 2000).

Typically, due to both the complexity of the constraint and the
sparsity of the hardware graph, the Ising model requires ancillary
variables, which also may help to obtain larger gaps. We assume
that the allowable interactions in the Ising model are given by
an m-vertex subgraph G of the hardware graph G, where m≥ n.
The constraint variables are mapped to a subset of n vertices of
G, while the rest of the vertices are associated with h=m− n
ancillary variables. For simplicity, we write a spin configuration
z ∈ {−1, +1}m as z= (s, a), meaning that the working variables
take the values s, while the ancillary variables are set to a.

The Ising model we seek is given by variables θ = (θ0, (θi)i ∈

V(G), (θi,j)(i ,j)∈E(G)), where θi are the local fields hi, θi,j are the
couplings Ji,j, and θ0 represents a constant energy offset (uncon-
strained). To simplify the notation, for a configuration z we define
ϕ(z)= (1, (zi)i∈V(G), (zizj)(i ,j)∈E(G)). Thus, the energy of z is
given by

Eθ(z) = ⟨θ, ϕ(z)⟩.

The hardware imposes lower and upper bounds on θ, that we
denote, respectively, by θ and θ (with θ0 = +∞ and θ0 = −∞).
Current D-Wave hardware requires hi ∈ [−2, 2] and Ji,j ∈ [−1, 1].

To separate feasible and infeasible solutions, we require that for
some positive gap g:

min
a

Eθ(s, a) = 0, ∀s ∈ F and

min
a

Eθ(s, a) ≥ g, ∀s ̸∈ F. (2)
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Thus, the problem of finding the Ising model with largest gap
can be stated as follows:

max
g,θ

g

subject to ⟨θ, ϕ(s, a)⟩ ≥ 0 ∀s ∈ F, ∀a (3)

⟨θ, ϕ(s, a)⟩ ≥ g ∀s ̸∈ F, ∀a (4)

∃a : ⟨θ, ϕ(s, a)⟩ = 0 ∀s ∈ F (5)

θ ≤ θ ≤ θ.

Here, constraints (3) and (5) guarantee that all feasible solutions
have minimum energy 0, while constraint (4) forces infeasible
solutions to have energy at least g.

This optimization problem is solved as a sequence of feasibil-
ity problems with fixed gaps g. Using the fact that the interac-
tion graph G has low treewidth, we can significantly condense
the formulation above. In this way, the number of constraints
may be reduced from exponential in m to exponential in the
treewidth of G. The resulting model is solved with a Satisfiability
Modulo Theories (SMT) solver [see Bian et al. (2014) for more
details].

The penalty-finding techniques above assume that a placement
of variables within the Ising model is given. However, different
placements allow for different energy gaps, and it is not clear, even
heuristically, what characteristics of a placement lead to larger
gaps. For small constraints, canonical augmentation (McKay,
1998) can be used to generate all non-isomorphic placements.

2.3.1. Methods for MAX-CSP
Borrowing from fault diagnosis terminology, we consider con-
straints characterized by two disjoint subsets of feasible solutions:
healthy states F1 ⊆ {−1, 1}n, and faulty states F2 ⊆ {−1, 1}n.
States in {−1, 1}n \ (F1 ∪ F2) are considered infeasible. As before,
we require an Ising model that separates feasible from infeasi-
ble solutions, but preferring healthy to faulty states whenever
possible. The particular case F2 = {−1, 1}n \ F1 corresponds to a
MAX-CSP problem, in which a CSP is unsolvable but nonethe-
less we attempt to maximize the number of constraints satisfied
by applying the same penalty to every constraint with a faulty
configuration.

One way to model (F1, F2) is through reification where a
variable representing the truth of the constraint is introduced.
This reified, or health, variable is +1 for healthy states and −1
for faulty states. That is, we define a feasible set

F = {(x, +1) : x ∈ F1} ∪ {(x, −1) : x ∈ F2} ⊆ {−1, 1}n+1,

andmodel F using themethods in §2.3. In this case, both solutions
in F1 and F2 will be equally preferred. To break the tie to favor
healthy states, the health variable can be added to the objective
function with negative weight.2 We call this the explicit fault
model.

2More generally, weighted CSP can be solved by weighting reified variables repre-
senting constraints.

A second strategy is to modify the optimization problem of
§2.3, so that all solutions in F1 have energy 0, while all solutions
in F2 have energy e> 0 and infeasible solutions have energy at
least g > e. In this case, we fix the intermediate energy e and the
optimization problem becomes:

max
θ,g≥e

g

subject to ⟨θ, ϕ(s, a)⟩ ≥ 0 ∀s ∈ F1, ∀a (6)

⟨θ, ϕ(s, a)⟩ ≥ e ∀s ∈ F2, ∀a (7)

⟨θ, ϕ(s, a)⟩ ≥ g ∀s ̸∈ F1 ∪ F2, ∀a (8)

∃a: ⟨θ, ϕ(s, a)⟩ = 0 ∀s ∈ F1 (9)

∃a: ⟨θ, ϕ(s, a)⟩ = e ∀s ∈ F2 (10)

θ ≤ θ ≤ θ.

It is straightforward to adapt the SMT solution methods of
Bian et al. (2014) to this problem. We call this the implicit fault
model. The implicit model generally requires fewer variables (i.e.,
qubits). However, care must be taken to ensure that g is large
compared with e; otherwise, when adding penalties together, it
may be difficult to differentiate several faulty constraints from a
single infeasible constraint. In the explicit model, this issue can be
avoided by choosing a sufficiently small weight for health variables
in the objective function.

2.4. Locally Structured Embedding
Given a method for generating penalties on subgraphs G, the
next steps of locally structured embedding are the placement of
G’s within G, and the routing of chains of interactions between
variables occurring in multiple constraints. Bian et al. (2014) sug-
gested adapting VLSI algorithms for placement (Chan et al., 2000;
Roy et al., 2005; Kahng et al., 2011) and routing (Kahng et al., 2011;
Gester et al., 2013) to accomplish these steps, and in this section,
we describe two improvements to that work. First, using routing
models, we find a tight lower bound on the size of the largest
chain. This bound is combined with search heuristics to speed the
discovery of good embeddings. Second, embedding algorithms
that utilize placement and routing steps differ in a significant way
from their classical VLSI counterparts, and a modification that
performs simultaneous placement and routing improves results.

2.4.1. Chain Length Lower Bounds and
Improved Routing
The performance of D-Wave’s hardware in solving an embedded
Ising model depends heavily on the size of the chains of vari-
ables: shorter chains are more likely to yield better performance
(Venturelli et al., 2015a). In this section, we focus on routing
which minimizes chain lengths. We assume that constraints have
already been placed in the hardware [see Bian et al. (2014) for
placement methods]. We show how to find tight lower bounds on
themaximum chain size in an embedding and provide an effective
procedure to improve routing using these bounds.

We first consider bounds for a single chain, which reduces to
the well-studied Steiner tree problem. Let T ⊆ V(G) be a set of
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terminals, i.e., qubits in the hardware graph to which a variable
has been assigned during placement. A Steiner tree is a connected
subgraph of G that contains all the terminals. The Steiner tree
problem consists of finding the smallest (fewest number of nodes)
Steiner tree. The non-terminal vertices in a Steiner tree are called
Steiner points.

There are several ways to model the Steiner tree problem as a
mixed integer linear program (MILP). However, the tightness of
the linear program (LP) relaxation will have a significant impact
on the time required to find a solution. Here, we consider a
formulation whose LP relaxation, known as the bidirected cut
relaxation, has an integrality gap of at most 2 (Rajagopalan and
Vazirani, 1999). First, we transform G into a directed graph by
replacing each edge with two opposite arcs. For each v ∈ V(G)\T,
let xv be a binary variable indicatingwhether v is part of the Steiner
tree. When variables xv are fixed, the Steiner tree is just a tree
spanning T ∪ {v ∈ V(G): xv = 1}. A tree can be modeled as a
multi-commodity transshipment problem: pick any v0 ∈T as root,
and find a path from v0 to each of the other |T|− 1 terminals.
Concretely, if we define flow variables f ia indicating that arc a is
on the path from v0 to terminal i, then an MILP formulation for
the Steiner tree problem is

(BCR) min
∑

v∈V\T

xv

subject to
∑
v→a

f ia −
∑
a→v

f ia =


1 if v = v0
−1 if v = vi ∈ T, i ̸= 0
0 if v /∈ T

(11)∑
a→v

f ia ≤ xv ∀v ∈ V \ T, i ̸= 0 (12)

0 ≤ f ia ≤ 1 ∀a, i ̸= 0
xv ∈ {0, 1} ∀v ∈ V \ T

Here, constraints (11) are the flow constraints, while the capac-
ity constraints (12) allow flow to be routed only through Steiner
points [i.e., v ∈ V(G) with xv = 1]. The notation v→ a (respec-
tively, a→ v) refers to all arcs whose tail is v (respectively, whose
head is v).

The LP relaxation of program (BCR) above produces very tight
lower bounds for a range of Steiner tree problems (Chopra et al.,
1992). This MILP can be extended to the full routing problem
using different flows for each Steiner tree to be found, with the
additional demand that every variable can appear in at most one
Steiner tree.

Having access to good bounds on the chain lengths allows for
a simple improvement to the routing phase presented in Bian
et al. (2014). Assume that we have a heuristic routing algorithm
R(G, T , M) that takes as input a hardware graph G, a
collection of terminal sets T = {Ti} for each variable xi in the
CSP, and a maximal allowable chain sizeM. Then, any successful
call to R(G, T , M) will provide an upper bound on the
maximal chain length no worse than M, while any unsuccessful
call provides a lower bound of M+ 1. With these bounds we can

perform a heuristic binary search for the optimal maximal chain
length, and beginning with the good lower bound provided by
the LP relaxation of (BCR) will significantly reduce the number
of iterations in the search.

2.4.2. Combined Place-and-Route Algorithms
The place-and-route model of embedding, while known to scale
well, is often inefficient in maximizing the size of a problem
embeddable in a fixed hardware graph. One reason is that in
contrast withVLSI design contexts, the resources being negotiated
by placement and routing are identical (namely, vertices of G).
So, for example, many placement algorithms attempt to pack
constraints as tightly as possible, which leaves few neighboring
vertices available for routing. For this reason, we have developed a
rip-up-and-replace algorithm which combines the placement and
routing phases of embedding, using new routing information to
update placements and vice versa.

During the course of the algorithm, vertices of G may be tem-
porarily assigned to multiple variables, with penalties weighted
according to the number of times a vertex is used. More precisely,
at each step of the algorithm, each CSP variable xi is assigned a
chain Si ⊂ V(G) of vertices; then, the penalty weight of vertex q ∈
V(G) is defined to be ω(q)=α|{i :q∈Si }| for some fixed α > 1. Each
constraint C is given a placement (LC , vC) consisting of a location
LC ⊂ V(G) and an assignment of variables to vertices within the
location, vC: V(C) → LC [where V(C) denotes the set of variables
associated with constraint C].

The algorithm iteratively alternates between assigning con-
straints to locations, and routing variables between constraints
(i.e., creating chains). Chains are constructed using a weighted
Steiner tree approximation algorithm such as the MST algorithm
(Kou et al., 1981) or Path Composition (Gester et al., 2013). Con-
straint locations are chosen based on a cost function, where the
cost of (L, v) depends on the weight of vertices in L and the weight
of routing to (L, v), which is approximated by weighted shortest-
path distances to existing chains. The algorithm terminates when
a valid embedding is found or no improvement can be made.
Explicit details are given in Algorithm 1 below.

As an alternative to updating constraint locations based on
variable routing, simulated annealing or genetic algorithms can be
used to modify placements. For example, define a gene to consist
of a preferred location for each constraint, and a priority order
for constraints. Given a gene, constraints are placed in order of
priority, in their preferred location if it is available or the nearest
available location otherwise. During simulated annealing, genes
are mutated by perturbing the preferred location for a constraint
or transposing two elements in the priority order. These algo-
rithms tend to take much longer than rip-up-and-replace, but
eventually produce very good embeddings.

2.5. Decomposition Algorithms
Owing to a limited number of qubits, it is often the case that
a CSP or Ising model is too large to be mapped directly onto
the hardware. Bian et al. (2014) offered various decomposition
techniques which use QA hardware to solve subproblems as a
subroutine for solving larger ones. In this section, we describe two
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ALGORITHM 1 | Rip-up and replace heuristic for finding a placement of
constraints and embedding of variables in a hardware graph.

Require: Graph G, list of constraints C, list of potential placements (L, v)
for each C∈C

Ensure: Placement of each constraint C∈C on a location (LC, vC) and a chain
Si ⊂ V(G) for each variable xi such that all chains are disjoint, or “failure.”

function RIPUPANDREPLACE(G, C)

Choose an initial placement (LC, vC) for each C∈C

for each variable xi do

Ti ← {vC (xi): C∈C, xi ∈V(C)}

Si ← approximately minimal Steiner tree for terminals Ti

for q ∈ V(G) do

ω(q)← α|{i:q∈ Si}| (for fixed α > 1)

while maxq∈V(G)|{i : q ∈ Si}| is improving do

Randomize the order of C

for each C∈C do

for xi ∈ V(C) do

Si ← TRIM(Si, C)

Update ω(q) for q ∈ Si
Compute d(q, Si)← ω-weighted shortest-path distance from Si to q,
∀q ∈ V(G)

for each potential location (L, v) for C do

cost(L, v)←
∑

q∈L ω(q) +
∑

xi∈C d(v(xi), Si)

Pick new location (LC, vC)← (L, v) for C with probability ∝ β−cost(L,v)

(fixed β > 1)

Update ω(q) for q ∈ LC
for xi ∈ V(C) do

Ti ← {vC′ (xi) : C′ ∈ C, xi ∈ V(C′)}

Si ← ω-weighted approximately minimal Steiner tree for Ti

Update ω(q) for q ∈ Si
if maxq∈V(G)|{i : q ∈ Si}| = 1 then

Optimize chain length of chains {Si} for terminals {Ti} (as in §2.4.1)

else

Return “failure”

function TRIM(Si, C)

Ti ← {vC′ (xi) : C′ ̸= C, xi ∈ V(C′)}

while some x ∈ Si\Ti has degree 1 in the subgraph of G induced by Si do

Si ← Si\{x}

Return Si

additional algorithms: divide-and-concur (Gravel and Elser, 2008;
Yedidia, 2011), specialized to our case of Ising model energy min-
imization, and a new algorithm inspired by regional generalized
belief propagation (Yedidia et al., 2005).

For both algorithms, we partition the constraints of a MAX-
CSP into regions R= {R1, R2, . . .}, so that each subset of con-
straints can be mapped to a penalty model on the hardware
using the methods of the previous section. For a region R ∈ R,
the penalty model [h(R), J(R)] produces an Ising energy function
ER(z(R)) whose ground states satisfy all the constraints in that
region. Here, z(R) is the subset of variables involved in the con-
straints of region R. Since embedding is slow in general, regions
are fixed and embedded in hardware as a preprocessing step.

The key problem with regional decomposition is that sampling
a random ground state from each region produces inconsistent
settings for variables involved inmultiple regions’ constraints. At a
high level, messages passed between regions indicate beliefs about
the best assignments for variables, and these are used to iteratively
update the biases on h(R) in hopes of converging upon con-
sistent variable assignments across regions. The two algorithms
presented here implement this strategy in very different ways.

2.5.1. Divide and Concur (DC)
Divide-and-concur (DC) (Gravel and Elser, 2008; Yedidia, 2011)
is a simple message passing algorithm that attempts to resolve
discrepancies between instances of variables in different regions
via averaging. In each region R, in addition to having an Ising
model energy function ER(z(R)) representing its constraints, one
introduces linear biases LR(z(R)) on its variables, initially set to 0.
Let z(R)i denote the instance of variable zi in region R. The two
phases of each DC iteration are:

• Divide: minimize ER(z(R))+ LR(z(R)) in each R (i.e., satisfy all
constraints and optimize over linear biases).

• Concur: average the instances of each variable: zi =
avgR:zi∈Rz

(R)
i and update the linear biases by setting LR(z(R)) =∑

i∈R − ziz(R)i .

In the divide phase, ER is scaled appropriately so that the
minimum of ER(z(R))+ LR(z(R)) satisfies all constraints.

This basic algorithm tends to get stuck cycling between the
same states; one mechanism to prevent this problem is to extend
DC with difference map dynamics (Yedidia, 2011). DC has been
shown to perform well on constraint satisfaction problems and
constrained optimization problems, and compared with other
decomposition algorithms, has relatively low precision require-
ments for quantum annealing hardware. That is, assuming each
variable is contained in a small number of regions, the linear
biases on the variables in the Ising model of each region (namely,
−zi) are discretized. On the other hand, like most decomposition
algorithms, DC is not guaranteed to find a correct answer or even
converge.

2.5.2. Regional Generalized Belief Propagation (GBP)
Bian et al. (2014) explored min–sum belief propagation as a
decomposition method. Here, we take a different approach:
instead of minimizing the energy of an Ising model E(z) directly,
we sample from its Boltzmann distribution p(z)= e–E(z)/T/Z. Pre-
suming that we have successfully mapped our constraints to Ising
models with large gaps (§2.3), and that the temperature T is
sufficiently small, we have confidence that sampling from the
Boltzmann distribution provides good solutions to the original
constrained optimization problem. The Boltzmann distribution is
the unique minimum of the Helmholtz free energy

A(p) = U(p) − TS(p) =
∑
z

p(z)E(z) + T
∑
z

p(z) log p(z).

Our algorithm decomposes A into regional free energies. The
resultant algorithm is similar in spirit to the generalized belief
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propagation algorithm of Yedidia et al. (2005) based on their
region graph method.

Sum–product belief propagation is related to critical points of
the (non-convex) Bethe approximation, which for Ising energies
reads

ABethe({bi}, {bij})

=
∑

(i,j)∈E

∑
zi,zj=±1

bij(zi, zj)Ji,jzizj + Tbij(zi, zj) log bij(zi, zj)

+
∑
i∈V

∑
zi=±1

bi(zi)hizi + T(1 − di)bi(zi) log bi(zi),

where di = |{j∈V : (i, j)∈ E}|. The distribution p in the free energy
is approximated by local beliefs (marginals) bi, bij at each vertex
and edge. To obtain consistent marginals, bi(zi) =

∑
j bij(zi, zj)

whenever (i, j) ∈ E, one introduces a constrained minimization
problem, and it is the Lagrange multipliers associated with these
constraints that relate to the fixed points of belief propagation. In
particular, if belief propagation converges then we have produced
an interior stationary point of the constrained Bethe approximate
free energy (Yedidia et al., 2005).

In our case, having divided aMAX-CSP into regionsR, we can
formulate a regional analog of the Bethe approximation,

AR
Bethe({bi}, {bR}) =

∑
R∈R

(∑
z(R)

bR
(
z(R)
)
ER
(
z(R)
)

+T
∑
z(R)

bR
(
z(R)
)

log bR
(
z(R)
))

+ T
∑
i

(
(1 − ci)

∑
zi

bi(zi) log bi(zi)

)
,

(13)

where now ci = |{R: i ∈ R}| is the number of regions whose Ising
model includes variable zi. In exactly the same way as above,
requiring consistent marginals induces a constrained minimiza-
tion problem for this regional approximation. The critical points
of this problem are fixed points for a form of belief propagation.
Specifically, for each variable zi in a constraint of R, the messages
passed between variable and region are

µR→i(zi) ∝
∑
z(R)\zi

e−ER(z(R))/kT
∏
j∈R\i

µj→R(zj)

µi→R(zi) ∝
∏

S�i : S̸=R

µS→i(zi)

For large regions, which involve a large number of variables, the
first of these messages is intractable to compute. As in previous
work (Bian et al., 2014), we use QA hardware to produce this
message. In that work, the algorithm relied on minimizing the
energy of the penalty model; here, we harness the ability of the
hardware to sample from the low-energy configurations of the
Ising model without relying on finding a ground state.

Unfortunately, it is not as simple as sampling from the Ising
model formed from the constraints in a given region. Even if

the hardware were sampling from its Boltzmann distribution, this
would minimize the free energy of just that region

AR(pR) =
∑
z(R)

pR
(
z(R)
)
ER
(
z(R)
)

+ T
∑
z(R)

pR
(
z(R)
)

log pR
(
z(R)
)

. (14)

Unless the region R is isolated, this would not recover the
desired belief bR as we have failed to account for energy contribu-
tions of variables involved in other regions’ constraints.We instead
add corrective biases to each region’s penalty model

ẼR
(
z(R); {V(R)

j }
)

=
∑

(i,j)∈E(R)

J(R)ij zizj +
∑
i∈V(R)

h(R)
i zi +

∑
i∈∂R

V(R)
i zi

(15)
and sample from the Boltzmann distribution of this energy func-
tion. We use the notation E(R) and V (R) for the Ising model graph
associated with region R, and ∂R ⊂ V (R) for its boundary: indices
of variables that also appear in the penalty models of constraints
in other regions. Only these variables gain corrective biases.

Algorithm 2 is a generalized belief propagation (GBP) that
uses the Boltzmann distribution of each region’s corrected penalty
model to re-estimate their collective corrective biases. If this
algorithm converges, then one obtains a critical point of the
regional Bethe approximation [equation (13)] constrained to
give consistent marginals

∑
z(R)\zi bR(z

(R)) = bi(zi) (Lackey,
in preparation).3 Similar to belief propagation, there is generally
no guarantee of convergence and standard relaxation techniques,
such as bounding messages away from 0 and 1, are required.

Beyond a proof of correctness, GBP offers a distinct computa-
tional advantage over our previous belief propagation algorithm
from Bian et al. (2014). For ease of reference, we include the
relevant message formulation from that work:

µR→i(zi) := min
z\zi

 ∑
(j,k)∈ E(R)

J(R)j,k zjzk +
∑
i∈V(R)

h(R)
i zi

+
∑

j∈∂R\i

µj→R(sj)

 .

3Lackey, B. (in preparation). A belief propagation algorithm based on regional
decomposition.

ALGORITHM 2 | Generalized belief propagation (GBP) based on regional
decomposition.

Require: A decomposition of a CSP into constraint regionsR and penalty Ising
models ER for each R ∈ R. Putative temperature T.

Ensure: A critical point of the constrained regional Bethe approximation (13), or
“failure.”

For each R ∈ R and j ∈∂R, initialize µj→R(zj) ∝ 1.

while neither converged nor timed-out do

Compute V(R)
i (zi) = −

∑
S�i:S̸=R T log µi→S(zi)

Obtain bR(z(R)) by minimizing equation (14) using the corrected energy ẼR

Compute the messages µR→i(zi) ∝
[∑

z(R)\zi
bR(z(R))

]
/µi→R(zi).

Re-estimate µi→R(zi) ∝
∏

S�i:S̸=R µS→i(zi).
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Note that there are 2|∂R| Ising model energy minimizations
to be performed in each region R. With current QA hardware,
programing of h, J parameters is significantly slower than sam-
pling many solutions, and thus the cost of 2|∂R| reprogramings
can be significant. In GBP, however, we use QA hardware not to
estimate a ground state energy, but to approximate the distribu-
tion bR(z(R)). This can be performed with a single programing
call per region. Each message is formed from the marginals,∑

z(R)\zi bR(z
(R)), which are estimated from the hardware sampled

ensemble.
Algorithm2 is motivated byminimizing regional free energies,

which is achieved at a Boltzmann distribution, and this is needed
to prove soundness. However, in practice, the ideal Boltzmann
distribution is unnecessary. The computation of themessages uses
the bitwise marginals of the distribution, and these can be very
well approximated empirically from a modest sized sample from
the low-energy spectrum. We do expect that QA sampling can be
Boltzmann-like as evidenced in Amin (2015). Small distortions
to the energy spectrum, as indicated in that paper, should be
averaged out in the computation of the marginals.

One weakness in this algorithm is the need to know the tem-
perature T in order to produce the corrective biases V(R)

i (zi).
Benedetti et al. (2015) and Raymond et al. (2016) propose meth-
ods to estimate instance-dependent effective temperature directly
from samples. It seems likely that these techniques can be applied
to GBP and will be incorporated into future work.

3. RESULTS

We apply the methods of the previous sections to solve problems
in fault diagnosis, a large research area supporting an annual
workshop since 1989.4 We focus on circuit hardware fault diag-
nosis, which has featured as the “synthetic track” in four recent
international competitions (Kurtoglu et al., 2009; Poll et al., 2011).
Our goal is to use fault diagnosis as an example of how to use
the methods of this report, and we use these competitions as
inspiration rather than adhere to their rules directly. The typical
problem scenario is to inject a small number of faults into the
circuit, using the specified fault modes for the targeted gates, and
produce a number of input–output pairs. Now, given only these
input–output pairs as data, one wishes to diagnose the faulty gates
that lead to these observations. As typically there will be many
valid diagnoses, the problem is to produce one involving the fewest
number of faulty gates (a “min-fault” diagnosis).

We restrict to the “strong” fault model, in which each gate is
healthy, and behaves as intended, or fails in a specific way. (In
the “weak” fault model, only healthy behavior is specified.) The
strong fault model is generally considered more difficult than the
weak model, but is no harder to describe using the Ising model
techniques of §2.3.

Both the strong and weak fault model diagnosis problems are
NP-hard. State-of-the-art performance for deterministic diagnosis
is achieved by translating the problem into a SAT instance and
using a SAT solver (Metodi et al., 2014), but this approach has
not been as thoroughly investigated in the strong fault model
(Stern et al., 2014). Greedy stochastic search produces excellent

4e.g., http://dx15.sciencesconf.org/

results in the weak fault model, but is less successful in the strong
fault model (Feldman et al., 2007).

We study the effectiveness of the D-Wave hardware in two
experiments. First, we examine the ability of the hardware to sam-
ple diverse solutions to a problem. We find, despite not sampling
diagnoses uniformly, that almost all min-cardinality diagnoses
can be produced by oversampling the hardware by a factor of 1000.
Next, we use the hardware to produce a solution for a problem too
large to be embedded.We test dual decomposition fromBian et al.
(2014) and divide-and-concur from §2.5 above, and solve several
min-fault diagnosis problems that require multiple regions.

3.1. Problem Generation
We test on the ISCAS ‘85 benchmarks (Hansen et al., 1999) and
74X-Series combinatorial logic circuits. From publicly available
.isc files,5 we remove fault modes for buffer or fan-out wires,
leaving only fault models for gates. Additionally, in order to
accommodate penalty modeling with a small number of variables,
we split certain large gates into smaller ones; this can be done
without changing the correct fault diagnoses.

Owing to the difficulty of generating good input–output pairs
(Poll et al., 2011), we take a simplified approach. For each circuit,
we randomly generate 100 observations (input–output pairs) and
select a subset of size 20 with as uniform a distribution of mini-
mum fault cardinalities as possible. These cardinalities are verified
using theMAX-SAT solver EVA (Narodytska and Bacchus, 2014).

We perform cone clustering (§2.2) on each circuit using the
“pessimistic” approach for strong-fault models of Stern et al.
(2014) and generate Ising models to represent the constraints for
each cone. When using explicit health variables (§2.3.1), so that
the binary variables in the CSP consist of a health variable for each
gate and a {0, 1} setting for each wire in the circuit, the resulting
Isingmodels have energy gap at least 2 (using hardware-structured
Ising models with Jij ∈ [−1, 1] and hi ∈ [−2, 2]). With implicit
health variables, the energy gap is 1 between healthy and faulty
states.

We partition the cone clusters into regions using the software
package METIS (Karypis and Kumar, 1998), with the number of
regions chosen so that each region is embeddable in a working D-
Wave hardware graph with up to 1152 qubits. Finally, we embed
each region using Algorithm 1. It is important to note that for
a given circuit, each of its regions need only be embedded once
as different test observations may use the same embedding. That
is, we generate and embed a single CSP for each circuit, and
different test observations correspond to fixing the input–output
variables within the CSP to different values. Table 1 summarizes
the circuits, partitions, and embedding statistics.

3.2. Generating Diverse Solutions
To test the D-Wave hardware’s ability to generate diverse solu-
tions, we consider the problem of finding all min-cardinality
fault diagnoses for a given observation. This is computationally
not only more difficult than finding a single diagnosis but also
more realistic from the perspective of applications. Again, state-
of-the-art performance in the weak fault model is achieved using
a SAT-solver (Metodi et al., 2014).

5http://web.eecs.umich.edu/∼jhayes/iscas.restore/benchmark.html
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TABLE 1 | Statistics for the 74X Series and ISCAS ‘85 benchmarks as embedded on a D-Wave 2X processor, including number of regions |R| in the
decomposition.

Name Gates Variables Explicit faults Implicit faults

|R| Qubits/
region

Chain
length

Emb.
time

|R| Qubits/
region

Chain
length

Emb.
time

74182 18 27 1 241 8 11.7 1 197 8 8.5
74L85 25 36 1 376 12 19.6 1 315 12 12.4
74283 30 39 1 430 17 30.9 1 329 15 15.0

c432 124 160 3 395–499 22–35 24.6 2 561–563 33–35 52.2
c499 162 203 4 416–460 18–31 26.4 3 411–439 8–31 33.0
c880 287 347 4 496–635 8–22 44.8 3 544–574 13–15 60.3
c1355 474 515 6 486–639 10–32 69.6 4 506–553 8–34 49.0
c1908 379 412 7 534–684 18–39 42.0 5 584–763 13–44 73.4

Chain length refers to the maximum size of a chain within each region. Emb. time refers to the average time in seconds taken by Algorithm 1 to embed a region, using one core of a
2.6GHz processor.

FIGURE 3 | Performance in finding all min-fault diagnoses for the 74X benchmarks using a D-Wave 2X processor. Missing ×’s indicate that not all
solutions were found.

The hardware’s natural ability to rapidly generate low-energy
samples lends itself to applications in which a diverse set of
optimal solutions are required. Unfortunately, samples taken from
the D-Wave hardware do not conform to a Boltzmann distribu-
tion, owing to both noise and quantum mechanical effects. In

contrast with greedy stochastic search (Feldman et al., 2007), min-
cardinality solutions will not generally be sampled with equal
probability. In practice, Gibbs sampling (Geman and Geman,
1984) and other post-processing techniques may be used to make
a distribution of ground states more uniform.
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We restricted to the 74X-Series circuits in Table 1, which can
be entirely embedded within the current hardware architecture.
For each input–output pair for a circuit, we used SharpSAT
(Thurley, 2006) to enumerate the min-cardinality diagnosis set
Ω≤ and then drew 1000|Ω≤| samples from the QA hardware.
Ising models were pre-processed with roof-duality (Boros and
Hammer, 2002) and arc-consistency (Mackworth, 1977), allow-
ing certain variables to be fixed in polynomial time. Random
spin–reversal transformations (“gauge transformations”) were
applied to mitigate the effects of intrinsic control error in the D-
Wave hardware. Samples were post-processed using majority vote
to repair broken chains, followed by greedy bit-flipping in the
original constraint satisfaction space to descend to local minima.
See King and McGeoch (2014) for more details on pre- and
post-processing.

The results in Figure 3 show the expected number of sam-
ples needed to see all min-fault diagnoses at least once, together
with the number of samples needed to see just a single min-
fault diagnosis. Namely, if pi denotes the fraction of all sam-
ples taken that correspond to min-fault diagnosis i, then the
expected number of samples required to find a single min-fault
solution is 1/

∑
i pi, and the expected number of samples required

to find all min-fault solutions is
∫∞
0 (1 −

∏
i (1 − e−pit))dt.

[This is the coupon collecting problem with non-uniform prob-
abilities (Von Schelling, 1954; Flajolet et al., 1992).] Following

TABLE 2 | Performance in finding all min-fault diagnoses for the 74X
benchmarks using a D-Wave 2X processor.

Name |ΩΩΩ≤≤≤ | Explicit faults Implicit faults

Mc(10) Mc(100) Mc(1000) Mc(10) Mc(100) Mc(1000)

74182 1–200 95.5 100 100 63.9 90.0 98.9
74L85 2–84 69.5 94.9 100 44.7 71.0 90.1
74283 1–580 60.4 91.2 98.6 25.9 56.2 80.0

Ω≤ is the set of min-fault diagnoses for a given instance, and Mc (N) is the expected
percentage of all min-fault diagnoses found when N|Ω≤ | samples are taken for each
instance. Note that the annealing time to take 100 samples is 2ms, roughly the same
as the time to take 4 samples reported in Table 6 of Feldman et al. (2007).

A B

FIGURE 4 | (A) Summary of D-Wave hardware success rate using divide-and-concur (DC) and dual decomposition (DD), compared with the same decomposition
algorithm using an exact low-treewidth software solver (SW). (B) Percentage of hardware samples (HW) and regional solutions (Region) within ∆% of optimality
across all instances tested.

Feldman et al. (2007), we also computed the expected fraction of
all min-fault diagnoses found when taking N|Ω≤| samples, for N
∈ {10, 100, 1000}. These results are summarized in Table 2.

3.3. Solving Large Problems
We tested the performance of the D-Wave hardware in solving
the fault diagnosis problem for circuits too large to be embedded.
On the regions produced in §3.1, we applied two algorithms:
dual decomposition (DD) from Bian et al. (2014) and divide-
and-concur (DC) from §2.5. These two algorithms were chosen
because they lead to relatively high success rates in software simu-
lations, without the complications of finite-temperature sampling
(as in Algorithm 2) or multiple hardware calls for each region
within each iteration [as in the belief propagation of Bian et al.
(2014)].

To measure algorithm performance independent of quantum
annealing, we also found the minima for regional Ising mod-
els exactly using low-treewidth variable elimination (Koller and
Friedman, 2009). Such an exact solver (SW) gives an upper bound
on the performance of a decomposition algorithm.

In Figure 4A, we show the number of successfulmin-fault diag-
noses out of 20 instances for several of the ISCAS ‘85 benchmark
circuits. Using the exact solver, we attempted to solve each fault
diagnosis instance 100 times, and recorded the median number
of successes across the 20 instances for each circuit. Using the
D-Wave hardware, we attempted to solve each instance once. A
summary of the D-Wave hardware performance on each regional
optimization problem is given in Figure 4B. Each problem was
solved by drawing 20,000 samples across 20 spin-reversal trans-
formations, with pre- and post-processing as in §3.2.

Note that the overall performance of the decomposition algo-
rithms using D-Wave’s heuristic optimizer is similar to that using
an exact solver, despite the fact that the D-Wave hardware does
not solve every sub-problem to optimality. This suggests that QA
hardware that provides only approximate solutions in the form of
low-energy samples can still be used to solve large optimization
problems provided it can capture a sufficiently non-trivial portion
of the original problem.
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4. DISCUSSION

In this paper, we have expanded on the approach given in Bian
et al. (2014) to solve large discrete optimization problems using
quantum annealing hardware limited by issues of precision, con-
nectivity and size. This approach is based on two ideas: locally
structured embeddings, in which hardware precision is mitigated
bymapping constraints of a CSP onto disjoint subgraphs of a hard-
ware graph, at the cost of additional qubits; and decomposition
algorithms, in which large problems are solved by passing mes-
sages between smaller, embeddable regions. We demonstrate that
for some problems the qubit cost of locally structured embeddings
is offset by improved hardware performance, andwe propose both
new embedding techniques and new decomposition algorithms.

Applying these techniques with the D-Wave 2X device, we are
able to solve non-trivial problems in model-based fault diagnosis.
For small, directly embeddable circuits, sampling from the D-
Wave hardware allows us to find all min-fault diagnoses across a
range of test observations, despite not sampling those diagnoses
uniformly. For larger circuits, decomposition algorithms with up
to 5 regions prove successful in identifying a single min-fault
diagnosis. While the total running times of the decomposition
algorithms are not currently competitive with the fastest classical
techniques, both the speed and the performance of the algorithms

improve dramatically with the size of the quantum hardware
available.

Two of the most important directions for future research are as
follows:

1. Expanding penalty-modeling techniques to more qubits. As the
available hardware grows larger, large energy gaps, and other
forms of error correction will become more important to find-
ing the ground state in quantumannealing. In addition, a better
understanding of the performance trade-off between larger
energy gap and fewer qubits is needed.

2. Alternate strategies for decomposition algorithms. Since minor
embedding is itself a difficult discrete optimization prob-
lem, current decomposition algorithms are hampered by the
need for fixed regions with pre-computed embeddings. More
research is needed into circumventing the need for fixed
regions, combining quantum annealing with the best classical
constraint satisfaction methods, and making better use of the
fast sampling capabilities of the available hardware.
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