263 research outputs found

    Localization Recall Precision (LRP): A New Performance Metric for Object Detection

    Get PDF
    Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. At https://github.com/cancam/LRP we provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted to other datasets as well.Comment: to appear in ECCV 201

    Localization recall precision (LRP): A new performance metric for object detection

    Get PDF
    Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose “Localization Recall Precision (LRP) Error”, a new metric specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the “Optimal LRP” (oLRP), the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, oLRP determines the “best” confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that oLRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. Our experiments demonstrate that LRP is more competent than AP in capturing the performance of detectors. Our source code for PASCAL VOC AND MSCOCO datasets are provided at https://github.com/cancam/LRP

    A Ranking-based, Balanced Loss Function Unifying Classification and Localisation in Object Detection

    Get PDF
    We propose average Localisation-Recall-Precision (aLRP), a unified, bounded, balanced and ranking-based loss function for both classification and localisation tasks in object detection. aLRP extends the Localisation-Recall-Precision (LRP) performance metric (Oksuz et al., 2018) inspired from how Average Precision (AP) Loss extends precision to a ranking-based loss function for classification (Chen et al., 2020). aLRP has the following distinct advantages: (i) aLRP is the first ranking-based loss function for both classification and localisation tasks. (ii) Thanks to using ranking for both tasks, aLRP naturally enforces high-quality localisation for high-precision classification. (iii) aLRP provides provable balance between positives and negatives. (iv) Compared to on average \sim6 hyperparameters in the loss functions of state-of-the-art detectors, aLRP Loss has only one hyperparameter, which we did not tune in practice. On the COCO dataset, aLRP Loss improves its ranking-based predecessor, AP Loss, up to around 55 AP points, achieves 48.948.9 AP without test time augmentation and outperforms all one-stage detectors. Code available at: https://github.com/kemaloksuz/aLRPLoss .Comment: NeurIPS 2020 spotlight pape

    Hierarchical Fish Species Detection in Real-Time Video Using YOLO

    Get PDF
    Master's thesis in Information- and communication technology (IKT590)Information gathering of aquatic life is often based on time consuming methods with a foundation in video feeds. It would be beneficial to capture more information in a cost effective manner from video feeds, and video object detection has an opportunity to achieve this. Recent research has shown promising results with the use of YOLO for object detection of fish. As under-water conditions can be difficult and fish species hard to discriminate, we propose the use of a hierarchical structures in both the classification and the dataset to gain valuable information. With the use of hierarchical classification and other techniques we present YOLO Fish. YOLO Fish is a state of the art object detector on nordic fish species, with an mAP of 91.8%. For a more stable video, YOLO Fish can be used with the object tracking algorithm SORT. This results in a complete fish detector for real-time video

    Hierarchical Object Detection applied to Fish Species

    Get PDF
    Gathering information of aquatic life is often based on timeconsuming methods utilizing video feeds. It would be beneficial to capture more information cost-effectively from video feeds. Video based object detection has an ability to achieve this. Recent research has shown promising results with the use of YOLO for object detection of fish. As underwater conditions can be difficult and thus fish species are hard to discriminate. This study proposes a hierarchical structure-based YOLO Fish algorithm in both the classification and the dataset to gain valuable information. With the use of hierarchical classification and other techniques. YOLO Fish is a state-of-the-art object detector on Nordic fish species, with an mAP of 91.8%. The algorithm has an inference time of 26.4 ms, fast enough to run on real-time video on the high-end GPU Tesla V100.Hierarchical Object Detection applied to Fish SpeciespublishedVersio

    Top-down neural attention by excitation backprop

    Full text link
    We aim to model the top-down attention of a Convolutional Neural Network (CNN) classifier for generating task-specific attention maps. Inspired by a top-down human visual attention model, we propose a new backpropagation scheme, called Excitation Backprop, to pass along top-down signals downwards in the network hierarchy via a probabilistic Winner-Take-All process. Furthermore, we introduce the concept of contrastive attention to make the top-down attention maps more discriminative. In experiments, we demonstrate the accuracy and generalizability of our method in weakly supervised localization tasks on the MS COCO, PASCAL VOC07 and ImageNet datasets. The usefulness of our method is further validated in the text-to-region association task. On the Flickr30k Entities dataset, we achieve promising performance in phrase localization by leveraging the top-down attention of a CNN model that has been trained on weakly labeled web images.https://arxiv.org/abs/1608.00507Accepted manuscrip
    corecore