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SUMMARY

Software security engineering is concerned with creating software that operates as required
in a potentially hostile environment. Creating secure software is important because it is
ubiquitously used and enables interactions between humans, governments, and compa-
nies. This engineering practice is essential to avoid and fix software defects related to se-
curity (i.e., software vulnerabilities). Towards this goal, methods exist to detect software
vulnerabilities using deep learning.

Our research aims to improve such a vulnerability detection system by using explana-
tions of its incorrect classifications. To reach this goal, we measured how precisely the
layer-wise relevance propagation (LRP) method could detect vulnerable lines across 51,586
vulnerable samples and how accurately LRP located the vulnerable lines in these sam-
ples. Using the insights gained from these measurements, we performed experiments to
improve the classification performance of our example vulnerability detection system by
filtering tokens found in incorrect classifications before and after fitting the model.

We discovered that the LRP method is more than twice as good at detecting vulnerable
lines in our dataset than a random guess. In spite of this improvement there are still many
vulnerable lines which are not detected using our approach and this shows that our ap-
plication of the LRP method is not well suited for this purpose. Furthermore, we measured
how accurate the LRP method can detect vulnerable lines in a sample. We determined that,
on average, a significant part of the vulnerable lines in a sample is not selected by the LRP
method. Because the majority of our vulnerable samples has a single vulnerable line, our
application of the LRP method will rarely locate it which limits its practical use in explain-
ing these samples.

The results of our experiments show that the number of correct classifications and the
average precision decreased by removing the most relevant parts from our samples after
fitting the model. Conversely, removing them before fitting the model did not change the
average precision significantly but did decrease the number of false positive classifications
at the expense of an increase in the number of false negative classifications.

Our analysis of explanations improves our understanding of deep learning approaches
in the context of software vulnerability detection. We show that the lines we labeled as be-
ing vulnerable do not play a significant role in the classifications of our model. This insight
into the behavior of our model was unexpected and lowered our trust in its ability to detect
vulnerabilities when applied in a different setting. Our adjustments to the model training
procedure yielded a model in which, at the same classification threshold, a larger propor-
tion of detected vulnerabilities are relevant. However, they also resulted in a model that
selects a smaller proportion of the vulnerabilities. An improvement would require higher
proportions on both terms and therefore, we did not improve our model’s performance but
rather shifted its focus in this classic trade-off in vulnerability detection systems.
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SAMENVATTING

Software security engineering houdt zich bezig met het maken van software die werkt zoals
verwacht in een potentieel vijandige omgeving. Dit is belangrijk omdat software alomte-
genwoordig wordt gebruikt en de interactie tussen mensen, overheden en bedrijven mo-
gelijk maakt. Het vermijden en oplossen van softwaredefecten met betrekking tot beveilig-
ing (d.w.z. software kwetsbaarheden) is een essentieel aspect van deze praktijk. Om dit doel
te bereiken bestaan er methoden die software kwetsbaarheden kunnen detecteren met be-
hulp van deep learning.

Ons belangrijkste onderzoeksdoel was om een dergelijke methode voor het detecteren
van kwetsbaarheden te verbeteren door gebruik te maken van verklaringen van onjuiste
classificaties. Voor dit doel hebben we gemeten hoe nauwkeurig de Layerwise Relevance
Propagation (LRP) methode kwetsbare regels kon detecteren die zich in 51.586 kwetsbare
voorbeelden bevonden en hoe volledig LRP kwetsbare regels in de voorbeelden kon lokalis-
eren. Daarnaast hebben we vier experimenten uitgevoerd om de prestaties van het model
te verbeteren. Deze experimenten filteren broncode elementen, gevonden in onjuiste clas-
sificaties, uit samples tijdens en na het trainen van het model.

We ontdekten dat de LRP-methode meer dan twee keer zo veel kwetsbare regels de-
tecteert dan een willekeurige detectie. Ondanks deze verbetering zijn er nog veel kwetsbare
regels die niet gedetecteerd worden wat aantoont dat onze toepassing van de LRP methode
in mindere mate geschikt is voor dit doel. Daarnaast hebben we bepaald hoe nauwkeurig
de LRP methode de kwetsbare regels kan bepalen in een sample. Hieruit bleek dat, gemid-
deld gezien, een groot deel van de kwetsbare regels in samples niet geselecteerd worden
door de LRP methode. In dit onderzoek was het praktisch nut van onze toepassing van de
LRP methode beperkt omdat onze voorbeelden vaak een enkele kwetsbare regel bevatten
die zelden als zodanig werd aangemerkt.

De resultaten van onze experimenten laten zien dat het aantal correcte classificaties en
de gemiddelde precisie lager werd door de meest relevante onderdelen uit onze samples
te verwijderen in een getraind model. Het verwijderen van deze onderdelen voordat het
model had geleerd van de data veranderde de gemiddelde precisie niet significant maar
verminderde wel het aantal fout-positieve classificaties met 29% wat ten koste ging van het
aantal fout-negatieve classificaties, wat steeg met 23%.

Onze analyse van de verklaringen vergroot ons inzicht over de toepassing van deep
learning in de context van software kwetsbaarheden detectie. We tonen aan dat de kwets-
baar gelabelde regels geen grote rol spelen in de classificaties van ons model. Dit inzicht
in het gedrag van het model was onverwacht en verminderde ons vertrouwen in zijn ver-
mogen om kwetsbaarheden te detecteren in een andere toepassing. Onze aanpassingen
aan de trainings procedure van het model zorgen ervoor dat, bij een gelijkblijvende classi-
ficatie drempelwaarde, een groter gedeelte van de gedetecteerde kwetsbaarheden relevant
zijn. Ze hebben echter ook tot gevolg dat een kleiner gedeelte van de kwetsbaarheden gede-
tecteerd wordt. Voor een verbetering zouden beide proporties groter moeten zijn geworden
en daarom hebben we niet zozeer de prestaties van het model verbeterd als wel de focus
van het model verlegd in deze klassieke afweging bij het detecteren van kwetsbaarheden.
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1
INTRODUCTION

1.1. SOFTWARE SECURITY
Software engineering is seen as a structured, disciplined approach to create, implement,
and maintain software [41]. This engineering discipline has a long history, starting halfway
in the twentieth century. Software security engineering, creating software that operates as
expected in a potentially hostile environment, only started during the last decade of the
twentieth century.

Nowadays, software is ubiquitously used (e.g., in smartphones, hospitals, or vehicles)
and enables interactions between humans, governments, and companies (e.g., mobile bank-
ing, digital identification, or online shopping). As society has become dependent on soft-
ware, engineering its security has also become more critical.

1.2. SOFTWARE VULNERABILITIES
Avoiding and fixing software defects related to security (i.e., software vulnerabilities) is an
essential aspect of engineering secure software [23]. Software vulnerabilities are design
(i.e., flaws) or implementation (i.e., bugs) errors which pose a risk to the intended use of
the application. For example, an online banking environment vulnerability could allow
unauthorized access to this bank account.

Software vendors report vulnerabilities found in their products to the national vulner-
ability database (NVD) in the US [26]. Each vulnerability is assigned a specific common
weakness enumeration (CWE) type when reported. The CWE is a list of common weakness
types, such as buffer overflow1 or cross-site scripting2. The NVD reports that the number
of vulnerability registrations steeply increased in the last three years (see figure 1.1). As a
side note, an analysis by Micro Focus3 attributes this spike to the combination of a broader
range of CWE types and a tripling of the number of products affected.

1.3. SOFTWARE VULNERABILITY DETECTION
The NVD vulnerability report includes vulnerabilities in commonly used software prod-
ucts, such as Microsoft Internet Explorer, Google Android, or Adobe Acrobat Reader. These

1https://cwe.mitre.org/data/definitions/120.html
2https://cwe.mitre.org/data/definitions/79.html
3https://content.microfocus.com/application-security-risk-tb/2019-appsec-risk-report
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Figure 1.1: Yearly totals of published vulnerabilities. Source: National Vulnerability Database [26]

products are commonly built with the programming languages C or C++. These program-
ming languages provide means for direct addressing of memory locations for efficiency
and speed of computation. Direct addressing of memory requires diligent programming
to avoid writing or reading unintended memory locations and is prone to bugs. These
bugs are common root causes of vulnerabilities found in said products. For example, ac-
cording to CVE details4, the highest occurring vulnerability categories (see figure 1.2) for
these products include memory corruption, overflow and execute code. These categories
encompass CWE types which typically involve incorrect addressing of memory. For exam-
ple, CWE-119: buffer overflow5, CWE-416: Use After Free6, or CWE - 787: Out-of-bounds
Write7.

Figure 1.2: Vulnerability counts per type of Microsoft Internet Explorer, Google Android, and Adobe Acrobat.
Source: CVE details [29].

4a site providing detailed information and statistics on the NVD database https://www.cvedetails.com
5https://cwe.mitre.org/data/definitions/119.html
6https://cwe.mitre.org/data/definitions/416.html
7https://cwe.mitre.org/data/definitions/787.html
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Software vulnerability detection can be employed to find bugs related to the direct ad-
dressing of memory. Methods for vulnerability detection analyze source code or a running
program. Analysis techniques such as string-pattern matching, integer range analysis, or
tainted dataflow, suffer from false positives [44, 46, 14, 39]. Validating many false positives
requires manual effort, but undetected vulnerabilities due to false negatives introduce a
false sense of security. A software vulnerability detection tool that aims to keep the number
of false positives low while eliminating false negatives is thus seen as useful [23].

Several studies show that machine learning and deep learning techniques can detect
software vulnerabilities with good performance [22, 34]. For example, Li et al. compare
their approach to state-of-the-art open-source and commercial tools. They report a de-
crease of 50% and 19.4% in false negative and false positive rates, respectively, compared
to state-of-the-art static analysis tools [21]. To trust such an approach, we should be able
to attain details on or validate decisions made by it. The complex models underlying their
deep learning approach are not interpretable by humans. Explaining the evidence for a de-
cision in an interpretable manner provides insight into its decisions which can build trust
and allow for improvements of such an approach. Figure 1.3 shows an example of such an
interpretable explanation. See section 2.4 for more details on explaining deep learning.

Figure 1.3: Explanation of image classification. The heatmap (lower left image) shows which parts of the
image classify the image as a boat. Source Montavon et al. [25]

1.4. GOAL
The main research goal was to improve the SySeVR vulnerability detection system of Li et
al. [21] by explaining incorrect classifications by means of LRP. Towards this goal, we de-
termined the vulnerable lines in samples and measure how many of these lines are used
in classifications. Furthermore, we used these explanations to determine which parts are
responsible for incorrect classifications and measured whether removing the influence of
these parts during inference or model training lowered the number of incorrect classifica-
tions. Our contribution was the new application of an explanation method to a vulnerabil-
ity detection approach.

1.5. OVERVIEW REPORT STRUCTURE
Chapter 2 provides the background for the research fields used in this thesis. Chapter 3
of this report shows the approach to reaching the research objective. Chapter 4 describes
how samples in the NVD and SARD vulnerability datasets are transformed to the dataset of

3



Li et al. and how vulnerable lines of code are determined. Chapter 5 describes the expla-
nation technique, which explains the classifications made by the deep learning approach
of Li et al, and shows how we apply this technique to determine the relevant parts of vul-
nerabilities.[21, 3]. Chapter 6 describes how we use the obtained relevant parts to improve
the vulnerability detection approach of Li et al. and reports the results of the experiments.
The limitations of the research and the relevance of the results regarding the problem of
vulnerability detection are discussed in chapter 8. Finally, chapter 9 concludes how the re-
search objective is achieved and reiterates the supporting results. It also indicates potential
further research opportunities.
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2
BACKGROUND

2.1. MACHINE LEARNING
The research field of machine learning studies computer algorithms that can learn from
data. Machine learning can be used to make predictions, e.g., an algorithm can learn prop-
erty values from the location, lot size, or the number of rooms. Alternatively, to make
classifications, e.g., classifying an e-mail as spam, an algorithm can analyze words in an
e-mail. These relevant parts of information concerning the subject are known as features.
Determining which features to extract from a subject to perform well on a machine learn-
ing task is commonly guided by domain knowledge. For example, algorithms can detect
human faces in images with information about skin color or geometric relations between
nose, eyes, or mouth. Manually determining and extracting these features requires a large
amount of human effort, and it can be challenging in some tasks to determine the right
features.

To reduce these shortcomings, research is conducted to automate the discovery of fea-
tures of a specific machine learning task. Representation learning methods have been pro-
posed which can discover relevant features in data [10]. For example, meaningful vector
representations for words can be learned from text corpora. Mikolov et al. have shown that
these representations, named word embeddings, capture similarities and relationships be-
tween words. These embeddings can improve the generalisation of word prediction tasks
because previously unseen combinations of words roughly yields the same output as the
output learned from example combinations. For example, sentence completion for the
sentence: "violets are ?" can yield different types of colors even though they have not been
seen during learning [24].

2.2. DEEP LEARNING
When confronted with natural input data (e.g., object detection from raw pixel values),
representation learning methods can benefit from learning increasingly abstract represen-
tations[10]. Deep learning methods create layers of representations, with each layer ex-
pressed in terms of its predecessor. In an example of object detection in figure 2.1, the
edges in the "1st hidden" layer are expressed in pixels from the input layer. The edges rep-
resent corners and contours in the "2nd hidden layer" that describe object representations
in the final "3rd hidden layer". A machine learning classifier uses the abstract representa-
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Figure 2.1: Deep learning allows computers to perceive high-level concepts by expressing them in terms of
lower-level concepts. Image source: Deep learning by Goodfellow et al. [10].

tions in the final layer to determine what kind of object is most likely to be present in the
example.

Deep learning methods train neural networks to learn the function y = f ′(x) of the ma-
chine learning task by forming layers of representations. These representations are called
the parameters, or weights, w of the neural network. Training aims to yield a set of parame-
ters to function y = f (x, w) that approximates function f ′. Neural networks are composed
of neurons that are sending signals to related neurons in successive layers. The type and
amount of layers and the loss function (which measures how much f approximates f ′) de-
termine the architecture of a neural network. Each layer in the neural network can have its
own parameters, called hyperparameters. For example, the layer dimensions or which ac-
tivation function is used to compute the output of the layer. The fully-connected layer type
is commonly applied in neural networks. All neurons in a fully-connected layer are con-
nected to the neurons in the successive layer. Figure 2.2 shows an example neural network
which consists of two fully-connected layers. Each node represents a neuron, and each
arrow represents a weighted connection between two neurons. The neurons in the input
layer receive real-valued features from the task. The output y ∈R for a given neuron h after
the input layer with n predecessor neurons x0, x1, .., xn−1, xn and weights w0, w1, .., wn−1, wn

is

y =σ
(

bh +
n∑

i=0
xn wn

)
,

whereσ is a function which determines how much this neuron is activated by its input and
is commonly defined asσ(x) = max(0, x). Term bh is a real-valued scalar that can offset the
weighted sum of the input. The network-output y is computed by the neuron o0 in the final
(output) layer. A loss function is applied to the network output during training in order to
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measure the network’s performance on the learning task.
The usual training process of neural networks is gradient descent using backpropaga-

tion (see [33] for details), and it encompasses three steps. The first step is computing the
output of the neural network for a given example. The next step is computing the loss L of
the network output with regard to the true class of this sample. Finally, an algorithm up-
dates the neural network parameters in a layer-by-layer manner using the error gradient.
This gradient is a vector containing partial-derivatives signifying how sensitive the loss L is
to changes in the network’s parameters. The update for a parameter p0 is

p0 = p0 −η
(
∂L

∂p0

)
,

where η is the learning rate, which is a hyperparameter that determines the size of the
update, and ∂L

∂p0
is the partial-derivative of L with respect to parameter p0. The value of the

parameter is decreased because the loss function is minimized. This process is repeated
for the samples in the training data until the neural-network parameters are optimized for
the machine learning task (i.e., good representations have been computed).

Figure 2.2: Neural network showing input neurons and their connections to the hidden and output layers.
Image generated with nn-svg [20]

Deep learning tasks commonly apply two forms of neural networks, the recurrent neu-
ral network (RNN) and the convolutional neural network (CNN).

RECURRENT NEURAL NETWORK
Recurrent neural networks (RNN) have been used in the field of natural language process-
ing for language analysis tasks, for example, machine translations, or describing images
[4, 45]. RNNs store information from earlier seen input and use this to reason about the
current input. See figure 2.3 for an example. RNN A processes input x0 at timestep 0 to
compute output h0 and remembers its state (the hidden state). At time-step 1 RNN A uses
this state together with input x1 to compute output h1 and remembers the new state. This
process is repeated until the last input X t at timestep t has been processed. White et al.
and Gu et al. have shown that RNNs can be used to represent source code for software en-
gineering tasks such as code clone detection and API usage proposals [49, 48, 11].
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Figure 2.3: Recurrent neural networks use information from previously processed input for reasoning about
current input. Image source: Understanding LSTM’s by Olah [28].

Researchers show that training RNNs to learn from input over many timesteps is lim-
ited [5]. During backpropagation, the gradient of the network error tends to become either
very small or very large. In the first case, the neural network learns very slow or not at
all which is because of tiny parameter updates. In the latter case, parameter updates be-
come very large, prohibiting the learning algorithm (e.g. gradient descent) from converg-
ing. Hochreiter and Schmidhuber showed that a RNN variant, the long short-term memory
(LSTM) network, can overcome the problems mentioned above [15]. The nodes of a LSTM
network contain, besides their hidden state, an additional cell state that functions as long-
term memory. At each timestep, a node can add information (or remove information from)
the long-term memory in a constrained manner, preventing the cell state from becoming
either very small or very large.

CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks (CNN) are often used in object- or handwriting-recognition
in images [17, 19]). Designed to handle images in its learning task, the input layer of a CNN
can accept a 3D volume of real-valued values (e.g., height, width, and color depth of an
image). The CNN contains layers that employ filters to transform the volume into a new
representation. Each filter is a small volume with trainable weights. See figure 2.4 for an
example showing two filters. When a filter is moved across the input volume, it calculates
a weighted sum at each step to detect patterns (see figure 2.5 for an example of detectable
patterns), this is called the convolution operation. The number of weights required for
this operation increases linearly with the depth of the input volume. This number remains
constant even when the input volume’s height and width are increased. In contrast, this
would require a quadratic increase of weights in a fully connected layer. Therefore fewer
calculations and memory are required for a CNN, which allow larger input dimensions [10].
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Figure 2.4: This images shows the first step of a convolution operation in a CNN. The input volume is trans-
formed to an output volume using two filters. The weighted sum of the filter weights and the accented volume
slice are stored in the output volume.

Figure 2.5: 96 Patterns learned by the first convolutional layer of the CNN by Krizhehvsky et al. Image Source:
Imagenet classification with deep convolutional networks [17]

2.3. VULNERABILITY DETECTION USING DEEP LEARNING
Detecting vulnerabilities using deep learning has roots in the software engineering practice
of program analysis. Program analysis for software vulnerabilities is commonly performed
using static or dynamic analysis. While static analysis detects vulnerabilities in the source
(e.g., C source), bytecode (e.g., Java), or compiled (e.g., Intel x86) forms of a program [23, 7],
dynamic analysis tries to detect vulnerabilities in programs that are executed by an operat-
ing system [12]. Deep learning methods detect vulnerabilities in source or compiled forms
of a program and thus can be seen as a form of static program analysis.

Although software vulnerability detection using deep learning has been shown to de-
tect vulnerabilities in source code with good performance, it also has limitations. Li et al.
compare their approach (called SySeVR) to state of the art open-source and commercial
tools and report a decrease of 50% and 19.4% in false negative and false positive rates re-
spectively [21]. However, unlike traditional static software vulnerability analyzers, they do
not report the evidence for each classification and report on a low level of granularity (i.e.,
many lines of code). Figure 2.6 shows an example of such a classification. This program
slice of related statements is classified as vulnerable in its entirety, and the reason for this
classification is not easily observed. As the granularity of reporting on vulnerabilities is an
indication of the usefulness of a vulnerability analyzer this shows their limitations in this
regard [7].

To detect vulnerabilities using deep learning, neural networks are trained to recognize
patterns with supervised learning. Pattern recognition is performed on features created
from source code with neural networks. Recent research employs convolutional and recur-
rent neural-networks [34, 21]. The former detects local correlations in the word-embeddings
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1 283209 65521/CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_loop_10 . c dest 41
2 void CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_loop_10_bad ( )
3 char * data ;
4 char * dataBuffer = ( char * ) ALLOCA ( 100 * s i z e o f ( char ) ) ;
5 data = dataBuffer ;
6 i f ( globalTrue )
7 memset ( data , ’A ’ , 100 − 1 ) ;
8 data [ 100 − 1 ] = ’ \0 ’ ;
9 char dest [ 50 ] = " " ;

10 s i z e _ t i , dataLen ;
11 dataLen = s t r l e n ( data ) ;
12 for ( i = 0 ; i < dataLen ; i ++)
13 dest [ i ] = data [ i ] ;
14 dest [ 50 − 1 ] = ’ \0 ’ ;

Figure 2.6: This image shows the granularity of a code gadget from the dataset by Li et al. [21]. A source
buffer for 100 chars is created at line four and filled with ’A’ at line seven. A destination buffer for 50 chars is
declared and initialized at line nine. The number of iterations in the for-loop at line 12 depends on the length
of the source buffer. Therefore, the assignment to the destination buffer at linenumber thirteen will be out
of bounds after writing 50 characters and a stack-based buffer overflow occurs. This sample is classified as
vulnerable.

for every source code token (i.e. a token produced by the lexical analysis of the source
code). The latter neural network is chosen for its ability to process natural languages. These
neural networks require real-valued input, and therefore the source code must be con-
verted into a usable format. The word2vec technique can create word-embeddings from
source code and is commonly employed as it can improve natural language processing
tasks [24]. Figure 2.7 and 2.8 show how the neural network architectures used by Li et al.
and Russel et al. process these word-embeddings as input.

These networks are then trained with supervised learning methods (i.e., learning from
labeled examples). The training is performed on vulnerability datasets that contain the
source code of both vulnerable and non-vulnerable programs. The studies of Russel et al.
and Li et al. train the vulnerability detection classifiers on the SARD dataset, which contains
a mix of synthetic, academic, and natural vulnerability test-cases written in the program-
ming languages C or C++ [27, 34, 21]. Whereas Russel et al. add source code from a selec-
tion of GitHub projects and the Debian operating system, Li et al. add source code from
software reported as vulnerable by the NVD such as Mozilla Firefox, Apache HTTP server,
or OpenSSL [26]. Supervised learning methods require that the ground truth of each piece
of source code (i.e., a sample) is known. Therefore a labeling procedure is performed to
mark the samples as either vulnerable or non-vulnerable. While the SARD dataset provides
these labels for each test case, the other source code is not labeled. Russel et al. and Li et
al. use different labeling procedures. Russel et al. employ three static software analyzers
(i.e., Clang, Cppcheck, and Flawfinder) to generate labels for samples created from the non
SARD source code. Li et al. use patches (i.e. diffs) fixing the vulnerabilities to derive labels.
A sample is marked vulnerable when it includes a removed or moved line described by such
a patch. Both studies manually check all vulnerable classified samples for false positives.

After training the neural network, samples can be classified as vulnerable or non-vulnerable
by using a classifier. Whereas Li et al. classify with a softmax classifier (which outputs the
probability of a sample being of the vulnerable or non-vulnerable class), Russel et al. em-
ploy a random forest classifier which creates decision trees and chooses the most prevalent
one.
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Figure 2.7: This figure shows the architecture of the convolutional neural network used in the paper by Russel
et al. [34]. The source code sample is lexically analyzed to extract tokens. These tokens form the input for the
learning task, and their word embeddings are stacked to form a matrix. Each convolutional filter combines
information from sequential tokens. The output of each filter (a column vector containing the values for a
group of tokens) is max-pooled to form a scalar feature value. Features are built with fully-connected layers,
and classifications at test-time are performed with a random forest classifier

Figure 2.8: This figure describes the architecture of the neural network employed in the SySeVR paper by Li
et al. [21]. The architecture is based on earlier work by Li et al. [22]. The input vectors are word-embeddings
of the samples. Two LSTM layers extract the features from the vectors and forward their output to a (fully-
connected) dense layer. The output of the dense layer is used in the Softmax layer, which calculates the
probability of a sample being vulnerable or non-vulnerable.
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There are two possible outcomes for the classification of a sample, vulnerable or non-
vulnerable. As such, the detection of vulnerabilities can be seen as a binary classification
problem and its performance can be expressed using standard metrics (e.g. precision, re-
call, or F1-score). In addition to the classification performance, we can also measure the
time required by the system for training and classification since this is an indication of its
practical usability.

Finally, the detection performance can be expressed with metrics and time-to-detect
measurements. Also, detection performance can be compared to the performance of rule-
based static analyzers. Compared to rule-based static analyzers such as tainted dataflow
analysis or integer range overflow analysis, vulnerability detection using deep learning is
limited in its applicability. Whereas rule-based analyzers can apply their rules on previ-
ously unseen source code, deep learning analyzers must be retrained if they are to be ap-
plied to such source code.

2.4. EXPLAINING CLASSIFICATIONS
There are various reasons for explaining classification decisions by machine learning al-
gorithms [38]. An erroneous classification could incur high costs (for example, weather
predictions involving critical infrastructure) or damage a person (for example, an unneces-
sary treatment due to an incorrect diagnosis). Such machine learning algorithms need to
be explainable in order to provide details on or verify decisions. European law (i.e., GDPR)
includes requirements on meaningful explanations of machine learning decisions, or pro-
filing [8]. Another reason to explain a machine learning algorithm can be to identify biases
or weaknesses to improve the algorithm. Finally, explaining an algorithm can provide hu-
mans with new knowledge concerning its prediction strategy [36].

Explanation methods have been created which provide insight into classifications. These
methods have a certain perspective on a neural network. A mechanistic (i.e., white-box)
perspective can be used to understand how a neural network solves a problem. For exam-
ple, Karpathy et al. show how recurrent neural networks learn to represent data over time
[16]. A functional perspective (i.e., black-box) can be used to understand how a neural net-
work relates input to the output. For example, Montavon et al. describe which individual
pixels contribute to a classification (see Figure 1.3) [25].

Samek and Müller categorized methods for explaining classification decisions in their
introductory paper on explaining artificial intelligence [35]. They describe the following
categories.

Explanation using surrogates These methods explain a prediction of a non-interpretable
model by sampling variations of the input to create an interpretable surrogate func-
tion. The LIME research by Ribeiro et al. presents an example of such a method [31].
They demonstrate that a black-box model is explainable in the domains of text and
image classification. They create a new model (a linear model in the paper) based on
samples created by slightly altering a prediction and measuring the change in classi-
fication in the original model. The interpretable model explains a text classification
example by showing which words are the most relevant towards its predicted class.

Explanation using local perturbations These methods explain a model’s prediction by chang-
ing the input to and measuring the difference in the output. They delete parts of an
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image and measure the effect of the deletion on a target classification. They explain
a classification by highlighting the image region that has the most influence on the
classification. An example of such methods applied in the domain of image recogni-
tion is a work by Fong and Vedaldi [9].

Explanation leveraging structure These methods provide explanations by leveraging the
structure of the model. An example of these methods the layer-wise relevance prop-
agation method by Bach et al. which demonstrates that explanations of image clas-
sifications in terms of their input (i.e. pixels) can be created by propagating the clas-
sification score backward through the layers of a neural network [3]. They visualize
how much each pixel contributes towards the classification output by projecting a
heatmap over the classified image.

Meta explanations These methods aim to explain how a classifier behaves in general or
how to interpret learned representations. An example of such methods is the recent
work by Lapuschkin et al. which poses a method to describe typical and atypical pre-
dictions of a model [18]. They create relevance heatmaps for a single classification.
These heatmaps are clustered and analyzed to determine which clusters indicate a
different classification pattern. The original images augmented with heatmaps ex-
plain the classification patterns.
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3
RESEARCH DESIGN

3.1. RESEARCH MOTIVATION
Although software vulnerability detection methods with deep learning can detect vulner-
abilities in source code with good performance, they do not report the evidence for each
classification and classify on a low level of granularity (i.e., many lines of code). Determin-
ing if explanations of these classifications can precisely locate relevant parts of vulnerabil-
ities has relevance for science, practical use, and society. First, we can improve existing re-
search approaches using deep learning by finding reasons for their incorrect classifications.
Secondly, as we cannot easily validate or attain details on classifications, such methods are
limited in their practical use. Software security analysis benefits from precise explanations
of vulnerabilities as this lowers the effort required to validate classifications. Consequently,
society benefits when the number of vulnerabilities in commonly used software decreases
due to improved detection performance and usability.

To decide which vulnerability detection approach to improve by analyzing incorrect
classifications requires two choices. First of all, we choose a vulnerability detection system.
To improve such a system, we require access to the analyzed data to reproduce experimen-
tal results in addition to having room for improvement and an available or reproducible im-
plementation. Both Li et al. and Russel et al. showed room for improvement due to the high
(but not perfect) F1 metrics (92.6 % and 84% respectively) [34, 21]. Even though both ap-
proaches have published their analyzed datasets, Li et al. include the original source code
containing the vulnerabilities (i.e., the source code before the transformation to a sample).
Additionally, the implementation by Li et al. is publicly available, whereas the implemen-
tation by Russel et al. is not.

Furthermore, we required a method to explain incorrect vulnerability classifications.
Such an explanation method must be compatible with the employed deep learning tech-
nique, provide explanations in an interpretable manner, and in a practical time frame. The
explanations themselves should be precise enough to support assessing the root cause for
incorrect classifications. Two commonly applied methods are sensitivity analysis (SA) and
layer-wise relevance propagation (LRP) [32, 3]. Both methods are compatible with the deep
learning models employed by Li et al. and Russel et al. Sensitivity analysis is a local pertur-
bation explanation method that uses the gradient with respect to the neural network func-
tion to relate the input of a model to the output. It can show which parts of a sample lead
to an increase or decrease of the classification score when changed. On the other hand,
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layer-wise relevance propagation (LRP) is a propagation-based method that leverages the
neural network structure to relate the output to the input. It determines which parts of a
sample processed by a model have contributed towards a classification (i.e., are relevant in
the sample according to the model). While both methods can provide explanations in an
interpretable form, recent studies show that LRP can identify relevant parts in image and
text classification settings with higher precision than sensitivity analysis [37, 2].

In conclusion, the approach by Li et al. was a better candidate for improvement because
we could recreate their experiments more accurately, and LRP is a better method to explain
incorrect classifications due to its higher performance in a text-based classification task.

3.2. RESEARCH OBJECTIVE
The main research goal was to improve the SySeVR vulnerability detection system of Li et
al. [21] by explaining incorrect classifications by means of LRP. Towards this goal, we de-
termined the vulnerable lines in samples and measure how many of these lines are used
in classifications. Furthermore, we used these explanations to determine which parts are
responsible for incorrect classifications and measured whether removing the influence of
these parts during inference or model training lowered the number of incorrect classifica-
tions. Our contribution was the new application of an explanation method to a vulnerabil-
ity detection approach.

3.3. RESEARCH QUESTIONS

MAIN RESEARCH QUESTION
How can we use explanations of incorrect classifications by means of LRP to improve the
SySeVR deep learning vulnerability detection system?

CONTRIBUTING RESEARCH QUESTIONS
These sub-questions support the main research question and are described in the following
sections.

• RQ1: How precise are vulnerable lines in samples detected using deep learning?

• RQ2: How can we improve the classification performance using the relevance of fea-
tures contributing to incorrect classifications during inference?

• RQ2: How can we improve the classification performance using the relevance of fea-
tures contributing to incorrect classifications during model training?

RQ1: HOW PRECISE ARE VULNERABLE LINES IN SAMPLES DETECTED USING

DEEP LEARNING?
The layer-wise relevance propagation (LRP) technique described by Bach et al. can deter-
mine the relevance of individual pixels concerning an image classification [3]. This tech-
nique is also used by Arras et al. to determine the relevance of words in sentiment classifi-
cation of movie reviews [2].

Samek et al. show that LRP is more suitable to identify relevant parts in classifications
than sensitivity analysis [37]. Henceforth, we will use the LRP technique to determine the
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vulnerable lines in samples detected using deep learning. Li et al. have published the im-
plementation and dataset of their approach to detect vulnerabilities using deep learning
[21]. We used this approach as an example to answer this research question. The precision
is expressed in the similarity between vulnerable and relevant parts of detected vulnerabil-
ities. For this similarity, the Intersection over Union (IoU) metric is proposed. The average
precision for true positive and false negative samples will be reported.

We hypothesized that incorrect classified vulnerabilities using deep learning had a less
precise explanation using the LRP method than correctly classified vulnerabilities. We ver-
ified this hypothesis by measuring this relation in the SySeVR vulnerability detection sys-
tem.

RQ2: HOW CAN WE IMPROVE THE CLASSIFICATION PERFORMANCE USING THE

RELEVANCE OF FEATURES CONTRIBUTING TO INCORRECT CLASSIFICATIONS DUR-
ING INFERENCE?
We identified which features in both non-vulnerable and vulnerable samples are responsi-
ble for incorrect classifications. The research question are answered by measuring whether
diminishing the influence of these features on the samples will lower the number of incor-
rect classifications in our model test data. To validate the improvements, we performed
experiments and reported on the results using the SySeVR evaluation metrics (see table
3.1).

RQ3: HOW CAN WE IMPROVE THE CLASSIFICATION PERFORMANCE USING THE

RELEVANCE OF FEATURES CONTRIBUTING TO INCORRECT CLASSIFICATIONS DUR-
ING MODEL TRAINING?
We used the features in samples which are responsible for incorrect classifications to change
the training procedure. We determined whether removing the influence of these features
on the model training samples would lower the number of incorrect classifications in our
model test data. To validate the improvements, we performed an experiment and reported
on the results using the SySeVR evaluation metrics.

3.4. RESEARCH METHOD
This section describes the methods used in answering our research questions.

RESEARCH METHOD RQ1
To answer RQ1 we required a dataset with vulnerable samples, the location of the vulner-
ability (i.e. the vulnerable lines in the sample), and the explanations of the classifications.
Figure 3.1 describes how we obtained these artifacts. The orange accented parts contain
research output from Li et al. and Arras et al., which we used to build our own research
project. First, the dataset employed by the SySeVR system contains non-vulnerable and
vulnerable samples created from source files obtained from the National Vulnerabilities
Database (NVD) and the Software Assurance Reference Dataset (SARD) [21, 26, 27]. We ex-
tracted the SARD samples from the SySeVR dataset because the SARD metadata describes
the location of the included vulnerabilities. We used these locations to determine the vul-
nerable lines of code in our subset of SySeVR dataset. We started our dataset by combining
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Figure 3.1: This figure describes the preparation of our dataset containing vulnerable samples, the precise
locations of vulnerabilities, sample classifications and the explanations thereof. The orange accented parts
show research output by Li et al. and Arras et al. which is used.

the extracted SARD samples and locations of the vulnerabilities thereof. Second, we re-
quired a deep learning model to classify this dataset. Since Li et al. have not published the
SySeVR model, we thus needed to create a comparable model because this supported our
findings and improvements. Therefore, we have split their dataset into a training and test-
ing dataset. We created an equivalent model and trained this model on the training dataset
using stratified cross-validation until we had comparable scoring performance metrics on
the test dataset. This model and its metric scores served as a baseline for our findings and
improvements. Finally, to complete our dataset, we explained these classifications using
the LRP procedure described by Arras et al. in their research on explaining deep learning
classifications [2]. The LRP procedure explains classifications of a recurrent (LSTM) model,
the implementation of this model was adapted to overcome a difference in classification
type (see paragraph 5.2.1 for more details). Whereas their model predicted five classes of
sentiment in movie reviews, from (very) negative to neutral to (very) positive, our model
predicted two classes, vulnerable or non-vulnerable. Therefore, we changed the activation
function of the final layer in their model to make it consistent with our model. We com-
pared the classification output of both models on a small number of samples to validate
whether our adaptation to the model produced the same classifications.

We measured two precision values and determined whether our initial hypothesis is
valid in RQ1. Figure 3.2 shows the necessary steps. We started with the prepared dataset
and selected both vulnerable (step one) and relevant (step two) lines. The line detec-
tion precision expresses (step three) how precise LRP detects these vulnerable lines in our
dataset. The detection is based on how much relevance the LRP procedure assigns to each
line of code. We measured how many selected lines are vulnerable (precision metric) and
how many vulnerable lines are selected (recall metric) at different relevance thresholds.
We report these measurements with a precision-recall curve and average precision. The
localization precision demonstrates how precise LRP can locate vulnerabilities in slices.
Towards this end, we selected lines from slices having relevance above a fixed threshold.
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Figure 3.2: This figure shows which steps we have taken to answer RQ1.

We measured the ratio of overlapping selected and vulnerable lines per sample using the
intersection over union metric described in 3.6 (step four). We reported the distribution of
this measurement with a histogram and average precision (step five). Using the measure-
ments obtained in these steps, we determined whether incorrect classified samples have
less precise explanations than correct classified samples (step six) and answer RQ1. We
reported the vulnerable line detection precision and vulnerability localization precision
broken down into false negative and true positive slices.

RESEARCH METHOD RQ2
After reporting on the findings regarding the first research question, we conducted exper-
iments to answer RQ2. Figure 3.3 shows the high-level approach. The goal of these exper-
iments is to decrease incorrect classifications and thereby increase classification perfor-
mance. The first two experiments follow the same steps. We selected incorrect classified
samples (step one and four) from our dataset and retrieve the tokens whose relevance con-
tribute strongly towards incorrect classifications (step two and five). We concluded these
experiments by removing these tokens (steps three and six) during inference and measur-
ing the change in classification performance using the SySeVR metrics. Section 3.5 de-
scribes these metrics in detail. In the third experiment (step seven), we combined and
applied the changes to the dataset from the previous two experiments. We measured and
reported the changes in model performance metrics using the SySeVR metrics.

RESEARCH METHOD RQ3
We answered RQ3 by improving the model training procedure using the most promising
token filter found in our experiments towards answering RQ2. We applied this token filter
in the model training procedure (step eight in figure 3.3) and tested whether this lowers the
number of incorrect classifications in our test data. We measured and reported the changes
in model performance metrics using the SySeVR metrics.

3.5. SYSEVR METRICS
This section describes the evaluation metrics that are used to measure the performance of
the SySeVR system. Table 3.1 lists the formula for each metric.
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Figure 3.3: This figure shows proposed experiments which answer research questions RQ2 and RQ3.

Table 3.1: SySeVR performance metrics

Metric Formula

False positive rate (FPR) F P
F P+T N

False negative rate (FNR) F N
T P+F N

Accuracy (A) T P+T N
T P+T N+F P+F N

Precision (P) T P
T P+F P

Recall (R) T P
T P+F N

F-Score (F1) 2× P×R
P+R

Matthews correlation coefficient (MCC) T P×T N−F P×F Np
(T P+F P )×(T P+F N )×(T N+F P )×(T N+F N )

Where FP is defined as the number of non-vulnerable samples predicted vulnerable,
TP is defined as the number of vulnerable samples predicted vulnerable. FN is defined
as the number of vulnerable samples predicted non-vulnerable, and TN is defined as the
number of non-vulnerable samples predicted non-vulnerable. The FPR metric shows the
proportion of incorrect vulnerable predictions with regard to all non-vulnerable samples
(e.g., false alarms). The FNR metric measures the proportion of incorrect non-vulnerable
predictions (e.g., missed vulnerabilities) with regard to all vulnerable samples. The ac-
curacy metric shows how often a correct prediction is made concerning vulnerable and
non-vulnerable samples. The SySeVR dataset has an imbalanced class distribution (e.g.,
many more non-vulnerable samples than vulnerable samples). Consequently, the amount
of correctly classified non-vulnerable samples can be very high. Because vulnerability de-
tection systems should find vulnerable samples, such high accuracy is not a fair indica-
tor of the model performance. The precision and recall metrics are defined without us-
ing the actual non-vulnerable samples (i.e., without the FN class) and thus are a better
indicator of the model performance. Precision is defined as the proportion of vulnerable
samples with regard to all vulnerable classified samples (e.g., how often is the model cor-
rect when a vulnerability is predicted), and the recall metric is defined as the proportion
of vulnerable classified samples with regard to all vulnerable samples (e.g., how complete
is the model in selecting the actual vulnerable samples). The F1 metric is the harmonic
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mean of these two metrics and expresses the overall effectiveness of the model. Finally,
the MCC measures the correlation between the predictions of the samples (for both vul-
nerable and non-vulnerable samples) and whether a sample is vulnerable. Unlike the F1
metric, the MCC metric calculates this correlation using the negative class. It, therefore,
can indicate whether classes are correctly labeled (i.e., negative for the majority of samples
non-vulnerable and positive for the minority vulnerable samples).

3.6. INTERSECTION OVER UNION
This section describes the intersection over union (IOU) metric that is used to measure
the similarity between truly vulnerable and detected vulnerable lines. The IOU metric is
calculated as:

I oU = |V ∩S|
|V ∪S| ,

where V = {l | l is a vulnerable linenumber} and S = {l | l is a detected vulnerable linenumber)}.
The metric has a range of [0, 1] where zero and one IoU express no overlap and total overlap
respectively. For example, table 3.2 shows a sample which has four vulnerable lines (e.g. a 1
in the label column) and two predicted vulnerable lines (i.e., a 1 in the detection column).
For this sample the set V is defined as {16, 17, 18, 19} and S is defined as {17, 19}. The sample
has |V ∩S)|

|V ∪S| = 2
4 = 0.5 IoU.

Table 3.2: This table shows lines in a vulnerable sample. The first column shows the line number, the "Label"
column contains a 1 if a line is vulnerable and the "Detected" column contains a 1 if the line is predicted
vulnerable. The vulnerable and detected lines are used in the calculation of the IOU metric.

# Label Detection Line

1 0 0 void initlinedraw(int flag)
2 0 0 int stonesoup_i = 0 ;
3 0 0 char * owlishly_ionospheres ;
4 0 0 if ( __sync_bool_compare_and_swap ( & trance_deforciant , 0 , 1 ) )
5 0 0 if ( mkdir ( "/opt/stonesoup/workspace/lockDir", 509U ) == 0 )
6 0 0 if ( owlishly_ionospheres != 0 )
7 0 0 alphabetizers_lbl = ( ( char * ) owlishly_ionospheres );
8 0 0 stonesoup_data = ( struct stonesoup_struct * ) malloc ( sizeof ( struct stonesoup_struct ) );
9 0 0 if ( stonesoup_data != NULL )

10 0 0 memset ( stonesoup_data −> before , ’A’, 63 );
11 0 0 stonesoup_data −> before [ 63 ] = ’\0’;
12 0 0 memset ( stonesoup_data −> buffer , ’Q’, 63 );
13 0 0 stonesoup_data −> buffer [ 63 ] = ’\0’;
14 0 0 memset ( stonesoup_data −> after , ’A’, 63 );
15 0 0 stonesoup_data −> after [ 63 ] = ’\0’;
16 1 0 stonesoup_buff_size = ( ( int ) ( strlen ( alphabetizers_lbl ) ) );
17 1 1 memcpy ( stonesoup_data −> buffer , alphabetizers_lbl , 64 );
18 1 0 for (; stonesoup_i < stonesoup_buff_size; ++stonesoup_i)
19 1 1 stonesoup_printf ( "%x", stonesoup_data −> buffer [ stonesoup_i ] );
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4
MODEL AND DATASET PREPARATION

4.1. MODEL PREPARATION
Li et al. created a vulnerability detection approach (the SySeVR system) and constructed a
dataset to train it [21]. This section introduces the SySeVR system and describes our work
in recreating their model.

4.1.1. SYSEVR VULNERABILITY DETECTION
The SySeVR vulnerability detection approach by Li et al. is inspired by the concept of re-
gion proposal for object detection in images. Object detection with region proposals uses
predictions of object bounds in images to train neural networks [30, 40]. Figure 4.1 shows
(red-accented) region proposals (predictions of object regions) in the top part. These re-
gions are extracted to form individual samples for a supervised deep learning task. Whereas
the region proposal network by Ren et al. learns the regions from input data, the SySeVR
framework employs fixed rules to create regions, these rules are derived from vulnerability
detection rules found in the commercial static analysis tool Checkmarx [6]). The bottom
part of the figure shows the transfer of the concept of the region to the software vulnera-
bility detection context. The SySeVR system use the rules to locate potentially vulnerable
parts (for example, statements including pointers) in source programs (the SyVCs block in
figure 4.1). These potentially vulnerable parts and the related source code form the regions
of interest (the SeVCs block in figure 4.1) for the software vulnerability detection task. The
regions are related to library/API function calls, array or pointer usage, or arithmetic ex-
pressions and are called "kinds" in the SySeVR system. To summarize the approach, we
describe the five high-level steps the SySeVR method consists of.

1. Vulnerable and non-vulnerable source code are collected to serve as training and
testing data (programs for learning and target programs in figure 4.1).

2. The region detection rules are applied to the collected source code and yield the four
kinds of potentially vulnerable program slices (the SyVCs and SeVCs blocks in figure
4.1).

3. A labeling method determines whether a vulnerability candidate contains a vulnera-
bility and labels it accordingly (not shown in figure 4.1).
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Figure 4.1: This images shows the application of region proposal for object detection to software vulnerability
detection.

4. Vulnerability candidates are transformed into an effective representation for deep
learning (block "vector representation of SeVCs" in figure 4.1).

5. A deep learning model is trained to predict vulnerabilities ("Deep learning" block in
figure 4.1).

4.1.2. SYSEVR DATASET AND IMPLEMENTATION
The published SySeVR dataset contains 420,627 samples (56,395 vulnerable and 364,232
non-vulnerable) created using source code with natural and synthetic vulnerabilities ob-
tained from the National Vulnerability Database (NVD) and Software Assurance Reference
Dataset (SARD) respectively [21, 26, 27]. The dataset consists of four text files containing all
samples of the same kind. Figure 4.2 (lower listing) shows a vulnerable SySeVR sample ex-
tracted from the SARD dataset. A region rule detected array usage in the source code (line
12). The stack-based buffer overflow occurs at line 13.

The software described in the paper of Li et al. which analyses the dataset is published
at Github1 [21]. The software is written in the Python2 programming language and uses the
Tensorflow3 platform for machine learning. It comprises three modules, the first module
parses the source code and extracts SeVCs, the second module transforms the SeVCs into
samples, and the final module trains the deep learning model and outputs test results.

4.1.3. DEEP LEARNING MODEL CREATION
To create a deep learning model comparable to the SySeVR model we followed the train-
ing procedure described in the SySeVR publication [21]. The SySeVR dataset was randomly
split into 80% training and 20% testing samples. Because the in-memory dataset splitting
led to out-of-memory errors, we changed the implementation to a dataset format (Tensor-
flow data4) that supports data streaming during processing. This prevented further out-of-
memory errors during training.

1https://github.com/SySeVR/SySeVR
2https://www.python.org
3https://www.tensorflow.org
4https://www.tensorflow.org/guide/data
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23 void CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_loop_10_bad ( )
24 {
25 char * data ;
26 char * dataBuffer = ( char * )ALLOCA(100* s i z e o f ( char ) ) ;
27 data = dataBuffer ;
28 i f ( globalTrue )
29 {
30 / * FLAW: I n i t i a l i z e data as a large buffer that i s l a r g e r than the small buf fer used in the sink * /
31 memset( data , ’A ’ , 100−1); / * f i l l with ’A ’ s * /
32 data [100−1] = ’ \0 ’ ; / * null terminate * /
33 }
34 {
35 char dest [ 5 0 ] = " " ;
36 s i z e _ t i , dataLen ;
37 dataLen = s t r l e n ( data ) ;
38 / * POTENTIAL FLAW: P o s s i b l e buffer overflow i f data i s l a r g e r than dest * /
39 for ( i = 0 ; i < dataLen ; i ++)
40 {
41 dest [ i ] = data [ i ] ;
42 }
43 dest [50−1] = ’ \0 ’ ; / * Ensure the destination buffer i s null terminated * /
44 printLine ( data ) ;
45 }
46 }

1 283209 65521/CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_loop_10 . c dest 41
2 void CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_loop_10_bad ( )
3 char * data ;
4 char * dataBuffer = ( char * ) ALLOCA ( 100 * s i z e o f ( char ) ) ;
5 data = dataBuffer ;
6 i f ( globalTrue )
7 memset ( data , ’A ’ , 100 − 1 ) ;
8 data [ 100 − 1 ] = ’ \0 ’ ;
9 char dest [ 50 ] = " " ;

10 s i z e _ t i , dataLen ;
11 dataLen = s t r l e n ( data ) ;
12 for ( i = 0 ; i < dataLen ; i ++)
13 dest [ i ] = data [ i ] ;
14 dest [ 50 − 1 ] = ’ \0 ’ ;

Figure 4.2: This figure contains two listings. The upper listing shows a SARD testcase and the lower listing
shows a corresponding SySeVR sample. SySeVR sample extraction occured because of the dest array usage at
line 41. This can be seen in the first (header) row in the SySeVR sample
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We created a bi-directional LSTM model (Bi-LSTM) as employed in the SySeVR system
with two modifications to allow for the explanation of its classifications by means of LRP.

The first modification concerned the number of Bi-LSTM layers used in the model. Fig-
ure 4.3 shows the architecture of the SySeVR and LRP models. In the upper part can be ob-
served that the SySeVR system employs a model with two Bi-LSTM layers and in the lower
part that the LRP procedure assumes a model with a single Bi-LSTM layer. This prevents
the LRP procedure from explaining SySeVR classifications because it uses the structure of
the model. This difference in number of layers could be solved by adding a Bi-LSTM layer
to the LRP procedure or conversely, removing a Bi-LSTM layer from the SySeVR model.

Figure 4.3: Architecture of SySeVR vulnerbility detection and the LRP sentiment detection models. The Sy-
SeVR model (top part) has two Bi-LSTM layers whereas the LRP model (bottom part) contains only one.

Adjusting the LRP procedure would incur the risk that the explanations could become
incorrect. On the other hand, modifying the SySeVR model would introduce the risk that
the classification performance would be lower than the original model.

The exploration of the first solution direction showed that complex changes to the LRP
implementation were necessary to adjust the procedure. On the other hand, the explo-
ration of the second solution showed minor differences in the performance metrics after
retraining the model. Because of the uncertain efforts required to implement the complex
changes to the LRP procedure, we accepted the small differences in the precision and recall
metrics and exclude the second layer in our model.

The second modification to the SySeVR model was, on the recommendation of Arras et
al., to remove the bias in the output layer in the TF model during training. This advantage
is that all relevance from the output layer is distributed to the fully connected layer, and no
relevance is lost in the biases.

Also, model training was conducted using 5-fold cross-validation on 30K samples ran-
domly selected from the training dataset and evaluated with 7.5K samples randomly se-
lected from the testing dataset. Stratification was used in these selections to preserve the
ratio of vulnerable/non-vulnerable samples and the ratio of sample kinds.
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Finally, we evaluated model performance using the SySeVR evaluation metrics. We
compared models with the F1 metric since the SySeVR model hyperparameters were ob-
tained by maximizing this metric. Table 4.1 shows the performance scores of the SySeVR
model, our initial two-layer model, and our final, single-layer model. Even though our final
and the SySeVR models show comparable F1 scores (84.0% and 84.4% respectively), there
are some differences. Our final model has 4.7% lower precision and 3.8% higher recall than
the SySeVR model. Our explanation for this difference is that, due to training and test sam-
ples being randomly selected, there are different samples included in the SySeVR dataset
and ours. If the samples in our dataset require a lower threshold to classify as vulnera-
ble this would decrease the number of FN samples and increase the number of FP sam-
ples leading to the higher recall but lower precision. Finally, as the final MCC metric value
(81.8%) is near our final F1 metric value (84.0%), we deduce that our classes are correctly
labeled.

Table 4.1: Evaluation metrics of SySeVR, initial, and final model.

SySeVR initial model final model

Bi-LSTM layers 2 2 1
FPR 1.7% 2.6% 2.4%
FNR 19.0% 14.4% 15.2%

A 96.0% 96.0% 96.0%
P 88.0% 82.5% 83.3%
R 81.0% 85.6% 84.8%

F1 84.4% 84.0% 84.0%
MCC 82.2% 81.7% 81.8%

4.2. VULNERABILITIES DATASET
To measure how precise LRP can locate relevant parts of vulnerabilities, we select samples
from the SySeVR dataset with known vulnerable lines of code. This section describes the
samples in our dataset, shows how we located the vulnerable lines and reports how we
validated our dataset samples.

4.2.1. SAMPLE ORIGINS
To determine the relevant parts of vulnerabilities, we require that our dataset differentiates
between non-vulnerable and vulnerable lines of code. The vulnerable lines of code in the
SySeVR dataset are unknown. Therefore, we will use the SARD metadata, which describes
vulnerability locations, to label the lines of code in our dataset. This limits our dataset to
SySeVR samples originating from the SARD dataset. We show in figure 4.2 (upper listing)
an example of a SARD source file. The source code contains a stack-based buffer overflow
vulnerability. The for loop starts at line number 39 and copies characters using the length
of the source buffer instead of the length of the destination buffer. Hence a buffer overflow
occurs at line 41.

The SARD metadata on 67,984 test cases is described in an XML file. Figure 4.4 shows
the metadata for the SARD source file in figure 4.2. This test case metadata includes the
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1 <testcase id="65521" type="Source Code"
2 status="Accepted" submissionDate="2013−05−20"
3 language="C" author="NSA/Center for Assured Software "
4 numberOfFiles="4" t e s t s u i t e i d ="86 108">
5 <description>< ! [CDATA[CWE: 121 Stack Based Buffer Overflow<br/>
6 BadSource: I n i t i a l i z e data as a large str ing <br/>
7 GoodSource: I n i t i a l i z e data as a small str ing <br/>
8 Sink: loop<br/>
9 BadSink : Copy data to s t r i n g using a loop<br/>

10 Flow Variant : 10 Control f low: i f ( globalTrue ) and i f ( globalFalse ) ] ] >
11 </ description>
12 < f i l e path=" 000/065/521/CWE121_Stack_Based_Buffer_Overflow__CWE806_char_alloca_loop_10 . c"
13 language="C" s i z e ="4327"
14 checksum="4c6319dda6f2e678081009e82cb0ec9b30da4de8">
15 <mixed l i n e ="41" name="CWE−121 : Stack−based Buffer Overflow" />
16 </ f i l e >
17 < f i l e path="shared /108/ io . c"
18 language="C" s i z e ="5429"
19 checksum="bcf531cb1922c03347031698c1c72eddadbf0d88" />
20 < f i l e path="shared /108/ std_testcase . h"
21 language="C" s i z e ="4004"
22 checksum="d1801c64bc49d5d05fb3d55f7cc7e3a925c47e2f" />
23 < f i l e path="shared /108/ std_testcase_io . h"
24 language="C" s i z e ="1457"
25 checksum="56de16829d5ac9d8086670ee5098217aa6694d26" />
26 </ testcase >

Figure 4.4: This image shows the metadata for the SARD testcase. This testcase describes a vulnerability at
line number 15 ("<mixed.../>" xml element. The stack-based buffer overflow vulnerability can be found at
line number 41 in the file mentioned at line number 12

location and type of the vulnerability.

The SySeVR dataset contains 420,630 samples extracted from 1,591 NVD programs en
14,000 SARD test cases. After reducing the SySeVR dataset to samples originating from the
SARD test cases, 313,030 samples remain (25,6% decrease). Figure 4.5 shows this broken
down in sample kind.

Figure 4.5: This figures shows the difference between the full SySeVR dataset and the SySeVR dataset reduced
to samples originating from the SARD testcases.

We observe decreases per kind of 9.9% (API function call), 23.2% (array usage), 25.3%
(pointer usage), and 79.2% (arithmetic expression). The large decrease in arithmetic ex-
pression samples was unexpected because the SySeVR paper stated that 23.9% of this kind
originates from the NVD dataset. We examined the root cause for this discrepancy (>55%
difference) and found 4,518 missing SARD test cases that caused it. These missing test
cases are responsible for 12,244 missing SySeVR samples. To determine vulnerable lines in
SySeVR samples, we need the source files from the corresponding SARD test cases. There-
fore we excluded these samples from our dataset and thus, our findings on the arithmetic
expression sample kind will be less reliable.
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Figure 4.6: This figure shows the amount of matching vulnerable lines in non-vulnerable and vulnerable
samples grouped by sample kind

4.2.2. VULNERABLE LINE LABELS

To label the lines of code in our samples we created a procedure that labels each line as
either vulnerable or non-vulnerable. This procedure receives a SySeVR sample (the lower
pane of figure 4.2), vulnerability descriptions (the metadata seen in figure 4.4), and the
original SARD source file (the upper pane of figure 4.2).

The procedure parses the SySeVR sample to obtain the lines of code (lines two to four-
teen in the example) and reads the vulnerable lines of code from the SARD source files (line
41 in the example). The SySeVR samples lines are compared to the vulnerable SARD source
code lines and labeled accordingly (i.e., vulnerable when a match is found, non-vulnerable
otherwise). In the SySeVR sample line thirteen matches SARD source file line 41 and is la-
beled as being vulnerable. To be able to compare SySeVR sample lines to vulnerable SARD
source code lines we were required to remove white space as well as testing for four textual
changes. These tests prevented mismatches in specific situations. The first test was the oc-
currence of block- and statement demarcations (i.e., curly brackets and semi-colons) in the
lines of code from the SARD source files. We deleted these characters found at the end of
lines and accepted a match resulting from this change. The second and third test checked
for end-of-line and in-line (i.e // and /* ... */ respectively) comment in vulnerable lines. We
deleted the comment from the vulnerable lines and accepted a match resulting from this
change. The final test checked for functions spanning multiple lines (these are compressed
to one line in SySeVR samples) by counting the opening and closing parenthesis in a line.
When an unequal count occurred, we accepted the first line of the function call.

Figure 4.6 shows the amount of matching vulnerable lines grouped by sample kind.
Altogether, we collect 51586 vulnerable samples containing 61341 vulnerable lines and
261444 non-vulnerable samples containing 116 vulnerable lines. We did not expect vulner-
able lines in non-vulnerable samples, and therefore we inspected the samples for causes.
Upon inspection, we saw these lines were marked as vulnerable because the SARD source
file contained duplicate lines of code. Since we do not include non-vulnerable samples in
our analysis, we did not further act on these samples.

4.2.3. DATASET VALIDATION

We validated our dataset after collecting the vulnerable and non-vulnerable samples. We
observed 571 vulnerable slices which did not contain vulnerable lines of code. Upon in-
spection of the samples, we noticed two reasons for this absence. A large part of these
samples originates in CWE-types that manifest without source code (for example, memory
leaks). A smaller part of the samples did not include any vulnerable lines. We observed
that these samples contained nested code blocks that did not contain data dependencies
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Figure 4.7: This figure shows the number of non-vulnerable and vulnerable samples divided between the
analysis and the evaluation datasets.

and were skipped because the forward program slice procedure does not include control
flow dependencies. Because the vulnerable lines were missing, it seemed like these sam-
ples were incorrectly classified. We did not further examine this and used the dataset as is
in our analysis. We discuss this decision in chapter 8.1.

4.3. MODEL BASELINE PERFORMANCE
We establish a baseline model in two steps to compare and evaluate improvements. First,
as our analysis in RQ2 and RQ3 is performed on our dataset, we required previously unseen
data to support the validity of our findings. To obtain such unseen data, we have split our
dataset into two parts. A larger part for the analysis and a smaller part for the evaluation.
We observed some differences in the vulnerable and non-vulnerable origin proportions as
shown in figure 4.7. For example, the "array usage" origin occurred more than twice as
many relatively seen in the vulnerable samples as in the non-vulnerable. We preserved
these proportions for validity in the analysis and evaluation datasets resulting in 250,331
analysis samples and 62,583 test samples. Second, we established the final baseline perfor-
mance using the average precision metric created from pr-curves of these two datasets and
the SySeVR test dataset. Figure 4.8 shows the computed pr-curves with their average pre-
cision and maximum F1 metric values. We observed two findings. First, the analysis and
evaluation datasets showed higher average precision values than the SySeVR test dataset.
This is expected as the training data for the model contains relatively more SARD sam-
ples than NVD samples, and therefore the classifier is more likely to correctly classify SARD
samples. Second, the percentage of vulnerable samples is higher in our datasets than in the
SySeVR test dataset (16.4% versus 12.4% respectively). As the SySeVR test dataset contains
both SARD and NVD samples and our dataset contains only SARD samples, we deduced
that SARD slices are more often labeled vulnerable. We did not further investigate this dif-
ference and accepted our model baseline performance.
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Figure 4.8: This figure shows the precision plotted against the recall, the average precision (AP), and the
maximum F1 values for the SySeVR test, our analysis, and our evaluation datasets.
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5
EXPLAINING SOFTWARE VULNERABILITY

CLASSIFICATIONS

This chapter describes the explanation technique layer-wise relevance propagation (LRP)
described by Bach et al. and Arras et al. which will be used to explain the classifications
made by the SySeVR system and shows how we apply LRP to determine which parts of
vulnerabilities are relevant in a deep learning setting [21, 3, 2].

5.1. EXPLAINING CLASSIFICATIONS
Our research goal is to improve the SySeVR system by explaining incorrect classifications.
Such a classification is an incorrect result of the vulnerability detection model for a spe-
cific sample. The explanation thereof is the contribution (henceforth called relevance) of
each sample feature towards this classification. We determine the relevance of features in
a sample with the LRP technique described by Bach et al. and Arras et al. [3, 2].

5.1.1. LAYER-WISE RELEVANCE PROPAGATION
The LRP technique determines the relevance (expressed as a real number) of features to-
wards a target class. Whereas a feature having a negative relevance value implies that it
decreased the probability of the target class, a feature having a positive relevance value im-
plies an increase of the probability of the target class. The relevance is determined by classi-
fying a sample and then propagating the model output of the target class backward through
the layers of a neural network. Each layer type (e.g., fully-connected or convolutional) has
a specific transformation. An LRP explanation is executed with two movements through
the network, a forward pass to set the neuron values and a backward pass to compute the
explanation of the classification. It is seen as an computational efficient explanation tech-
nique compared to other commonly used explanation methods. In comparison, the expla-
nation technique LIME requires the fitting of a linear classifier to generate an explanation
for a single sample [1, 31]. In their studies, Arras et al. and Bach et al. showed that LRP can
explain classifications in text and image classification tasks. Arras et al. introduced in their
work on sentiment classification explanations transformations for the computations per-
formed in an LSTM network. Arras et al. demonstrated that LRP can produce explanations
of movie review sentiment classifications containing evidence agreeing or disagreeing with
the classification. Finally, the LRP technique has the property that the total classification
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output (of interest) is conserved in the explanation. Each step propagates its entire rele-
vance (except for a small stabilizing term in the LRP equations) from layer to layer. As a
result of these lossless transformation steps, the conservation of the relevance holds for
the entire network. Therefore, LRP provides an explanation of classification in terms of its
input.

To show how an explanation is created, we use an example vulnerability detection model.
Figure 5.1 shows an example of a neural network.

Figure 5.1: This figure shows an example deep neural network for vulnerability detection with an input layer,
three successive hidden layers and an output layer.

Figure 5.2: This figures shows which neuron is selected for explanation in our example vulnerability detection
network

Figure 5.3: This figures shows how relevance flows backwards from the output layer to the input layers (i.e.
the model features). The red and blue arrows indicate the positive or negative contribution respectively to
the source neuron.

The output layer in this example is composed of two neurons that correspond to classes
’N’ and ’V’ (e.g., non-vulnerable and vulnerable in our example). The first step to generate
an explanation is the forward pass, this computes the neuron values and classifies the sam-

31



ple. In figure 5.2 the red accentuated ’V’ neuron shows the sample is being classified as vul-
nerable. The second step is choosing which target class to explain. As we are interested in
the features contributing to vulnerabilities, we choose to explain the vulnerable case. The
final step is the backward pass which steps backward through the model layers and assigns
each neuron its relevance value. Figure 5.3 shows how positive and negative (red and blue
respectively) relevance of the target class is redistributed from the output layer to the input
layer. The redistribution of the relevance is performed layer by layer by sending messages
from neuron to neuron. Bach et al. define these message as:

R(l ,l+1)
i← j ,

where i is a neuron in layer l and j is a neuron in successive layer l +1 [3]. The ← symbol
shows the direction of the message. Using this definition, we can express the relevance of
neurons (with the exception of the neurons in the output layer) as:

R(l )
i = ∑

k: i is input for neuron k
R(l ,l+1)

i←k

For example, the relevance of the third neuron in the input layer shown in figure 5.3 can
be expressed as:

R(1)
3 = R(1,2)

3←1 +R(1,2)
3←2 +R(1,2)

3←3 +R(1,2)
3←4

5.1.2. VISUALIZING EXPLANATIONS

The features of our sample are vectors, and the relevance of each feature is expressed as a
real number. To interpret these explanations as human beings intuitively, we convert the
vectors to the corresponding source code tokens and visualize the relevance using a color
scale.

Figure 5.4 shows the explanation of our running example (a stack-based buffer over-
flow) with a heatmap. The "Sample" column shows normalized tokens (tokens with their
variable and functions names replaced with generic identifiers to improve the generaliza-
tion of samples) with their relevance, and the "Slice" column shows the original slice tokens
so we can easier interpret a sample. Since our vulnerability labels are assigned at line level,
we group the tokens by line.

We observe some interesting facts. First, we see different relevance values for equal to-
kens (for example, in line eight, the number 50 has neutral relevance, but in line 13, a highly
positive relevance). This is expected because the LSTM model uses previously (backward
and forward) encountered token values to determine the current token value (i.e., it uses
the recurrent state). Second, vulnerable line 12 shows no strong connection between the
vulnerability in the sample and the positive relevance. Only the square brackets used for
indexing the variable and the end-of-statement semicolon receive positive relevance. This
indicates that the model (in this case) did not classify based on the actual vulnerability.

5.2. EXPLAINING SOFTWARE VULNERABILITY CLASSIFICATIONS
This section describes our modifications to the LRP procedure, how we answered the first
research question and how we determined whether our initial hypothesis was valid. Figure
3.2 shows an overview of how we answered this research questions).
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Figure 5.4: This figure shows an explanation of our running example. The relevancy of each token is visualized
using colors with blue and red being negative and positive respectively. Non-vulnerable lines are labeled with
a zero and vulnerable lines are labeled with a 1.

5.2.1. LRP IMPLEMENTATION

The classification type of the LRP model has been modified to allow for the explanation
of binary classifications. Whereas the LRP model employed by Arras et al. is a multi-class
classification task (5 output neurons), the TF model used by SySeVR system is a binary clas-
sification task (1 output neuron). Therefore the classification type of the LRP model was
adapted. The most probable class is determined by applying the softmax function to the
output neurons for the multi-class classification. This function normalizes the neuron val-
ues to a probability distribution (all neurons get values between zero and one and add up to
one), with the highest value determining the classification. The logistic function applied to
the single output neuron determines what the most probable class is in the binary classifi-
cation. With an output value lower than 0.5, the classification is negative (non-vulnerable);
otherwise, it is positive (vulnerable). The modifications to the LRP procedure were vali-
dated by hand on a small number of samples by checking that the classification score of
the model was equal to the sum of the relevance assigned to the features.

We applied this validated LRP implementation to our dataset to obtain relevance values.
We observed long run times with a limited number of samples in a test run. Because our av-
erage processing time was approximately 1000 samples per hour (e.g., 3.6s per sample), the
expected total run-time for our complete dataset was 13 days (containing approximately
313K samples). We investigated whether this run-time could be lowered and observed that
per sample the relevance calculation took much more time than the data-processing (load-
ing and saving) of a sample.

We leveraged this discrepancy between the calculation and processing time by imple-
menting a multi-process LRP implementation using the python multiprocessing 1 package.
This multi-process LRP implementation analyzes samples simultaneously by distributing

1https://docs.python.org/3/library/multiprocessing.html
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the processing of samples over multiple CPUs and thereby lowering the total running time.
This optimized LRP implementation had an average processing time of 13K samples per
hour (0.3s per sample) using 12 simultaneous processes (e.g. one proces per cpu-core).

Consequently, our total run-time was approximately 24h for our entire dataset when
running on an HP Z820 workstation containing 64GB RAM, two Intel Xeon CPUs featuring
six cores, a single 1TB solid-state hard drive, and a Nvidia RTX 2080ti GPU.

5.2.2. LINE COMPARISON STATISTIC
The LRP procedure assigns relevance to each token in the sample, however to determine
how much relevance the LRP procedure assigns to each line of code, we required a line
comparison statistic. We calculated three comparison statistics, the mean, the maximum,
and the median relevance per line. For example, in figure 5.5 we show these statistics for
vulnerable line 12 in figure 5.4. We compared their relevance distributions in vulnerable
and non-vulnerable lines. The left and right boxplots in figure 5.6 show that the mean and
median line relevance distributions of vulnerable lines are overlapping and lower than the
non-vulnerable lines. The middle boxplot shows that the vulnerable maximum line rele-
vance distribution is overlapping but mostly higher than the non-vulnerable. As a result,
the maximum criterion seems to distinguish better between vulnerable and non-vulnerable
lines than the mean or median criteria.

Figure 5.5: This figure shows the token relevance and the mean, maximum and median line statistics for
vulnerable line 12 in the thesis example.

Figure 5.6: Boxplots for mean, maximum and median selection criteria broken down in vulnerable and non-
vulnerable lines. The bulk of the vulnerable lines selected with the mean and median criteria have a relevance
value lower than the non-vulnerable lines. The bulk of the vulnerable lines selected with the maximum se-
lection criteria lies higher than the non-vulnerable lines. Outliers are not shown in the boxplots (i.e., the
whiskers show 1.5 times the IQR)

Furthermore, to compare relevance values between samples, we require the values to
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have the same semantic value. Each sample has its own relevance value distribution with
a mean and standard deviation. Therefore, relevance values from different samples come
from different distributions and cannot be compared directly. For example, a relevance
value of one could signify a low relevance in one sample and a relatively much higher rele-
vance value in another. For this reason, we performed standardization per sample by sub-
tracting the mean sample relevance from sample relevance values and dividing the result
by the relevance standard deviation). A standardized relevance value of one has the same
meaning in different samples (i.e., the value is a single standard deviation above the mean
relevance value in that sample). Standardizing the sample features allowed us to compare
the relevance values.

5.2.3. VULNERABLE LINE DETECTION PRECISION
In this subsection, we answer our first research question: "How precise are relevant parts of
vulnerabilities detected using deep learning?". The line detection precision expresses how
precise LRP can detect vulnerable lines in our dataset.

We obtain precision and recall metrics by comparing our line comparison statistic per
line to different classification thresholds and counting the number of true positive, false
positive, and false negative line classifications. These counts are then used to calculate the
metrics at each classification threshold. We report these measurements with a precision-
recall curve and average precision broken down into lines from false negative and true pos-
itive samples.

FINDINGS

Figure 5.7 shows precision-recall (pr) curves with their average precision (AP), random clas-
sifier baselines and F1 metrics. The precision value is the ratio of ground-truth vulnerable
lines to the detected vulnerable lines and expresses how accurate LRP detects the vulner-
able lines. The recall value, on the other hand, is the ratio of truly vulnerable lines to all
vulnerable lines and expresses how complete LRP detects the vulnerable lines. The average
precision provides a summary value of the precision values at each threshold. The pr-curve
is broken down into three vulnerable sample sets (TP, FN, and TP+FN) with their average
precision shown in the legend. The highest F1 metrics values are shown as blue dots on the
pr-curves, and the random classifier baselines are shown with dotted lines below them.

The figure illustrates our findings on vulnerable line detection precision. First, as the
curves show higher pr- and AP-values than their baselines, the vulnerable line detection
with LRP performs better than random line selection. Secondly, the precision levels from
zero recall to about 0.05 recall show that LRP can detect a small part of the vulnerable lines
with a precision of almost six times the random precision and the rest of the vulnerable
lines slightly better than random line selection. Thirdly, the FN samples show a less steep
decline in their pr-curve and a slightly higher AP (0.20 versus 0.17) compared to the TP sam-
ples. This indicates that, on average, the vulnerable lines in the FN samples have higher
maximum relevance than those in the TP samples. Fourthly, the F1 metric for the FN sam-
ples (0.26) is slightly higher than the F1 metric of the TP samples (0.22), implying that the
vulnerable line detection precision is slightly biased towards incorrect classifications. Alto-
gether, we can conclude that the explanations of incorrectly classified vulnerable samples
have higher vulnerable line detection precision than correctly classified vulnerabilities.

The value of these findings lies in the fact that they can predict how much vulnerable
classified lines are likely to be vulnerable. For example, it can be used to guide a vulnerabil-
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Figure 5.7: precision-recall curve line precision for TP+FN, TP, and FN samples based on maximum relevance
selection.

ity analysis strategy. If the consequences of a vulnerable rule are hazardous, a low thresh-
old can be chosen. Although more false positives will probably be encountered than using a
higher threshold, more lines will be classified vulnerable with it. The reverse strategy is also
possible. For example, a higher threshold can be chosen with a limited analysis capacity.
The number of potential vulnerabilities to be analyzed and the number of false positives
will probably be lower.
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Figure 5.8: This figure shows the average localization precision in three sample groups.

5.2.4. VULNERABILITY LOCALIZATION PRECISION

In this paragraph, we extend the previous answer to our first research question: "How pre-
cise are relevant parts of vulnerabilities detected using deep learning?". The vulnerability
localization precision determines how precise LRP locates vulnerabilities in slices. Towards
this end, we measure the ratio of overlapping selected and vulnerable lines per sample us-
ing the intersection over union metric. Lines in samples are selected by comparing their
line comparison statistic to the threshold which corresponds to the highest F1 score. We
report the average precision broken down in vulnerable line count and the distribution
broken down in false negative and true positive samples.

FINDINGS

Our findings on average localization precision are illustrated with several figures. First, the
average localization precision in figure 5.8 shows that the false negative sample group has a
slightly better average localization precision (0.19) than those in the true positive samples
(0.16) and combined sample groups (0.16).

Secondly, the histogram in figure 5.9 shows three notable bins. Bin [0− 0.6) contains
only samples with zero precision, Bin [0.94−1.00] contains only samples with perfect pre-
cision, and bin [0.5− 0.56) contains only samples with 0.5 IoU precision. We added the
counts of other bins to appendix A.2.

Furthermore, in table 5.1 we observe that the TP (76.6%, 10.7%, and 8.0%) and FN
(72.6%, 12.8%, and 8.4%) groups do not significantly differ (relatively) in these groups.

Although explanations of incorrectly classified vulnerable samples have a slightly higher
vulnerability localization precision than correctly classified vulnerabilities, most vulnera-
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Figure 5.9: This figure shows the histogram of the localization precision in three sample groups.

Table 5.1: This figure shows Top 5 localization precision histogram bins in three sample groups.

bilities in the classification groups (TP: 76.6% and FN: 72.6% respectively) cannot be deter-
mined at all (zero IoU) using the line comparison statistic.

5.3. CONCLUSION
In conclusion, we have learned in this chapter that our model uses non-vulnerable lines
more often than vulnerable lines in classifying vulnerable samples. This difference pro-
vides a strong argument not to limit our following analysis to vulnerable lines but instead
use both non-vulnerable and vulnerable lines in order to determine which tokens have a
negative impact on classification. It also raises a few questions. Are our labels of vulner-
able lines genuinely correct, or do other lines also play a part in, or provide context for
vulnerabilities? Is the model really learning to detect vulnerabilities in our samples, or is it
over-fitted on the training dataset? We will elaborate on these questions in our discussion
chapter 8.
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6
IMPROVING THE SYSEVR VULNERABILITY

DETECTION SYSTEM

6.1. INTRODUCTION
The goal of our experiments is to explore whether we can decrease incorrect classifications
and thereby increase classification performance. Our first experiment, tries to decrease the
number of false positive classifications, our second experiment tries to decrease the num-
ber of false negative classifications, and our third experiment tries to decrease the numbers
of false positive and false negative samples. The first experiment is described in section
6.2.1, the second experiment in section 6.2.2, and the third experiment is described in sec-
tion 6.2.3. Whereas the method of the first three experiments is to remove tokens from
samples before classification, the method of our fourth experiment removes the tokens
from samples before training. In this final experiment, described in section 6.3, we use the
results from our previous experiments to determine which tokens to remove.

6.2. IMPROVE THE CLASSIFICATION PERFORMANCE DURING IN-
FERENCE

This sections describes our experiments towards answering our second research question:
"How can we improve the classification performance using the relevance of features con-
tributing to incorrect classifications during inference?".

6.2.1. REMOVE TOKENS WITH HIGH RELEVANCE TO PREVENT FP CLASSIFICA-
TIONS

The goal of the first experiment is to decrease the number of false positive classifications
using the token relevance. We hypothesize that:

Highly relevant tokens in non-vulnerable samples contribute strongly to false pos-
itive classifications. Therefore, filtering these tokens during classification will pro-
duce a lower number of false positive classifications than during classification
without filtering.

To verify this hypothesis, we will detect vulnerabilities in token-filtered samples and
measure the classification results.
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Figure 6.1: Construction and application of token filters

Table 6.1: Binary classification results (confusion-matrix) of the LRP model on the LRP-analysis dataset.

The required steps to determine highly relevant tokens and filter these during classifi-
cations can be seen in figure 6.1.

Our first step is to determine the false positives samples in our lrp-analysis dataset.
The next step is extracting the tokens and their relevance from these samples (step 2). In
the third step, we sort the tokens on relevance and create five sets with the most relevant
tokens (step 3). Finally, we classify our lrp-test dataset using the token-filters (step 4) and
measure the average precision and the SySeVR metrics (see paragraph 4.1.3 for the SySeVR
metrics).

Our lrp-analysis dataset contains 246,468 samples in total. In table 6.1 can be seen that
6,145 non-vulnerable samples are predicted vulnerable by our LRP model (i.e., the false
positive samples). We extracted 694,477 tokens from these false positive samples contain-
ing 893 unique tokens.

We do not know how many tokens we should filter. Therefore, we start with five sets
to determine an optimal number. The first set contains the top-10 most relevant tokens,
the second contains the top-20, the third the top-30, the fourth the top-40, and the fifth set
contains the top-50 tokens (see appendix B for the filter sets). We select unique tokens as
they occur multiple times in the list.

To filter the tokens during classification, we alter our classifier program in two ways.
We implement the token-filters as python set-containers for efficient O(1) lookup of tokens
and add the sets to our prediction program. Furthermore, we compare sample tokens to
the tokens in our filter list before classification. When a match is found, we remove the
token from the sample that has to be classified.

To test whether the filters show an improvement, we classify unseen data, the lrp-test
dataset, and measure the changes in classification results and metrics. Figure 6.2 shows
that our filtered classifications have higher number of false positives compared to the base-
line. The FP-10 filter has 53 (+ 3.5%), FP-20 has 258 (+17.0%), FP-30 has 116 (+7.6%), FP-40
has 440 (+29%), and FP-50 has 9864 (+ 650.2 %) more respectively.

Furthermore, a decrease of average precision in our filtered classifications with regard
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Table 6.2: This table shows the lrp-test dataset classification results computed after classification with highly
relevant token filters

to the baseline can be observed in figure 6.2. The average precision of FP-10 decreases with
0.6%, FP-20 with 1.7%, FP-30 with 2.5%, FP-40 with 15.0%, en FP-50 with 57.2% respectively
(see appendix C.1 for the details).

We do observe some notable differences in the metric values. While FP-10, FP-20, and
FP-30 show a slightly higher or equal recall than precision, the FP-40 and FP-50 have more
distinction in their values. FP-40 has lower recall than precision due to the significant in-
crease of false negatives (+203%). FP-50, on the other hand, has a higher recall than preci-
sion. This difference can be attributed to the large increase of false positives (+650%). In
this quantitative experiment, we did not further analyze which tokens from the FP-40 and
FP-50 filters caused these significant changes.

We conclude from these results that removing relevant tokens from samples before clas-
sification does not lower but instead increases the number of false positive classifications
and that our experiment hypothesis is rejected.

6.2.2. REMOVE TOKENS WITH LOW RELEVANCE TO DECREASE FN CLASSIFICA-
TIONS

Our second experiment aims to decrease the number of false negative classifications using
the token relevance. We hypothesize that:

Tokens with low relevance in vulnerable samples contribute strongly to false nega-
tive classifications. Therefore, filtering these tokens during classification will pro-
duce a lower number of false negative classifications than during classification
without filtering.

To verify this hypothesis, we will detect vulnerabilities in token-filtered samples and
measure the classification results.

This experiment follows the previous experiment except for the following three differ-
ences. Whereas the previous experiment created filters containing highly relevant tokens,
this experiment uses the least relevant tokens (i.e., the tokens that carry the most weight
towards a non-vulnerable classification). We extracted 467,628 tokens from 4,195 false neg-
ative samples containing 839 unique tokens. The first set contains the top-10 least relevant
tokens, the second contains the top-20, the third the top-30, the fourth the top-40, and the
fifth set contains the top-50 tokens (see appendix B for the filter sets).

Figure 6.3 shows that our filtered classifications have higher number of false negatives
compared to the baseline. The FN-10 filter has 1249 (+109.1%), FN-20 has 2446 (+213.6%),
FN-30 has 4757 (+415.5%), FN-40 has 4966 (+433.7%), and FN-50 has 6522 (+569.6 %) more
respectively.

Furthermore, a decrease of average precision in our filtered classifications with regard

41



Figure 6.2: This figure shows the lrp-test classification metrics after classification with highly relevant token
filters.

Table 6.3: This table shows the lrp-test dataset classification results computed after classification with the
least relevant token filters.
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Figure 6.3: This figure shows the lrp-test classification metrics after classification with the least relevant token
filters.

to the baseline can be observed in figure 6.3. The average precision of FN-10 decreases
with 20.6%, FN-20 with 51.6%, FN-30 with 59.9%, FN-40 with 60.2%, en FN-50 with 64.9%
respectively.

We observe some differences in the results of our experiment. The precision values in
filters FN-10 and FN-20 decline more steeply than the recall values. This can be attributed
to the relatively larger change in FP (-260.6% and -540.3%) than the change in FN samples
(109.1% and 213.6%). Whereas the recall values drop in FN-30, FN-40, and FN-50, the pre-
cision values stay at the same level. This corresponds with the decrease of FP samples in
these three sets. Although these sets contain tokens that improve the classification of non-
vulnerable samples, these tokens also worsen the classification of vulnerable samples. We
did not investigate which tokens were responsible for the improvement and noted this in
our recommendations section in paragraph 9.

We note three differences when comparing the filters and results with our previous
experiment (FP-experiment). The filters from our previous experiment contain relatively
more normalized tokens (23 out of 50 tokens) than the FN filters (13 out of 50 tokens).
Whereas the FP-experiment metrics decline in the FP-40 filter, the FN-experiment metrics
decline immediately in the first (FN-10) filter. The change in FN samples in the FN experi-
ment is more pronounced than the change in FP samples in the FP experiment.

We conclude from these results that removing the least relevant tokens from samples
before classification does not lower but instead increases the number of false negative clas-
sifications and that our experiment hypothesis is rejected.
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token filter token count
10 19
20 39
30 56
40 72
50 90

Table 6.4: Token counts of FP-FN filter-sets

Table 6.5: This table shows the lrp-test dataset classification results computed after classification with highly
relevant and least relevant token filters.

6.2.3. COMBINING FP/FN IMPROVEMENTS

Our third experiment aims to decrease the number of incorrect (both false negative and
false positive) classifications using the token relevance. We hypothesize that:

The most and least relevant tokens in samples contribute strongly to false pos-
itive and false negative classifications respectively. Therefore, filtering these to-
kens during classification will produce a lower number of false positive and false
negative classifications than during classification without filtering.

To verify this hypothesis, we will detect vulnerabilities in token-filtered samples and
measure the classification results.

This experiment follows the same steps as the previous experiments except for the con-
struction of the filters. The filters are constructed as a union between the filter sets con-
taining the same number of tokens (e.g., the union of the top-10 relevant and top-10 least
relevant). Due to this union, filter sets containing the same tokens (e.g., FP-10 and FN-10
both contain token "."), contain less tokens than the sum of tokens in the individual filter
sets. See table 6.4 for the token-filter counts.

Table 6.5 shows that our filtered classifications performs worse than the baseline. The
FP-FN-10 filter has 3971 (+261.8%) FP and 1242 (+108.5 %) FN, FP-FN-20 has 7886 (+519.8%)
FP and 2799 (+244.5%) FN, FP-FN-30 has 3828 (+252.3%) FP and 5304 (+463.2%) FN, FP-FN-
40 has 1953 (+128.7%) FP and 6161 (+538.1.7%) FN, and FP-FN-50 has 2566 (+ 169.2 %) FP
and 7175 (+626.6%) FN more respectively. (onleesbaar, omzetten naar tabel?)

Furthermore, we see in figure 6.4 a decrease of average precision in our filtered clas-
sifications with regard to the baseline. The average precision of FP-FN-10 decreases with
20.5%, FP-FN-20 with 53.7%, FP-FN-30 with 61.3%, FP-FN-40 with 61.3%, en FP-FN-50 with
70.8% respectively.

We observe some differences in the results of our experiment. Whereas precision values
in the FP-FN-10 and FP-FN-20 filter sets are lower than the recall value, this is reversed in
the other three filter sets. The reason for this difference is that the latter sets have fewer FP
samples than the former sets.

Combining the filters yields results worse than both FP and FN experiments. This trend
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Figure 6.4: This figure shows the lrp-test classification metrics after classification with highly relevant and
least relevant token filters.
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Table 6.6: This table shows the comparison of the lrp-test dataset classification metrics computed after clas-
sification with all filters. To compare our filter sets we sort the metrics by average precision.

46



Figure 6.5: This figure shows the steps needed to train a new model and to classify our lrp-test dataset

can be observed in figure 6.6. This figure, sorted on average precision, shows that the FP-
FN filters have lower AP than the FN filters, except for FP-FN-10, which is slightly higher
than FN-10.

We conclude from these results that removing the highest and least relevant tokens from
samples before classification does not lower but instead increases the number of incorrect
classifications and that our experiment hypothesis is rejected.

6.3. IMPROVE CLASSIFICATION PERFORMANCE DURING TRAINING
This sections describes our experiment towards answering our third research question:
"How can we improve the classification performance using the relevance of features con-
tributing to incorrect classifications during training?".

The goal of our final experiment is to decrease the number of incorrect classifications by
changing the model training procedure. We choose a token filter and test if filtering tokens
in samples before training produce a lower number of incorrect classifications (of the filter
category) than classifications produced with the model trained on unfiltered input. We
detect vulnerabilities in our lrp-test dataset and measure the classification results to verify
this hypothesis.

The steps needed to train a new model and classify our samples can be seen in figure
6.5. Our first step is to determine which token filter is used in this experiment. The next
step is to filter samples in our training procedure. The third step is training our model with
the new procedure on our training dataset. Finally, we classify our lrp-test dataset using
the newly trained model and measure the average precision and the SySeVR metrics.

To select a token filter in this experiment, we review the results from our previous ex-
periments. Although the FP-10 results show a slightly lower average precision than the LRP
results (0.9405 versus 0.9460), we see in figure 6.6 that this filter has the highest average
precision amongst our filters. Therefore we choose this filter to change our training proce-
dure.

The goal of our final experiment is to decrease the number of false positive classifica-
tions by changing the model training procedure. We hypothesize that:

Highly relevant tokens in non-vulnerable samples contribute strongly to false pos-
itive classifications. Therefore, a model trained on samples without these tokens
will produce a lower number of false positive classifications than a model trained
on samples with these tokens

We will detect vulnerabilities in our lrp-test dataset and measure the classification re-
sults to verify this hypothesis.

We made two changes to our training program to apply our token filter to the sam-
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Table 6.7: This table shows the training and lrp-test datasets classification results from classification with our
first model and the model trained on samples filtered with the FP-10 filter.

ples. First, the training data in our model training program is implemented as a Tensorflow
dataset, and we did not find a way to filter our training data using this implementation.
Therefore we converted the training data to NumPy arrays, an input array with samples,
and another array containing the ground truths. Secondly, we filtered the samples in the
former array and used both in our training procedure.

The classification results of our retrained model have changed when compared to the
baselines. In table 6.7 we show the results of our test and lrp-test datasets (column pairs
SySeVR/SySeVR FP-10 and LRP/LRP FP-10). Whereas we see an almost equal percentage
decrease of false positive samples in both datasets (-29.11% and -29.14%), we see two dif-
ferent percentage increases of false negative samples (+22.7% versus +39.4%).

Furthermore, we see in figure 6.6 minor changes in the average precision metric, the test
dataset gains 0.002% and the LRP-test dataset loses 0.005% with regard to their baselines.
Whereas precision values in both test and lrp-test datasets have increased (4.6% and 3.8%),
the recall values have decreased (4.1% and 4.9%). We conclude from the classification re-
sults that a model trained on samples without highly relevant tokens has a lower number
of false positive classifications than a model trained on samples with highly relevant tokens
and that our experiment hypothesis is accepted.

6.4. CONCLUSION
Our experiments towards answering RQ2 have shown that filtering the most or least rele-
vant tokens from samples before classification does not improve the SySeVR vulnerability
detection performance. This contrasts with our experiment towards answering RQ3 that
shows , when the model is trained on samples without highly relevant samples, the detec-
tion of non-vulnerable samples improves in the SySeVR approach.
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Figure 6.6: This figure shows the training and lrp-test datasets classification metrics from classification with
our first model and the model trained on samples filtered with the FP-10 filter.
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7
RELATED WORK

Since the popularity of deep neural networks, attention has also been given to explaining
their classifications. Examples of this are highlighting the pixels in an image that contribute
to object detection or showing which words are relevant in movie review classifications [3,
2]. However, our research does not focus on these classification tasks but on the intersec-
tion of explaining classifications and software vulnerability detection. It uses the research
of Bach and Arras on the explanations of classifications and the research into software vul-
nerability detection using deep learning from Li et al. [3, 2, 21]. The research by Warnecke et
al. and the research by Guo et al. focus on the same intersection[47, 13]. The former study
yielded a new method, LEMNA, that determines which features have contributed strongly
to classifications within the software security domain. The latter study defines criteria for
comparing vulnerabilities detection methods (including LEMNA).

The work of Guo et al. has yielded a model agnostic (i.e., black-box) explanation method
(LEMNA) that focuses on explaining classifications in the security domain [13]. Their work
is inspired by the popular LIME method of Ribeiro et al. (see 2.4) but argues that the LIME
method is not well suited to explain classifications of software security tasks. They state
that in these tasks, features often have dependencies (e.g., consecutive tokens in source
code) that are not taken into account by the LIME method. To overcome this limitation,
they apply the fused-lasso technique of Tibshirani et al. to create a simple explicable linear
model [42, 43]. This technique has two advantages in fitting the linear model. It reduces
the number of coefficients and reduces the distance between successive coefficients. They
evaluate their method with three tests. The first test removes the parts from a sample hav-
ing the best explanation according to their method. In the second test, they augment an
image from an opposite class with these parts, and in the final test, they construct random
samples containing only these parts. After adapting the samples, Guo et al. measure the
change in accuracy.

Our work differs in several ways from that of Guo et al. First, where we use the LRP
method in our research, which uses the weights and structure of the model (white box), the
work of Guo et al. uses the LEMNA method in which only the input and output of the model
is used (black box). Second, where we use a bi-directional recurrent network (LSTM) as the
subject, Guo et al. use both a bi-directional recurrent network (RNN) and a layered fully
connected neural network as subjects for its classification task. Finally, where our evalu-
ation of the LRP method determines accuracy using ground truth labels of the vulnerable
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parts, the evaluation of the LEMNA method determines accuracy using labels from expla-
nation generated by the LEMNA method itself.

The research of Warnecke et al. answers the question of how to choose an explanation
method in the field of software vulnerability detection [47]. It specifies five criteria (ac-
curacy, sparsity, completeness, stability, and efficiency) for explanation methods to detect
software vulnerabilities successfully. These criteria are measured in six explanation meth-
ods applied to four current software security systems, and the results are compared to each
other.

Our research differs from that of Warnecke et al. in several ways. Their accuracy prop-
erty (descriptive accuracy) removes the most relevant tokens from samples and measures
the change in classification accuracy. This is in contrast to our measurements, where we
determine the accuracy of LRP using ground truth labels of the vulnerable parts. Their dis-
tribution characteristic (descriptive sparsity) measures whether the relevant parts of expla-
nations are limited to a small group. We measure to what extent the relevant features occur
in the explanations. Another difference is seen in the focus of their research. Whereas they
focus on comparing their criteria in six explanation methods and providing guidelines for
selecting an appropriate explanation method, our research focuses on measuring how pre-
cise vulnerable parts in samples are used in a vulnerability detection system and whether
the explanations can be used to improve the classification performance thereof.

The similarity between our research and the research by Warnecke et al. is that both
apply the LRP method to comparable software vulnerability detection systems. We use
the SySeVR system. They use a predecessor, the Vuldeepecker system. The models of
both systems have the same architecture and have learned from samples from the same
(SARD) dataset to detect vulnerabilities. The difference between the two systems is that
the Vuldeepecker system uses data dependency in slicing the samples and that the SySeVR
system also applies control-flow dependency. As in our findings, Warnecke et al. observe
in classifications of their model that relevance is assigned to parts which seem unrelated to
task of vulnerability detection (for example, semicolons or brackets).

Comparing our findings to the relevant findings of Guo et al. and Warnecke et al. we
observe some differences. Whereas Guo et al. report improvements in the test results when
comparing their LEMNA method to the LIME method and a random baseline, Warnecke
et al. observe that the LEMNA method has consistent lower accuracy on all four classifica-
tion topics when compared to LIME. Warnecke et al. also report that black box explanation
methods produce less accurate and sparse explanations when compared to explanations
produced by white box explanation methods. Both Guo et al. and Warnecke report that
the accuracy of predictions quickly declines when removing highly relevant tokens from
samples. Hence they show that explanation methods can determine which features are
the most relevant in classifications. While our results on removing the most relevant to-
kens from samples (described in section 6.2.1) also finds this relation (although less pro-
nounced), our research also compares the features to the ground truth relevance and shows
(in paragraphs 5.2.3 and 5.2.4) that our model uses non-vulnerable lines more often than
vulnerable lines in classifying vulnerable samples.
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8
DISCUSSION

The objective of our research was to improve a software vulnerability detection approach
using explanations of incorrect classifications. In this chapter, we interpret the results of
our work, place the relevance of the results in the context of software vulnerability detec-
tion, and discuss the limitations of the research.

8.1. EXPLAINING SOFTWARE VULNERABILITY CLASSIFICATIONS
To measure how precise relevant parts of vulnerabilities are detected, we compared actual
vulnerable lines to suspected vulnerable lines according to the LRP method. In section 5.2.3
we compared the line relevance distribution of line selection criteria. We determined that
the maximum criterion was likely to distinguish between vulnerable and non-vulnerable
lines better than the mean or median criteria. Selecting vulnerable lines using this maxi-
mum relevance criteria yields an average precision which is twice as good as selecting ran-
domly (seventeen percent versus eight percent average precision, respectively).

Although we hypothesized that false negative (FN) samples in our dataset would have
less precise explanations than true positive (TP) ones, the data (see figure 5.7) on precision
showed a reversed relation. Our FN samples have a slightly higher average precision when
compared to the TP samples (twenty percent and seventeen percent AP, respectively). Also,
the harmonic mean of the precision and recall values (F1-metric) in the FN samples (0.26)
is higher than in the TP samples F1-metric (0.22). This indicates that, on average, the vul-
nerable lines in FN samples have higher maximum relevance than those in the TP samples.
Therefore, the vulnerable line detection precision is slightly biased towards FN samples
when using the maximum F1-metric.

In addition to determining how precise LRP can detect vulnerable lines in the entire
dataset, we also measured how precise the relevant parts (i.e., the vulnerable lines) in indi-
vidual samples can be detected using LRP. In section 5.2.4 is shown that, on average, sixteen
percent of the actual vulnerable lines are selected and that in the majority of vulnerabili-
ties (76.2%), the vulnerable lines cannot be determined at all. Moreover, when the data on
vulnerable samples are broken down into classification groups, we discerned that the FN
group has a slightly higher average precision than the TP group (0.19 versus 0.16). This is
in line with our previous results on the differences between FN and TP samples.

Showing that counter-intuitive, relevant parts of vulnerabilities detected using the Sy-
SeVR system are less likely to be used than the irrelevant ones raises some questions.

52



Could our labels of vulnerable lines be imprecise, thereby lowering the precision met-
rics? Some vulnerabilities could either not be labeled in our dataset because they did not
manifest in vulnerable lines of code (e.g., memory or resource leaks) or because the sample
creation method did not include the vulnerable lines. These missing labels were only seen
in a small (571 out of 51586) part of the samples.

Also, because the C/C++ samples originate from the SARD dataset, which has com-
monly been used in studies, we assumed that vulnerable lines are described correctly. How-
ever, the vulnerable lines described in this dataset might not completely describe the vul-
nerabilities. For example, only line 41 is marked as vulnerable in the SARD testcase in figure
4.2 (paragraph 4.1.2). Although this line contains the actual writing outside of the buffer,
there are multiple places in the example that make this out of bounds writing possible. One
could argue that the destination buffer is created to small in line 35 or that the length of the
for-loop is calculated using the wrong buffer at line 37.

Could the excellent vulnerability detection performance result from over-fitting on the
training data? We followed the SySeVR training procedure described by Li et al. to train
our deep learning network. In the left plot in figure 8.1 it can be observed that the loss of
the models is becoming lower in the training dataset than in the validation dataset around
epoch 6. Although this implied that the model became better at predictions in the training
data, we observed a declining trend in the validation data loss, which indicated that the
model was still improving on the validation data. However, starting at epoch 17, we saw
inclining trend lines in the validation data, suggesting that the models were starting to over-
fit on the training data. The training of the models has been stopped at epoch 19 with small
increases of the validation loss. This suggests that models were not over-fitted much at that
point.

Figure 8.1: These figures show training and validation loss of two models. The recreated SySeVR model (i.e.,
the baseline model) trained on the SySeVR dataset, and the model trained on the SySeVR dataset with our
token filter applied (i.e., the filtered model). The left figure compares the training and validation loss of the
baseline model and the improved model. The middle figure shows the training and validation loss of the
baseline model and their regression lines. The right figure shows the training and validation loss of the filtered
model and their regression lines. We see in the middle and right figures inclining trend lines (polynomial
regression with degree 4) starting at epoch 17 in the validation data of both models which indicates that the
models were starting to over-fit on the training data.

Although we do not have definitive answers to these questions, our results are still rele-
vant to the problem of vulnerability detection because they urge us to be critical in assess-
ing the value of deep learning models in this context. In this case, we showed that the lines

53



we labeled as being vulnerable (according to the SARD metadata) do not play a significant
role in determining whether a sample is vulnerable. Because the SySeVR system detects
vulnerabilities without these lines, it is uncertain whether it can find vulnerabilities when
applied in a different setting. For example, in the detection of vulnerabilities obtained from
other, non-synthetic, source code. Furthermore, we showed that in our case, using the Sy-
SeVR model and SARD dataset, the explanations of vulnerabilities did not seem to help
resolve the vulnerabilities themselves.

8.2. IMPROVING THE SYSEVR VULNERABILITY DETECTION SYS-
TEM

To determine whether we could use explanations of incorrect classifications to improve
the SySeVR system we performed three experiments towards answering research questions
RQ2 and one experiment towards answering RQ3. Each experiment aimed to measure
whether removing the most or least relevant parts (i.e., tokens) from our samples during
inference (RQ2) or during training (RQ3) could lower incorrect classifications. In contrast
to the research by Guo et al. and Warnecke et al. where tokens to be removed are deter-
mined per sample, our research has determined which tokens to remove by analyzing the
entire dataset [13, 47]. Our first experiment hypothesized that removing the most rele-
vant tokens of false positive (FP) samples before classification would lower the number of
FP samples after classification. We constructed five sets with increasingly larger amounts
of most relevant tokens found in FP samples and compared the classification results and
metrics on another set of samples to test this hypothesis. Table 8.1 shows the results of this
experiment in the column group "FP experiment". Although our experiment hypothesis
was rejected due to the increase of FP classifications and decrease of average precision in
all five sets, we observed some notable differences in the results. The decrease in false pos-
itives in set size 30 and the large increase in set size 50 show us there are tokens in these two
sets that slightly direct the model towards non-vulnerable or strongly towards vulnerable
classifications, respectively.

Table 8.1: This table shows the results of our experiments in removing the most and least relevant tokens
before classification. The FP and FN columns contain the change in classification results of the model at a
0.5 probability threshold, and the AP columns contain the change in average precision of the model. The
experiment results marked in bold indicate the lowest decrease in average precision.

FP experiment FN experiment FP&FN experiment
Set size FP AP FN AP Set size FP FN AP

10 3.5% -0.6% 109.1% -20.6% 19 261.8% 108.5% -20.5%
20 17.0% -1.6% 213.6% -51.6% 39 519.8% 244.5% -53.7%
30 7.6% -2.4% 415.4% -59.9% 56 252.3% 463.2% -61.3%
40 29.0% -14.2% 433.7% -60.2% 72 128.7% 538.1% -61.3%
50 650.2 % -54.1% 569.6% -64.9% 90 169.2% 626.6% -70.8%

Conversely, in our second experiment, we hypothesized that removing the least rele-
vant tokens of false negative (FN) samples before classification would lower the amount
of FN samples after classification. In this experiment, we also refuted our test hypothe-
sis. We showed that all five sets increased the number of false negative classifications and
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decreased the average precision in our test dataset. However, whereas the previous ex-
periment metrics started declining in set size forty, in this experiment, the metrics started
declining more pronounced and immediately in the first set. This implies that the tokens
in the sets significantly reduce the model’s power to detect vulnerable samples.

Our third experiment yielded worse results than both our previous experiments. We
tested the hypothesis that removing the most and least relevant tokens of incorrect clas-
sified samples (FN and FP respectively) before classification would lower their numbers
after classification. Only the first combined set (size 19, due to overlapping token ".") has a
smaller FN and AP change than the FN experiment.

Whereas our previous three experiments removed tokens before classification, our fourth
and final experiment tried to decrease false positive classifications by changing the model
training procedure. We removed the set of ten highly relevant tokens (the set having the
lowest decrease in AP) from the training samples before fitting the model. We compared
the classification results and metrics to their baselines.

Table 8.2: This table shows the results of our experiments in removing highly relevant tokens before fitting
the model. The AP column contains the average precision of the model. The P, R, and F1 columns show the
precision, recall, and F1 metric. The TP, FN, TN, and FP columns contain the classification output of the
model at a 0.5 probability threshold.

AP P R F1 TP FN TN FP
SySeVR 0.91 0.83 0.85 0.84 788 141 6413 158

SySeVR-FP 0.91 0.87 0.81 0.84 756 173 6459 112
LRP 0.95 0.86 0.89 0.87 9172 1145 50749 1517

LRP-FP 0.94 0.89 0.86 0.87 8721 1596 51191 1075

Whereas this experiment showed (see table 8.2) a decrease of false positive classifica-
tions in the test (-29.11%) and lrp-test datasets (-29.14%), it also showed an increase of
false negative classifications (22.7% and 39.4% respectively). Correspondingly, the preci-
sion values have increased by 4.6% and 3.8%, and the recall values have decreased by 4.1%
and 4.9%. Furthermore, we saw that the average precision had not changed significantly
(+0.002% and -0.005%). We concluded from these results that filtering highly relevant to-
kens samples before training a model decreases the number of false positives and that our
experiment hypothesis is accepted. However, the decrease in recall values also indicates
that while our new model has become better in discerning whether samples are vulnera-
ble, it can, on the other hand, perform this detection only on a smaller number of samples.
This raises the question of how relevant our research and its results are towards the prob-
lem of vulnerability detection. When answering this question from a theoretic perspective,
we see that the related research (by Guo et al. and Warnecke et al.) measures their expla-
nation methods performance where we measure whether the model uses relevant parts of
vulnerabilities. Also, whereas their research works with fixed models, we have analyzed the
impact of removing the most or least relevant tokens before and after the fitting of a model
[13, 47]. From a practical point of view, our method can increase the precision of a software
vulnerability detection system and, therefore, can reduce the effort required to find vulner-
abilities. However, when reviewing code to find implementation errors that can pose a risk
to the intended use of the application, a vulnerability detection system with a lower recall
value can potentially overlook vulnerabilities. Improving a vulnerability detection system
should thus, show improvements on both metrics.
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8.3. LIMITATIONS
Determining whether the software vulnerability detection model uses the relevant parts of
vulnerabilities and improving this model was limited in several ways.

We depend on the metadata of the SARD dataset to determine the labels of our vulnera-
ble lines. This metadata contained the vulnerable line numbers in the source files. Because
the SySeVR samples do not include these line numbers, we have labeled the lines in our
dataset by comparing the vulnerable lines from the metadata to the source code used to
create the samples. This process could have mislabeled lines in our samples. We found
several vulnerable samples without vulnerable lines and non-vulnerable samples with vul-
nerable lines during our validation of the labels. Also, the SySeVR dataset contained vul-
nerable samples with vulnerability types that do not have any source code (for example,
memory leaks). As the vulnerable lines in these samples cannot be determined, they de-
crease the vulnerable line detection precision and the average localization precision.

Our model has been trained with SySeVR samples, which were created by transforming
NVD and SARD samples [26, 27]. The proportions between the sample origins are roughly 1

5
NVD and 4

5 SARD. Such a difference in sample origin proportions impacts the model’s abil-
ity to detect vulnerabilities from both origins. This could be deduced from the fact that the
model performed better on the lrp-analysis (SARD only) dataset (0.95 average precision)
compared to the test (SARD+NVD) dataset (0.91 average precision). Additionally, because
the samples with SARD origins are created by transforming smaller and less complex pro-
grams, the model could be biased towards samples having these qualities. Furthermore, we
only used samples with SARD origins in our analysis because their vulnerable line numbers
could be obtained. Therefore, this bias could play an even more prominent role in the re-
trained model. Finally, because the SARD contains synthetic samples, we could argue that
they probably contain similar source code sections in the training and validation datasets.
Whether our model can generalize to unseen data is validated by comparing its training
loss to its validation loss and stopping the training when the validation loss is increasing.
If the samples in both datasets are very similar the validation loss could be lower than it
would be without similarity and this could produce a model that has high performance on
synthetic samples but is unable to perform well on truly unseen data.

The deep learning model of the study under investigation is not publicly available. We
have reached out to the research group several times to request the model used in the Sy-
SeVR study. Since they did not respond, we had to recreate their model. Thanks to the thor-
ough descriptions of the training procedure in the SySeVR paper we could create a com-
parable model having the same metrics. However, our model contains a single lstm layer,
but the SySeVR model contains two layers. Although the performance metrics were com-
parable, this limits the results of our findings to our model architecture. Also, our trained
models could have learned from different input data because the training procedure in-
cluded randomization of input data and because this was not reproducible, its limits our
metrics’ comparisons to theirs.

The normalization step of the samples is done using a hand-built lexer. This lexer in-
troduces errors when normalizing some parts of the source code. We found that a += token
always yield two separate tokens (+ and =). Furthermore, because the lexer ignores escape
characters in strings, the rest of the characters in such a string are skipped during the lexical
analysis. Since the word-embeddings are created from the normalized tokens, these faults
will negatively influence the generalizability of the embeddings. For example, the embed-
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dings will learn to represent that the addition (+) operator often precedes the assignment
(=) operator, which is not valid syntax in C or C++.
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9
CONCLUSION & RECOMMENDATIONS

CONCLUSION
Our research was aimed at discovering whether we could improve the SySeVR system by ex-
plaining its incorrect classifications using an adaptation of the LRP method by Arras et al.
[21, 2]. Towards this end, we stated three research questions. The answers to our first ques-
tion guided our other two research questions whether removing the most or least relevant
parts before and after model training can improve the classification performance.

To determine which parts of vulnerabilities are relevant in a deep learning setting (RQ1),
we measured how precise LRP can detect vulnerable lines across our entire dataset and
how precise LRP locates vulnerable lines in individual samples. With an average precision
of seventeen percent, the LRP method is better at detecting vulnerable lines than a random
guess with an average precision of eight percent. In spite of this improvement there are
still many vulnerable lines which are not detected using our approach. This shows that our
application of the LRP method is not well suited to detect vulnerabilities.

Our research shows that the LRP method can detect, on average, seventeen percent of
the vulnerable lines in our dataset. Although this is an improvement when compared to
our baseline performance of eight percent (a random guess), the majority of vulnerable
lines are not detected using our approach. Therefore, we conclude that our application of
the LRP method is not well suited to detect vulnerable lines in our dataset. Furthermore,
our application of LRP locates on average sixteen percent of the vulnerable lines in individ-
ual samples. Because the majority of our vulnerable samples has a single vulnerable line,
our application LRP will rarely locate it which limits its practical use in explaining these
samples.

To ascertain whether explanations of incorrect classified samples can be used to im-
prove the SySeVR system, we performed experiments that filtered the most and least rel-
evant parts originating from incorrect classifications before (RQ3) and after (RQ2) fitting
the model. After fitting the model, the number of correct classifications and the average
precision decreased by removing the most relevant parts from our samples. Conversely, re-
moving them before fitting the model did not change the average precision significantly but
decreased the number of FP classifications by 29% at the expense of increasing the number
of FN classifications by 23%.

Our analysis of explanations improves the understanding of deep learning approaches
in the context of software vulnerability detection. We show that the lines we labeled as
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being vulnerable do not play a significant role in our model’s classifications. This insight
into the behavior of our model was unexpected and lowered our trust in its ability to detect
vulnerabilities when applied in a different setting.

Our adjustments to the model training procedure yielded a model in which, at the same
classification threshold, a larger proportion of detected vulnerabilities are relevant. How-
ever, they also resulted in a model that selects a smaller proportion of the vulnerabilities.
An improvement would require higher proportions on both terms and therefore, we did
not improve our model’s performance but rather shifted its focus in this classic trade-off in
vulnerability detection systems.

RECOMMENDATIONS

COMPARE PERFORMANCE OF MODELS ON REALISTIC SAMPLES
The SySeVR dataset is mainly based on simple synthetic vulnerabilities. In addition, the
sample extraction procedure does not prevent overlap between the samples, which could
lead to many similarities between the training and validation datasets. Examining whether
vulnerability detection systems such as VulDeepecker, SySeVR, and Russell’s work deliver
the same high performance on more complex samples obtained from natural occurring
vulnerabilities could determine the generalization power of deep learning vulnerability de-
tection systems and assess whether they have practical value in software engineering prac-
tices [22, 21, 34].

MEASURE AND COMPARE THE PRECISION OF OTHER EXPLANATION METHODS
Our precision analyses have determined how precise the layer-wise relevance propagation
method detects vulnerable lines and to what extent these lines are used in the classifica-
tion task. To this end, we have created a dataset that can be re-used to determine which
explanations methods yield the best results. For example, the precision of the explanation
methods employed by Warnecke et al. could be compared after training on our dataset [47].

IMPROVE LABELS OF VULNERABLE PARTS
Our analysis compared vulnerable lines with predicted vulnerable lines and determined
the model’s average precision. Our unit of precision, lines, contains tokens that either at-
tribute towards the vulnerability or against it. We marked lines as vulnerable when the
maximum token relevance was higher than a threshold. This coarse approach was nec-
essary because the vulnerabilities were described at line-level. Future work could make
the approach more precise by determining the precision at the token level. For this pur-
pose, a dataset with vulnerabilities labeled at the token level would have to be created and
analyzed. On the other hand, there could be other ways to mark lines as vulnerable (for
example, training a classifier or other statistical inference methods) which could increase
average precision and provide better insight into the model’s usage of the vulnerable parts
in classifying samples.

PREVENT NORMALIZATION ERRORS
The SySeVR system normalize tokens to prevent over-fitting on unique tokens when fitting
the model. As described in paragraph 8.3, this introduced errors which resulted in the ex-
clusion of tokens (for example, the addition and subtraction assignments += and -=) and
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string-parts (for example, the characters in strings following an escaped string-endings \’).
Future work could prevent these errors by normalizing the tokens using the rich informa-
tion present in the abstract syntax tree used to create the program slices.

IMPROVE THE SEMANTIC VALUE OF TOKENS
The normalization step renames methods and variables given to them by programmers.
The meaning given to these names is hidden because they have been renamed to a generic
name and a number (e.g., func_02 or variable_19) signifying the position in the sample.
Future work could improve the semantic value of tokens by applying techniques commonly
used in natural language processing to retain the meaning given to names. For example,
stemming, reducing words to their root stem or word could be used to limit the uniqueness
of names.

INCLUDE THE POSITION OF TOKENS IN THE ANALYSIS
Our explanations contain relevance values obtained from the bi-directional recurrent model.
Each relevance value is obtained by summing this model’s forward and backward relevance
value. Therefore, the token position relative to its predecessor or successor cannot be used
in the analysis. Future work could improve the analysis by breaking down the analysis in
forward and backward relevance values. This would make interpreting the explanations
easier because the changes in relevance values from successive tokens can be observed.

FILTER TOKENS INDIVIDUALLY
Although the FN-30, FN-40, and FN-50 filters contain tokens that improve the classifica-
tion of non-vulnerable samples, these tokens also worsen the classification of vulnerable
samples. Future work could investigate which tokens precisely were responsible for these
changes. This could be done by decreasing the filter step size from ten to 1. In this way, the
effect of removing each token can be determined.

INCREASE THE MAXIMUM SAMPLE SIZE
The SySeVR system works with a maximum sample size of 500 tokens. When a sample is
found that exceeds this maximum size, it is truncated in such a way that the starting point
of the program slice (the parts suspected to be involved in a vulnerability) is kept. We do
not know the reason for limiting the sample size. However, future work could investigate
whether this maximum is necessary and the relation between the sample size and the lo-
calization precision.

BREAK DOWN THE ANALYSIS IN DIFFERENT TYPES OF VULNERABILITIES
Although vulnerabilities have different forms of manifestation in source code (for example,
buffer overflows or memory leaks), our analysis does not differentiate between types of
vulnerabilities. Our results could be broken down into specific vulnerability types. If some
of these types are detected with low precision, the model’s overall performance could be
increased by the approach employed by Guo et al. to generate samples in categories that
are under-represented in the dataset [13].
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IOU DATA

Figure A.1: localization precision histogram bins
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Figure A.2: Vulnerability localization precision in IoU. The first columns shows the numeric IoU, the second
column shows the fractional IoU, and the third column shows the count.
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TOKEN FILTERS
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Figure B.1: This list shows the top 50 relevance values in the lrp-analysis dataset. Tokens can have duplicate
relevance values and therefore we show unique tokens.69



Figure B.2: This list shows the bottom 50 relevance values in the lrp-analysis dataset. Tokens can have dupli-
cate relevance values and therefore we show unique tokens.
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C
FILTER RESULTS

Figure C.1: This table shows the classification results and metrics of our token-filter experiments
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