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Abstract
Gathering information of aquatic life is often done manually
using video feeds. This is a time consuming process and
it would be beneficial to capture this information in a less
laborious manner. Video based object detection has the
ability to achieve this. Recent research has shown promising
results with the use of YOLO for object detection of fish.
Detecting fish underwater is difficult because of low visibility
and therefore fish species can be hard to discriminate. To
alleviate this, this study proposes the fish detector YOLO Fish,
which uses hierarchical techniques in both the classification
step and in the dataset. Hierarchical techniques handles
situations where features are difficult to discern better and
makes it possible to extract more information from the data.
With an mAP of 91.8%, YOLO Fish is a state-of-the-art
object detector on Nordic fish species. Additionally, the
algorithm has an inference time of 26.4 ms, fast enough to
run on real-time video on the high-end GPU Tesla V100.

Keywords: Object Detection; YOLO; Fish Species; Hierarchi-
cal Classification

Introduction
Object detectors can face difficulties when dealing with
classes from certain biological domains because there
can be large similarities between species from a purely
visual standpoint. Further, with the lack of clear and
visible features under water, as compared to on land, the
object detector faces difficult operating conditions. In
the biological domain the taxonomic hierarchy specifies
species and their relation to each other. This system of
relations can aid in the classification of species as the
hierarchical nature can be exploited to face the difficulties
of hard to distinguish objects. The detection of fish in
video feeds is a good example of a domain where species
can be similar-looking and conditions difficult. Currently
information gathering of aquatic life is done manually

with expensive techniques and limited information, often
with a basis in video feeds [1][2]. Collecting information
about aquatic life is highly important for sustainable and
profitable marine life management [3][1]. The use of
machine learning techniques such as object detection and
classification can aid with this.

Hierarchical Classification
Huang, Boom, and Fisher [4] exploited the hierarchical
nature of fish features to increase classification accuracy
on the fish4knowledge dataset [5]. Using a Balance-
Guaranteed Optimized Tree for constructing a hierarchy
and a SVM at each level of the hierarchy they achieve
a classification average precision of 91.7% on a dataset
containing 3179 fish from 10 classes. Redmon and
Farhadi [6] utilises global hierarchical classification with
Darknet-19 on the ImageNet dataset by transforming
the WordNet into a tree structure called WordTree.
This classifier achieves 71.9% accuracy on a subset of
ImageNet containing 1000 leaf classes, or 1 369 with the
classes needed in the hierarchy.

Object Detection of Fish Using CNN
Xiu Li et al. [7] did object detection of fish on a
dataset based on fish4knowledge and used Fast R-CNN
to achieve a mean Average Precision (mAP) of 81.4% at
an inference time of 311 ms per image, and Fast R-CNN
with singular value decomposition to achieve an mAP of
78.9% at 273 ms per image. This is further improved in
2017 by Li, Tang, and Gao [8] which achieved a 89.5%
mAP at 89 ms per image. Raza and Hong [9] did object
detection of fish using a modified version of YOLOv3
on their dataset with 4 classes of aquatic life with one
of them being for fish. By modifying the loss function
and adding an extra detection scale to account for finer-
grained features they achieve an mAP of 91.3%. Object
detection of salmon in Norwegian fish farms has been done
by Reithaug [10] where using SSD Inception V2 an mAP
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of 84.64% is achieved at 266 ms seconds per image.
Classification of Nordic fish has been done by Olsvik

et al. [11] where they attained an accuracy of 87.74%
with a CNN-SENet and 90.20% with a ResNet-50 on
their dataset containing 867 fish across 4 classes. The
classifier from Olsvik et al. [11] is expanded for object
detection using YOLOv3 by Knausgård et al. [12] where
YOLO is used for localization only, and classification is
done with CNN-SENet. The localizer achieves an mAP
of 87% (without classification error) on their data. The
classifier achieves a classification accuracy of 83.68% on
the dataset of Knausgård et al. [12].

You Only Look Once (YOLO)
YOLO [13] is a state-of-the-art algorithm for object
detection. The algorithm has seen some incremental
improvements since its first release with accompanying
published papers. The versions are called YOLOv1 [13],
YOLOv2 (YOLO9000) [6] and YOLOv3 [14]. There has
been some significant changes from one version to the
other and are briefly summarized as follows. YOLOv2
is predicting how to move and scale some prior anchor
boxes relatively, instead of directly predicting bounding
boxes [6]. YOLO9000 added the WordTree concept
to predict classes that are hierarchically organized and
was designed to be able to classify over 9000 classes
[6]. YOLOv3 added multi-class and multi-scale prediction
[14]. YOLOv3 does not have the concept of a WordTree.

Drawbacks with previous work
When you label a localization and classification dataset
there will often be fish in the frame that are difficult to
discern the species of. Previous approaches often utilize a
class representing unknown fish where fish species cannot
easily be discerned to solve this problem. A downside with
this is that the algorithm specifically learns that some fish
are of the class ‘unknown’. This gives them the ability to
include fish they don’t know the species of. However, it
is reasonable to believe, that the detector learns that less
visible fish are of the class ‘unknown’ and not that this
class can be applied when it is able to localize, but not
classify.

Objective
In this project, the goal is to create a new object detector
called YOLO Fish that utilizes the taxonomic hierarchy to
detect fish in their natural habitat. To achieve this a new
manually annotated dataset needs to be created.

The following list summarizes the objectives.

• Create an end-to-end model for real-time localization
and classification of Nordic fish species in video.

• Achieve state of the art performance on real-time
localization and classification of Nordic fish in video.

• Use the taxonomic hierarchy for data annotation to
make data generation significantly easier for difficult
domains.

• Create a method that enables training and detection
in conditions where it is not always possible to discern
species.

Method
Hierarchical Classification
Most convolutional neural networks use a flat structure
for classification, but a hierarchical structure can also
be useful when modeling domains that are inherently
hierarchical.

This structure can be designed such that each node has
a “is a” relationship to its parent. For example, a fish is
an animal, so thus ‘fish’ can have ‘animal’ as a parent.

YOLO’s WordTree uses hierarchical probabilities to
apply the most specific class (furthest down in the
tree) that still is above some hierarchical threshold.
This is done by calculating the conditional probabilities
P (Node|Parent) for each node in the WordTree starting
with the root. It calculates this recursively down the tree,
following the node with the highest probability. At the
point where the calculated probability is lower than the
hierarchical threshold the recursion is stopped, and the
parent class is returned. As a result the most specific
node that can confidently be selected is returned and the
probability of this node is based on itself and its parents.
[6]

Most implementations of neural networks applies soft-
max across all classes to get a probability distribution,
resulting in a single-label predictor. To be able to do hi-
erarchical classification efficiently YOLO’s WordTree ap-
plies multiple instances of softmax across siblings. This
makes each level stand alone and makes it possible for the
detector to discriminate classes accurately. [6]

Data Generation Strategy
Object detection in images and video require data in
the form of images with accompanying bounding boxes
with assigned classes. Compared to image classification
tasks, this requires a lot of manual labour as this kind
of data is not easy to come by. Additionally, to be able
to test hierarchical classification, the dataset needs to
be created with hierarchical classes because the hierarchy
affects what labels are applied. This is because the
algorithm needs to learn what features can distinguish
certain species, and what features are common among
them. Therefore, the class needs to reflect the visible
features of the fish. By using hierarchical classification
with a dataset specifically created for this, the network
can mimic the mental model humans have of fish and fish
species. This makes it possible for it to apply classes based
on the features that are visible, resulting in classifications
that are as specific as possible.

Redmon and Farhadi [6] use hierarchical classification
to combine two incompatible datasets. Just applying
hierarchical classification without a dataset that really
leverages this works to combine the datasets, but is not
sufficient when the goal is to use this to account for
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the lack of visible features, and gaining more valuable
information from the data.

Because of the previously mentioned reasons, a custom
dataset and data generation strategy is required. The
images are collected from an underwater video stream
and imported into an image labeling tool. To ensure the
dataset is consistent, a set of strategies are established
on how to annotate the data that is rooted in the
theory behind YOLO. These are specifically based on loss
handling.

The following approach is defined for annotation.

1. Annotate all fish that are visible to humans, without
the context of neighboring frames.

2. Apply the most specific species label that can
confidently be discerned.

The loss function penalizes detection where it falsely
detects fish. Thus a goal is to make sure that all the fish
that can be detected are annotated with a bounding box.

On the other hand, with the use of a tree structure
for classes, the annotation of classes has seen the use of
the opposite tactic. Only the most specific taxon that
can very confidently be applied to the fish is utilized.
This strategy is rooted in the design of YOLO where loss
is only applied to the ground truth class and the above
classes in the WordTree [6]. This does not penalize the
model for predicting a more specific class than what is
annotated. An example of this can be seen in Figure
1, where Pollachius pollachius has been predicted, but
the ground truth specifies Gadidae, so only the classes
Gadidae and “Fish” have their loss backpropagated. This
increases the confidence in the network’s ability to predict
the correct classes since the confidence of the class in the
dataset is very high. It also makes it significantly easier
to create the dataset since not all fish in an image needs
to have a species specified.

Fish

Cyclopterus lumpus Labridae

Labrus bergylta Ctenolabrus rupestris

Gadidae

Pollachius

Pollachius virens Pollachius pollachius

Figure 1: The classes used in YOLO Fish. If the network
predicts Pollachius pollachius (blue), but the ground truth
is Gadidae, only the orange classes Gadidae and “Fish”,
have their loss backpropagated.

Dataset
A new dataset is required for this project as no publicly
available datasets fits the needs of the project. No large

object detection dataset with multiple fish in each image
was found in literature. Additionally, to be able to show
the effectiveness of hierarchical species classification, a
dataset with a hierarchical labeling strategy is required.
As part of this work, such a dataset was created and
annotated. This dataset is annotated by the authors and
thus may lack the rigour of a biologist. The dataset is
made publicly available1 with the trained models so that
they can be used for transfer learning on downstream
tasks.

The dataset contains a collection of underwater images
of fish, and annotation files that specify the bounding
box of each fish in the image, and a class. These
are specified in the YOLO format. The images have a
resolution of 1920x1080 and are taken from a camera
that is located in Lindesnes, Norway. The pictures were
captured in a period between February and March 2020.
The dataset consists of 1879 images and corresponding
annotation files. There are 7721 labeled fish in total and
are distributed over 7 hierarchical classes as shown in table
1. The test set contains 10% of the images which equates
to 188 images and the training set contains 1691 images.
Each image has a varying number of fish in each image.

Table 1: Distribution of classes in the dataset.

Class Count

Fish 5810
Gadidae 791
Pollachius virens 537
Ctenolabrus rupestris 212
Pollachius pollachius 172
Cyclopterus lumpus 147
Labrus bergylta 52
Labridae 0
Pollachius 0

Total 7721

The images contain fish in motion and from many
angles. This makes the fish in the images have very varied
shapes, sizes, and visible features, as seen in figure 2. The
fish can mostly be seen swimming above, towards, away,
or parallel to the camera because of its location on the
bottom of the seabed. The pictures were captured in day,
dusk, night, and dawn, and in both clear and turbid waters
and therefore provides a wide variety of conditions. There
is also a significant portion of the frame where seaweed
can be seen and many of the pictures contain fish in the
seaweed. This is a quite difficult dataset in contrast to for
example fish4knowledge. This dataset more represents
the real world’s noisy and imperfect conditions that a
real application would be exposed to. During the period

1The new dataset can be found on https://dx.doi.org/10.
17632/b4kcw9r32n.1
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Fish

Gadidae

Cyclopterus
lumpus

Labrus
bergylta

Ctenolabrus
rupestris

Pollachius
virens

Pollachius
pollachius

Figure 2: Examples of fish in the dataset from the different classes.
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when the images are captured, there is an abundance of
Pollachius pollachius and Pollachius virens, which is of
the Pollachius genus and Gadidae family. This means
that over-sampling techniques are often utilized for other
species. Thus these other species do not have labels in
as many varied conditions, but hierarchical classification
is still capable of picking up on useful information.

Evaluation
Selecting appropriate evaluation measures is important
to be able to accurately assess the performance. The
standard measure for evaluating the performance of
object detectors is mAP [15], because of its use in
prominent competitions like Pascal VOC [16].

For experimental evaluation, multiple different metrics
are used. Optimal Localization Recall Precision (oLRP)
is used as a metric for assessing the performance of the
network together with mAP. This is because it does not
encounter the same problems as mAP, and has strengths
that makes it accompany mAP well. Oksuz et al. [15]
notes several problems with the standard performance
measure, mAP. The most important being:

• Unable to distinguish different precision-recall (PR)
curves.

• Lack of directly measuring bounding box localization
accuracy.

• Uses interpolation between neighboring recall values,
which can can misrepresent the actual results. [15]

Therefore Oksuz et al. [15] proposed a new perfor-
mance metric called Localization Recall Precision (LRP).
LRP is made up of three parts, a bounding box error part,
a false positive (or precision) part, and a false negative (or
recall) part. It is therefore able to represent both precision
and recall errors, but also bounding box errors. It does this
without calculating the area under the PR curve, hereby
avoiding the need for interpolation. As opposed to mAP,
a lower LRP value indicates better performance. LRP is
defined in equation 1.

LRP(X, Ys) =

NTP∑
i=1

1−IoU(xi ,yxi )
1−τ + NFP + NFN

NTP + NFP + NFN
(1)

where τ is the IoU threshold for predictions being
considered correct, and where NTP, NFP, and NFN is
the number of true positives, false positives and false
negatives respectively.

In addition Oksuz et al. [15] introduced oLRP which is
the minimum achievable LRP error. This lowest error is
achieved at some probability threshold, which is denoted
s. oLRP represents the best achievable bounding box-
localization and recall for the detector. oLRP is defined
in equation 2, where predictions with an IoU greater than

0.5 are considered correct. Reported precision and recall
are calculated at the probability threshold s.

oLRP = min
s
LRP(X, Ys) (2)

Architecture Improvements
YOLO cannot be used out of the box because it is
not tailored for the problem, and therefore has received
various changes to become YOLO Fish. The baseline
architecture is YOLO9000 because it supports hierarchical
classification. Starting with YOLO9000, the following
significant improvements are performed until ending up
with the fish detector YOLO Fish.

• Modified Non-Maximum Suppression (NMS) to ac-
count for hierarchical predictions.

• Replaced YOLOv3 detection layers with YOLO9000
detection layers.

• Incorporated Soft-NMS.

The NMS algorithm only removes overlapping bounding
boxes of the same class. When using hierarchical
classification an object can be of several classes across
the levels in the hierarchy at the same time. This causes
a problem when used together with class dependant NMS
as it does not remove objects where the classes are at
different levels in the hierarchy. To solve this problem
NMS has been modified to remove all overlapping boxes
regardless of class. This can be seen in figure 3.

NMS now removes all overlapping bounding boxes,
hence too many bounding boxes may sometimes be
removed. Therefore Soft-NMS [17] is implemented to
test the improved performance. Soft-NMS gradually
decays detection scores as the Intersection over Union
(IoU) increases. Thus instead of setting the probability
to 0, the probability is now calculated using equation 3.
This way no bounding box is directly given a probability
of 0. These can potentially be removed later with a
probability threshold, as done when calculating oLRP, or
before drawing bounding boxes as is common practice.

SoftNMS = (1− IoU) ∗ Pc (3)

where Pc is the probability of class c as outputted by
YOLO.

Training
The task is fish species detection, hence the network
needs to be trained on new data. All the networks
presented in this article are trained in the same way with
the same parameters and settings, except for the varying
use of the WordTree and network resolution. Using
transfer learning does not fit with the experiment setup as
it would make the training different between networks, and
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(a) Multiple bounding boxes per fish.

(b) A single bounding box per fish.

Figure 3: Predictions from YOLO before (a) and after
(b) modification of NMS. Green bounding boxes indicate
correct predictions, red indicate wrong.

thus their performance less comparable. The fish in the
dataset very often share the same aspect ratios and sizes,
since the camera is in the same position and fish tends to
swim in the same ways. Therefore computing good anchor
boxes significantly helps the localization. Nine anchor
boxes that fit the training set are computed with K-means.
Nine anchor boxes are selected because more anchor boxes
give diminishing returns in IoU overlap and an increased
inference time. Fewer bounding boxes however reduces
the IoU overlap significantly, as seen in Table 2. In the
case of YOLOv3 each detection layer is responsible for
three of the anchor boxes.

Table 2: Increasing the number of anchor boxes beyond
nine yields diminishing returns.

Anchor boxes 6 9 12

Avarage IoU 0.63 0.69 0.71

In addition to new anchor boxes some other training
parameters are important to note. Letter boxing is used
to keep the image aspect ratio. A network input resolution
of 608x608 is used. While there are only seven classes
of fish in the dataset as noted in the Dataset section,
intermediate classes are added to allow for the tree

structure. The tree structure with all the classes is shown
in figure 1. To keep things as similar as possible everything
is trained with the nine classes, even if WordTree is
not used. In addition these image augmentations are
randomly applied during training:

• Image resizing

• Hue change

• Saturation change

• Exposure change

• Image cropping (jitter)

Experiments and Results
Experiments on the Hierarchical Classifier
When creating datasets that can be used for object
detection and species classification of fish it is difficult
to correctly assign classes to all the fish in an image.
This is because an image is likely to contain clearly
visible fish in the foreground and less visible fish in the
background. Some datasets uses images that are cropped
to fit a specific fish of interest, but this cannot be used to
effectively train an object detection algorithm. To solve
this, fish can be labeled using the taxonomic hierarchy,
making it possible to always apply labels confidently. This
experiment tests whether it is possible to train YOLO,
using YOLO’s WordTree in combination with data labeled
with taxa from the taxonomic hierarchy. And whether
YOLO can detect fish and correctly assign classes when
it is trained on a dataset that contains fish labeled using
this hierarchy.

Testing The Effectiveness

To verify the effectiveness, the YOLO9000 algorithm is
trained on the dataset that contains hierarchically labeled
fish, and the resulting model evaluated. Table 3 shows
the model’s performance on validation data, and presents
the number of fish labeled more and less specific than
the ground truth. This makes it possible to see that the
model is able to correctly assign the most specific class it
can, over a probability threshold.
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Table 3: YOLO9000 with hierarchically predicted classes.

Species
Fraction
Correct

More
specific

Less
specific

Fish 501/653 500 0
Gadidae 76/81 76 0
Cyclopterus lumpus 12/14 0 0
Labridae 0/0 0 0
Pollachius 0/0 0 0
Labrus bergylta 6/6 0 0
Ctenolabrus rupestris 23/27 0 0
Pollachius virens 65/69 0 65
Pollachius pollachius 14/14 0 14

Table 3 shows a detailed view of classifications per
class. Column two shows the proportion of detected fish
that is classified correctly for that label. Column three
shows the number of fish classified correctly and that has
been applied a more specific class in the hierarchy than
the ground truth data. Column four shows the number of
fish classified with a less specific class, but a class still in
its branch of the tree.

Table 3 shows that all Gadidae that were detected is
assigned a more specific class than the ground truth data.
Consulting Figure 1 shows that Gadidae has multiple sub
taxa with which it shares many features. This means
the network can learn feature information from other
training examples and transfer this into being correct for
the Gadidae class, and then apply that class. The same
goes for Pollachius virens and Pollachius pollachius, where
the network has applied less specific classes compared to
ground truth data, but still a parent class. Comparing
those classes in Figure 1, it becomes apparent that there
are few distinguishing features. The network has then
not been confident enough to distinguish between the
classes and then applied a less specific class, for instance
Pollachius.

Testing The Performance

By using YOLO’s WordTree it is possible to generalize
data classifications with more specific labels, therefore it
is valuable to see what this adds to the predictions. To
do this it is useful to compare it with a similar algorithm
that does not use the WordTree in order to isolate the
effect of the WordTree.

YOLO’s WordTree uses the Region layer, a layer
that, if not WordTree is used, assumes that classes are
mutually exclusive [6]. This assumption does not hold for
our dataset so comparing YOLO9000 with and without
WordTree has some drawbacks. But since this is the most
direct comparison possible, and since everything else is
equal it is an effective way to isolate the improvements
made by the WordTree. Both networks are trained in the
same way as explained in the Training section.

Table 4: Performance of YOLO9000 with and without
WordTree (WT).

Measure YOLO9000 YOLO9000-WT

oLRP ↓ 0.830 0.789
mAP ↑ 0.610 0.728
Precision ↑ 0.693 0.731
Recall ↑ 0.488 0.556
s 0.460 0.520

Table 4 shows an oLRP improvement of 4.1% when
using WordTree. Here ↓ represents a metric where a
lower value is better. The localization of objects can be
presumed to be equally well predicted, since the networks
are the same. This shows that the classification is
performing better as a result of the WordTree. This
happens for a couple of reasons. Firstly the network
is able to learn more from the data since the error is
backpropagated for all classes above the predicted class
in the WordTree. This results in a better-trained model.
Secondly there is more context at detection time. The
assigned class is the class furthest down in the WordTree
that has a threshold above the hierarchical threshold value
specified. This means that if a class is going to be applied,
both the applied class and its ancestors needs to have high
probabilities. Thus increasing the confidence and reducing
faulty classifications.

YOLOv3 Architecture
YOLO’s WordTree algorithm is originally only imple-
mented in the YOLO9000 architecture. However
YOLOv3 performs significantly better, with a larger and
more complex network with 139.611 Giga Floating-Point
Operations per Second (GFLOPS) [14] compared to
40.483 GFLOPS with our configurations. This experi-
ment tests the possiblity of increasing the performance
by creating an architecture that combines WordTree with
YOLOv3. The network is changed to use softmax across
sibling classes and use the loss function from YOLOv2.
This means that while YOLOv3 is a multi-label detector,
the modified YOLOv3 no longer is. This is because of
changing the prediction layers from being YOLO layers
to being region layers. The network change is illustrated
with purple in figure 4.

Table 5 shows that YOLOv3 without WordTree per-
forms better than YOLO9000 with WordTree with an im-
provement in oLRP of 7.6%. The addition of WordTree
in YOLOv3 leads to the significant improvement of 14.9%
to oLRP and 17.3% to mAP.

Introducing Soft-NMS
A drawback of the modification that is done to make
NMS classless is that it removes YOLO’s ability to
keep bounding boxes for different fish that slightly
overlap. By modifying the NMS algorithm to use Soft-
NMS, as described in the Architecture Improvements
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608

608

Residual Convolutional

Repeated 23 Times at different scales

Upsampling

Darknet 53 feature extractor

Concatenation

512 1024 512 1024 512

1024 255 19

256
C

256 512 256 512 256

512 255 38
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C

128 128 128 255
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38
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256 256256

Figure 4: The network architecture. The purple layers are the YOLO detection layers which have been swapped out with
region layers.

Table 5: Performance of YOLO9000-WT and YOLOv3
with and without WordTree.

Measure 9000-WT v3 v3-WT

oLRP ↓ 0.731 0.655 0.556
mAP ↑ 0.726 0.793 0.899
Precision ↑ 0.887 0.800 0.936
Recall ↑ 0.627 0.770 0.807
s 0.550 0.380 0.710

section, suppressed bounding boxes have their probability
decreased instead of being completely suppressed. This
experiment tests the performance of YOLOv3-WT with
soft-NMS.

Table 6: Performance improvement from Soft-NMS on
YOLOv3.

Measure YOLOv3-WT YOLOv3-WT Soft-NMS

oLRP ↓ 0.556 0.556
mAP ↑ 0.899 0.918
Precision ↑ 0.936 0.936
Recall ↑ 0.807 0.807
s 0.710 0.710

Table 6 shows that Soft-NMS increases the mAP by
1.9%. This likely stems from overlapping boxes that come
due to overlapping objects that are no longer removed.
This is slightly higher than the improvements seen on
the VOC 2007 and the COCO datasets [17]. However,
no change is seen in oLRP, Precision or Recall. This
is because Soft-NMS gives overlapping bounding boxes
very low probabilities, far below the s threshold of 0.71.
As a result they are removed before calculating oLRP,
precision and recall as the probability threshold for boxes

to be included, s, removes these boxes. Boxes with
lower probabilities are removed, otherwise the network
would produce far too many erroneous predictions and
thus decrease performance.

While Soft-NMS improves the mAP score it would have
no real impact on detection performance in normal use
cases in this instance.

Discussion
The last experiment concludes the modifications to the
network itself. After all the improvements made in the
previous experiments the network has become significantly
different than YOLO. The proposed object detector is
now specifically tailored for fish detection and therefore
named YOLO Fish. YOLO Fish is made publicly available
on Github2. In this section, the results of the algorithm as
a fish detector will be assessed. This section will present
some new results and discuss them in the context of
hierarchical classification.

The experiments shows the gradual improvements to
YOLO, starting with YOLO9000 and resulting in YOLO
Fish. The performance gains are summarized in Table 7.
The improvements are a result of first utilizing WordTree,
then modifying NMS to account for the bounding box
problem. After this the network is modified to use
YOLOv3 with WordTree. Lastly NMS is improved again
with Soft-NMS. The result of this process is the proposed
algorithm called YOLO Fish.

Table 8 shows performance of YOLO Fish at different
IoU thresholds. It can be observed that the algorithm
doesn’t have the most accurate localization as the mAP
quickly falls off as the IoU threshold for considering a
detection correct is increased. Figure 7 shows that it
is very good at classification. It can therefore be said
to be better at classification than localization. This is
one of the drawbacks of using detectors that use one

2The source code for YOLO Fish can be found on the Github
repository https://github.com/orilan93/darknet
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Table 7: Summary of incremental performance improvements.

YOLO9000 YOLO Fish

Modified NMS ✓ ✓ ✓ ✓
WordTree ✓ ✓ ✓
Yolov3 network ✓ ✓ ✓
Soft-NMS ✓

oLRP ↓ 0.830 0.731 0.655 0.556 0.556
Precision ↑ 0.693 0.877 0.800 0.936 0.936
Recall ↑ 0.488 0.627 0.770 0.807 0.807
mAP ↑ 0.610 0.728 0.793 0.899 0.918

networks for both localization and classification. This
especially applies to YOLO as the network has large
bounding box localization restrictions due to the bounding
box predictions being based on a grid [6][18].

Table 8: Performance of YOLO Fish at different IoU
thresholds.

Network mAPIoU=0.3 mAPIoU=0.5 mAPIoU=0.7

YOLO Fish 0.922 0.918 0.744

Figure 7 shows that the algorithm manages to correctly
classify every fish except one of the fish that it detects.
The mistake it makes is the misclassification of Pollachius
pollachius as Pollachius virens, two very similar species. It
is also often able to classify fish more specifically than the
specified label for “Fish” and Gadidae, this means that the
classifier possibly is better than humans at classification.
However with the dataset that is used, there is no way to
say whether the more specific labels are correct or not, so
no definitive claim can be made.

The use of the WordTree adds an extra hyperparameter
that needs to be set according to the use case of
the model, a hierarchical probability threshold. This
hierarchical probability threshold specifies how certain a
classification must be for a specific class prediction before
using the parent class. This is needed because the network
will predict high probabilities for all classes in the branch of
the hierarchy that the object is likely to belong to, and a
cutoff value needs to be set so it can determine how deep
in the tree the predictions will go. This hyperparameter
is only used when predicting and not during training.

By using a hierarchical distance it becomes possible
to quantitatively measure the effect of the hierarchical
probability threshold. To do this hierarchical distance is
defined to be the number of levels up or down in the
hierarchy the ground truth is from the prediction. For
instance if the algorithm predicts Gadidae and the ground
truth is “Fish” the hierarchical distance is 1, or if the
ground truth is Pollachius virens the hierarchical distance
is −2.

Table 9 shows the average hierarchical distance for
different hierarchical threshold levels for YOLO Fish. It
can be noticed that the average hierarchical distance is
quite high when the probability threshold is 0.2 or 0.5,
and becomes lower at hierarchical thresholds of 0.99 and
0.999. At hierarchical threshold 1 all detections are
classified as fish. This illustrates that increasing the
probability threshold makes it possible to be very confident
in the predicted species, at the cost of how specific the
prediction is. For most hierarchical probability thresholds
the network is able to classify species more confidently
and specifically than a human, as evident by the positive
average hierarchical distance for all species. However, this
cannot be verified as correct.

Table 9: The average hierarchical distance from label
to detection for different hierarchical threshold levels for
YOLO Fish. The table only contains correct predictions.

Hierarchical Probability Threshold

Ground truth 1 0.999 0.99 0.5 0.2

Fish 0 2.20 3.36 3.89 3.92
Gadidae -1 1.75 2.58 2.99 3.00
C. lumpus -1 -0.14 0.00 0.00 0.00
L. bergylta -2 -0.66 -0.67 0.00 0.00
C. rupestris -2 -0.42 -0.13 0.00 0.00
P. virens -3 -0.28 -0.06 0.00 0.00
P. pollachius -3 -0.08 -0.08 0.00 0.00

All -0.53 1.74 2.70 3.15 3.18

The ability for the end-user to set a hierarchical
probability threshold makes the algorithm more versatile.
For instance, if it is used to collect data for determining
fishing quotas there might be a need to have very high
confidence in the species that are identified. In this case
a high hierarchical probability threshold might be used.
Another use case might be to use it to show the public
what species are in a particular area right now. The
correctness in this instance might not be as important and
a lower hierarchical probability threshold could be used.
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(a) Fish in low lighting. (b) Many Pollachius virens and Fish.

(c) Fish among sea grass. (d) Fish in turbid water.

(e) “Fish” and Gadidae with low contrast. (f) Cyclopterus lumpus among sea grass.

Figure 5: Good detections and classifications made by YOLO Fish. Green bounding box indicates correct class and
location.
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(a) Detector misclassifying species and producing
a bad bounding box.

(b) Turbid water where the detector mistakes the
debris for a fish.

(c) Detector missing obvious fish. (d) Detector mistaking sea weed for fish.

Figure 6: Bad detections made by YOLO Fish.
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Figure 7: Hierarchical confusion matrix for YOLO Fish at an IoU of 0.5. All predictions that land inside the red boxes for
each class is considered correct. If the prediction is inside the red box and to the right of the diagonal, the prediction is
more specific than the ground truth label in the hierarchy.

So far the predictions have been discussed quantita-
tively, but discussing them in a qualitative manner com-
pliments this and give insight. Examples of good and bad
detections are in Figure 5 and 6 respectively. Figure 5
displays how the algorithm can perform well in varying
lighting conditions and water clarity. It is however prone
to make mistakes if there is a lot of debris in the water
as in figure 6d which is captured in a storm. In situa-
tions where humans struggle with finding fish obscured
by seaweed, the algorithm is able to detect them as seen
in figure 5c and 5f. Sometimes it mistakes what clearly is
seaweed for fish as in figure 6d. The shape of the fish is
heavily relied upon for classification, and as can be seen in
figure 6a where a Gadidae is misclassified as a Cyclopterus
lumpus because of its round shape when swimming away
from the camera in turbid water. However, when there is
clear water the algorithm performs well, and can detect
fish even with very low contrast as seen in figure 5e.

Conclusion
Identifying and classifying fish in video captured under
water is a difficult task, as features are difficult to discern
because of the water. This often leads to situations where
the algorithms are unable to discriminate species. In these
situations previous work applies a unknown class, and this
reduces the available information for the network.

The objective of this work is to propose a technique to
more confidently and accurately discriminate fish based
on the available features. The proposed technique called
YOLO Fish utilizes the inherent biological taxonomic tree
of fish to perform hierarchical classification. This gives

it the ability to apply higher hierarchical classes when it
is uncertain, as it has learned what is common among
all of the descendants of this higher class such as the
large similarities among species and the nature of unclear
underwater conditions. This novel technique makes both
labeling the dataset easier, and increases the confidence
in the classes applied.

YOLO Fish achieves the-state-of-the-art performance
at object detection of Nordic fish species. YOLO Fish
achieves an mAP of 91.8% on a dataset containing
difficult conditions such as turbid water and nighttime
pictures. This gives YOLO fish a significantly higher mAP
than YOLOv3 which achieves an mAP of 79.3% with the
same dataset and training. YOLO fish does this with an
inference time of 26.4 ms per frame on a Tesla V100
GPU. This can be considered real-time with headroom.

Seeing that leveraging the similarities between species
increases the accuracy and quality of predictions, it raises
the question whether this technique can be applied in
other cases. Further work is to investigate whether this
technique can improve performance in other domains,
such as insect or bacteria classification.
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