

ESPEN STAUSLAND KALHAGEN,
ØRJAN LANGØY OLSEN

Hierarchical Fish Species Detection
in Real-Time Video Using YOLO

SUPERVISOR

Morten Goodwin

University of Agder, 2020

Faculty of Engineering and Science

Department of Information and Communication

Technology

Abstract

Information gathering of aquatic life is often based on time consuming
methods with a foundation in video feeds. It would be beneficial to capture
more information in a cost effective manner from video feeds, and video
object detection has an opportunity to achieve this. Recent research has
shown promising results with the use of YOLO for object detection of fish.
As under-water conditions can be difficult and fish species hard to discrimi-
nate, we propose the use of a hierarchical structures in both the classification
and the dataset to gain valuable information. With the use of hierarchical
classification and other techniques we present YOLO Fish. YOLO Fish is a
state of the art object detector on nordic fish species, with an mAP of 91.8%.
For a more stable video, YOLO Fish can be used with the object tracking
algorithm SORT. This results in a complete fish detector for real-time video.

1

Table of Contents

1 Introduction 5
1.1 Problem Statement . 5
1.2 Contributions . 6

2 Background 7
2.1 Convolutional Neural Networks . 7
2.2 You Only Look Once (YOLO) . 8

2.2.1 The Architecture . 9
2.2.2 Activations and Weight Initialization 10
2.2.3 Prediction and Priors . 11
2.2.4 Loss Function . 14

2.3 Hierarchical Classification in YOLO . 15
2.4 NMS and Soft-NMS . 16
2.5 Multiple Object Tracking Algorithms . 17
2.6 Simple Online and Realtime Tracking . 17
2.7 Performance Measures . 18

2.7.1 Precision Recall Curves . 18
2.7.2 Localization Recall Precision . 21

2.8 Fish Species Taxonomy . 21

3 State of the Art 22
3.1 Object Detection Using CNN . 22
3.2 Object Detection of Fish Using CNN . 24
3.3 Multiple Object Tracking Algorithms . 25
3.4 Stability of Video Detection and Tracking 25
3.5 Hierarchical Classification . 26

4 Approach 27
4.1 Execution Process . 27
4.2 Data Generation Strategy . 28
4.3 Architecture Improvements . 29
4.4 Training . 30
4.5 Evaluation Methods . 32

5 Dataset 34

6 Experiments 37
6.1 YOLO’s WordTree on the Taxonomic Fish Hierarchy 37
6.2 YOLO’s WordTree for Increased Performance 38
6.3 Modifying NMS to Account for Hierarchical Predictions 39
6.4 Modifying YOLOv3 to Use WordTree . 40

6.4.1 Further Discussion . 42
6.5 Soft-NMS with YOLOv3 . 47
6.6 Real-Time Fish Detection . 48
6.7 Detection Stability . 49
6.8 Summary . 54

7 Conclusion 55
7.1 Further Work . 56

2

List of Figures
1 2D convolution over a 3 channel image. 8
2 The Darknet-53 feature extractor. 9
3 The YOLOv3 object detector. 10
4 Calculation of IoU. 12
5 Transformation of the bounding box predictions. 13
6 Hierarchical softmax. 16
7 Calculation of precision and recall. 19
8 Precision recall curve. 20
9 The research method used for this project. 27
10 Classes with their loss backpropagated. 29
11 Visual representation of K-means results. 31
12 The WordTree used for training and validation. 32
13 PR curves before and after modification of NMS. 33
14 Examples of fish in the dataset. 35
15 Predictions before and after NMS modification. 40
16 PR curve for YOLOv3-WT. 41
17 Confusion matrix for YOLOv3-WT. 43
18 Calculation of hierarchical distance. 44
19 Good detections from YOLOv3-WT. 46
20 Bad detections from YOLOv3-WT. 47
21 Images from video clips for stability experiment. 51
22 How SORT reduces bounding box instability. 52
23 How SORT reduces label instability. 53

List of Tables
1 mAP and speed of different object detectors. 23
2 State of the art results at fish4knowledge. 24
3 Average IoU for different number of anchor boxes. 31
4 Distribution of classes in the dataset. 34
5 YOLO9000 classification with hierarchically predicted classes. . . . 38
6 Performance of YOLO9000 and YOLO9000-WT. 39
7 Performance improvements from the modified NMS. 40
8 Performance of YOLOv3 and YOLOv3-WT. 41
9 Performance of YOLOv3-WT at varying IoU thresholds. 42
10 Hierarchical distance at different probability thresholds. 44
11 Performance of Soft-NMS with YOLOv3. 48
12 Speed of YOLO Fish on a Tesla V100 graphics card. 48
13 Performance of YOLO Fish-416. 49
14 Improvement of video stability from using SORT. 50
15 Summary of incremental performance improvements. 54

3

Nomenclature

AP Average Precision – Metric for object detector performance.

Class smoothing Applying the most common class for a tracked object.

COCO Common Objects in Context – Object detection competition and dataset.

FPS Frames per Second – The number of frames that can be processed per second.

GFLOPS Giga floating point operations - How many giga floating point opera-
tions.

Hierarchical classification The use of hierarchical relations between classes to
aid in classification.

IoU Intersection over Union – Metric for bounding box prediction similarity.

LRP Localization Recall Precision – Another metric for object detector perfor-
mance that also takes localization error into account.

mAP Mean Average Precision – Another name for average precision.

MOT Multiple Object Tracking algorithms – Algorithms that track objects across
frames.

NMS Non-Maximum Suppression – Algorithm for filtering abundant detections.

Object detection Localization and classification of objects in visual media.

oLRP Optimal LRP – The best achievable LRP based on the probability thresh-
old where the algorithm performs the best.

Performance How well the algorithm performs at the task at hand.

Precision The proportion of selected objects that are relevant.

Recall The proportion of the relevant objects that are selected.

Soft-NMS Algorithm for filtering abundant detections where they are assigned
lower probabilities based on overlap instead of completely removed.

SORT Simple Online Realtime Tracking – Algorithm for tracking multiple objects
in video.

Speed The inference time of a network.

Taxa A node in the biological hierarchical system.

Taxonomy Biological hierarchical system.

VOC Visual Object Classes – Object detection competition and dataset.

WordTree An implementation of hierarchical classification in YOLO.

WT Initialism for WordTree.

YOLO You Only Look Once – Algorithm for object detection.

4

1 INTRODUCTION

1 Introduction

Collecting information about aquatic life is highly important for sustainable and
profitable marine life management [53][39]. Currently this information gathering
is done manually with expensive techniques and limited information often with a
basis in video feeds [39][55]. Despite previous research into deep learning for fish
localization and classification in images, few algorithms have seen use in the real
world. Previous algorithms struggle with handling uncertainties and background
fish, reducing their usefulness. Additionally, video of fish is generated continuously
by underwater cameras. For AI techniques to be cost effective and scalable, pro-
cessing of real-time videos of fish would be useful. However, only limited research
of real-time processing of underwater video has been conducted.

Over the past years AI have made great progress in localization and classification of
objects in visual media. Object detection above water is able to determine objects
accurately and quickly. Previous research has performed well in classification of
fish in good conditions on unique looking fish [37]. However, for these techniques
to be useful for data collection the algorithms need to perform well in difficult
conditions where fish species are challenging to tell apart, even for humans, be-
cause of inherent properties of seeing underwater and because of fish looking very
similar. Furthermore, for real-time processing of video the algorithm must also be
fast.

As a result of the challenging conditions, applying object detection algorithms to
this environment is difficult. To achieve the goals of the thesis, a novel approach
for training artificial intelligence on biological fish species are applied together
with state of the art object detection algorithms and techniques to create YOLO
Fish. This novel approach takes advantage of biological hierarchies to deal with
similarities between species and difficult conditions. It applies a more general class
as certainty of species decreases to increase the confidence that can be placed in
the results. Additionally, the employed techniques allow for real-time processing
of video.

1.1 Problem Statement

This thesis assesses whether real-time fish detectors’ performance can be improved.
This is done through answering the following problem statement. Is it possible to
use You Only Look Once (YOLO) [45] with hierarchical classification and various
other techniques to improve performance? And, does the hierarchical properties
yield benefits in cases where species can not be easily discerned?

The thesis evaluates the following hypotheses.

H1 Hierarchical clasification can be used to train on fish data where the species
is not given, but rather a class of higher taxonomic rank is used.

H2 Hierarchical classification can be used to increase the precision and quality
of fish prediction.

5

1 INTRODUCTION

H3 The introduction of classless NMS mitigates the creation of erroneous bound-
ing boxes as a result of hierarchical classification.

H4 The benefits of the improvements made in YOLOv3 can be utilized while also
keeping the benefits of YOLOv2’s WordTree by designing a new network that
incorporates both.

H5 Soft-NMS improves the performance of YOLOv3 for detecting fish.

H6 It is possible to achieve state of the art accuracy in detection of Nordic fish
species in real-time videos using the YOLO architecture.

H7 Using SORT for object tracking and assigning the most common class for
each tracked object can increase detection stability on video.

1.2 Contributions

This thesis achieves state of the art performance for fish object detection by using
various techniques in a novel way. The following list summarizes the contribu-
tions.

• An end-to-end model for real-time localization and classification of Nordic
fish species in video named YOLO Fish.

• State of the art performance on real-time localization and classification of
Nordic fish in video.

• The use of biological hierarchy for data annotation to make data generation
significantly easier for marine life.

• A method that enables training and detection under water, where species is
not always easily discernible.

6

2 BACKGROUND

2 Background

The purpose of this chapter is to introduce the reader to the theory and give an
understanding of the technology that was used in this thesis. The chapter covers
convolutional neural networks in general, the specifics of YOLO, some general
techniques like hierarchical classification, NMS and Soft-NMS, and object tracking.
Followed by an explanation of the performance measures and lastly some theory
on biological taxonomies and how they relate to fish.

2.1 Convolutional Neural Networks

Convolutional neural networks are networks that mainly use convolutional layers.
A convolutional layer is a layer that is based on the convolution operator. When
working with image data, discrete 2D convolutions are used. But in most imple-
mentations cross correlation is used for efficiency [18]. This can be seen in equation
1 which shows the operation on a single channel input. S is the output layer, K is
the filter kernel, I is the input image, m and n are the position in the filter, and i
and j are the position in the image.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (1)

A convolution can extract useful information out of an image given a filter. In a
convolutional neural network, a filter is not specified, but is rather weights that are
learnt during the training process, to extract features that it deems most important
given the training set and the loss function.

A convolutional layer is defined by a number of filters, a stride and a padding. The
number of filters is how many different filters should be learnt and also determines
the output depth. The stride is the number of steps that is taken between each
sample the filter makes. Padding is whether to add a padding of zeros around the
input data and how large of a padding. Padding is usually used to avoid losing
information near the edges.

A 2D convolution can be illustrated by filters that are 3D cubes that moves over
a 3D image and each calculates one output value per step in its stride. Figure 1
shows an example of this where a filter is convolved with a portion of the input
image to produce one value in the output. The image is 3D in the sense that there
are two positional dimensions and one color dimension and the convolution is 2D
in the sense that the filter moves in the 2D space of the input.

7

2 BACKGROUND

Figure 1: 2D convolution over a 3 channel image with 2 filters of size 3 resulting
in an output with a depth of 2.

Convolutional layers have properties that makes them effective at image feature
extraction, two of these are the parameter sharing and the sparse connectivity
properties [18]. Parameter sharing means that each weight is used multiple times
during a single pass. This comes from the fact that the weights make up the filters
and the filters are moved across the image. Sparse connectivity is the opposite
of dense connectivity and means that it doesn’t have as many connections to the
next layer. This is because each area the filter overlaps connects to just one node
in the next layer, as seen in 1.

A third helpful property is that convolutional layers are equivariant to transla-
tion [18] and this means that if the input is translated, the output will also be
translated. In practice, this means that the layer will detect features regardless
of its position in the data. Note that the convolutional layer is not rotationally
invariant.

The layers in a convolutional neural network are often laid out so that they become
smaller and smaller in size, but larger in depth as you traverse deeper into the
network. The first layers often extract low level features like edges and color tones,
while the later layers often extract high level features like shapes and objects. This
property makes them able to extract most of the features present in an image
[61].

2.2 You Only Look Once (YOLO)

YOLO [45] is a state of the art algorithm for object detection. The algorithm
has seen some incremental improvements since its first release with accompanying
published papers. The versions are called YOLOv1 [45], YOLOv2 (YOLO9000)
[43] and YOLOv3 [44].

There has been some significant changes from one version to the other and are

8

2 BACKGROUND

briefly summarized as follows. YOLOv2 is predicting how to move and scale some
prior anchor boxes relatively, instead of directly predicting bounding boxes [43].
YOLO9000 added the WordTree concept to predict classes that are hierarchically
organized and was designed to be able to classify over 9000 classes [43]. YOLOv3
added multi-class and multi-scale prediction [44].

The rest of this section will explain how YOLO works. This will be how the
configuration used in our solution is implemented in the YOLO author’s Darknet
framework [42]. The reason why we distinguish between the different versions of
YOLO is because in the Darknet framework features from the different versions
can be both mixed and used simultaneous, and this is something we take advantage
of in this project.

2.2.1 The Architecture

The YOLO architecture can be divided into a feature extractor and an object
detector. The feature extractor relies on the Darknet-53 architecture in figure 2.
This is a modern deep convolutional neural network that utilizes techniques as
batch normalization, residual blocks (or shortcut connections) and leaky Rectified
Linear Unit (ReLU). [44]

Type
Convolutional
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual

Filters
32
64
32
64

128
64

128

256
128
256

512
256
512

1024
512
1024

Size
3 × 3
3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

Output
608 × 608
304 × 304

304 × 304
152 × 152

152 × 152
76 × 76

76 × 76
38 × 38

38 × 38
19 × 19

19 × 19

1×

2×

8×

8×

4×

1

2

3

Figure 2: The Darknet-53 feature extractor with an input layer of 608x608x3. In
YOLOv3 the numbered connections are connected to the numbers in figure 3. This
figure is a modified version of one found in [44].

The object detector part of YOLO is doing detections at different scales as seen in
figure 3. After the feature extractor and at the smallest scale, the first prediction is
done. Then it is up-sampled and concatenated with an earlier and higher resolution
layer from the feature extractor. This is then used to do detection on the middle
scale. The same process is repeated for the highest scale, and thus it ends up with
a 3-scale detector.

9

2 BACKGROUND

512 1024 512 1024 512

1024 255 19

256
C

256 512 256 512 256

512 255 38

128

C

128 128 128 255
76 76

38

19

1

2

3

256 256256

Figure 3: The YOLOv3 object detector. The yellow blocks are convolutional
layers, the blue blocks are up-sampling layers, the ‘C’ operators are concatenations
with a previous layer, and the purple blocks are YOLO prediction layers. The
numbers are the dimensions of the output of each layer. It is connected to the
Darknet-53 feature extractor via the numbered connections.

2.2.2 Activations and Weight Initialization

The YOLO architecture only consists of one type of layer with learnable weights,
that is the convolutional layers. The activation function used for these layers are
all leaky ReLU. The advantage of using ReLU over say logistic activation in the
hidden layers is that logistic activation suffers from the vanishing gradient problem.
However ReLU also introduces a problem in that the optimizer will not adjust the
weights if the neuron never activates. This problem is mitigated by using a leaky
ReLU activation as show in equation 2. This is because it allows for a small
non-zero gradient when the unit otherwise would not be activated. [32]

LeakyReLU(x) =

{
x x > 0

0.01x else
(2)

Weight initialization is important for avoiding the problem of vanishing and ex-
ploding gradient. The choice of weight initialization is dependent upon which
activation function is used. He et al. [19] has shown that He initialization works
well with leaky ReLU. Under He initialization, the weights W are initialized ran-
domly from the normal distribution as defined in equation 3. Fan in is the number
of inputs from the previous layer. Because YOLO uses leaky ReLU this weight
initialization is used.

W ∼ N
(

0,
2

fan in

)
(3)

10

2 BACKGROUND

2.2.3 Prediction and Priors

The YOLO detection layer is responsible for the predictions and in the Darket
framework it goes under the name ‘detection’ in v1, ‘region’ in v2, and ‘yolo’ in
v3. The detection layer works by dividing the input image into a SxS grid. And
for each grid cell it tries to fit B bounding boxes that are defined by a position
and a size, both relative, to the grid cell. For YOLOv3, S is defined as the input
image size divided by 32. This comes from the transformation the convolutional
layers performs on the input throughout the network.

The output is a R4 tensor that for each bounding box in each grid cell has a vector
that contains B(5 +C) elements as seen in equation 4. C is the number of classes.
For each bounding box in a cell, the relative width, relative height, x offset and y
offset, the detection confidence, and a confidence for each class is predicted.

P =

tx
ty
tw
th
Po

P1

P2
...
PC

(4)

The width and height of the bounding box isn’t predicted directly, but rather it
predicts how much to stretch prior anchor boxes in either dimension to fit the
detection. Usually there is a relatively low number of prior anchor boxes, for
instance 9 in v3. These prior anchor boxes are found by maximizing the average
IoU they get with all the annotated bounding boxes in the dataset.

IoU is a metric for determining the accuracy of a bounding box prediction and its
location as illustrated in figure 4. It is named intersection over union because it
divides the intersection area by the total area to find the amount of overlap. A
python implementation has been provided in listing 1 to give a better understand-
ing of how it works.

11

2 BACKGROUND

⇒IoU=

(x ,y)1 1

(x ,y)1 1

(x ,y)2 2

(x ,y)2 2

Figure 4: The IoU is calculated by dividing the area of the intersection by the area
of the union.

def iou(box1, box2):

inter_x1 = max(box1.x1, box2.x1)

inter_x2 = min(box1.x2, box2.x2)

inter_y1 = max(box1.y1, box2.y1)

inter_y2 = min(box1.y2, box2.y2)

inter_area = (inter_x2 - inter_x1) * (inter_y2 - inter_y1)

box1_area = (box1.x2 - box1.x1) * (box1.y2 - box1.y1)

box2_area = (box2.x2 - box2.x1) * (box2.y2 - box2.y1)

union_area = box1_area + box2_area - inter_area

iou = inter_area/float(union_area)

return iou

Listing 1: A simplified Python implementation of IoU that assumes there is an
overlap. Further modifications has to be done for this to be used in a real appli-
cation.

Finding the prior anchor boxes with the best IoU overlap with the dataset is
done with K-means. K-means normally optimises euclidean distance, but here the
distance metric shown in equation 5 is used. B1 and B2 are the two bounding
boxes that are compared. IoU maps to a number close to one when there is a
high overlap and close to zero when there is a low overlap. Because we want our
distance metric to have a low distance when the bounding box has a high overlap,
we use 1 minus the IoU. How K-means clustering works can be seen in algorithm
1.

d(B1, B2) = 1− IoU(B1, B2) (5)

12

2 BACKGROUND

Algorithm 1: The K-means clustering algorithm used to find the best prior
anchor boxes.
Data: B = list of sizes of the bounding boxes from the annotated labels
k = number of anchor boxes
Result: k anchor boxes that has the best average IoU over B

1 initialize k centroids to random bounding boxes from B;
2 while any changes to centroids do
3 define k clusters over B based on their closest centroid;
4 foreach cluster do
5 calculate the mean of all points in the cluster;
6 end
7 assign the new centroids as the means of all clusters;

8 end

As mentioned earlier, the network doesn’t directly predict the bounding boxes,
but rather where relative to the cell it is located and how to scale the prior anchor
box to fit it. To get the correct bounding box one has to do the transformation as
seen in figure 5. This involves to logistically activate the location prediction and
add it to the grid cell offset to get the bounding box center. To get the bounding
box dimensions one has to multiply the prior anchor box size with the exponential
function of the dimension prediction.

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pwe
tw

bh = phe
th σ(t x)

σ(t y)

pw

ph bh

bw

cx

cy

Figure 5: The transformation on the left is applied to the predicted values to get
the correct bounding box. This is a figure from [43], modified to fit this section.

Using an SxS grid, each with B bounding boxes, results in a quite fine detection
grid, which means that one single object may be predicted multiple times with
varying IoU. This problem is mitigated by using an algorithm called non max sup-
pression that outputs the final bounding boxes. This algorithm will be explained
in section 2.4.

13

2 BACKGROUND

2.2.4 Loss Function

The loss function for YOLO that is minimized during training is shown in equation
6.

S2∑
i=0

B∑
j=0

1
obj
ij λ

′
coord

[
(xij − x̂ij)2 + (yij − ŷij)2

]
+

S2∑
i=0

B∑
j=0

1
obj
ij λ

′
coord

[
(wij − ŵij)

2 + (hij − ĥij)2
]

+λobj

S2∑
i=0

B∑
j=0

1
obj
ij

(
Cij − Ĉij

)2
+λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij

(
Cij − Ĉij

)2
+λclass

S2∑
i=0

B∑
j=0

1
obj
ij

∑
c∈classes

(pij(c)− p̂ij(c))2

(6)

1
obj
ij is an indicator function, or boolean predicate function, that denotes whether

a specific bounding box has done an object prediction. The same goes for 1noobj
ij ,

when the bounding box has not done a prediction. A more verbose version of the
predicate function is shown in equation 7.

1
obj
ij =

{
1 if object is predicted in cell i and box j

0 otherwise
(7)

The algorithm is defined to have done a prediction if the IoU is higher than a given
threshold. This is used to ensure that the coordinate and classification error for
that anchor box is only penalized if it think there’s an object in the prediction.
YOLO is an end-to-end learning technique and as such there is no explicit logic
that tells it to only predict a bounding box if it thinks there is an object. The
network will thus predict some insignificant numbers for all bounding boxes that
doesn’t have objects. That is why it is important to not penalize this.

The loss function is mostly the sum of squared errors with some small deviations.
The constituent parts of the loss function will now be explained. The first two
terms in equation 6 are the localization loss and because of the object predicate, it
is only used if the algorithm has decided that the current prediction is an object.
Here λ′coord is defined as λcoord(2 − w′ijh

′
ij) in the Darknet framework. w′ij and

h′ij is the width and height relative to the image size, and λcoord is a parameter
that specifies how much the localization error is going to be penalized in the loss
function. This will effectively mean that the smaller the ground truth box is,
the larger the factor will be. There are similar parameters for the other terms as

14

2 BACKGROUND

well. λobj, λnoobj and λclass determines how much each respective part of the loss
function should be weighted in the total loss. This can be helpful to mitigate class
imbalance problems such as images containing a lot more background than actual
objects.

The next two terms are the confidence loss. This sums the squared error of the
confidence given to the predictions. The term with 1

obj
ij is used if an object has

been predicted. Here the ground truth Cij is defined as 1. If the rescore parameter
of the region layer in the Darknet framework is used, then Cij is defined as the IoU
of the ground truth and the prediction. This means that the the optimizer will try
to predict the IoU of a given prediction instead of the objectness/confidence. If
no object has been predicted, the term with 1

noobj
ij is used. Here the ground truth

Cij is defined as 1.

The last term is the classification loss. It sums up the squared error of the prob-
abilities predicted for each class. The ground truth is 1 for the correct class and
0 for all others. If hierarchical classification is used, the ancestor classes of the
ground truth labeled class, is also included. Here the ground truth is 1 for the
labeled class and all its ancestors, while for the other classes it is 0.

2.3 Hierarchical Classification in YOLO

Most convolutional neural networks use a flat structure to classification, but a
hierarchical structure can also be useful when modeling domains where hierarchical
structures are the norm. Semantic relationships between words in a WordTree is
one such domain where this structure can be useful [43]. This structure can be
designed such that each node has a “is a” relationship to its parent. For example
a fish is an animal, so thus ‘fish’ can have ‘animal’ as parent.

P (Node|Parent) (8)

YOLO’s WordTree uses hierarchical probabilities to apply the most specific class
(furthest down in the tree) that still is above some hierarchical threshold. To do
this it calculates conditional probabilities as in equation 8 for each node in the
WordTree starting with the root. It does this recursively down the tree, following
the node with highest probability, as seen in equation 9. At the point where
the calculated probability is lower than the hierarchical threshold the recursion is
stopped and the parent class is returned. As a result the most specific node that
can confidently be selected is returned and the probability of this node is based
on itself and its parents. [43]

P (Pollachius virens)

= P (Pollachius virens|Pollachius)

·P (Pollachius|Gadidae)

·P (Gadidae|Fish)

(9)

15

2 BACKGROUND

Most softmax implementation is applied across all class probabilities to get a
probability distribution, resulting in a single-class predictor. To be able to do
hierarchical classification efficiently YOLO’s WordTree applies multiple softmax
across siblings as in 6. This makes each level stand alone and makes it possible
for the detector to discriminate classes accurately. [43]

Labridae

Fish

Gadidae

Labrus berggylta Labrus rupetris Pollachius

Pollachius virens Pollachius pollachius

Softmax 2

Softmax 1

Softmax 3 Softmax 4

Softmax 5

Figure 6: Softmax is applied across sibling nodes in WordTree.

2.4 NMS and Soft-NMS

Object detection mechanisms often produce a high number of bounding boxes with
probabilities based on the features present in that area, often many more than the
number of objects. For this reason non max suppression (NMS) is often used as
a post processing technique to remove excessive predictions [6]. NMS takes a list
of boxes with probabilities and it removes the boxes that overlap more than some
threshold, keeping the boxes with the highest probabilities [6]. The standard NMS
implementation only remove boxes where the overlapping boxes predict the same
class. The NMS used by YOLO is detailed in algorithm 2.

Algorithm 2: Non-maximum suppression.

Data: B = list of bounding boxes
S = list of probabilities Pc for each class for each box
Nt = NMS threshold value
Result: List with overlapping bounding boxes suppressed

1 foreach class do
2 while not all bounding boxes processed do
3 select bounding box with highest Pc;
4 if IoU greater than Nt and Pc is non-zero then
5 Pc = 0;

6 end

7 end

Bodla et al. [6] proposed Soft-NMS which gradually decays detection scores as the
IoU increases. Instead of setting probability to 0, it applies either of the following
functions.

16

2 BACKGROUND

f(Pc, IoU) = (1− IoU) ∗ Pc (10)

f(Pc, IoU) = e
−(IoU∗IoU)

σ ∗ Pc (11)

The function in equation 10 is standard Soft-NMS where probability decays lin-
early and the function in equation 11 is Gaussian Soft-NMS where probability
decays exponentially. This way no bounding are directly given a probability of 0.
These can potentially be removed later with a probability threshold, as done when
calculating oLRP, described in section 2.7.2, or before drawing bounding boxes as
is common practice.

2.5 Multiple Object Tracking Algorithms

Object detection algorithms produce detections without association between frames,
if this is needed Multiple Object Tracking (MOT) can be used after detections have
been produced. MOT algorithms keep track of objects as they move in a video
giving them unique identities. State of the art MOT algorithms also account for
temporary occlusions and objects that temporarily leave the view frame. Most of-
ten MOT algorithms rely on object detectors to localize objects in a frame before
it does tracking. Two types of MOT algorithms exists, online and offline. Offline
trackers considers a whole finished video and therefore can “see into the future”
while online trackers only consider current and past frames [52].

Two common metrics to report for MOT algorithms are MOTA and MOTP used
in the CLEAR MOT challenge. MOTA measures the tracking accuracy. It ac-
complishes this by measuring the trackers ability to identify objects across frames,
the ratio of false positives and the mismatches. Through this it measures object
configuration errors. MOTP on the other hand measures the localization error of
the tracker for the matched targets and objects. [3]

2.6 Simple Online and Realtime Tracking

Simple Online and Realtime Tracking (SORT) is a tracking-by-detection frame-
work that can track multiple objects across frames after an object detector has
localized objects [4]. SORT has been shown to work well on detections generated
by YOLO [2].

SORT does association across frames only using the detection data and approxi-
mating the displacement of each object between frames linearly. First the velocity
of the objects are solved using a Kalman filter. Then for each frame, it moves the
boxes and associates new detections with the targets that already exist. This is
done by computing an assignment cost matrix by calculating IoU between each
detection and all moved targets. The assignment is solved using the Hungarian

17

2 BACKGROUND

algorithm with the IoU matrix. A minimum IoU threshold is also used before as-
signments. A maximum age threshold is set so targets can live past some number
of frames without detection to account for occlusions and the previously computed
linear velocity is used when the target cannot be associated with new detections.
[4] A result of the use of a Kalman filter is that SORT also changes the bounding
box size and location across frames.

SORT is fast and achieves 260 Hz on a modern CPU, therefore it pairs well with a
real-time object detector like YOLO, making it possible to do tracking in real-time.
[4]

2.7 Performance Measures

Measuring the performance of an object detection algorithm is more difficult than
other algorithms such as image classification. This is because the performance
consists of multiple factors like localization and classification and not just a sin-
gle error. The image may also contain multiple objects. For this reason multi-
ple performance measures have been developed, the relevant ones are presented
here.

2.7.1 Precision Recall Curves

Precision recall curves are used as a performance measure for object detection
tasks as it is not only able to measure an algorithm’s ability to correctly classify
objects, but also penalize it for wrongly detected and misclassified objects [12].
It is especially useful when assessing models trained with moderate to large class
imbalance [10].

To create the precision recall curve it utilizes precision and recall numbers to
compute a curve. As seen in figure 7 precision is the proportion of the objects that
have been correctly identified. Recall is the proportion of objects that have been
identified that are of the correct class. A detection is considered correct if the IoU
is over 0.5 and the class is correctly predicted [12].

18

2 BACKGROUND

Predicted as fish

Not predicted as fish

Precision =

Recall =

Figure 7: Illustration of an image that has been classified and how precision and
recall is calculated for this image.

The precision and recall is plotted against each other to produce a measurement
of precision at different recall levels as seen in figure 8. This is done by taking
all the predictions, ordering them after probability. Then going through the list
and calculating the average precision and average recall so far, for each prediction.
The results of this are then plotted.

19

2 BACKGROUND

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Recall

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pr
ec
is
io
n

Interpolation
RP-Curve
mAP

Figure 8: Precision recall curve. Orange is the actual curve, blue is interpolated
and the blue area is the calculated mAP.

Several measures based on this curve exist, but they all calculate the area under
the curve (AUC) in their own slightly different way. Calculating the area under
the curve is an effective method for assessing the quality of the predictions across
the different recall levels [10]. Most of these method use interpolation to reduce
the impact of “wiggles” [12]. The AUC with interpolation is shown in light blue
in figure 8.

This area under the curve metric is called average precision (AP) or mean avarage
precision (mAP). The Pascal VOC challange used to calculate the average precision
by sampling the curve at 11 different positions [12], and it was a common measure
to report. However they now use all data points to calculate AP [12], this is the
technique used in figure 8.

20

2 BACKGROUND

2.7.2 Localization Recall Precision

Oksuz et al. [36] notes several problems with the standard performance measure,
AP. The most important being:

• Unable to distinguish different PR curves.

• Lack of directly measuring bounding box localization accuracy.

And most relevant for this thesis:

• Uses interpolation between neighboring recall values. [36]

Therefore Oksuz et al. [36] proposed a new performance metric called Localization
Recall Precision (LRP). LRP is made up of three parts, a bounding box error
part, a false positive (or precision) part, and a false negative (or recall) part. It
is therefore able to represent both precision and recall errors, but also bounding
box errors. It does this without calculating the area under the PR curve, hereby
avoiding the need for interpolation. As opposed to mAP lower value indicates
better performance with LRP. LRP is defined in equation 12.

LRP(X, Ys) =

(
NTP∑
i=1

1− IoU(xi, yxi)

1− τ
+NFP +NFN

)
/(NTP +NFP +NFN) (12)

Where τ is the IoU threshold for predicitions being considered correct, and where
NTP, NFP, and NFN is the number of true positives, false positives and false neg-
atives respectively.

In addition Oksuz et al. [36] introduce optimal LRP (oLRP) which is the mini-
mum achievable LRP error. oLRP represents the best achievable configuration of
bounding box localization and recall for the detector with predictions with IoU
greater than τ = 0.5 considered correct.

oLRP is calculated by finding the lowest error for all possible values of the prob-
ability threshold for considering a prediction correct, denoted s. oLRP is defined
in equation 13.

oLRP = min
s

LRP(X, Ys) (13)

2.8 Fish Species Taxonomy

Classification of fish and other organisms is unique because it follows an estab-
lished, strict, tree structure. Each element in this tree is called a taxa, and con-
sists of a group of species. A given taxa have a more general category above it,
and a more specific category below it. The most specific category is a species and
specifies one organism type. These categories are based on the inherent traits of
the organism or common features. [56] This means that species that are related
in some manner often share a lot of visual features.

21

3 STATE OF THE ART

3 State of the Art

Object detection and classification in images are heavily researched. Fish detection
is a branch of this that recently have experienced great improvements. Techniques
for detection of fish in images is divided up in to two different branches, tradi-
tional image processing approaches and deep learning approaches. Deep learning
approaches perform significantly better at fish detection [58].

3.1 Object Detection Using CNN

There are two big object detection competitions where researchers compete to come
up with the best algorithms. These are PASCAL VOC and COCO. Researchers
often use datasets from these to compare performance.

The PASCAL VOC 2007 and 2012 challenges are the most notable of the VOC
challenges. The VOC datasets has 20 categories ranging from train to bottle. The
VOC 2007 challenge has 5 011 images released for training and validation and 4 952
images reserved for testing [12]. Evaluation of performance is done by calculating
mAP with 11-point TREC-style sampling [12]. The VOC 2012 challenge has 11
540 images released for training and validation [13]. Evaluation of performance is
done by calculating mAP with interpolation using all data points as explained in
section 2.7.1 [12].

The COCO challenges had object detection with bounding boxes up until 2017
with the 2018 and 2019 challenges being segmentation only. COCO 2017 has more
than 200 000 images with 80 classes available. COCO uses mAP with 101-point
interpolation at different IoU threshold, averaging the mAP with IoU ranging from
0.05 to 0.95 with 0.05 steps. More conventional mAP metrics with IoU 0.5 and
0.75 are also provided. [7][8][27]

There exist many techniques for deep vision systems, a literature review from 2018
found that the the following distribution of technologies are used.

• Convolutional Neural Networks: 66.07%

• Reccurent Neural Networks: 12.50%

• Deep Boltzmann Machine: 8.94%

• Other: 12.50% [1]

This shows that convolutional neural networks are by far the technique receiv-
ing the greatest amount of research. This is also reflected in recent advances in
object detection in real-time videos where convolutional neural networks achieve
the highest performance [1]. This performance is achieved by CNN for several
reasons. CNNs have the ability to learn features with multi-stage structures from
data automatically [24]. The deep architectures of CNNs provide significantly in-
creased expressive power. CNNs can optimize for classification and localization at
the same time, making it possible to create one model that that is responsible for
the entire problem. [61]

22

3 STATE OF THE ART

There are mainly two approaches to object detection algorithms, region proposal
based, and regression/classification based [1]. Region proposal approaches are
used by, among others, R-CNN [17], fast R-CNN [16], faster R-CNN [47], R-FCN
[9], SPP-net [20], FPN [28], and NAS-FPN [15]. Region proposal methods first
generate a large number of proposed bounding boxes and then feed these into
the network to classify the objects within them. Various region proposal methods
exists but generally produce a very high number (300-2000 proposals) of bounding
boxes that needs to be classified, and as a result this approach is significantly
slower than regression/classification methods.

All versions of YOLO [45][43][44], SSD [31], DSSD [14], DSOD [49] and others use
regression/classification methods for object localization and classification. With
this method bounding box generation and classification is performed in one oper-
ation, using one pass through a single network that generate both bounding boxes
and class probabilities for each of these bounding boxes. A common trait is that
they can do detection significantly faster than region proposal networks. As seen
in table 1 some of the networks are able to do detection in real-time or close to
real-time on videos[44][31][31][49].

Name Resolution mAP (%) Inference time (ms)

SSD 321 x 321 21.6 61 (M40)
DSSD 321 x 321 28.0 85 (M40)
R-FCN 600 x 600 29.9 85 (M40)
RetinaNet-50 500 x 500 32.5 73 (M40)
RetinaNet-101 500 x 500 34.4 90 (M40)
YOLOv3 320 x 320 28.2 22 (Titan X)
YOLOv3 416 x 416 31.0 29 (Titan X)
YOLOv3 608 x 608 33.0 51 (Titan X)
YOLOv4 416 x 416 41.2 10.4 (V100)
YOLOv4 512 x 512 43.0 12.0 (V100)
YOLOv4 608 x 608 43.5 16.1 (V100)
RefineDet R-101 832 x 500 34.4 90 (Titan X)
FPN R-50 640 x 640 37.0 37.5 (P100)
FPN R-101 640 x 640 37.8 51.1 (P100)
FPN R-50 1024 x 1024 40.1 73.0 (P100)
FPN R-101 1024 x 1024 41.1 83.7 (P100)
NAS-FPN R-50 640 x 640 39.9 56.1 (P100)
NAS-FPN R-50 1024 x 1024 44.2 92.1 (P100)

Table 1: Data collected from [29][44][15][5] showing mAP at COCO test-dev
dataset for some notable networks with inference time less than 100 ms. Note
that mAP reported here is with the COCO avaraged IoU method. Inference time
measured on a M40 or Titan X which are comparable in performance, P100 which
is significantly faster with about 60% more flops and V100 which has about 32%
more flops than P100.

YOLO is considered the state of the art in object detection and classification in

23

3 STATE OF THE ART

real-time video, and YOLOv3 achieves almost the same accuracy as others while
having significantly lower processing time. It achieves inference times from 22 ms
to 51 ms depending on the resolution of the input layer, where higher resolution
achieves higher accuracy at the price of inference time. This makes it possible
to classify object is videos at more than 30 FPS with a modern graphics card.
[44][43]

A recent improvement to YOLO, named YOLOv4 [5], sees an increase in both
speed and performance. Their method is to divide the object detector architecture
into 4 parts where they can swap out each part with solutions from different earlier
research within object detection. It was found that using an architecture consisting
of CSPDarknet-53 [54], SPP [20] and PAN [30], and YOLOv3 [44] as the detector
mechanism yielded the best results. This resulted in an mAP of 43.5% with 62
FPS on a Tesla V100.

3.2 Object Detection of Fish Using CNN

Research on utilizing machine learning for fish images has been primarily focused
on the fish4knowledge dataset which contains 27 730 fish [40] and is the largest
publicly available dataset for fish. It contains images cropped around the fish with
sizes ranging from 30x30 pixels to 250 x 250 pixels [37]. Almost all the images
contain a side view of the fish. It was created from low resolution video of 320x240.
This video is caught in tropical coral reefs off the coast of Taiwan, and as a result
has very clear and calm waters. The dataset contains 23 different species, 97% of
which are in the top 15 classes and 44% is in the top class [37]. Research on this
has been focused on either fish object detection or fish species classification. The
research in table 2 shows the accuracy of different convectional neural networks
for classification of fish.

Name Classification accuracy

Salman et al. [48] 94.00%
Siddiqui et al. [50] 94.30%
Olsvik et al. [37] 99.27%

Table 2: Accuracy of fish species classification in the fish4knowledge dataset.

Object detection and classification on fish has been done on data derived from
the fish4knowledge dataset where Xiu Li et al. [58] in 2015 used Fast R-CNN to
achieve an mAP of 81.4% at a speed of 311 ms per image, and Fast R-CNN with
singular value decomposition to achive an mAP of 78.9% at 273 ms per image.
This is further improved in 2017 by Li et al. [26] which achieved a 89.5% mAP at
89 ms per image.

Raza and Hong [41] did object detection of fish using a modified version of YOLOv3
on their dataset with 4 classes of aquatic life with one of them being for fish. By
modifying the loss function and adding an extra detection scale to account for finer
grained features they achieve an mAP of 91.3%.

24

3 STATE OF THE ART

Object detection of salmon in Norwegian fish farms has been done by Reithaug [46]
where using SSD Inception V2 an mAP of 84.64% is achieved at 266 ms seconds
per image. Classification of Nordic fish have been done by Olsvik et al. [37] where
they attained an accuracy of 87.74% with a CNN-SENet and 90.20% with ResNet-
50 on their dataset containing 867 fish across 4 classes. The classifier from Olsvik
et al. [37] is expanded for object detection using YOLOv3 by Knausg̊ard et al.
[25] where YOLO is used for localization only, and classification is done with
CNN-SENet. The localizer archives an mAP of 87% (without classifciation error)
on their data. The classifier achieves a classification accuracy of 83.68% on the
dataset of Knausg̊ard et al. [25]. No mAP with both localization and classification
is given.

3.3 Multiple Object Tracking Algorithms

MOT algorithms that focus on associating detections from a detector across frames
is a active research area. Stability of Video Detection and Tracking (SORT) is
a notable tracker that simultaneously achieves state of the art tracking accuracy
while being fast and simple. SORT has had multiple improvements, notably Wojke
et al. [57] integrated appearance information and used a CNN to discriminate
different objects to avoid identity switches. This improves performance of SORT
at a cost to speed and requiring a network to discriminate objects.

Person of Interest (POI) is an online tracker that performs better than SORT by
creating a more advanced algorithm. POI utilizes motion, shape and appearance
for association instead of just IoU for association with the Hungarian algorithm,
among other differences. [59]

3.4 Stability of Video Detection and Tracking

Stability of localization and classification in video has received limited research,
but Zhang and Wang [60] identified problems in current evaluation techniques of
object detection in video. Zhang and Wang [60] presented a metric for measuring
detection stability based on error. This metric uses MOT data as ground truth
data and then evaluates the three following factors of stability. Fragmentation
error is defined as the integrity of detections along a trajectory and measures
how many times the detector loses and regains tracking of an object. Center
position measures the stability of the center position to find errors in bounding
box localization by measuring the variance. Big changes in the center position
would indicate jittering in bounding box location from frame to frame. Scale and
Ratio error measures the stability in the size and shape of the bounding box by
measuring the variance. Big changes in size and shape of bounding boxes would
lead to unpleasant results. All these metrics are then combined to produce a
stability error. [60] As far as we know no stability metric that does not require
ground truth data exists.

25

3 STATE OF THE ART

3.5 Hierarchical Classification

Normally, CNN operates on just simple categories, but animals are more complex
and grouped into categories of categories by biologists, and therefore has a hierar-
chical structure. Hierarchical classifiers is a subset of classification algorithms, and
are commonly used when the domain being modeled already have a hierarchical
structure. Hierarchical classification can be divided into two different approaches,
global classifiers and local classifiers. The difference between these are that in
global classifiers one model considers the whole class hierarchy and in local classi-
fiers there is more than one classifier arranged in some manner across the hierarchy.
[51]

ImageNet introduced by Deng et al. [11] contains 14 million images and 1 million
images with bounding boxes. The classes are organised into the a graph structure
they call WordNet. Using this hierarchy and a tree-max classifier they show how
hierarchical classification based on synset nodes can improve performance. This
algorithm and other algorithms noted in [33], [34], [62] and [35] are local classifiers
and utilize non-deep learning approaches and show that hierarchical classification
can increase performance.

Redmon and Farhadi [43] utilises global hierarchical classification with Darknet-19
on the ImageNet dataset by transforming the WordNet into a tree structure called
WordTree. It then predicts the probabilities as explained in section 2.2. This
classifier achieves 71.9% accuracy on a subset of ImageNet containing 1 000 leaf
classes, or 1 369 with the classes needed in the hierarchy. This is later extended to
be trained on the top 9 000 classes from ImageNet for classification and the COCO
dataset for detection to create an object detection algorithm that can detect over
9 000 classes. Interestingly Redmon and Farhadi [43] notes that this algorithm
learns animal species better than other classes from the hierarchy.

Local hierarchical classification of fish is used by Huang et al. [22] with the
fish4knowledge dataset where they use a Balance-Guaranteed Optimized Tree
(BGOT) to construct a hierarchy of fish species based on the 66 features extracted
from the image. This hierarchy is then used with a SVM at each level of the hier-
archy. With this algorithm they achieve a classification average precision of 91.7%
on a dataset containing 3 179 fish from 10 classes. Later in [23] they improve the
algorithm and achieve an average precision of 65% on a dataset containing 25 150
fish from 15 classes.

26

4 APPROACH

4 Approach

This chapter will outline our approach to solving the problem of real time object
deteciton of fish. It goes over the steps performed to create the object detection
algorithm YOLO Fish.

4.1 Execution Process

To go from problem statement to final solution and conclusion, a method based
on design science research is used, a common method in information technology
research. The design science research method follows six steps where an artifact
that can solve the problem is developed and then evaluated in terms of the observed
results from using the artifact [38][21]. The phases in the design science research
process are:

• Problem identification and motivation.

• Definition of objectives for solution.

• Design and development.

• Demonstration.

• Evaluation.

• Communication. [38]

This has been integrated in the larger process of the execution process, resulting
in the process seen in figure 9.

Problem Research

Discuss and
conclude

Hypotheses Data collection
and refinement

Develop algorithm

Demonstration
and experiments

Evaluate

Figure 9: Extended version of the design science research method used for the
project.

Initial research is done to figure out which algorithms best fit the problem. The-
ories are formulated that will aid in solving the problem. Data is collected and
annotated based on the current hypotheses. The selected or modified algorithm
is used as the artifact that the design science research method requires. This al-
gorithm is then tested in the experiments to see whether it provides a verifiable
contribution.

27

4 APPROACH

These experiments has the goal of isolating the problem to be able to rigorously
evaluate the contribution. Atomizing the problem makes it possible to isolate the
complexity [38]. The experiments constitute the demonstration phase. Evalua-
tion of these experiments use both quantitative and qualitative results to assess
whether the solution aids in meeting the objectives, and whether it verifies the hy-
potheses. Quantitative results are effective for evaluating if a new solution is better
than the current solutions [38]. Qualitative methods are used to support solving
problems not previously addressed [38]. The results of the experiments influence
the hypotheses in an iterative manner that creates new or modified hypotheses or
it may influence the algorithm to improve the solution.

Following this strategy the experiments in this thesis have either qualitative or
quantitative objectives for the solution. For this, objectives are rationally inferred
from the problem. These objectives are then compared with the observed results
and evaluated to see how well they support the problem. [38]

4.2 Data Generation Strategy

Object detection in images and video requires data in the form of images with
accompanying bounding boxes with assigned classes. Compared to image classifi-
cation tasks, this requires a lot of manual labour as this kind of data is not easy
to come by. Additionally, to be able to test hierarchical classification, the dataset
needs be created with hierarchical classes.

The dataset needs to be created with hierarchical classes in mind because the
hierarchy affects what labels are applied. This is because the algorithm needs to
learn what features can distinguish certain species, and what features is common
among them. Therefore the class needs to reflect the visible features of the fish.
By using hierarchical classification with a dataset specifically created for this, the
network can mimic the mental model humans have of fish and fish species. This
makes it possible for it to apply classes based on the features that are actually
visible and have a result that reflects how good the view of the fish is.

Redmon and Farhadi [43] uses hierarchical classification to combine two incompat-
ible datasets. Just applying hierarchical classification without a dataset created
for it works to combine the datasets, but does not help when the goal is to use
this to account for the lack of visible features.

Because of the previously mentioned reasons, a custom dataset and data generation
strategy is required. The images are collected from an underwater video stream
and imported into an image labeling tool. To ensure the dataset is consistent we
establish a set of strategies on how to annotate the data that is rooted in the
theory behind YOLO. These are specifically based on how the loss is handled. We
define the following approach for annotation.

1. Annotate all fish that are visible to humans, without the context of neigh-
boring frames.

2. Apply the most specific species label that can confidently be discerned.

28

4 APPROACH

Since the loss function penalizes detections where it detects fish where there is none,
a goal is to make sure all the fish that can possibly be detected are annotated with
a bounding box.

On the other hand, with the use of a tree structure for classes, the annotation of
classes have used the opposite tactic. Here only the most specific taxa that can very
confidently be applied to the fish is used. This strategy is rooted in the design of
YOLO where loss is only applied to the ground truth class and the above classes in
the WordTree [43]. This does not penalize the model for predicting a more specific
class than what is annotated. An example of this can be seen in figure 10, where
Pollachius pollachius has been predicted, but the ground truth specifies Gadidae,
so only the classes Gadidae and Fish have their loss backpropagated. This has the
effect that it increases the confidence in the network’s ability to predict the correct
classes since the confidence of the class in the dataset is very high. It also makes
it significantly easier to create the dataset since not all fish in an image needs to
have a species specified.

Labridae

Fish

Gadidae

Labrus berggylta Labrus rupetris Pollachius

Pollachius virens Pollachius pollachius

Cycolpterus lumpus

Figure 10: If the network predicts Pollachius pollachius (green), but the ground
truth only specifies Gadidae, only the orange classes Gadidae and Fish, have their
loss backpropagated.

4.3 Architecture Improvements

YOLO cannot be used out of the box because it is not tailored for the problem,
and therefore has received various changes to become YOLO Fish. The networks
are mostly used in their original architecture as explained in section 2.2.1, but the
small changes that are made are explained here. The configuration files that detail
the network and the modified version of YOLO is included in the appendix.

YOLO9000 is designed to incorporate WordTree during training to combine datasets
[43], therefore the network is used as is except changing the number of classes from
9418 to 9.

YOLOv3 has several improvements as compared to both YOLO9000 and YOLOv2,
these improvements could be utilized to increase performance. However YOLOv3
cannot be directly used with hierarchical data as the detection layers used are
new and does not support hierarchical classes. Instead YOLOv3 is a multiclass
detector.

29

4 APPROACH

To be able to utilize the improvements from YOLOv3 with the benefits of hierar-
chical classification, modifications to turn it into a single class detector that uses
soft max across co-hyponym, and calculates absolute probability as explained in
section 2.3 is performed. This is accomplished by using region layers instead of
the YOLO layers, and using the WordTree.

By default YOLO is limited to classify at most 30 objects in each image, this has
been upped to 90 to be able to detect the number of fish often present in the
video.

The NMS algorithm only removes overlapping bounding boxes of the same class.
When using hierarchical classification an object can be of several classes across the
levels in the hierarchy at the same time. This causes a problem when used together
with class dependant NMS as it does not remove objects where the classes are at
different levels in the hierarchy. To solve this problem NMS has been modified to
remove all overlapping boxes regardless of class.

Because NMS now removes all overlapping bounding boxes, too many bounding
boxes may sometimes be removed. Therefore Soft-NMS is implemented to test
whether it improves performance, and used in experiment 6.5.

4.4 Training

Because the problem is different than what YOLO was created to do it needs to
be trained on new data. All the networks presented in this thesis are trained in
the same way with the same parameters and settings, with the exception of the
varying use of the WordTree and network resolution. The configuration files for the
networks which detail all training configurations are included in appendix B.

The fish in the dataset very often share the same aspect ratios and sizes because the
camera was mostly in the same position and fish tends to swim in the same ways.
Therefore computing good anchor boxes significantly helps the localization. Nine
anchor boxes that fit the training set are computed with K-means as explained in
section 2.2, and this resulted in the boxes seen in figure 11.

Different clusters and associated bounding boxes can clearly be seen in figure 11
with many of the bounding boxes being small and square, small and wide, or small
and tall. This is because fish often swim towards, parallel to or above the camera
respectively. Two larger bounding boxes are also seen, these represent the fish
that swim close to the camera, but there are significantly fewer of these. Nine
anchor boxes is selected because more anchor boxes gave diminishing returns in
IoU overlap and increased inference time. Fewer bounding boxes however reduced
IoU overlap significantly, as seen in table 3. In the case of YOLOv3 each detection
layer was responsible for three of the anchor boxes.

30

4 APPROACH

anchor boxes 6 9 12

Avarage IoU 0.63 0.69 0.71

Table 3: How increasing the number of anchor boxes yields diminishing returns
after nine. Anchor boxes are only given in a multiple of three to be appropriate
for YOLOv3’s three detection layers.

Figure 11: Visual representation of the clusters that was found with K-means.
X- and Y-axis represents the width and height, the colors represents the different
clusters, and the white boxes are the anchor boxes.

In addition to new anchor boxes some other training parameters are important to
note. Letter boxing is used to keep image aspect ratio. If nothing else is noted a
network resolution of 608x608 is used. While there are only seven classes of fish in
the dataset as noted in section 5, intermediate classes are added to allow for the
tree structure. The tree structure with all the classes is in figure 12. To keep things
as similar as possible everything is trained with the nine classes, even if WordTree
is not used. In addition these image augmentations are randomly applied during
training:

31

4 APPROACH

• Image resizing

• Hue change

• Saturation change

• Exposure change

• Image cropping (jitter)

Labridae

Fish

Gadidae

Labrus berggylta Labrus rupetris Pollachius

Pollachius virens Pollachius pollachius

Cycolpterus lumpus

Figure 12: The WordTree used for training and validation.

4.5 Evaluation Methods

Performance measures are an effective way to quantitatively gauge how well the
solution works, and selecting appropriate evaluation measures and methods that
capture the problem is important. The standard measure for evaluating perfor-
mance of object detectors is mAP [36], because of its use in prominent competitions
like Pascal VOC [13].

However the mAP metric does not work well when evaluating predictions made
while using the WordTree in the case when NMS includes too many boxes. Figure
13a is an example of the PR curve for predictions made by YOLO when using the
WordTree. This graph is constructed by sorting by probability and then interpo-
lating with the method explained in section 2.7.2. This construction method leads
to large increases in the precision as the recall approaches 1 before it quickly falls
off. The interpolation algorithm will then result in highly inflated area under the
curve, as seen in the difference in the orange and blue line in figure 13a.

32

4 APPROACH

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Recall

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr

ec
isi

on
Result
Result interpolated

(a) PR curve when NMS is not removing
enough bounding boxes.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

Result
Result interpolated

(b) PR curve when NMS removes all bound-
ing boxes that has a IoU greater than 0.5.

Figure 13: PR curve and mAP interpolation for predictions made with YOLO-WT.

This happens since NMS does not remove predictions made for the same fish when
the classes are different as seen in figure 15a. This results in many bounding boxes
for each fish with a high probability and leads to many errors with a low recall in
figure 13a, and therefore misleading mAP.

For evaluation of the experiments multiple different metrics are therefore used.
oLRP is used as a metric for assessing the performance of the network. This is
mainly because it does not encounter the same problems as mAP, as it is able to
have different results for different PR curves, as apposed to mAP, and various other
advantages explained in section 2.7.2 [36]. For experiments where mAP provides
representable results mAP is also used as it is the most widely reported measure
and performs well for imbalanced datasets.

A custom implementation of the metrics had to be created for them to account
for the hierarchical nature of the dataset. The script that calculates the different
metrics is included in appendix A. oLRP is implemented as defined by Oksuz et al.
[36] and mAP is implemented as used in Pascal VOC 2010 and onwards [13] with
a change to what is considered correct. This change is that a prediction is also
considered correct if the assigned class is a descendant node of the ground truth
node in the hierarchy. This is done because, as far as we can know, the classification
is correct. This is followed even if the network doesn’t use hierarchical classification
for the sake of fairness.

33

5 DATASET

5 Dataset

A new dataset was needed for this project because no publicly available datasets
fits the needs for the project. No large object detection dataset with multiple
fish in each image was found. Additionally, to be able to show the effectiveness
of hierarchical species classification, a dataset that is created with a hierarchical
labeling strategy is needed. The labeling strategy used for this project is explained
in section 4.2.

The dataset is a collection of underwater images with fish, and annotation files
that specify the bounding box of each fish in the image, and a class. The images
have a resolution of 1920x1080 and are taken from a camera that is located in
Lindesnes, Norway. The pictures were captured in a period between February and
March 2020. The dataset consists of 1879 images and corresponding annotation
files. There are 7721 labeled fish in total and they are distributed over 7 classes
as shown in table 4. The test set contains 10% of the images which equates to
188 images and the training set contain 1691 images. Each image has a varying
number of fish in each image.

Species Count

Fish 5810
Gadidae 791
Pollachius virens 537
Ctenolabrus rupestris 212
Pollachius pollachius 172
Cyclopterus lumpus 147
Labrus bergylta 52
Labridae 0
Pollachius 0

Total 7721

Table 4: Distribution of classes in the dataset.

There is one annotation file for each image where the annotation file and the image
have the same name. Each annotation file contains the labels separated by newline.
The labels are on the format specified in listing 2. The x, y, width and height are
relative to the size of the image. A link to the dataset can be found in appendix
A.

<object-class> <x> <y> <width> <height>

Listing 2: The annotation file format.

34

5 DATASET

The images contain fish in motion and from many angles. This makes the fish in
the images have very varied shapes, sizes, and visible features, as seen in figure
14. The fish can mostly be seen swimming above, towards, away, or parallel to
the camera because of its location on the bottom of the seabed. The pictures
were caught day, dusk, night, and dawn, and in both clear and turbid waters and
therefore provides a wide variety of conditions. There is also a significant portion
of the frame where seaweed can be seen and many of the pictures contain fish in the
seaweed. This is a quite difficult dataset in contrast to for example fish4knowledge.
This dataset more represents the real world’s noisy and imperfect conditions that
a real application would be exposed to.

Figure 14: Examples of fish in the dataset from the different classes.

35

5 DATASET

Some weaknesses with the dataset is that it is possible that some fish have been
labeled wrongly, as we don’t have the proper training in the identification of fish
species. Another problem is that during this period of time, there was an abun-
dance of Pollachius pollachius and Pollachius virens, which is of the Pollachius
genus and Gadidae family. This means that we often had to use over-sampling
techniques for other species. Thus these other species does not have labels in as
many varied conditions. Thankfully, using hierarchical classification, it should still
pick up on useful information.

36

6 EXPERIMENTS

6 Experiments

This chapter contains experiments based on the hypotheses and iteratively im-
proves the performance by potentially confirming a hypothesis and using the pre-
vious improvement as a basis for the next experiment. The outline of the chapter
is as follows:

• 6.1 tests H1 whether biological taxonomy can be used with YOLO’s
WordTree.

• 6.2 tests H2 to see if hierarchical classification improves performance.

• 6.3 tests H3 whether classless NMS can solve the bounding box problem
created by hierarchical classification.

• 6.4 tests H4 to increase performance by utilizing the newer architecture of
YOLOv3.

• 6.5 tests H5 and compares classless NMS with Soft-NMS.

• 6.6 tests H6 to evaluate the speed of the network.

• 6.7 tests H7 to evaluate the stability of detections across frames in video.

Each of these experiments starts with a explanation of the context and the problem
that the algorithm aims to solve. Further the experiment method is presented
followed by the results. Then each experiment discusses whether the results proves
its hypothesis.

6.1 YOLO’s WordTree on the Taxonomic Fish Hierarchy

When creating datasets that can be used for object detection and species classifica-
tion of fish it is difficult to correctly assign classes to all the fish in an image. This
is because an image is likely to contain clearly visible fish in the foreground and
less visible fish in the background. Some datasets uses images that are cropped
to fit a specific fish of interest, but this cannot be used to effectively train an
object detection algorithm. To solve this, fish can be labeled using the biological
taxonomy hierarchy, making it possible to always apply labels confidently.

This experiment tests whether it is possible to train YOLO, using YOLO’s WordTree
in combination with data labeled with taxas from the biological taxonomy hierar-
chy. And whether YOLO is able to detect fish and correctly assign classes when
it is trained on a dataset that contains fish labeled using this hierarchy.

To verify this the YOLO9000 algorithm is trained on the dataset that contains
hierarchically labeled fish, and the resulting model tested. Table 5 shows the
model’s performance on validation data. It displays number of fish labeled more
and less specific than that of the ground truth. This makes it possible to see
that the model is able to correctly assign the most specific class it can, over a
probability threshold.

37

6 EXPERIMENTS

Species Fraction correct # more specific # less specific

Fish 501/653 500 0
Gadidae 76/81 76 0
Cyclopterus lumpus 12/14 0 0
Labridae 0/0 0 0
Pollachius 0/0 0 0
Labrus bergylta 6/6 0 0
Ctenolabrus rupestris 23/27 0 0
Pollachius virens 65/69 0 65
Pollachius pollachius 14/14 0 14

Table 5: YOLO9000 with hierarchically predicted classes. Column two shows
proportion of detected fish that was classified correctly for that label. Column
three shows the number of fish classified correctly and that have been applied a
more specific class in the hierarchy than the ground truth data. Column four shows
number of fish classified with a less specific class, but a class still in its branch of
the tree.

Table 5 shows that all Gadidae that were detected was assigned a more specific
class than the ground truth data. Consulting figure 12 shows that Gadidae has
multiple sub taxas which it shares many features with. This means the the network
is able to learn feature information from other training examples and transfer this
into being correct for the Gadidae class, and then apply that class.

The same goes for Pollachius virens and Pollachius pollachius, where the network
has applied less specific classes compared to ground truth data, but still a parent
class. Comparing those classes in figure 12 it becomes apparent that there are very
few distinguishing features. The network has then not been confident enough to
distinguish between the classes and then applied a less specific class, for instance
Pollachius.

This proves that YOLO’s classifier has been trained to label data according to
the WordTree, and therefore hypothesis H1 is confirmed. It is able to identify the
features of specific fish and generalize this information.

6.2 YOLO’s WordTree for Increased Performance

Since using YOLO’s WordTree is able to generalize classification to data with more
specific labels, it is valuable to see what this adds to the predictions. To do this it
is effective to compare it with a similar algorithm that does not use the WordTree
to isolate the effect of the WordTree.

YOLO’s WordTree uses the Region layer, a layer that, if not WordTree is used,
assumes that classes are mutual exclusive [43]. This assumption does not hold
for our dataset so comparing YOLO9000 with and without WordTree has some
drawbacks. But since this is the most direct comparison possible, and since ev-
erything else is equal it is an effective way to isolate the improvements made by

38

6 EXPERIMENTS

the WordTree. Both networks are trained in the same way as detailed in section
4.4.

Table 6 shows oLRP, precision and recall of the algorithm at the probability thresh-
old s, that provides the best results. A prediction is considered correct if the al-
gorithm predicts the same class as the ground truth data, or a class that is more
specific than the ground truth data, and the prediction has an IoU greater than
0.5. The networks are trained in the same way as explained in section 4.4 and
tested on the test set. mAP is not used because it does not provide representative
results as explained in section 4.5.

Measure YOLO9000 YOLO9000-WT

oLRP ↓ 0.830 0.789
Precision ↑ 0.693 0.731
Recall ↑ 0.488 0.556
s 0.460 0.520

Table 6: Performance of YOLO9000 with and without WordTree (WT). The best
probability threshold for the prediction error oLRP, precision and recall is denoted
by s. ↓ represents a metric where a lower value is better.

Table 6 shows an oLRP improvement of 0.041 when using WordTree. The local-
ization of objects can be presumed to be equally well predicted, since the networks
are the same. This shows that the classification is performing better as a result of
the WordTree, and thereby confirms hypothesis H2.

This happens for a couple of reasons. Firstly the network is able to learn more
from the data since the error is backpropagated for all classes above the predicted
class in the WordTree, as explained in section 2.2.4. This results in a better trained
model. Secondly there is more context at detection time. The assigned class is the
class furthest down in the WordTree that has a threshold above the hierarchical
threshold value specified. This means that if a class is going to be applied, both the
applied class and its ancestors needs to have high probabilities. Thus increasing
the confidence and reducing faulty classifications.

6.3 Modifying NMS to Account for Hierarchical Predic-
tions

YOLO9000 produces a very large number of bounding boxes for each object. NMS
is used to remove all probabilities except the one with the highest value for each
bounding box. Then NMS removes the boxes that are not appropriate. This
removes boxes that is the same class and has an IoU greater than 0.5, as explained
in section 2.4. However, when using WordTree, softmax is applied across siblings,
so it is likely for each fish to have high probabilities for multiple classes. The
result of this is that NMS does not remove other bounding boxes that predict

39

6 EXPERIMENTS

the same fish, but at a different level in the WordTree. Figure 15a displays this
phenomenon.

(a) Multiple bounding boxes per fish. (b) One box per fish.

Figure 15: Predictions from YOLO before (a) and after (b) modification of NMS.
Green bounding boxes indicate correct predictions, red indicate wrong.

This problem can be solved by modifying NMS to not be class dependant. This
can be done by simply removing all bounding boxes that have an IoU over 0.5,
instead of doing it on a per class basis. Figure 15b shows this.

This experiment verifies that the modified NMS increases performance. It does
this by comparing the performance of the original NMS and the modified NMS
with everything else being equal.

Measure YOLO9000-WT YOLO9000-WT classless NMS

oLRP ↓ 0.789 0.731
mAP ↑ N/A 0.728
Precision ↑ 0.731 0.877
Recall ↑ 0.556 0.627
s 0.520 0.550

Table 7: YOLO9000-WT performance improvement from modifying NMS.

Table 7 displays an oLRP improvement of 0.058, stemming from the removed
erroneous bounding boxes, thus confirming H3. In addition it also becomes possible
to accurately measure the performance with the mAP metric. Previously the
precision recall curve did not produce representable results when interpolation
is used. This happens because there are many erroneous predictions with high
probability that breaks the interpolation used in mAP as explained in section
4.5.

6.4 Modifying YOLOv3 to Use WordTree

YOLO’s WordTree algorithm is originally only implemented in the YOLO9000
architecture. However the state of the art is YOLOv3, with a significantly larger

40

6 EXPERIMENTS

and more complex network with 139.611 GFLOPS compared to 40.483 GFLOPS
with our configurations. YOLOv3 has been shown to perform significantly better
[44]. This experiment tests whether it is possible to increase performance by
creating an architecture that combines WordTree with YOLOv3.

The network is changed to use softmax across sibling classes and use the loss
function from YOLOv2, as explained in section 2.2.4. This means that while
YOLOv3 is a multi class detector, the modified YOLOv3 no longer is multi class.
This is because of changing the prediction layers, seen in purple in figure 3, from
being YOLO layers to being region layers.

Measure YOLO9000-WT YOLOv3 YOLOv3-WT

oLRP ↓ 0.731 0.655 0.556
mAP ↑ 0.726 0.793 0.899
Precision ↑ 0.887 0.800 0.936
Recall ↑ 0.627 0.770 0.807
s 0.550 0.380 0.710

Table 8: Performance of YOLO9000-WT and YOLOv3 with and without
WordTree.

Table 8 shows that YOLOv3 without WordTree performs better than YOLO9000
with WordTree with an improvement in oLRP of 0.076. The addition of WordTree
in YOLOv3 leads to the significant improvement of 0.149 to oLRP and 17.3% to
mAP. Figure 16 shows that YOLOv3-WT is able to detect close to all objects as
well as producing very few false positives, even at low probabilities. This confirms
hypothesis H4 since creating a new architecture that incorporates WordTree with
YOLOv3 significantly improves performance.

0.0 0.2 0.4 0.6 0.8
Recall

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

Interpolation
RP-Curve

Figure 16: Precision recall curve for YOLOv3-WT that produces mAP of 0.899.

41

6 EXPERIMENTS

6.4.1 Further Discussion

Now that the architecture of YOLO Fish is mostly in place, we would like to discuss
the results of the algorithm as a fish detector so far. This section will present some
new results and discuss them in the context of hierarchical classification.

Table 9 shows that the algorithm is not very good at localization as the mAP
quickly falls off as the IoU threshold for considering a detection correct is increased.
Figure 17 shows that it is very good at classification. It can therefore be said to be
better at localization than classification. This is in line with other research and is
one of the drawbacks of using detectors that use one networks for both localization
and classification, and especially YOLO as the network has large bounding box
localization restrictions due to its design [43][61].

Network mAPIoU=0.3 mAPIoU=0.5 mAPIoU=0.7

YOLOv3-WT 0.925 0.899 0.664

Table 9: Performance of YOLOv3 with WordTree at different IoU thresholds.

Figure 17 shows that the algorithm manages to correctly classify every fish except
one of the fish that it detects. The mistake it makes is the misclassification of
Pollachius pollachius as Pollachius virens, two very similar species. It is also often
able to classify fish more specifically than the specified label for Fish and Gadidae,
this means that the classifier possibly is better than humans at classification.
However with the dataset that is used there is no way to say whether the more
specific labels are correct or not, so no definitive claim can be made.

42

6 EXPERIMENTS

Fi
sh

G
a
d
id

a
e

P
o
lla

ch
iu

s

P
o
lla

ch
iu

s
v
ir

e
n
s

P
o
lla

ch
iu

s
p
o
lla

ch
iu

s

C
y
cl

o
p
te

ru
s

lu
m

p
u
s

La
b
ri

d
a
e

La
b
ru

s
b
e
rg

y
lt

a

C
te

n
o
la

b
ru

s
ru

p
e
st

ri
s

Predicted

Fish

Gadidae

Pollachius

Pollachius virens

Pollachius pollachius

Cyclopterus lumpus

Labridae

Labrus bergylta

Ctenolabrus rupestris

A
ct

u
a
l

0 6 8 540 9 12 2 1 15

0 0 1 69 7 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 68 0 0 0 0 0

0 0 0 1 13 0 0 0 0

0 0 0 0 0 14 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 6 0

0 0 0 0 0 0 0 0 26

0

100

101

102

Figure 17: Confusion matrix for YOLOv3-WT at IoU 0.5. All predictions that
land inside the green boxes for each class is considered correct. If the prediction is
inside the green box and to the right of the diagonal the prediction is more specific
than the label in the WordTree hierarchy.

Using WordTree adds an extra hyperparameter that needs to be set according to
the use case of the model, a hierarchical probability threshold. This hierarchical
probability threshold specifies how certain a classification must be for a specific
class prediction before using the parent class. This is needed because the network
will predict high probabilities for all classes in the branch of the hierarchy that the
object is likely to belong to, and a cutoff value needs to be set so it can determine
how deep in the tree the predictions will go. This hyperparameter is only used
when predicting and not during training.

43

6 EXPERIMENTS

Labridae

Fish

Gadidae

Labrus berggylta Labrus rupetris Pollachius

Pollachius virens Pollachius pollachius

Scomber
ScombrusScorpaeniformes

Cycolpterus lumpus

Label

Prediction

Hierarchical distance=-2

Figure 18: Calculation of hierarchical distance. A positive number means how
many levels down in the tree the prediction is, compared to the ground truth.
Likewise a negative number means the number of levels up in the tree. Zero
means the prediction is the same as the ground truth.

Table 10 shows the average hierarchical distance from label to prediction, the
hierarchical distance is calculated with the technique in figure 18. Hierarchical
distance makes it possible to see how specific the network predicts species.

Furthermore, table 10 shows that the hierarchical distance is quite high when the
probability threshold is 0.2 or 0.5, and becomes lower at hierarchical threshold
0.99 and 0.999. At hierarchical threshold 1 all detection are classified as fish.
This illustrates that increasing the probability threshold makes it possible to be
very confident in the predicted species, at the cost of how specific the prediction
is. For most hierarchical probability thresholds the network is able to classify
species more confidently and specifically than a human, as evident by the positive
average hierarchical distance for all species. However, this cannot be verified as
correct.

Hierarchical Probability Threshold

Species 1 0.999 0.99 0.5 0.2

Fish 0 2.20 3.36 3.89 3.92
Gadidae -1 1.75 2.58 2.99 3.00
Cyclopterus lumpus -1 -0.14 0.00 0.00 0.00
Labrus bergylta -2 -0.66 -0.67 0.00 0.00
Ctenolabrus rupestris -2 -0.42 -0.13 0.00 0.00
Pollachius virens -3 -0.28 -0.06 0.00 0.00
Pollachius pollachius -3 -0.08 -0.08 0.00 0.00

All -0.53 1.74 2.70 3.15 3.18

Table 10: The average hierarchical distance from label to detection for different
hierarchical threshold levels for YOLOv3-WT. The table only contains correct
predictions.

The ability for the end user to set a hierarchical probability threshold makes the
algorithm more versatile. For instance, if it is used to collect data for determining
fishing quotas there might be a need to have a very high confidence in the species

44

6 EXPERIMENTS

that are identified. Then a high hierarchical probability threshold might be used.
Another use case might be to use it to show the public what species are in a par-
ticular area right now. The correctness in this instance might not be as important
and a lower hierarchical probability threshold could be used.

So far the predictions have been discussed in a quantitative manner, but discussing
them in a qualitative manner compliments this and gives insight. Examples of good
and bad detections are in figure 19 and 20 respectively. Figure 19 displays how the
algorithm can perform well in varying lighting conditions and water clarity. It is
however prone to make mistakes if there is a lot of debris in the water as in figure
20d which was captured in a storm. It excels at detecting fish in the sea grass as
in figure 19c and 19f where humans struggle. Sometimes it mistakes what clearly
is seaweed for fish as in figure 20d.

The shape of the fish is heavily relied upon for classification, and as can be seen
in figure 20a where a Gadidae is misclassified as a Cyclopterus lumpus because of
its round shape when swimming away from the camera in turbid water. However,
when there is clear water the algorithm performs well, and is able to detect fish
even with very low contrast as seen in figure 19e.

45

6 EXPERIMENTS

(a) Fish in the dark. (b) Many Pollachius virens and Fish.

(c) Fish in sea grass. (d) Fish in turbid water.

(e) Fish and Gadidae with low contrast. (f) Cyclopterus lumpus in sea grass.

Figure 19: Good detection and classifications made by YOLOv3 with WordTree.
Green bounding box indicates correct class and and bounding box.

46

6 EXPERIMENTS

(a) Detector misclassifying species and
producing a bad bounding box.

(b) Turbid water where the detector
mistakes the debris for a fish.

(c) Detector missing obvious fish. (d) Detector mistaking sea weed for fish.

Figure 20: Bad detections and classifications made by YOLOv3 with WordTree.

6.5 Soft-NMS with YOLOv3

The modified NMS in section 6.3 has shown to increase confidence. A drawback
of this classless NMS is however that it removes YOLO’s ability to keep bound-
ing boxes for different fish that slightly overlap. Bodla et al. [6] proposed Soft-
NMS which decays the probabilities of overlapping boxes as a continuous function,
as described in section 2.4, and achieves improved mAP. This experiment tests
whether Soft-NMS improves the performance of YOLOv3-WT by modifying NMS
and nothing else and then testing on the test set.

47

6 EXPERIMENTS

Measure YOLOv3-WT YOLOv3-WT Soft-NMS

oLRP ↓ 0.556 0.556
mAP ↑ 0.899 0.918
Precision ↑ 0.936 0.936
Recall ↑ 0.807 0.807
s 0.710 0.710

Table 11: Performance improvement from Soft-NMS on YOLOv3.

Table 11 shows that Soft-NMS increases the mAP with 1.9%, likley stemming
from overlapping boxes for overlapping objects that are no longer removed. This
is slightly higher than the improvements seen on the VOC 2007 and the COCO
datasets [6]. However, no change is seen in oLRP, Precision nor Recall. This is
because Soft-NMS gives overlapping bounding boxes very low probabilities, far
below 0.71. As a result they are removed before calculating oLRP, Precision and
Recall as the probability threshold for boxes to be included, s, removes these boxes.
Boxes with lower probabilities are removed because otherwise the network would
produce far too many erroneous predictions and decreasing performance.

While Soft-NMS improves the mAP score it would have no real impact on detec-
tion performance in normal use cases in this instance. Therefore it only partially
confirms H5 as mAP performance is improved but no other improvements are
seen.

This experiment concludes the modifications to the network itself. After all the
improvements made in the previous experiments the network has become signif-
icantly different than YOLO. The object detector is now specifically tailored for
fish detection and we therefore name it YOLO Fish.

6.6 Real-Time Fish Detection

Object detection of fish requires processing of large amount of data to be valuable,
and data is generated as video continuously. Therefore it would be valuable to
process video in real-time. One of the benefits of YOLOv3 is its ability to perform
object detection on video in real-time [44]. This experiment tests whether our
configuration is able to perform detection of fish in real-time. The inference time
in table 12 is calculated by running through the testing set and averaging the
inference time of each image.

Network Network resolution Average inference time (ms) FPS

YOLO Fish 416x416 14.2 70
YOLO Fish 608x608 26.4 38

Table 12: Speed of YOLO Fish on a Tesla V100 graphics card.

48

6 EXPERIMENTS

Table 12 shows that YOLO Fish is fast enough to be used with real-time video on
the network with input size of 608x608. A smaller network than the one used in the
previous experiments can be used to achieve a higher speed, or for predictions on
a less powerful computer. This however comes with the decrease in accuracy seen
in table 13. These inference time numbers can be compared to the inference time
numbers in table 1 however the Tesla V100 has 32% more flops than Tesla P100 and
other improvements. Since YOLO Fish achieves state of the art performance on
detecting Nordic fish species and achieves real-time speed this experiment confirms
H6.

Measure YOLO Fish-608 YOLO Fish-416

oLRP ↓ 0.556 0.598
mAP ↑ 0.918 0.908
Precision ↑ 0.936 0.912
Recall ↑ 0.807 0.806
s 0.710 0.670

Table 13: Performance penalty of using a network with a resolution of 416.

6.7 Detection Stability

Video object detectors’ main performance metrics are mAP and FPS. Having
a good average precision and inference time is very important, but it does not
say everything about the quality of the detector. How stable the detections are
from frame to frame is also an important factor. The stability of the detector
is important for applications where objects have to be counted and also for the
pleasantness if the results are shown to an end user.

The YOLO Fish detector has some inherent instability with suddenly missing an
object in one frame and finding it in the next again. Also, hierarchical classifi-
cation and non mutually exclusive classes leads to some class changes within the
hierarchical branch. The result of this is a video that appears more choppy and
uncertain than what is preferred.

The SORT object tracker explained in section 2.6 provides the ability to track
objects across frames and keep objects even when the algorithm does not detect
the object for a frame or two, increasing detector stability on video. Additionally,
the tracking of objects makes it possible to smooth out classification by always
applying the class that has most commonly been applied to that object instead of
the most recent detected class. And as an added bonus, the use of object trackers
makes it possible to count the number of fish that has entered the view frame in a
given time period. However, if a fish enters and leaves it would be counted twice
or more.

This experiment tests the detection stability of YOLO Fish and tests whether
SORT and class smoothing increases detection stability. SORT was used with the
parameters minimum hits 2 and maximum age 3.

49

6 EXPERIMENTS

The method that is used for testing stability is counting the number of detections
per class for one frame and finding the difference of detections for the same class
in the next frame. This is then divided by the number of frames F that the
experiment is run for, as in equation 14. Bi

t is the number of bounding boxes for
class i at frame t. We call this measure Average Detection Difference (ADD). A
lower ADD would indicate a more stable detector as there are fewer changes from
frame to frame.

ADD(B) =
1

F

F∑
t=1

C∑
i=0

∣∣Bi
t−1 −Bi

t

∣∣ (14)

ADD is a simple way to measure changes in detection in video that does not
require ground truth data, but has significant drawbacks. Other better metrics
noted in section 3.4 that are based on error compared with ground truth data
exist, but creating data for these is too laborious in this case. One drawback is
that objects can leave the view port of the video, increasing the ADD but this
will be negligible considering the number of frames. A second drawback is that
it is not fruitful to compare different videos with ADD as number of objects in
the frame and how frequent they move in and out of view significantly impact the
results. It does also not say anything about how good the algorithm is because
it is not a benchmark where there is a perfect score the algorithm can achieve,
but rather just a measurement of change were we infer that lower is better too a
point. It can however be used to compare with the baseline, which is without any
processing.

Video clip YOLO Fish YOLO Fish with SORT

A 1.616 1.170
B 0.145 0.023

Table 14: ADD for the two video clips in figure 21.

50

6 EXPERIMENTS

(a) Video clip with very many Pol-
lachius virens.

(b) Video clip with low number of vari-
ous fish.

Figure 21: Images from the two video clips used for this experiment.

Video A seen in figure 22 has a very high number of one fish species and YOLO
Fish struggles with localizing and often creates a bounding box in one frame and
not the next. It also produces significant jitter in bounding boxes when many fish
overlap. This leads to the high change in detections from frame to frame seen in
table 14. Applying SORT and class smoothing decreases the change in number
of bounding boxes from frame to frame significantly, meaning that the method
manages to stabilize YOLO Fish when localization struggles.

51

6 EXPERIMENTS

Figure 22: From video clip A. (a) is without SORT, (c) is with SORT and (b) is
combined. Showing how YOLO Fish has instability in localization and how SORT
reduces the instability.

Video B in figure 23 contains various species of fish and the detector has little
trouble in localization. However because of bad lighting conditions and unclear
water YOLO Fish jumps significantly around in the hierarchical branch leading
to many class changes. In figure 23 the class goes from Fish to Gadidae to Pol-
lachius, but when SORT with class smoothing is applied it does not change class
just because one frame contained another species. The decrease in ADD when
using SORT with class smoothing means that it manages to reduce noise in class
changes.

52

6 EXPERIMENTS

Figure 23: From video clip B. (a) is without SORT, (c) is with SORT and (b)
is combined. Showing how YOLO Fish has instability in classification and how
SORT with label smoothing reduces the instability.

The reduction in ADD in video A and B confirms H7 since both localization and
classification on video across frames is more stable when SORT and class smoothing
is done.

53

6 EXPERIMENTS

6.8 Summary

The experiments in section 6.1 to 6.5 gradually improves the performance of YOLO
starting with YOLO 9000 and resulting in YOLO fish with the performance im-
provements in table 15. The improvements come as a result of first utilizing
WordTree, then modifying NMS to account for the bounding box problem. After
this the network is modified to use YOLOv3 with WordTree. Lastly NMS is im-
proved again with Soft-NMS. The result of this process is the algorithm we call
YOLO Fish.

YOLO9000 YOLO Fish

WordTree? X X X X
Modified NMS? X X X
Yolov3 network? X X X
Soft-NMS? X

oLRP ↓ 0.830 0.789 0.731 0.655 0.556 0.556
Precision ↑ 0.693 0.731 0.877 0.800 0.936 0.936
Recall ↑ 0.488 0.556 0.627 0.770 0.807 0.807
mAP ↑ 0.728 0.793 0.899 0.918

Table 15: How the results were improved with the various new improvements.

After YOLO Fish is proven to work and has shown an improved performance, two
experiments on video are performed. Section 6.6 verifies that the network is fast
enough to be used on real-time video. The YOLO Fish 608 network achieves 26.4
ms inference time, enough to be used on 30 FPS video with overhead. YOLO Fish
416 achieves 14.2 ms inference time, enough to be used on 60 FPS video. Section
6.7 evaluates the quality of the resulting detection when put into a video format,
and shows that the video suffers from significant label switching between frames.
This is then improved by using the SORT algorithm.

54

7 CONCLUSION

7 Conclusion

Following the results of applying the techniques mentioned in the experiments
YOLO Fish achieves state of the art performance at object detection of Nordic
fish. YOLO Fish achieves an mAP of 91.8% on a dataset containing difficult
conditions such as turbid water and nighttime pictures. It does this with inference
times low enough for real-time detection.

Previous approaches often utilize a class containing unknown fish where fish species
cannot easily be discerned. A problem with this is that the algorithm specifically
learns that some fish are of the class ‘unknown’. This gives them the ability to
include fish they don’t know the species of. However, it is reasonable to believe,
that the detector learns that less visible fish are of class ‘unknown’ and not that
this class can be applied when it is able to localize, but not classify. YOLO
Fish however utilizes the inherent biological taxonomic tree of fish to perform
hierarchical classification. This gives it the ability to apply higher hierarchical
classes when it is uncertain, as it has learned what is common among all of the
descendants of this higher class.

As a result of the increased context that the hierarchical classification provides, the
algorithm achieves a higher mAP. For these reasons we propose that object detec-
tors for fish should utilize hierarchical classification because of the large similarities
among species and the nature of unclear underwater conditions.

So far in the conclusion, the foundation of the object detector has been discussed,
but YOLO Fish has also seen improvements that make it suitable for real-time
video. YOLO Fish achieves an inference time of 26.4 ms on a Tesla V100 GPU
with high accuracy. However there are more aspects to video than accuracy and
speed. The plain YOLO Fish algorithm suffers from largely varying detections
from one frame to the next as the detections are done on a per frame basis. The
SORT object tracker, which keeps information across frames, solves this. Thus
YOLO Fish with SORT is a complete object detector for fish providing a pleasant
and stable real-time video.

55

7 CONCLUSION

7.1 Further Work

While this thesis provides an effective fish detector, there are still further research
that can be done to improve upon it. There are mainly three ideas for further
research that we have identified so far. The first is to modify the algorithm to be
able to count fish properly, the second is to use it for more intricate biological use
cases, and the last one is to try out the proposed improvements in the recently
released YOLOv4.

When it comes to fish counting, this algorithm makes it possible to count the
number of fish that enters and leaves the view frame. This is done with the use of
the object tracking algorithm SORT, that is mainly used to increase video stability.
More advanced techniques that does object tracking and proper counting exists.
For this algorithm to be effective at counting further research into object tracking
and counting mechanisms is required.

As Yolo Fish handles classification using the taxonomic hierarchy, it is reasonable
to believe that this could also be applied to differentiate the sex and age group of
certain species. A specific example where this could be applied, has been noted
in [37], where the species S. Melops has a male variant which disguises itself as
its female counterpart. With the use of hierarchical classification one could have a
‘female-like’ child of the S. Melops and further a ‘true female’ and ‘sneaker male’.
This would make it possible to distinguish between them when it is possible and
apply ‘female-like’ when it’s not.

Bochkovskiy et al. [5] released YOLOv4 close to the end of this project. Here
they employed several state of the art techniques to increase the performance of
YOLOv3 and a decrease to inference time. It would be interesting to see whether
the performance and speed of YOLO Fish could be improved by employing the
techniques used by YOLOv4.

56

REFERENCES

References

[1] Qaisar Abbas, Mostafa E. A. Ibrahim, and M. Arfan Jaffar. A compre-
hensive review of recent advances on deep vision systems. Artificial In-
telligence Review, 52(1):39–76, Jun 2019. ISSN 1573-7462. doi: 10.1007/
s10462-018-9633-3. URL https://doi.org/10.1007/s10462-018-9633-3.

[2] Akansha Bathija and Grishma Sharma. Visual object detection and tracking
using yolo and sort, 2019.

[3] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking
performance: the clear mot metrics. EURASIP Journal on Image and Video
Processing, 2008:1–10, 2008.

[4] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. Sim-
ple online and realtime tracking. In 2016 IEEE International Conference on
Image Processing (ICIP), pages 3464–3468. IEEE, 2016.

[5] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao.
Yolov4: Optimal speed and accuracy of object detection. arXiv preprint
arXiv:2004.10934, 2020.

[6] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S Davis. Soft-
nms–improving object detection with one line of code. In Proceedings of the
IEEE international conference on computer vision, pages 5561–5569, 2017.

[7] Coco Dataset. Coco 2017 object detection task, . URL http://cocodataset.

org/#detection-2017. Accessed 12. April 2020.

[8] Coco Dataset. Coco detection evaluation, . URL http://cocodataset.org/

#detection-eval. Accessed 12. April 2020.

[9] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object detection via
region-based fully convolutional networks. In Advances in neural information
processing systems, pages 379–387, 2016.

[10] Jesse Davis and Mark Goadrich. The relationship between precision-recall and
roc curves. In Proceedings of the 23rd International Conference on Machine
Learning, ICML ’06, page 233–240, New York, NY, USA, 2006. Association
for Computing Machinery. ISBN 1595933832. doi: 10.1145/1143844.1143874.
URL https://doi.org/10.1145/1143844.1143874.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (voc) challenge. Interna-
tional journal of computer vision, 88(2):303–338, 2010.

57

https://doi.org/10.1007/s10462-018-9633-3
http://cocodataset.org/#detection-2017
http://cocodataset.org/#detection-2017
http://cocodataset.org/#detection-eval
http://cocodataset.org/#detection-eval
https://doi.org/10.1145/1143844.1143874

REFERENCES

[13] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object classes chal-
lenge: A retrospective. International journal of computer vision, 111(1):98–
136, 2015.

[14] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexan-
der C Berg. Dssd: Deconvolutional single shot detector. arXiv preprint
arXiv:1701.06659, 2017.

[15] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable
feature pyramid architecture for object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7036–7045,
2019.

[16] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision, pages 1440–1448, 2015.

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 580–587, 2014.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning, chap-
ter 9. MIT Press, 2016. http://www.deeplearningbook.org.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE international conference on computer vision, pages
1026–1034, 2015.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid
pooling in deep convolutional networks for visual recognition. IEEE transac-
tions on pattern analysis and machine intelligence, 37(9):1904–1916, 2015.

[21] Alan Hevner and Samir Chatterjee. Design science research in information
systems. In Design research in information systems, pages 9–22. Springer,
2010.

[22] Phoenix X Huang, Bastiaan J Boom, and Robert B Fisher. Underwater
live fish recognition using a balance-guaranteed optimized tree. In Asian
Conference on Computer Vision, pages 422–433. Springer, 2012.

[23] Phoenix X Huang, Bastiaan J Boom, and Robert B Fisher. Gmm improves the
reject option in hierarchical classification for fish recognition. In IEEE Winter
Conference on Applications of Computer Vision, pages 371–376. IEEE, 2014.

[24] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor, Michaël
Mathieu, and Yann L Cun. Learning convolutional feature hierarchies for
visual recognition. In Advances in neural information processing systems,
pages 1090–1098, 2010.

58

http://www.deeplearningbook.org

REFERENCES

[25] Kristian Muri Knausg̊ard, Arne Wiklund, Tonje Knutsen Sørdalen, Kim
Halvorsen, Alf Ring Kleiven, Lei Jiao, and Morten Goodwin. Temperate
fish detection and classification: a deep learning based approach, 2020. Not
yet published.

[26] Xiu Li, Youhua Tang, and Tingwei Gao. Deep but lightweight neural networks
for fish detection. In OCEANS 2017-Aberdeen, pages 1–5. IEEE, 2017.

[27] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Com-
mon objects in context. In European conference on computer vision, pages
740–755. Springer, 2014.

[28] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan,
and Serge Belongie. Feature pyramid networks for object detection. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 2117–2125, 2017.

[29] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár.
Focal loss for dense object detection. In Proceedings of the IEEE international
conference on computer vision, pages 2980–2988, 2017.

[30] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation
network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8759–8768, 2018.

[31] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21–37. Springer, 2016.

[32] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, volume 30, page 3,
2013.

[33] Marcin Marszalek and Cordelia Schmid. Semantic hierarchies for visual ob-
ject recognition. In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–7. IEEE, 2007.

[34] Marcin Marsza lek and Cordelia Schmid. Constructing category hierarchies for
visual recognition. In European conference on computer vision, pages 479–491.
Springer, 2008.

[35] David Nister and Henrik Stewenius. Scalable recognition with a vocabulary
tree. In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 2161–2168. Ieee, 2006.

[36] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan Kalkan. Localization
recall precision (lrp): A new performance metric for object detection, 2018.

59

REFERENCES

[37] Erlend Olsvik, Christian M. D. Trinh, Kristian Muri Knausg̊ard, Arne Wik-
lund, Tonje Knutsen Sørdalen, Alf Ring Kleiven, Lei Jiao, and Morten Good-
win. Biometric fish classification of temperate species using convolutional
neural network with squeeze-and-excitation, 2019.

[38] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chat-
terjee. A design science research methodology for information systems
research. Journal of Management Information Systems, 24(3):45–77,
2007. doi: 10.2753/MIS0742-1222240302. URL https://doi.org/10.2753/

MIS0742-1222240302.

[39] Diana Perry, Thomas AB Staveley, and Martin Gullström. Habitat connectiv-
ity of fish in temperate shallow-water seascapes. Frontiers in Marine Science,
4:440, 2018.

[40] Robert B. Fisher Phoenix X. Huang, Bastiaan B. Boom. ”fish recogni-
tion ground-truth data, Sep 2013. URL http://groups.inf.ed.ac.uk/f4k/

GROUNDTRUTH/RECOG/. Accessed 20. Jan 2020.

[41] Kazim Raza and Song Hong. Fast and accurate fish detection design with
improved yolo-v3 model and transfer learning, 2020.

[42] Joseph Redmon. Darknet: Open source neural networks in c. http:

//pjreddie.com/darknet/, 2013–2016.

[43] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 7263–7271, 2017.

[44] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv
preprint arXiv:1804.02767, 2018.

[45] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.
You only look once: Unified, real-time object detection. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pages 779–788,
2015.

[46] Adrian Reithaug. Employing deep learning for fish recognition, 2018.

[47] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: To-
wards real-time object detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99, 2015.

[48] Ahmad Salman, Ahsan Jalal, Faisal Shafait, Ajmal Mian, Mark Shortis,
James Seager, and Euan Harvey. Fish species classification in unconstrained
underwater environments based on deep learning: Fish classification based
on deep learning. Limnology and Oceanography: Methods, 14, 05 2016. doi:
10.1002/lom3.10113.

60

https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/RECOG/
http://groups.inf.ed.ac.uk/f4k/GROUNDTRUTH/RECOG/
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

REFERENCES

[49] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and
Xiangyang Xue. Dsod: Learning deeply supervised object detectors from
scratch. In Proceedings of the IEEE international conference on computer
vision, pages 1919–1927, 2017.

[50] Shoaib Siddiqui, Ahmad Salman, Imran Malik, Faisal Shafait, Ajmal Mian,
Mark Shortis, and Euan Harvey. Automatic fish species classification in un-
derwater videos: Exploiting pretrained deep neural network models to com-
pensate for limited labelled data. ICES Journal of Marine Science, 75, 05
2017. doi: 10.1093/icesjms/fsx109.

[51] Carlos N Silla and Alex A Freitas. A survey of hierarchical classification
across different application domains. Data Mining and Knowledge Discovery,
22(1-2):31–72, 2011.

[52] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Simone Calderara,
Afshin Dehghan, and Mubarak Shah. Visual tracking: An experimental sur-
vey. IEEE transactions on pattern analysis and machine intelligence, 36(7):
1442–1468, 2013.

[53] Johan St̊al, Sandra Paulsen, Leif Pihl, Patrik Rönnbäck, Tore Söderqvist, and
H̊akan Wennhage. Coastal habitat support to fish and fisheries in sweden:
Integrating ecosystem functions into fisheries management. Ocean & Coastal
Management, 51(8-9):594–600, 2008.

[54] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-
Yang Chen, and Jun-Wei Hsieh. Cspnet: A new backbone that can enhance
learning capability of cnn. arXiv preprint arXiv:1911.11929, 2019.

[55] Ben G Weinstein. A computer vision for animal ecology. Journal of Animal
Ecology, 87(3):533–545, 2018.

[56] Wikipedia. Taxonomic rank, . URL https://en.wikipedia.org/wiki/

Taxonomic_rank. Accessed 5. march 2020.

[57] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and real-
time tracking with a deep association metric. In 2017 IEEE international
conference on image processing (ICIP), pages 3645–3649. IEEE, 2017.

[58] Xiu Li, Min Shang, H. Qin, and Liansheng Chen. Fast accurate fish detection
and recognition of underwater images with fast r-cnn. In OCEANS 2015 -
MTS/IEEE Washington, pages 1–5, Oct 2015. doi: 10.23919/OCEANS.2015.
7404464.

[59] Fengwei Yu, Wenbo Li, Quanquan Li, Yu Liu, Xiaohua Shi, and Junjie Yan.
Poi: Multiple object tracking with high performance detection and appear-
ance feature. In European Conference on Computer Vision, pages 36–42.
Springer, 2016.

61

https://en.wikipedia.org/wiki/Taxonomic_rank
https://en.wikipedia.org/wiki/Taxonomic_rank

REFERENCES

[60] Hong Zhang and Naiyan Wang. On the stability of video detection and track-
ing. arXiv preprint arXiv:1611.06467, 2016.

[61] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. Object de-
tection with deep learning: A review. IEEE transactions on neural networks
and learning systems, 30(11):3212–3232, 2019.

[62] Alon Zweig and Daphna Weinshall. Exploiting object hierarchy: Combin-
ing models from different category levels. In 2007 IEEE 11th International
Conference on Computer Vision, pages 1–8. IEEE, 2007.

62

Appendices

A - Code and dataset repository

B - Network configuration files

C - Fish hierarchy basis

Appendix A

YOLO Fish is a large project and is therefore hosted at the github repository
https://github.com/orilan93/darknet which is based on the original work by
Redmon [42] which is available at the github repository https://github.com/

pjreddie/darknet. YOLO Fish is a Linux C program and built with make.

The repository also contains some helpful scripts. The evaluation script
calc validation darknet.py which is used to calculate mAP and oLRP with
hierarchical classification. Using the fish detector.py a video file or stream can
be processed and then displayed or streamed.

The dataset can be found at http://dx.doi.org/10.17632/b4kcw9r32n.1 and
includes the dataset, the best weights, and the meta files required by Dark-
net.

https://github.com/orilan93/darknet
https://github.com/pjreddie/darknet
https://github.com/pjreddie/darknet
http://dx.doi.org/10.17632/b4kcw9r32n.1

Appendix B
This appendix contains the configuration file for YOLO Fish which defines the
entire architecture and training parameters. All of the configuration files are also
found in the cfg folder in the code repository. Note that the following uses a three
column page style.

[net]

Testing

#batch=1

#subdivisions=1

Training

batch=64

subdivisions=16

width=608

height=608

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.001

burn_in=1000

max_batches = 500200

policy=steps

steps=400000,450000

scales=.1,.1

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

Downsample

[convolutional]

batch_normalize=1

filters=64

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=32

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=128

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=256

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=512

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

######################

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=42

activation=linear

[region]

anchors =

64,52,92,111,252,208

classes=9

num=3

jitter=.3

max=90

coords=4

bias_match=1

rescore=1

softmax=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

thresh = .6

absolute=1

tree=data/fish.tree

[route]

layers = -4

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[upsample]

stride=2

[route]

layers = -1, 61

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=512

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=512

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=512

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=42

activation=linear

[region]

anchors =

16,60,39,27,33,72

classes=9

num=3

jitter=.3

max=90

coords=4

bias_match=1

rescore=1

softmax=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

thresh = .6

absolute=1

tree=data/fish.tree

[route]

layers = -4

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[upsample]

stride=2

[route]

layers = -1, 36

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=256

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=256

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=256

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=42

activation=linear

[region]

anchors =

10,30,22,16,23,35

classes=9

num=3

jitter=.3

max=90

coords=4

bias_match=1

rescore=1

softmax=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

thresh = .6

absolute=1

tree=data/fish.tree

REFERENCES

Appendix C
This is the biological taxonomy that the hierarchical classification of YOLO Fish
is based on. Fish is the root class and the next level starts on the family level and
ends at the species level. To create the final hierarchy the species that were never
seen and their branches are removed, furthermore classes we deemed redundant
are also removed.

Fish

Labriformes Labridae

Labrus
Labrus Berggylta
(Ballan wrasse)

[Berggylt]

Ctenolabrus
Ctenolabrus Rupestris

(Goldsinny wrasse)
[Bergnebb]

Scorpaeniformes

Cyclopteridae Cyclopterus
Cyclopterus Lumpus

(Lumpfish) [Rognkjeks]

Sebastidae Sebastes
Sebastes Norvegicus

(Rose fish) [Uer]

Cottidae Myoxocephalus
Myoxocephalus

Scorpius (Shorthorn
Sculpin) [Ulke]

Scombriformes Scombridae Scomber
Scomber Scombrus
(Atlantic Mackerel)

[Makrell]

Gadiformes

Gadidae

Gadus
Gadus Morhua (Atlantic

Cod) [Torsk]

Pollachius

Pollachius Pollachius
(Atlantic Pollock) [Lyr]

Pollachius Virens
(Saithe) [Sei]

Melanogrammus
Melanogrammus

Aeglefinus (Haddock)
[Hyse/Kolje]

Lotidae Brosme
Brosme Brosme (Cusk)

[Brosme]

Lotidae Molva
Molva Molva (Common

Ling) [Lange]

69

	Introduction
	Problem Statement
	Contributions

	Background
	Convolutional Neural Networks
	You Only Look Once (YOLO)
	The Architecture
	Activations and Weight Initialization
	Prediction and Priors
	Loss Function

	Hierarchical Classification in YOLO
	NMS and Soft-NMS
	Multiple Object Tracking Algorithms
	Simple Online and Realtime Tracking
	Performance Measures
	Precision Recall Curves
	Localization Recall Precision

	Fish Species Taxonomy

	State of the Art
	Object Detection Using CNN
	Object Detection of Fish Using CNN
	Multiple Object Tracking Algorithms
	Stability of Video Detection and Tracking
	Hierarchical Classification

	Approach
	Execution Process
	Data Generation Strategy
	Architecture Improvements
	Training
	Evaluation Methods

	Dataset
	Experiments
	YOLO's WordTree on the Taxonomic Fish Hierarchy
	YOLO's WordTree for Increased Performance
	Modifying NMS to Account for Hierarchical Predictions
	Modifying YOLOv3 to Use WordTree
	Further Discussion

	Soft-NMS with YOLOv3
	Real-Time Fish Detection
	Detection Stability
	Summary

	Conclusion
	Further Work

