1,562 research outputs found

    Seventh Copper Mountain Conference on Multigrid Methods

    Get PDF
    The Seventh Copper Mountain Conference on Multigrid Methods was held on 2-7 Apr. 1995 at Copper Mountain, Colorado. This book is a collection of many of the papers presented at the conference and so represents the conference proceedings. NASA Langley graciously provided printing of this document so that all of the papers could be presented in a single forum. Each paper was reviewed by a member of the conference organizing committee under the coordination of the editors. The multigrid discipline continues to expand and mature, as is evident from these proceedings. The vibrancy in this field is amply expressed in these important papers, and the collection shows its rapid trend to further diversity and depth

    Métodos multimalla geométricos en mallas semi-estructuradas de Vorono

    Get PDF
    En este proyecto se presenta un metodo de discretización de ecuaciones en derivadas parciales en mallas triangulares semi-estructuradas usando volumenes finítos y como punto representativo el punto de Voronoi. La posterior discretización se resualve usando metodos multimalla semi-estructurados y se presentan un conjunto de nuevos suavizadores asi como un algoritmo de Galerkin de tipo RAP para cuando las condiciones no son homogeneas en toda la superficie. Finalmente se muestran un conjunto de ejemplo numéricos para demostrar los resultados obtenidos

    Adaptive Mesh Refinement for Coupled Elliptic-Hyperbolic Systems

    Full text link
    We present a modification to the Berger and Oliger adaptive mesh refinement algorithm designed to solve systems of coupled, non-linear, hyperbolic and elliptic partial differential equations. Such systems typically arise during constrained evolution of the field equations of general relativity. The novel aspect of this algorithm is a technique of "extrapolation and delayed solution" used to deal with the non-local nature of the solution of the elliptic equations, driven by dynamical sources, within the usual Berger and Oliger time-stepping framework. We show empirical results demonstrating the effectiveness of this technique in axisymmetric gravitational collapse simulations. We also describe several other details of the code, including truncation error estimation using a self-shadow hierarchy, and the refinement-boundary interpolation operators that are used to help suppress spurious high-frequency solution components ("noise").Comment: 31 pages, 15 figures; replaced with published versio
    • …
    corecore