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Summary

Multigrid efficiency often suffers from inadequate coarse grid correction in different
prototypic situations. We select a few problems, where coarse grid correction issues
arise because of anisotropic coefficients, non-equidistant or non-uniform grid stretch-
ing, or inherent indefiniteness in the partial differential equation. Most of the work in
this thesis can be classified as an attempt to increase multigrid efficiency by analyz-
ing and developing novel grid coarsening techniques that ensure sufficient coarse grid
correction for the multigrid algorithm.

Anisotropy in discrete systems can stem from various continuous and discrete fea-
tures of the problem and has to have its negative effects countered before a successful
multigrid solution can be brought about. We select multidimensional stationary dif-
fusion equation as the first important problem to be treated in this context. The work
for dimensions higher than three, is aimed at developing grid coarsening strategies
for discretization on rectangular hyper-grids that differ greatly in their dimensions,
and thus induce the so-called grid-aligned anisotropies in the system. Coarse grids
formed through standard coarsening fail to provide sufficient coarse grid correction,
and alternative block relaxation techniques are expensive in high dimensions. We
also investigate and test coarsening strategies with the aim that their use would al-
low point based relaxation to stay effective in this non-equidistant multigrid scenario.
Through local Fourier analysis we also analyze ω-RB Jacobi, and implement a com-
puter program through which we compute the optimal relaxation parameters. There
are three important inferences in this regard. (1) Partial (and grid dependent) coars-
ening strategies allow the successful use of point relaxation methods for this problem.
(2) Quadrupling along a few dimensions is a very attractive partial coarsening choice.
(3) Optimal relaxation parameters have a significant enhancement effect on multigrid
convergence in high dimensions.

The efficient solution of time-dependent multidimensional equations (discretized
with implicit time-integration schemes) is also a challenge. We first use the sparse grid
technique to reduce the exponential complexity of the discrete problem, and then use
the d-dimensional multigrid techniques to solve the sparse grid subproblems. In this
situation, i.e., with a multitude of different non-equidistant grids, evaluating and using
optimal relaxation parameters on the fly is not an option anymore. As a multigrid
solver in high dimensions depends on optimal attributes to quite a large extent, we
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employ the method as a preconditioner, instead of a solver. This results in a very
robust and efficient multigrid preconditioned Bi-CGSTAB solver.

Another coarsening strategy that we develop in this thesis is aimed at two-dimensio-
nal grids that are non-uniformly stretched. We investigated different experimental
coarsening strategies. A strategy based on improving individual mesh aspect ratios of
grid cells proves successful both theoretically as well as experimentally. It is based on
adaptive coarsening so that on each successive coarsening step the grid cells become
more square. We can also successfully use point relaxation methods with the proposed
technique and get nice multigrid convergence in this case. This bit of work also has
consequence for locally refined grids.

Efficient multigrid techniques for the indefinite Helmholtz equation form a sepa-
rate research theme included in the thesis. We employ the complex shifted operator
preconditioning technique for model problems that stem from quantum mechanics ap-
plications. These model problems have strongly varying wavenumbers which perturbs
the solution. The mesh size requirement in the region of this perturbation is quite de-
manding. This requirement can be eased by saturating the grid in that area. We find
that standard coarsening in this situation works well. This is in contrast to the existing
strategies where coarsening is only done in the region of refinement, until the grid is
regularized. We discretize the model problems both on equidistant and also on locally
refined grids, and the efficiency of the multigrid preconditioner is tested in both these
situations. Experiments point to the fact that existing techniques for the indefinite
Helmholtz are still not satisfactory and must be enhanced.

Some conclusions and outlook mark the end of the thesis.



Samenvatting

In verschillende prototypische situaties verliest multirooster aan efficiëntie door een
niet-aangepaste grof-roostercorrectie. We selecteren enkele problemen waarbij de
grofroostercorrectie nader onderzocht dient te worden. Voorbeelden zijn anisotropie
in de coefficienten, een niet-equidistant of niet-uniform gerekt rooster of het inher-
ent indefiniet zijn van de partiële differentiaal vergelijking. Het grootste deel van dit
proefschrift kan worden gezien als een poging om de efficiëntie van multirooster te
vergroten door het analyseren en het ontwikkelen van nieuwe vergrovingsstrategiën
die voldoende grofroostercorrectie garanderen.

Verschillende continue en discrete eigenschappen van het probleem kunnen aan-
leiding geven tot anisotropie in het discrete stelsels en de ontwikkeling van een ef-
ficient multirooster algorithme vereist het opvangen van de negatieve effecten van
deze anisotropie. We selecteren multidimensionele stationaire diffusievergelijkingen
als eerste belangrijke problemen die behandeld dienen te worden in deze context.
Het werk in meer dan drie dimensies heeft als doel heeft als doel roostervergrov-
ingsstrategiën te ontwikkelen voor discretisatie op rechthoekige hyper-roosters die
sterk varieren in dimensie en bijgevolg anisotropie gealigneerd met het rooster in het
stelsel introduceren. Grove roosters gevormd door standaard coarsening geven onvol-
doende grofroostercorrectie, en alternatieve blokrelaxatieschemas zijn te duur in hoge
dimensies. We onderzoeken en testen vergrovingsstrategiën die toelaten dat puntrelax-
atie schemas effectief blijven in dit niet-equidistant multigrid scenario. Aan de hand
van locale Fourier analyse analyseren we tevens ω-RB Jacobi, en implementeren we
een computer programma dat toelaat de optimale relaxatieparameters te berekenen.
Uit dit werk kunnen de volgende drie belangrijke conclusies getrokken worden. (1)
Partiële (en roosterafhankelijke) vergrovingsstrategiën laten toe puntrelaxatie-metho-
den effectief toe te passen voor dit probleem. (2) Het verviervoudigen van de roost-
erafstand in enkele dimensies is een zeer aantrekkelijke partiële vergrovingsstrate-
gie. (3) Optimale relaxtieparameters leiden tot een significante verbetering van de
multirooster-convergentie in hoge dimensies.

Het efficiënt oplossen van tijdsafhankelijke multi-dimensionele vergelijkingen (ge-
discretiseerd met behulp van impliciete tijdsintegratieschema’s) is tevens een uitdag-
ing. We maken eerst gebruik van de sparse grid techniek om de exponentiële complex-
iteit van het probleem te reduceren, en maken vervolgens gebruik van d-dimensionele
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multigrid technieken om de sparse grid deelproblemen op te lossen. In deze situatie,
namelijk gegeven een veelvoud van verschillende niet-equidistante roosters, is het in-
stantaan berekenen en toepassen van optimale relaxatieparameters geen optie meer.
Omdat een multigrid solver in meerdere dimensies in hoge mate afhangt van optimale
attributen, maken we gebruik van de methode als een preconditioner in plaats van als
een solver. Dit resulteert in een erg robust en efficiënt multirooster gepreconditioneerd
Bi-CGSTAB algoritme.

Een ander vergrovingsalgorithme dat we ontwikkelden in deze thesis is bedoeld
voor twee-dimensionele niet-uniform gerekte roosters. Een strategie gebaseerd op het
verbeteren van de aspect ratio van de individuele rooster cellen blijkt succesvol zowel
in theorie als in de praktijk. Het is gebaseerd op adaptieve vergroving zodanig dat na
elke successieve vergrovingsstap de cellen meer vierkant worden. In de voorgestelde
methode kunnen we tevens gebruik maken van puntrelaxatie-methoden en verkrijgen
we in deze situatie mooie multirooster convergentie.

Efficiënte multiroostertechnieken voor de indefiniete Helmholtz vergelijking vormt
een afzonderlijke thema in dit proefschrift. We maken gebruik van preconditioneer-
ingstechnieken gebaseerd op een operator met complexe shift voor modelproblemen
die voortvloeien uit toepassingen in de quantum mechanica. Deze modelproblemen
hebben sterk veranderlijke golfgetallen die de oplossing verstoren. De verstoringen
leggen sterke beperkingen op aan de roosterdichtheid in het gebied van de verstorin-
gen. Aan deze beperkingen kan worden tegemoet gekomen door het rooster in dit
gebied locaal te verfijnen. We vinden dat standaard vergroving in deze situatie goed
werkt. Dit is in contrast met bestaande strategiën waarin vergroving wordt toegepast
in de gebieden van verfijning totdat het rooster uniform is. We discretizeren het prob-
leem op zowel uniform als locaal verfijnde roosters en onderzoeken de efficiëntie van
multigrid in beide situaties. Experimenten bevestigen dat bestaande technieken voor
de indefiniete Helmholtz vergelijking verder dienen te worden verbeterd.

Enkele conclusies en aanbevelingen voor verder onderzoek sluiten dit proefschrift
af.



Preface

This thesis is based on the scientific papers that I wrote during my stay at the Delft
University of Technology. The matter is unfolded and rearranged to highlight coher-
ence between the papers, and to illuminate their common denominator, i.e., efficient
coarse grid correction in computational scenarios involving the multigrid method.

I have tried to keep my thesis largely self-contained. However, it is important to
realize that multigrid stands as a growing subject, and therefore, a complete coverage
of all developments since its inception by A. Brandt (1977), would involve what is
beyond the scope and ambition of this work. A multigrid Tutorial by Briggs, Henson,
and McCormick is an indispensable treatise for the aspiring beginner. For qualitative
details and theory, see Multi-Grid Methods and Applications by Hackbusch. A very
large coverage of applied problems with quantitative estimates and working details
appear in Multigrid by Trottenberg, Oosterlee and Schüller et al.

Multigrid methods are most effective for solving the kind of partial differential
equations, for which some discrete ellipticity can be achieved. Unmoved, by this
ironic limitation, scientists and mathematicians continue to explore and exploit multi-
level methods and techniques for problems that violate this limitation to some extent.
There seems to be wide agreement, that this is the attitude with which any science
progresses, and multigrid is no exception. During my stay at Delft, it has been my
passion and privilege to work on such problems, either for which no efficient solution
was around, or else alternatives were complex and difficult to implement.

From a bird’s eye view, I have tried to address problems which result from el-
liptic differential operators, in a discretization scenario that renders a poor discrete
ellipticity. These problems are the diffusion equation on different kinds of anisotropic
grids, and particular indefinite Helmholtz equations on locally refined grids. These
problems (and their subsequent solution presented in this thesis) have offered many
new and interesting insights. They include various ways of grid coarsening, various
ways of building point-based relaxation methods, and insights in multigrid accelera-
tion through Krylov techniques. They also point to new avenues of research, such as
multigrid analysis through different new techniques, as well as efficient implementa-
tion of different multilevel algorithms on parallel architectures.
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Chapter 1
Introduction

This chapter serves as an introduction to the work presented in the thesis. It touches
upon the history of multigrid and describes the open problems on rectangular domains
that impair multigrid convergence. The increased accessibility of modern discretiza-
tion methods, such as Discontinuous Galerkin, and higher order Finite Element Meth-
ods, for geometrically crooked domains, has given way to a legacy of underestimating
the importance of techniques meant primarily for rectangular domains. The practical
side of the story is quite different. Rectangular domains still play a very important
role in many varied real world applications, and they allow their geometry to be ex-
ploited for computational efficiency. This thesis deals with some open problems of bad
multigrid convergence on rectangular domains, and this introductory chapter, gives a
picturesque view of the problems treated in this thesis.

Section 1.1 covers the origin of the multigrid idea. It gives a brief sketch of
the mathematical evolution of multigrid, acknowledges the efforts of pioneering (and
later) mathematicians who worked in this field, and points at some of the works that
they produced. Through Section 1.2, we point out the importance of the role that rect-
angular domains continue to play in numerical models of interesting problems. This
section lists some example applications. Section 1.3 briefly describes each of the open
problems treated in the thesis.

1.1 Origin: Brief Notes from History

The basic approach of isolating the troublesome aspects of complicated problems into
small and easier ones, solving the latter, and then using these solutions in various
ways to solve the original complicated problem, has been employed by man since
early times. The multigrid method of solving partial differential equations is a math-
ematical manifestation of the same decomposition approach applied to the numerical
solution of partial differential equations; henceforth PDEs. Isolated ideas including
relaxation, nested iteration, and total reduction have been known as early as 1930s,
1960s and 1970’s respectively. 1970 seems to be the decade when multigrid was for-
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2 Chapter 1. Introduction

malized into an algorithm and its efficiency realized by the pioneer of the field, Achi
Brandt [1]. Many mathematicians took up the exciting trail and contributed to the
idea. Active research in this area has continued unabated ever since. Listing just
a few prominent monographs and papers would include Stüben and Trottenberg [2],
Brandt, McCormick, and Ruge [3], Hackbusch [4], Dendy [5], Wesseling [6], Yavneh
[7], Trottenberg, Oosterlee and Schüller [8], and Wienands [9]. A thorough history
of the genesis of multigrid can be found in the monograph [8] (Section 1.5.5) and the
references therein.

The majority of the problems for which multigrid has been developed are ellip-
tic, and therefore for two dimensional elliptic problems on standard equidistant grids,
multigrid is well established [8]. The term multigrid usually refers to geometric multi-
grid, while AMG (Algebraic Multigrid) refers to an algebraic variant [3]. At the ex-
pense of setup overhead (which AMG entails), it is customary to employ AMG to
handle problems discretized on non-uniform grids.

1.2 Applications Modeled on Rectangular Domains

Application areas modeled on rectangular domains are wide and varied. We present
a few of them in this section, which highlights the importance of efficient multigrid
methods on rectangular domains.

The pricing of options dependent on multiple (d) underlying assets [10], is often
modeled by the d-dimensional Black Scholes equation, which appears later in Chapter
5 with mathematical details. This equation, for specific final and boundary conditions,
can be transformed to the standard heat equation in d-dimensions on a rectangular
domain, and has to be solved efficiently. Higher dimensionality is often tackled by
approximation methods that render a multitude of subproblems on grids that have
a lower cell density along different dimensions. This is a fine recipe for bringing
in anisotropy which (unaccounted) can badly hamper the multigrid solution of these
subproblems.

The set of Maxwell’s electromagnetic equations in conjunction with Ohm’s law is
used as the basic model for describing the propagation of electromagnetic waves in
Earth’s crust. The application in focus is sub-terrain fossil energy exploration [11].
In that work, Maxwell’s equations for conducting media are discretized on stretched
Cartesian grids, mapping a very large rectangular domain. This domain models a
large and interesting stretch of the sea-bed. The resulting discrete system is solved by
multigrid and the performance of the solver in the case of stretched grids, is reported
to be unsatisfactory, which indicates coarse grid correction issues.

The Schrödinger equation for scattering applications in quantum mechanics [12]
can be transformed in certain cases to a Helmholtz type equation on a large square
domain. The wavenumber in this case has spatial dependence and grows steeply at
Dirichlet boundaries. This imposes a maxima on the mesh size that must be adhered
to, near these boundaries, for reasons of approximation accuracy [13]. Using this
maxima throughout the domain entails taxing the CPU needlessly. This can be cir-
cumvented by saturating grid cells near Dirichlet boundaries, and using the appropri-
ate (relatively larger) mesh size elsewhere in the domain. It allows reduction of the
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fine grid complexity, but also implies inclusion of discrete anisotropies; which must
be handled for a successful multigrid solution.

1.3 Motivation: Open Problems
Anisotropic coefficients in the PDE as well as discretization on non-uniform and non-
equidistant grids result in linear systems with discrete anisotropies, which elude multi-
grid solution methods due to coarse grid correction issues. Point-smoothing and stan-
dard coarsening based multigrid methods display bad convergence in such a situation,
and either of these components have to be altered to prevent deterioration of multi-
grid convergence factors. The known alternatives include replacing point-smoothing
by implicit block smoothing, or standard full coarsening by semi-coarsening [6, 8].
In higher dimensions, implicit block smoothing becomes computationally expensive
and therefore novel grid coarsening strategies are highly desirable in order to retain
point-smoothing.

High-dimensional PDEs are often handled by the sparse-grid method which re-
sults in d-dimensional anisotropic subproblems. Solutions of these anisotropic d-
dimensional problems are required in order to solve the discrete PDE. These subprob-
lems are difficult to handle due to the high dimensionality of the PDE, as it imposes
constraints on geometric visualization. Moreover, extension of the existing compu-
tational techniques (for 2 and 3 dimensions) to abstract d-dimensions is non-trivial.
Efficient coarse grid correction for high dimensional elliptic PDEs on non-equidistant
grids is one issue that the work in this thesis aims to treat.

The other problem treated here, arises in the context of solving the indefinite
Helmholtz equation. In this context multigrid is employed for approximate inver-
sion of the Krylov preconditioner. The preconditioner is composed of the original
Helmholtz operator with a complex shift [14]. Accuracy requirements as well as con-
siderations of minimizing boundary-reflections, often requires discretization of the
Helmholtz equation on logarithmically stretched grids. In this context, the use of the
so-called perfectly matched layers PML [15, 16] results in anisotropy in the multi-
level perspective. Anisotropy in this situation is non-uniform and as a result error-
smoothing switches direction during multigrid relaxation sweeps. We propose a new
grid coarsening strategy to handle logarithmically stretched grids. This technique is
called L-shaped coarsening, and works by improving the mesh aspect ratio of grid
cells. This provides one way of diluting anisotropy related adverse effects on the
multigrid method.

Coarse grid correction related issues of multigrid methods, are the main motiva-
tion of this thesis. Thus in this thesis, we collect and address scattered problems; we
propose new partial coarsening techniques to handle anisotropy in a d-dimensional
grid; provide d-dimensional extension of some widely used geometric multigrid com-
ponents, and show the use of the d-multigrid method in a sparse grid setting. We
propose the so-called L-shaped coarsening technique for anisotropy resulting from
logarithmic grid stretching for a model diffusion equation, and demonstrate the use of
a particular multigrid method on locally refined grids as a Krylov preconditioner for
the indefinite Helmholtz equations.
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Chapter 2
Multigrid Survey: Components
and Analysis

This chapter is intended to provide a brief multigrid introduction through a short sur-
vey of the literature. The aim is to acquaint non-numerical scientific readers with the
basics of the subject, as well as to provide the experienced reader with a recap of
the basic multigrid building blocks. The emphasis is on the multigrid concepts and
components that we have used in the rest of the chapters.

Section 2.1 details the basic numerical concept of solving partial differential equa-
tions approximately. It also describes in detail the short-comings of the stationary
iterative methods in the context of asymptotic convergence. Section 2.2 introduces
the 2-grid concept and extends it naturally into multigrid. The error iteration oper-
ators are given. This is followed by Section 2.3 in which we describe the popular
smoothing methods, transfer and coarse grid operators, and provide suitable pointers
for the omitted intricacies. Also included in this section is multigrid O(N) optimality
which is one of the most fundamental and important properties of the multigrid algo-
rithm. Different multigrid cycle-types which are commonly used in computations, are
discussed next. Finally, Section 2.4.3 describes and explains the numerical issues that
form the main drive of the thesis.

2.1 Some Preliminary Concepts

In order to study and appreciate the multigrid idea, we need to build at least two pre-
liminary concepts. These are (1) the concept of a computational grid and discretiza-
tion, (2) the short-comings of stationary iterative methods, such as the Jacobi and the
Gauss-Seidel methods.

5



6 Chapter 2. Multigrid Survey: Components and Analysis

2.1.1 The Computational Grid and the Discrete Problem

For a brief survey of multigrid we require a discrete elliptic boundary value problem.
In Equation 2.1, LΩ represents a general elliptic operator, in continuous differential
form, applicable in the interior of the domain Ω. LΓ represents the operator on the
domain boundary Γ = ∂Ω. u(x) (the principal unknown) is assumed to possess contin-
uous second order derivatives. f Ω(x) is the source function and f Γ(x) is the right hand
side of the boundary equation prescribed on the domain boundary. x is a general d-
tuple representing a Cartesian point in Rd. Ω =

∏d
i=1(ai, bi) is a rectangular hypercube

in Rd.

LΩu(x) = f Ω(x), x ∈ Ω

LΓu(x) = f Γ(x), x ∈ ∂Ω
(2.1)

The first step in discretizing the problem is to define a discrete domain. This is
done by sampling the continuous domain Ω at selected discrete points within it; this
we call the computational grid (Ωh). The selection of discrete points, at which (or
around which) u(x) (the principal unknown) has to be approximated, is invariably
done through particular rules, which suit the desired accuracy pattern. E.g., one such
rule can be to define, first, the number of divisions along each dimension of the do-
main (i.e., Ni, i = 1, 2, · · · , d), followed by connecting these markers by straight
line-segments. This divides the entire grid into rectangular d-dimensional cells. Two
different layout schemes for discrete unknowns can be realized by the position of these
unknowns. In the so-called vertex-centered layout the discrete unknowns are placed
on the points of intersection of these line segments, and represent nodal approxima-
tion of the principal unknown. In the cell-centered scheme the discrete unknowns are
placed in the center of the cells formed by the line-segments, and stand for an ap-
proximate cell average value of u(x). The dimension index i = 1, 2, · · · , d and the
dimension mesh-size hi = (bi − ai)/Ni. This defines the vertex centered grid as:

Ωh := {x = (x1, x2, · · · , xd); | xi = (xi) ji = ai + jihi},

ji = 1, 2, · · · , (Ni − 1)
Γh :=

{
x = (x1, x2, · · · , xd); | xi ∈ {ai, bi}

}
,

(2.2)

and the cell-centered grid as:

Ωh := {x = (x1, x2, · · · , xd); | xi = (xi) ji = ai +
hi

2
+ jihi},

ji = 0, 1, · · · , (Ni − 1)
(2.3)

A two-dimensional visualization appears as in Figure 2.1
Grid functions are discrete functions that exist only on the grid points. In this

sense, uh(x) which approximates the continuous function u at the grid point x, eh(x) =

u(x)−uh(x) (the discrete error), rh(x) (the discrete residual) etc., are all grid functions.
Discrete analogs to the continuous differential -and boundary operators, represented
by LΩ

h and LΓ
h respectively, are called discrete operators, and can be obtained by any

suitable discretization technique, e.g. finite differences, finite volume or the finite ele-
ment method. In this thesis we use the finite difference and the finite volume methods
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(a) 2d cell centered grid (b) 2d vertex centered grid

Figure 2.1: 2d examples of vertex -and cell-centered grids

for discretization. These techniques relate neighbouring grid unknowns in difference
formulae conventionally called stencils.

Consequently the discrete boundary value problem is given by:

LΩ
h uh(x) = f Ω

h (x) (interior)
LΓ

huh(x) = f Γ
h (x) (boundary)

(2.4)

In Chapter 4, we show how 1-dimensional finite difference stencils can be used in
Kronecker tensor products to form the actual high-dimensional discretization operator
matrix. For now it suffices to assert that Equation 2.4 leads to a system of discrete
linear equations. This system can usually be written as the matrix equation:

Ahuh = bh (2.5)

The assumption made here, is that truncated version of the interior stencil (or a mod-
ified stencil in case of derivative boundary conditions) is used for discrete unknowns
neighbouring the domain boundaries. The other possibility is to construct a coupled
system of two matrix equations, one representing interior connections and the other,
boundary connections. The use of this scheme is more prevalent with higher order
boundary treatment. It is worthwhile to note, that a vertex centered scheme is more
natural for Dirichlet boundaries. With Neumann and Robin boundary conditions, it
is comparatively easier to use a cell-centered layout, where unknowns do not exist on
the domain boundaries [6].

In the case of vertex centered discretization, the discrete boundary operator will
differ for specific boundary conditions. E.g. for Dirichlet boundary conditions LΓ

h
would be equal to the identity operator. For Neumann and Robin boundary conditions,
it has to be specified suitably. From the aspect of incorporating the boundary condi-
tions, we use two slightly different schemes for the resulting matrix equation; these are
the so-called eliminated boundary (used in Chapter 4) and the non-eliminated bound-
ary (used in Chapter 5) schemes. In the first scheme, the boundary conditions are
explicitly eliminated from the matrix equation by incorporating them in the right hand
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side of the system, and therefore boundary unknowns do not appear in the matrix. In
the other scheme, boundary conditions are not eliminated and therefore boundary un-
knowns form part of the matrix equation. However, for either case, Ah is square and
assumed to be non-singular and bh is the right hand side of the system, consisting of
the source function sampled at the grid nodes, and the boundary corrections.

Equation 2.5 can be solved in a variety of ways, some of which are classified as
direct (e.g. Gaussian elimination, Cholesky and LU decompositions etc.), and some
as iterative. Iterative methods are further classified as stationary (e.g. Jacobi, Gauss-
Seidel, SOR etc.) and non-stationary (e.g. Krylov subspace methods) iterative meth-
ods. The two standard and well-known multilevel iterative approaches for solving
discrete PDEs are multigrid and AMG, having their own pros and cons. This thesis is
about enhancing a sub-process of multigrid, which is known as Coarse Grid Correc-
tion, in various troublesome situations.

2.1.2 On the Behaviour of Stationary Iterative Methods
It has been known since the 1930’s that stationary iterative methods such as weighted
Jacobi, Gauss-Seidel, successive over-relaxation etc., perform well during the first
few iterations and then the decay in the residual norm stalls. The reason for this
phenomena is the local smoothing trait of these methods, which reduces the amplitude
of the highly oscillating components of the error very quickly, but does not interfere
much with the less oscillating components. As a result, though global reduction in the
error norm is not much, the error gets geometrically smooth.

To observe this phenomenon we analyze the effect of the weighted Jacobi iteration
on a 1-dimensional discrete Poisson equation with homogeneous Dirichlet boundary
conditions. The domain is restricted to unity (0, 1) and is discretized with N divisions,
so that the mesh size is h = 1/N. First, we see from Equation B.11 (Appendix B) that
the eigenfunctions of the discrete 1d O(h2) FDM Laplacian L2o

h are:

ϕh(θ, x) = sin
(
θ

h
x
)

; θ = lh π, & l ∈ {1, 2, · · · ,N − 1}

= sin
(

l j π
N

)
; x = jh, j = 0, 1, · · · ,N (2.6)

With each l, for j = 0, 1, · · · ,N these eigenfunctions generate an eigenvector of
the discretization matrix Ah.

The Jacobi method is a special case of ω-Jacobi with ω = 1. From Equation A.4
(Appendix A), we have the error iteration operator of the ω-Jacobi method given as:

ei+1
h = S γ

hei
h = |S̃ γ

h |e
i
h (2.7)

where γ is the number of times, the ω-Jacobi method is iterated. It is trivial to verify
that the eigenvectors of S h are the same as that of Ah, and the eigenvalues S̃ h are given
by:

S̃ h(ω) = 1 − 2ω sin2
(

l π
2N

)
(2.8)
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We illustrate the effect of applying the operator S h to five different choices of the
initial error e0

h. In this example we use N = 16 divisions. The first four choices are
given by Equation 2.6, with l = 1, l = 2, l = 5, and l = 8 respectively, so that for
j = 0, 1, · · · , 16, we have:

e(0)
h,1 = sin

( jπ
16

)
; e(0)

h,2 = sin
(

2 jπ
16

)
; e(0)

h,3 = sin
(

5 jπ
16

)
; e(0)

h,4 = sin
(

8 jπ
16

)
;

and the fifth one, by a particular linear combination, so that:

e(0)
h,5 =

4
6

sin
(

2 jπ
16

)
+

1
6

sin
(

5 jπ
16

)
+

1
6

sin
(

10 jπ
16

)
Consider Figure 2.2. Each row shows three diagrams. The first representing the

initial error, the second -after one ω-Jacobi sweep, and the third -after three ω-Jacobi
sweeps. We observe that the Jacobi method works rather well for eigenvectors with
l > N/2 and very poorly for eigenvectors with l � N/2. We thus define low-frequency
eigenvectors as those for which 0 6 l < N/2; and high-frequency eigenvectors, for
which N/2 6 l < N. From the last row of diagrams (m),(n),and (o), we observe that
if the initial error is composed of low and high frequency components (the natural
case), then after a few iterations, the low frequency components remain while the high
frequency ones get damped.

From the view-point of asymptotic convergence, we observe from Equation 2.7,
that the minimal error decay depends on the maximal eigenvalue (the spectral radius)
of the error iteration matrix. If the spectral radius is greater than 1.0, the error will
magnify instead of decaying; if it is less than -but close to 1.0, the error will decay
very slowly and if it is close to 0.0, the error will decay very fast.

We select a prototype low frequency mode l = 1 and a prototype high frequency
mode l = N/2. Equation 2.8 reveals that the eigenvalues for these modes are:

∣∣∣S̃ (1)
h (ω)

∣∣∣ =

∣∣∣∣∣∣1 − ωπ2h2

2

∣∣∣∣∣∣ &
∣∣∣S̃ (N/2)

h (ω)
∣∣∣ = |1 − ω| respectively

These eigenvalues lead to two clear observations:

• For sufficiently small mesh sizes, the use of ω cannot reduce eigenvalues corre-
sponding to low frequency eigenvectors, such as |S̃ (1)

h (ω)|.

• A large ω, optimized for maximum effect on low frequency modes, e.g. ω =
2/(π2h2), excites the high frequency modes.

These observations suggest that ω should be optimized for maximum reduction of
the high frequency modes. With this optimized ω, the largest value of |S̃ (l)

h (ω)| (for
N/2 6 l 6 (N − 1)) provides an estimate of the smallest reduction in the amplitude of
the high frequency modes, and is called the smoothing factor of the iterative method.

Definition 2.1.1. (The smoothing factor) The concept of a smoothing factor is easily
generalizable to the case where Ah results from a d dimensional PDE discretized with
N equidistant divisions along each dimension. In this case, the wave number is l =
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(a) e(0)
h,1 (b) e(1)

h,1 (c) e(3)
h,1

(d) e(0)
h,2 (e) e(1)

h,2 (f) e(3)
h,2

(g) e(0)
h,3 (h) e(1)

h,3 (i) e(3)
h,3

(j) e(0)
h,4 (k) e(1)

h,4 (l) e(3)
h,4

(m) e(0)
h,5 (n) e(1)

h,5 (o) e(3)
h,5

Figure 2.2: Effect of doing 1 and 3 Jacobi iterations on different choices of the initial
error, based on low and high frequency eigenvectors.
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(l1, l2, · · · , ld), and high frequencies are characterized by N/2 6 max(li) 6 (N − 1).
From the perspective of this rigorous analysis, the smoothing factor of a relaxation
method is thus defined as:

µ(l)(h, ω) = max
∣∣∣∣S̃ (l)

h (ω)
∣∣∣∣ , N/2 6 max(li) 6 (N − 1); (2.9)

i is the dimension index, so that i = 1, 2, · · · , d.

Many stationary iterative schemes bear the relaxation behaviour, in that, they damp
the oscillatory modes of the error and leave the smooth modes intact. As the smooth
modes persist the error decay stalls. Multigrid is basically aimed at supplementing
this deficiency of the basic iterative schemes, so that all error modes can be effectively
reduced.

2.2 Multigrid

2.2.1 Inception of the 2-grid Idea
Before presenting the actual 2-grid algorithm, it is worth while to check, how the
smooth error modes look when projected onto a smaller sized grid. Figure 2.3 shows
the 4th Fourier mode for a grid with 8 points, superimposed over the 4th mode for a
grid with 16 points. The horizontal axis for the grid with 8 points is scaled to match
the grid with 16 points. Evidently, we see that the smooth 4th mode of the fine grid,
translates into the oscillatory 4th mode of the coarse grid. It is then logical to expect
that (for this error mode) the stationary iterative method will work more effectively
on the coarse grid than the fine grid. This observation hints at a nested procedure that
can be set up as a supplement to the basic iterative method, in order to decrease the
amplitude of the low frequency modes effectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−1

0

1

 

 fine grid marker
coarse grid marker

Figure 2.3: The 4th eigenmode on the coarse grid superimposed on the fine grid. This
mode is visibly oscillatory on the coarse grid, while it is smooth on the fine grid.

2.2.2 The 2-grid Scheme from an Algorithmic View
We start from a 2-grid perspective. Imagine two grids in the framework, i.e., a fine
grid (Ωh) and a coarse grid (ΩH), such that the coarse grid nodes form a subset of
the fine grid nodes, (ΩH ⊂ Ωh). In a largely abstract sense, the idea is to run a
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stationary iterative method (e.g. ω-Jacobi) a few times on the discrete problem thereby
rendering the error smooth, then restrict the residual to the coarser grid . Presume
that an invertible coarse grid operator exists and is at hand. Solve the coarse grid
defect equation exactly (easier due to fewer unknowns). The solution of the coarse
grid equation is actually the coarse representation of the fine grid error. Interpolate
the missing error components at the fine-grid-only nodes (Ωh r Ωh ∩ ΩH), and add
this correction to the last solution iterate on the fine grid. Finally, run the stationary
iterative method a few times again. This completes a 2-grid cycle, and the process may
be continued until the residual norm is satisfactorily diminished.

Remark 2.2.1. (Postsmoothing) Due to the phenomenon of aliasing, the high fre-
quency modes on the fine grid (geometrically) coincide, and are indistinguishable
from the low frequency modes on the coarse grid. Therefore, relaxation on the coarse
grid leaves these modes unaltered. However, the coarse grid correction process in-
volves interpolation. If the prolongation operator is perfect (which means that its
range contains the fine grid error exactly), the high frequencies do not need any fur-
ther damping. In practice this is usually not the case, and interpolation may result
in exciting some of the high frequency modes. It is therefore important to damp them
before the start of the next cycle. Postsmoothing is performed to bring about this
re-damping of the high frequency modes.

Algorithm 1 A 2-grid cycle

1 ui+1/3

h = S ν1
h ui

h + sh ν1 presmoothing sweeps
2 rh = bh − Ahui+1/3

h residual computation
3 rH = IH

h rh restriction of the residual to ΩH

4 eH = A−1
H rH exact determination of the error on ΩH

5 eh = Ih
H eH prolongation of the error to Ωh

6 ui+2/3

h = ui+1/3

h + eh correction of the last solution iterate
7 ui+1

h = S ν2
h ui+2/3

h + sh ν2 postsmoothing sweeps

The actual problems to be treated can be greatly diverse, and therefore, this ab-
stract description of the 2-grid idea leaves options open for multigrid components.
This includes choices of stationary methods for smoothing purpose, the number of
times to smooth before (pre-smooth) and after (post-smooth) coarse grid correction.
The available choices of restriction operators to confine the residual to the coarser
grid, and considerations that bias the use of one choice against another. Approxi-
mate (and yet suitably accurate) representation of the fine grid operator on the coarse
grid, and factors that influence available choices. The prolongation operator to use to
interpolate the fine grid error from the coarse grid error, etc.

The grid functions in this case are the discrete solution uh, the residual rh, the error
eh etc. Smoothing, transfer of grid functions between fine and coarse grid, and prob-
lem representation on the coarse grid, depend on discrete operators (S h, IH

h , I
h
H , AH

respectively) and are collectively called multigrid components. Multigrid components
are not always trivial to choose, and it takes research, analysis and experience to suc-
cessfully close in upon components, which when harnessed together, form an efficient
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and robust algorithm. As we shall see, the work in this thesis can be viewed as an
attempt to find good components in different situations.

2.2.3 The Multigrid Operator
In this section, we make a notational change for greater clarity. We assume a hierarchy
of l grids such that Ω0 stands for the finest grid, and Ωl stands for the coarsest grids.
Consequently, all grid functions (and operators) will carry these subscripts to indicate
their grid levels. In this setting, k stands for a grid level, and (k + 1) is considered to
be the next coarse level. Under this formulation, Algorithm 1 yields the 2-grid error
iteration operator as (see Appendix A):

Mk+1
k = S ν2

k

(
Ik − Ik

k+1A−1
k+1Ik+1

k Ak

)
S ν1

k (2.10)

= S ν2
k Kk+1

k S ν1
k (2.11)

The coarse grid correction operator Kk+1
k = Ik− Ik

k+1A−1
k+1Ik+1

k Ak is useless as an isolated
iterative process, as it does not reduce high frequencies [2].

Standard (full) grid coarsening reduces the number of unknowns in the fine grid by
a factor of 2d. This implies that on coarse grids, formed by 2d reduction of sufficiently
fine grids, A−1

k+1 is still not a viable option. A very important observation here is to note
that exact inversion of the coarse grid operator is not necessary (either in theory or
in practice). The usual practice is to approximate the discrete coarse grid operator by
recursively bringing the grid down to a coarser level. This recursion may be continued
until the grid is coarse enough so that an exact inversion is optimal. The sequence
of coarse errors is then interpolated back unrolling the recursion, so that eh is finally
obtained.

We see (from Appendix A) that this recursive error-correction scheme yields the
so-called multigrid error-iteration operator as:

Mk = S ν2
k

[
Ik − Ik

k+1 {Ik+1 − (Mk+1)γ} A−1
k+1Ik+1

k Ak

]
S ν1

k (2.12)

with k = 0, 1, 2, · · · , l and Ml+1 = 0.
It suffices to mention that these operators in the presented algebraic representa-

tion, are mainly used for theoretical convergence estimations. This purpose is served
quite well by the 2-grid operator, but nevertheless the 3-grid operator and the k-grid
operators have been used for deeper insights in [17] and [18], respectively.

2.3 Multigrid Components in Common Use
In this part, we will survey some multigrid components in common use. They include
relaxation (error-smoothing) schemes, grid transfer techniques, coarse grid operators,
and grid cycling methods. Multigrid mainly works as a balance between the relaxation
method and the coarse grid correction process. Anisotropy and coupling in the discrete
operator must be defined before multigrid components and therefore come first. Pop-
ular smoothing schemes follow. Then a brief survey of transfer operators, followed
by commonly employed coarse grid correction operators, is given. Finally, we discuss
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different recursions which produce the V , W, and the F-cycles. Mesh-independent
convergence is a very well known virtue of multigrid methods, and is surveyed last in
this section. It is important to note that the diffusion operator is usually denoted by ∆,
and stands for

∑
i ∂

2/∂xi
2.

Definition 2.3.1. (Coupling and Anisotropy) Two entities play a crucial role in
defining coupling and anisotropy. They are the continuous operator and the dis-
cretization grid. We will consider concrete operators for this discussion. Consider
the anisotropic diffusion operator in 2d, given by:

L = −ε
∂2

∂x2 −
∂2

∂y2 ; ε � 1 (2.13)

An O(h2) central finite difference discretization of this operator on a regular equidis-
tant grid (with mesh size h), gives the following stencil (computational molecule).

Lh =

 −1/h2

−ε/h2 (2ε+2)/h2 −ε/h2

−1/h2

 (2.14)

Evidently, the stencil coefficients coupling vertical neighbours are much larger in
magnitude than the corresponding horizontal coefficients. Thus the discrete opera-
tor is strongly coupled in the y-direction compared to the x. It is well-known that
local relaxation methods only smooth in the direction of strong coupling, such as the
y-direction in this case. This directional drift in the discrete operator is known as
anisotropy. Anisotropy in this case resulted due to the perturbation in the differential
operator. Anisotropy can also result from discretization of a perfectly isotropic opera-
tor on non-equidistant and logarithmically stretched grids, and has consequences for
multigrid convergence.

2.3.1 Some Commonly Used Relaxation Methods
Two main families of relaxation techniques can be broadly classified as the point-
relaxation method and the block-relaxation method. Block-relaxation methods (e.g.
line and plane smoothing) are mainly used for anisotropic PDEs. They are also some-
what expensive in terms of CPU-time as each relaxation step consists of solving a
small linear system exactly (or to an acceptable accuracy). Fortunately, in most situ-
ations they can be substituted by point-relaxation methods, with some adjustment in
the coarsening scheme (which takes care of the anisotropy). Here, we will focus on a
survey of point-relaxation methods [8, 19, 20]. We use Equation 2.5 as our prototype
and we drop the subscript h for brevity. The operator matrix A is square and has the
order N. Elements of A are denoted by a and indexed by i and j, the row and the
column indices respectively. D, L, and U in this section refers to the diagonal, the
strictly lower triangular, -and the strictly upper triangular parts of A, respectively.

Description 2.3.1. (Theω-Jacobi Method) We studied the error smoothing behaviour
of the ω-Jacobi method in Section 2.1.2. In this method each unknown (grid-point) is
updated using the values of its neighbours at the previous iteration. Newly updated
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values are not used until the next iteration. Update of the ith unknown in the mth

ω-Jacobi iterate can be expressed as:

u(m)
i = (1 − ω)u(m−1)

i +
ω

ai,i

bi −

N∑
j=1
j,i

ai, ju
(m−1)
j


Alternately, in matrix terms:

u(m) = (I − ωD−1A)u(m−1) + ωD−1b

where D is the diagonal matrix containing the main diagonal of the operator matrix
A. ω-Jacobi is fully parallelizable (all unknowns can be simultaneously updated), and
therefore the degree of parallelism of ω-Jacobi is said to be N. 0.5 6 ω 6 0.8 yields
acceptable error-smoothing for very wide problem classes. It is important to note that
the optimal relaxation parameter ω is d-dependent.

Description 2.3.2. (The Multi-parameter Jacobi Method) This is a variant of ω-
Jacobi. In multi-parameter Jacobi, each smoothing step consists of p, ω-Jacobi iter-
ations, with a different relaxation parameter ω j for each iteration j. A p-parameter
Jacobi iteration (where p ∈ Z+), can be specified as:

u(0) = um

u( j) = u( j−1) + ω jD−1
(
b − Au( j−1)

)
j = 1, 2, · · · , p

ūm = u(p)

The optimal relaxation parameters ω j have to be evaluated for the concrete operator
that is being dealt in a particular situation. E.g. ω j for the O(h2) FD discretization
(of the d-dimensional Poisson equation [8]) are given by,

ω j =

[
2d + 1

2d
+

2d − 1
2d

cos
(

2 j − 1
2p

π

)]−1

and for O(h4) FD long stencil discretization, by:

ω j =

[
16d + 7

15d
+

16d − 7
15d

cos
(

2 j − 1
2p

π

)]−1

Description 2.3.3. (GS, The Gauss-Seidel Method) In contrast with ω-Jacobi, the
Gauss-Seidel method makes use of the latest available values of the neighbouring
unknowns. The iteration can be written as:

u(m)
i =

1
ai,i

bi −
∑
j<i

ai. ju
(m)
j −

∑
j>i

ai, ju
(m−1)
j


Alternately in matrix terms:

u(m) = (D + L)−1
(
b − Uu(m−1)

)
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Figure 2.4: Red-Black layout of the grid points

We would like to point out that grid point ordering influences the result of a GS sweep.
The updates are obviously sequential and therefore the degree of parallelism is

√
N

which is not good. The smoothing properties however are fairly good for a big problem
class, and can be further enhanced by the use of a relaxation parameter ω, which
yields the SOR method.

Description 2.3.4. (SOR, The Successive over-relaxation method) When GS is used
in conjunction with a relaxation parameter ω, it is called SOR. The error-smoothing
properties of SOR are more pronounced than simple GS only for higher dimensional
problems. The SOR iteration is:

u(m)
i = (1 − ω)u(m−1)

i +
ω

ai,i

bi −
∑
j<i

ai, ju
(m)
j −

∑
j>i

ai, ju
(m−1)
j


In alternate matrix form, this can be written as:

u(m) = (D + ωL)−1 [(1 − ω)D − ωU] u(m−1) + ω(D + ωL)−1b.

The degree of parallelization is the same as that of GS, i.e.,
√

N. The smoothing
greatly depends on the choice of the relaxation parameter 0 < ω < 2, and is usually
expected to be slightly better than that of GS. Trivially, ω = 1 yields the GS method.

Description 2.3.5. (The ω-Red-Black Jacobi method) The ω-RB Jacobi method is
also known as the odd-even method due to the odd-even ordering of the grid points as
shown in Figure 2.4 (which depicts the Red (odd) points by small empty circles, and
the Black (even) points by solid black circles). Red points of the mth iterate are updated
by using the black points of the (m−1)th iterate. For the O(h2) FDM discretization (the
usual (2d + 1)-point stencil), an ω-RB Jacobi sweep is equivalent to an ω-Red-Black
Gauss-Seidel sweep, because each color is independent of other members of the same
color. However, for other discretizations, the two are not equivalent. In ω-RB Jacobi,
each color is updated in the Jacobi fashion, while in ω-RB Gauss Seidel, the update
of each color is done in the GS manner, using latest same color updates.
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The smoothing properties of ω-RB Jacobi are superior compared to ω-Jacobi,
multi-parameter ω-Jacobi, Gauss-Seidel, and SOR. It’s degree of parallelization is N/2

which is superior than simple sequential GS (often termed as lexicographic GS). For
regular grids on which odd and even numbering is possible, ω-RB Jacobi is therefore
a preferred smoother; however, operator properties also have to be considered. In
Chapter 3, we provide Fourier smoothing analysis for it in a d-dimensional setting,
which is used in Chapter 4 for developing the d-multigrid method. In Appendix D, we
show how ω-RB-Jacobi might actually be implemented for a general d-dimensional
grid.

Remark 2.3.1. (ILU Smoother) The smoothing procedures discussed in this sec-
tion are mainly based on local relaxation techniques. “Local” implies that the high-
frequencies in the error are local or clustered. In such a situation local relaxation
techniques do a fairly good smoothing job. However, in the case of anisotropic op-
erators, the high frequencies occupy a larger frequency space; for this reason local
relaxation techniques have to be adjusted (modified into block relaxation) to remain
effective. Variants of ILU relaxation methods have the property that the rendered
smoothing is largely global. Being a global smoother, ILU(0) is known to work better
than local alternatives in situations where local smoothers perform poorly, such as in
the standing wave context of Chapter 7.

2.3.2 Some Robust Transfer Schemes

Here we will describe some transfer schemes for the restriction and prolongation of
grid functions, in the context of 2d grids and standard coarsening. Higher dimen-
sional grids and partial coarsening with h→ 2h (doubling) and h→ 4h (quadrupling)
transfers are dealt with in Chapter 4, Section 4.3.4. We’d like to point out that for all
elliptic second order PDEs, if bilinear interpolation is employed for prolongation (Ih

2h),
a corresponding restriction operator (I2h

h ) can also be constructed as its adjoint. The
following adjoint rule for transfer operators holds in the case of standard coarsening:

Ih
2h = 2d (I2h

h )T T represents the transpose (2.15)

Description 2.3.6. (Injection: (Restriction for VC grids)) In vertex centered grid
sequences, coarse grid nodes form a subset of fine grid nodes. In such a setting the
simplest restriction is injection. The procedure consists of ignoring any information
on the fine-grid-only nodes. Coupled with bilinear prolongation it works in many
situations.

Description 2.3.7. (2nd order prolongation and restriction -VC grids) Consider the
2d vertex-centered grid shown in Figure 2.5(a). Positions marked by • are shared by
the coarse and the fine grids, so coarse grid values there are assumed to be fine grid
values as well. Fine grid values at ? are interpolated linearly from the coarse grid
values • situated at their east and west. Similarly the fine values at 2 are interpolated
from the coarse values at • at their north and south. The fine values at M are interpo-
lated by four surrounding coarse values at • by the Four Point average. This results in
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overall bilinear interpolation. The stencil for this prolongation operator is given by:

Ih
2h ,

1
4

 1 2 1
2 4 2
1 2 1


h

2h

The so-called full weighting (FW) restriction operator (described below) and bilinear
prolongation operator obey the adjoint rule. This restriction operator employs full
weighted averaging for restricting fine grid information to the coarse grid nodes. For
standard coarsening in 2d, the FW restriction operator for vertex centered grids is
given by the stencil:

I2h
h ,

1
16

 1 2 1
2 4 2
1 2 1


2h

h

This is a robust, and efficient restriction operator. In Chapter 4, Section 4.3.4, we
show how 1d FW operators can be used in Kronecker tensor products to yield the
actual restriction matrix.

Description 2.3.8. (7-point restriction and prolongation, -VC grids) Another choice
of transfer operators for 2d vertex centered grids are the 7-point transfer operators
[8, 21]. The restriction operator for full coarsening in 2d is given by:

I2h
h ,

1
8

 1 1
1 2 1

1 1


2h

h

Similar to the FW restriction and bilinear prolongation, the prolongation operator in
this case as well can be constructed as the adjoint of this restriction operator.

Description 2.3.9. (Four Point (FP) restriction, -CC grids) The Four Point aver-
aging restriction operator is more commonly used in a cell centered grid setting (em-
ployed in Chapter 6). Cell centered coarse grids are usually formed by agglomeration
of fine grid cells, and therefore, coarse grid nodes do not form a subset of the fine grid
nodes. The operator is given by:

I2h
h ,

1
4

 1 1
·

1 1


2h

h

This is also known as the piecewise constant restriction operator.

Description 2.3.10. (2nd order prolongation and restriction -CC grids) Compared
to the vertex centered case, the situation is slightly different in the cell centered case
shown in Figure 2.5(b). Here, coarse node positions© are not shared by the fine grid.
Fine grid values at positions marked by •, ?, M, and 2, have to be interpolated by
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(a) Vertex centered Prolongation (b) Cell centered Prolongation

Figure 2.5: Differently marked grid nodes are interpolated differently owing to their
geometric proximity to the coarse grid node.

the surrounding coarse grid values at©. The averaging weights for each position are
given by the following stencil:

Ih
2h ,

1
16



1 3 3 1

2 •

3 9 9 3
3 9 9 3

M ?

1 3 3 1



h

2h

With the adjoint rule given in Equation 2.15, a 2nd order restriction operator can be
easily constructed through this prolongation operator.

Remark 2.3.2. (Order of restriction and prolongation) It is usual practice to em-
ploy the FW restriction and bilinear prolongation in multigrid treatment of a wide
class of problems on structured grids. The order of interpolation is defined as 1 more
than the degree of the highest degree polynomial class that the interpolation proce-
dure can retrieve exactly. Therefore, the order of both these operators is 2. [22]
shows that for a successful multigrid treatment the sum of the orders of the transfer
operator, should be larger than the order of the differential operator. The drawback
of this rule is that smoothness of the error after relaxation is not taken into considera-
tion, which might allow for cheaper restriction operators. This explains why Injection
sometimes works with bilinear interpolation for nicely elliptic operators even if this
rule is slightly violated.
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2.3.3 Coarse Grid Operators.
In many cases, the re-discretization of the differential operator on the coarse grid
serves well as the operator approximation on the coarse grid and is traditionally known
as the discretization coarse grid operator (DCG). However, with situations such as
jumping (or strongly varying) PDE coefficients, this approximation is often inade-
quate.

A more robust choice for the coarse grid operator stems from the following obser-
vation:

AHeH = rH = IH
h rh = IH

h Aheh = IH
h AhIh

HeH

which leads to the general recursion:

Ak+1 = Ik+1
k AkIk

k+1

This is popularly known as the Galerkin coarse-grid operator GCG. Although GCG
is more general in its range of applicability, it has an associated expense in terms of
growing stencils. For O(h2) FDM discretization, on structured 2d grids, GCG stays
within a 9-point difference stencil, but for unstructured grids, the growth can be quite
large. For this reason, it often pays to check out if DCG can be satisfactorily applied
in a given situation.

Remark 2.3.3. (5-point GCG for 2d applications) In view of 2d applications, we
note here, is that if the 7-point transfer operators given in Section 2.3.2 are employed
in conjunction with the usual 5-point FDM discretization of the Laplacian, the GCG
operator stays within a 5-point connectivity stencil [8], i.e. it has the same sparsity as
the original operator. This is a very attractive property, but unfortunately, a 1d version
of these transfer operators (which might be extended to arbitrary d by Kronecker
tensor products) is not readily available.

2.3.4 Multigrid Cycle-types and Optimality
In the multigrid method, the coarse grid defect equation can be solved approximately
as we saw in Section 2.2.3, by recursively coarsening the grid further and using γ

cycles on the coarse grid. γ is conventionally called the cycle index [8]. In many
practical situations, where the multigrid components can be optimally chosen, γ = 1
works very well [4, 23], and results in the so-called V-cycle, shown in Figure 2.6(a).
However, in some situations, particularly, where using GCG is not an option (due to
algorithmic restrictions), and DCG is somewhat inadequate, γ = 1, i.e. the V-cycle
isn’t sufficient. As a remedy, γ = 2 can be used and results in the so-called W-cycle
as shown in Figure 2.6(c). In a W-cycle multigrid (resulting from γ = 2), 2 cycles are
used on each coarse level, which increases the computational expense, and therefore,
constant values of γ > 2 are seldom employed in practice. A variable value of γ on
different coarse levels is more promising. The most frequently employed cycle , i.e.
the F-cycle, is constructed by calling multigrid recursively γ times in a loop, such that
in the first iteration of the loop, user defined γ is used (usually γ = 2), while in the
rest, γ = 1 is employed. An F-cycle constructed with γ = 2 is shown in Figure 2.6(b).
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(a) A 4-grid
multigrid V-cycle

(b) A 4-grid multigrid F-cycle

(c) A 4-grid multigrid W-cycle

Figure 2.6: Different multigrid cycles for a 4-grid method. = presmoothing, =

postsmoothing, ◦ = exact solution, \ = Restriction, / = Prolongation

A unified multigrid method, incorporating all the three popular cycle types, is listed
in Algorithm 2.

One of the most attractive features of a multigrid algorithm is its mesh size inde-
pendent convergence rate, in contrast with simple stationary methods (such as GS),
which exhibits convergence rate deterioration on finer meshes compared to coarser
ones. Besides, the computational complexity of a full multigrid method is O(M0),
where M0 is the total number of unknowns in the finest (level 0) system. The opti-
mal complexity, and the mesh free convergence rate of multigrid, make this technique
very attractive for general use. In Chapter 4, Section 4.3.5 we derive work estimates
for multigrid in a general d-dimensional setting.

At this stage, we present multigrid in a unified algorithm where all the three cy-
cle types discussed above can be achieved through parameter variation. l represents a
particular multigrid level. Larger l stand for coarser grids, and is used as a subscript
with grid functions to indicate the level number. um represents the solution after the
mth iterate. cycle is a text indicator for specifying the particular cycle type, this speci-
fication is accompanied by the cycle index γ which specifies how many basic V-type
recursions the algorithm should take. C is the coarsest grid level that the algorithm is
allowed to attain.
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Algorithm 2 Multigrid pseudocode
um+1

l = MG(l, γ, cycle, um
l , Al, bl, ν1, ν2).

(0) Initialization

– If l = C, um+1
l = exact (Al, bl); Bail out; endif

– Build the coarse-grid operator Al+1, and the restriction Il+1
l , and prolonga-

tion Il
l+1 operators.

(1) Pre–smoothing

– Compute um
l by applying ν1(≥ 0) smoothing steps to um

l :
um

l = smoothν1 (um
l , Al, bl) .

(2) Coarse grid correction

– Compute the residual rm
l = bl − Alu

m
l .

– Restrict the residual rm
l+1 = Il+1

l rm
l .

– Compute the approximate error
êm

l+1 from the defect equation. Al+1 êm
l+1 = rm

l+1

by the following mini algorithm

If l = C, êm
l+1 = exact (Al+1, r

m
l+1); endif

If l < C, solve for êm
l+1 approximately by the recursion:

êm,1
l+1 = 0;

do i = 1 to γ
If cycle = f and i , 1,

êm,i+1
l+1 = MG(l + 1, 1, cycle, êm,i

l+1, Al+1, r
m
l+1, ν1, ν2)

else
êm,i+1

l+1 = MG(l + 1, γ, cycle, êm,i
l+1, Al+1, r

m
l+1, ν1, ν2)

endif
continue i

endif

– Interpolate the correction êm
l = Il

l+1 êm
l+1 .

– Compute the corrected

approximation on Ωl um+ 1
2

l = um
l + êm

l .

(3) Post–smoothing

– Compute um+1
l by applying ν2 (≥0) smoothing steps to um+ 1

2
l :

um+1
l = smoothν2 (um+ 1

2
l , Al, bl) .
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2.4 Multigrid Analysis

2.4.1 Qualitative / Quantitative Approaches.

Trottenberg et al list four substantially different approaches to analyzing multigrid [8].
They are:

• The classical (qualitative) multigrid theory.

• The classical multigrid theory based on subspace splitting.

• Rigorous Fourier analysis.

• Local Fourier analysis.

The first is a qualitative approach proposed primarily by Hackbusch [4] and Braess,
and developed by others such as Bramble [24]. The second is also a (different) qual-
itative approach proposed by Xu [23]. Qualitative approaches validate the multigrid
idea in classical formulations, and are aimed at providing convergence proofs. As
multigrid has been applied to a host of diverse problems, with a multitude of different
components, the developments in the qualitative approach doesn’t provide a quali-
tative versus quantitative coverage. In this thesis, we remain focused on improving
multigrid convergence factors through coarse grid correction techniques, and there-
fore, do not explore the qualitative approaches any further.

Multigrid is a complex algorithm and is analyzed by studying its constituent parts.
Although the eventual decay of the error depends on the complete algorithm (which
includes the transfer operators), the component that plays a central role in it is the
relaxation method. In turn, a relaxation method is characterized by its iteration ma-
trix which is responsible for reducing the numerical error. We already discussed in
Section 2.1.2 that the initial error can be represented as a linear combination of the
eigenvectors of the iteration matrix. These eigenvectors span a vector space within the
confines of which the iteration matrix operates. In other words, this means that this
vector space is invariant with respect to the linear mapping defined by the iteration
matrix. As it turns out, an invariant space is essential for analyzing multigrid opera-
tors (or components) quantitatively, and is not always readily available in the rigorous
sense.

The Rigorous Fourier analysis is a quantitative approach, which is also rather lim-
ited in its range of applicability. It is characterized by considerations of the actual
finite domain, with prescribed boundary conditions of Dirichlet, Neumann or periodic
-types. It can give precise estimates, and predict 2-grid convergence factors to a good
accuracy. The steps involved in this analysis are (1) to evaluate the actual eigenvectors
of (various) iteration operators and (2) to impose bounds on their associated eigenval-
ues. We presented a slight flavor of it in Section 2.1.2. It is important to realize that
not all discrete operators and boundary conditions lend themselves to an accessible
rigorous approach, and therefore its coverage of interesting problems, is inadequate as
well. The most widely employed tool for multigrid analysis is known as Local Fourier
Analysis LFA. We deal with this topic in Chapter 3.
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2.4.2 h-ellipticity and Implications for Anisotropy

Here we do not provide a mathematical definition of h-ellipticity. Our purpose here
is only to indicate that h-ellipticity is the amount of ellipticity that a particular dis-
crete operator possesses. A strictly positive measure indicates in turn, that when this
operator is employed in a particular multigrid cycle, the oscillatory error components
would be local, and can possibly be corrected through an appropriate point smoother.
This measure can be quantified [1, 2, 8] through Fourier symbols1 of the discrete op-
erator, and takes into account the coarsening strategy. E.g., the h-ellipticity of the
5-point FDM discretization (of the Laplacian) on regular equidistant meshes (under
standard coarsening) is 0.25. The h-ellipticity of the same discretization and coars-
ening scheme for the anisotropic diffusion equation in Equation 2.13, ε/(2+2ε) → 0 for
ε → 0. However, if the coarsening strategy only coarsens the grid in the y-direction,
then the h-ellipticity is 1/(2+2ε) → 1/2, which suggests one way of dealing with this
equation.

2.4.3 Towards Point Smoothing and Adaptive Coarsening

In Chapters 4 and 5, we address the problem of the so-called grid-aligned anisotropies.
There are two different classes of remedy available to handle discrete anisotropies.
They can roughly be classified as adaptive smoothing and adaptive coarsening. Both
remedies have their disadvantages and drawbacks. Most adaptive smoothing reme-
dies are based on block smoothing, which usually means exact solution of a subset
of variables (represented by a sub-block ) in the system, at every smoothing sweep.
Line smoothing in 2d, and plane smoothing2 in 3d falls under this category. For
anisotropies (in a d-dimensional operator) introduced due to discretization on non-
equidistant grids (such as used in Chapter 5, in a sparse grid setting), smoothing along
hyper-planes becomes expensive. We propose an alternate solution based on adaptive
coarsening. We coarsening only along those dimensions that satisfy a certain con-
straint on the coupling measure, presented in Chapter 4, Equation 4.13. Through this
strategy we can retain point-smoothing and still achieve good multigrid convergence
factors.

In Chapter 6, we take on the problem of efficient multigrid solution for logarith-
mically stretched grids. These grids have a monotonically increasing mesh size along
both directions, and geometric multigrid methods work poorly for them, due to inef-
fective smoothing. Again, we solve this problem via the adaptive coarsening route.
Some adaptive coarsening methods already exist for tackling these problems. One of
them is called Multiple Semicoarsened Grids (MSG) [25, 26, 27]. This approach is
based on generating multiple coarse grids, and interpolating the solutions in a manner
that resembles the sparse grid technique. Grids constructed from an MSG sequence
are shown in Figure 2.7.

MSG is easy to implement, and constructs coarse grids along all dimensions. That
already hints that the technique may not be very useful for higher dimensions. Another
technique which depends on Conditional Semicoarsening [28] depends on choosing

1Fourier symbols of the continuous and discrete d-dimensional Laplacian are given in Appendix B.
2Typically inexact plane smoothing which gives a 10% residual reduction, is sufficient in most cases.
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Figure 2.7: Grid sequence resulting from the MSG method

removable grid lines through a Fourier Analysis. Depending on the actual stretch
of the grid, this results in coarsening within a tightly coupled subdomain only, and
therefore has issues with computational complexity. We, in Chapter 6, also use Fourier
analysis, but do not seek ideal smoothing factors for making a coarsening choice.
During our research for obtaining the optimal coarsening strategy for non-equidistant
grids, we found that any dimension with a mesh size variation that stays within 1.3
times the size of the coarsening candidate, can be coarsened together with it. This
led to the idea of optimizing individual mesh aspect ratios for designing a coarsening
strategy for stretched grids. A detailed exposition of this venture is the subject of
Chapter 6.

The work in Chapter 6 unveiled an alternative technique for locally refined grids.
These grids are usually coarsened only in the refined subdomain. We found that stan-
dard coarsening throughout the grid, along with bilinear interpolation at layer inter-
faces works well, even for quite demanding situations. There, in Chapter 7, we provide
a detailed overview of this strategy.
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Chapter 3
LFA of ω-RB Jacobi in
d-dimensions

LFA was first introduced by Achi Brandt, as local mode analysis [1]. Here we will
introduce LFA and cover only those aspects of it that are directly related to the work
in this thesis, such as, the multigrid treatment of anisotropy for d-dimensional PDEs.
See [8, 9] for a bigger exposition. In Chapter 4, we employ partial and full coarsen-
ing strategies to handle anisotropies resulting from discretization on non-equidistant
grids. These coarsening strategies employ both doubling (i.e. h → 2h) as well as
quadrupling (i.e. h → 4h) transfers. Therefore, in this chapter we present LFA with
this requirement in view. Part of this work was published in our paper [29].

3.1 Local Fourier Analysis (LFA)

3.1.1 LFA Assumptions

The prominent differences of LFA with the other Rigorous Fourier approach are:

• The numerical error in LFA consists of the general Fourier mode, ϕ(θ, x) = eιθ·x/h,
where the frequency of this Fourier mode is θ = (θ1, θ2, · · · , θd), such that θi

varies continuously in the interval (−π, π]. (ι =
√
−1)

• The LFA is valid only in the context of an infinite grid defined by:

Gh :=
{
x = (x1, . . . , xd)T = κh = h(κ1, . . . , κd)T : κ ∈ Z

}
which implies that all boundary considerations have been neglected, and all op-
erators are extended to this infinite grid. The coarse infinite grid G2h is defined
similarly.

27
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3.1.2 The Harmonics
In LFA, we distinguish between two distinct kinds of Fourier components, the high
frequency components and the low frequency components. The categorization of the
frequencies θ = (θ1, θ2, · · · , θd) as high or low (in a 2-grid setting) depends on the
coarsening strategy that is employed. We will come back to this point in greater
detail in Chapter 4, Section 4.4. For now, it suffices to discuss the case of standard
coarsening. As 2π is the period of ϕ, we are led to the identity:

ϕ(θ, x) ≡ ϕ(θ′, x) for x ∈ Gh iff θ = θ′(mod 2π). (3.1)

where this difference of -multiples of 2π- is between all the components of the d-
tuples, (θ & θ′), thus it suffices to consider these functions only for θ ∈ [−π, π)d.

The distinction between these two kinds of Fourier components depends on the
coarsening scheme. For full coarsening (h→ 2h transfers along all dimensions):

ϕ is a low freq. component ⇐⇒ θ ∈ T low :=
[
−
π

2
,
π

2

)d
.

ϕ is a high freq. component ⇐⇒ θ ∈ T high := [−π, π)d \

[
−
π

2
,
π

2

)d
(3.2)

the underlying fact being the high frequency error components are those that are not
visible on the coarse grid. It is straight-forward to see that:

ϕ(θ, x) ≡ ϕ(θ′, x) for x ∈ G2h iff θ = θ′(mod π). (3.3)

and therefore we can define the 2d dimensional spaces of harmonics for any θ ∈[
− π2 ,

π
2

)d
; Eθ

h as:

Eθ
h = span

{
ϕh(θ′, x) : θ′ ∈ [−π, π)d

}
= span

{
ϕh(θα, x) : α = (α1, α2, · · · , αd), α j ∈ {0, 1}

}
with

θα := θ −
(
α � sign (θ)

)
π, sign (θ) :=

{
1 (θ > 0)
−1 (θ 6 0)

;
(
−
π

2
6 θ <

π

2

)
(3.4)

We use � to denote component-wise product between two vectors, such that, for arbi-
trary vectors u and v of length d, u � v is a vector of d components uivi. Henceforth,
we use the following notation for brevity:

ϕα = ϕh(θα, x), (x ∈ G);

θα1α2···αd = θ(α1,α2,··· ,αd) (3.5)

3.2 Fourier Representation of Relaxation Operators
Let S h represent a general (local) relaxation process, encapsulating commonly used
smoothers such as ω-Jacobi, GS, and SOR. It suffices to mention that under these
relaxation operations the space of harmonics remains invariant, i.e.:

S h : Eθh −→ Eθh −π/2 < θi < π/2 (3.6)
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Consider a division of the infinite discrete domain Gh into three disjoint sets G◦h,
G+

h , G−h ; so that:

Gh = G◦h ∪G+
h ∪G−h

G◦h represents those points on the grid, where values would be updated simultane-
ously. G+

h represents those points where new values are available, and G−h represents
those points where old values would be used within the relaxation step. In order to de-
velop a general representation of the relaxation operator, consider the regular splitting
of Lh, given by:

Lh = LM
h − LN

h

Following the discrete form given in Equation 2.4, an iteration of the relaxation pro-
cess can be written as:

ui+1
h = (LM

h )−1
LN

h ui
h + (LM

h )−1
fh (3.7)

We now define the LM
h and LN

h , such that:

LM
h =

1
ω

(L◦h + ωL+
h )

LN
h =

(
1
ω
− 1

)
L◦h + L−h

where ω is the relaxation parameter. We readily observe that this definition is equiva-
lent to Lh = L◦h + L+

h + L−h , where the partitions L◦h, L+
h , and L−h correspond to G◦h, G+

h ,
and G−h respectively. Equation 3.7, under this definition gives:

ui+1
h = ω

(
L◦h + ωL+

h

)−1
{(

1
ω
− 1

)
L◦h + L−h

}
ui

h + ω
(
L◦h + ωL+

h

)−1
fh

=
(
L◦h + ωL+

h

)−1 [
(1 − ω)L◦h + L−h

]
ui

h + ω
(
L◦h + ωL+

h

)−1
fh (3.8)

Equation 3.8 embodies one iteration of a simple relaxation method. The difference of
two successive iterates gives the error iteration operator S h as:

S h =
(
L◦h + ωL+

h

)−1 [
(1 − ω)L◦h + L−h

]
(3.9)

with corresponding Fourier symbols given as:

A(θ, h; ω) =
(1 − ω)L̃◦h(θ) − ωL̃−h (θ)

L̃◦h(θ) + ωL̃+
h (θ)

(3.10)

where L̃◦h, L̃+
h , and L̃−h are the Fourier symbols of L◦h, L+

h , and L−h respectively.
The symbols A(θ, h; ω) given in Equation 3.10 represent the amplification fac-

tor by which the Fourier component ϕ(θ, x) amplifies/reduces after successive relax-
ation sweeps of the mentioned methods (i.e. ω-Jacobi, GS or SOR). Therefore, for
these methods, the amplification factor is also equivalent to their eigensymbols, i.e.
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S̃ h(θ;ω) = A(θ, h; ω). This is due to the fact that these methods do not mix Fourier
components. However, pattern relaxation methods do not preserve Fourier compo-
nents, and therefore, the amplification factor does not represent their eigensymbol.
The complete eigensymbol for ω-RB Jacobi is represented by an amplification matrix
with amplification factors of aliasing components coupled in 2 × 2 matrix blocks. In
Chapter 3, we clarify this further, through a 3d derivation of the eigensymbols for
ω-RB Jacobi, and subsequent extension of the results to general d-dimensions.

3.3 Smoothing Analysis of ω-RB Jacobi
In this section, we model the analysis of ω-RB Jacobi on a 3d system. h −→ 2h trans-
fer is implicitly assumed. Later, we show how to extend this analysis to d dimensions,
as well as how to incorporate quadrupling, i.e., h −→ 4h transfer. A smoothing analy-
sis for a similar case appears in [9], that follows a particular prescribed ordering of the
basis functions ϕα, a generalization to d dimensions is therefore not clear. The order-
ing considered here is the simple “binary”order, which can immediately be extended
to d-dimensions. This means that for a 3d system the multi-index α reads:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)

Table 3.1: This table shows aliasing of the Fourier modes ϕα with ϕ000 on the coarse
grid (standard coarsening), for x belonging to each of the distinct 2d odd-even cate-
gories. This is a direct consequence of Equations 3.3 and 3.4.

x ∈ ϕ000 ϕ001 ϕ010 ϕ011 ϕ100 ϕ101 ϕ110 ϕ111

G000
h ϕ000 ϕ000 ϕ000 ϕ000 ϕ000 ϕ000 ϕ000 ϕ000

G001
h ϕ000 −ϕ000 ϕ000 −ϕ000 ϕ000 −ϕ000 ϕ000 −ϕ000

G010
h ϕ000 ϕ000 −ϕ000 −ϕ000 ϕ000 ϕ000 −ϕ000 −ϕ000

G011
h ϕ000 −ϕ000 −ϕ000 ϕ000 ϕ000 −ϕ000 −ϕ000 ϕ000

G100
h ϕ000 ϕ000 ϕ000 ϕ000 −ϕ000 −ϕ000 −ϕ000 −ϕ000

G101
h ϕ000 −ϕ000 ϕ000 −ϕ000 −ϕ000 ϕ000 −ϕ000 ϕ000

G110
h ϕ000 ϕ000 −ϕ000 −ϕ000 −ϕ000 −ϕ000 ϕ000 ϕ000

G111
h ϕ000 −ϕ000 −ϕ000 ϕ000 −ϕ000 ϕ000 ϕ000 −ϕ000

We distinguish between 2d different categories of grid-points given by:

Gαh := {x = κh, κ ∈ Zd, κ = α (mod 2)} (3.11)

Note that in 3d there would be in all 8 different categories of grid-points from an odd-
even perspective. Table 3.1 gives the aliasing of the Fourier modes for each of these
categories.

For the purpose of representing a general grid function (such as the computational
error) in terms of the Fourier components, we construct 8 functions ψi. Each ψi is
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Table 3.2: The functions ψi for each category of grid points.

x ∈→ G000
h G001

h G010
h G011

h G100
h G101

h G110
h G111

h

ψ1 ϕ000 0 0 0 0 0 0 0
ψ2 0 ϕ000 0 0 0 0 0 0
ψ3 0 0 ϕ000 0 0 0 0 0
ψ4 0 0 0 ϕ000 0 0 0 0
ψ5 0 0 0 0 ϕ000 0 0 0
ψ6 0 0 0 0 0 ϕ000 0 0
ψ7 0 0 0 0 0 0 ϕ000 0
ψ8 0 0 0 0 0 0 0 ϕ000

defined by summing up the elements of the ith row of Table 3.1 and substituting the
appropriate aliasing mode ϕα from the corresponding entry in the top row. This ma-
nipulation leads to the following set of equations defining ψi.

ψ1 = {ϕ000 + ϕ001 + ϕ010 + ϕ011 + ϕ100 + ϕ101 + ϕ110 + ϕ111}/8

ψ2 = {ϕ000 − ϕ001 + ϕ010 − ϕ011 + ϕ100 − ϕ101 + ϕ110 − ϕ111}/8

ψ3 = {ϕ000 + ϕ001 − ϕ010 − ϕ011 + ϕ100 + ϕ101 − ϕ110 − ϕ111}/8

ψ4 = {ϕ000 − ϕ001 − ϕ010 + ϕ011 + ϕ100 − ϕ101 − ϕ110 + ϕ111}/8

ψ5 = {ϕ000 + ϕ001 + ϕ010 + ϕ011 − ϕ100 − ϕ101 − ϕ110 − ϕ111}/8

ψ6 = {ϕ000 − ϕ001 + ϕ010 − ϕ011 − ϕ100 + ϕ101 − ϕ110 + ϕ111}/8

ψ7 = {ϕ000 + ϕ001 − ϕ010 − ϕ011 − ϕ100 − ϕ101 + ϕ110 + ϕ111}/8

ψ8 = {ϕ000 − ϕ001 − ϕ010 + ϕ011 − ϕ100 + ϕ101 + ϕ110 − ϕ111}/8

(3.12)

Observe from the above definitions that each ψi is non-zero for a distinct Gαh . For
convenience this fact is represented in Table 3.2. From this table it is clearly evident
that any Fourier mode in the 8-dimensional Fourier space can be written as a linear
combination of ψi. Forming linear combinations with an arbitrary cα ∈ C and x ∈ Gα

h ,
we have the linear combinations:

c000ψ1 + c001ψ2 + c010ψ3 + c011ψ4 + c100ψ5 + c101ψ6 + c110ψ7 + c111ψ8 = cαϕ000,

c000ψ1 − c001ψ2 + c010ψ3 − c011ψ4 + c100ψ5 − c101ψ6 + c110ψ7 − c111ψ8 = cαϕ001,

c000ψ1 + c001ψ2 − c010ψ3 − c011ψ4 + c100ψ5 + c101ψ6 − c110ψ7 − c111ψ8 = cαϕ010,

c000ψ1 − c001ψ2 − c010ψ3 + c011ψ4 + c100ψ5 − c101ψ6 − c110ψ7 + c111ψ8 = cαϕ011,

c000ψ1 + c001ψ2 + c010ψ3 + c011ψ4 − c100ψ5 − c101ψ6 − c110ψ7 − c111ψ8 = cαϕ100,

c000ψ1 − c001ψ2 + c010ψ3 − c011ψ4 − c100ψ5 + c101ψ6 − c110ψ7 + c111ψ8 = cαϕ101,
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c000ψ1 + c001ψ2 − c010ψ3 − c011ψ4 − c100ψ5 − c101ψ6 + c110ψ7 + c111ψ8 = cαϕ110,

c000ψ1 − c001ψ2 − c010ψ3 + c011ψ4 − c100ψ5 + c101ψ6 + c110ψ7 − c111ψ8 = cαϕ111,

(3.13)

It is important to point out that the index set α is chosen as a superscript for the
constant c merely for notational convenience and does not imply association to partic-
ular grid points. Also, the definition of each of these modes in terms of ψi is absolutely
independent of each other.

As the ω-RB Jacobi relaxation consists of the two partial ω-Jacobi steps in suc-
cession, the relaxation operator can be written as:

S RB
h = S R

h S B
h

⇒ S̃ RB
h = S̃ R

h S̃ B
h

(3.14)

In d dimensions, each of the 2d category of grid-points (given by Equation 3.11)
can be categorized as either belonging to the red color or else to the black color by the
following rule:

Gαh = Gred
h , if (

d∑
j=1

α j) mod 2 = 0

Gαh = Gblk
h , if (

d∑
j=1

α j) mod 2 = 1

Thus, we recognize Gred
h as {G000

h ∪ G011
h ∪ G101

h ∪ G110
h } and Gblk

h as {G001
h ∪ G100

h ∪

G010
h ∪ G111

h } in 3d. Abbreviating A(θα, h;ω) as Aα, the partial sweep over the red
points gives :

S R
hϕα =

{
Aαϕα for x ∈ Gred

h
ϕα for x ∈ Gblk

h
(3.15)

So writing out the linear combinations in Equation 3.13 for all α = (i, j, k) (abbreviat-
ing α = i jk):

S R
hϕα =



A000(ψ1 + ψ4 + ψ6 + ψ7) + ψ2 + ψ3 + ψ5 + ψ8; (α = 000)
A001(ψ1 − ψ4 − ψ6 + ψ7) − ψ2 + ψ3 + ψ5 − ψ8; (α = 001)
A010(ψ1 − ψ4 + ψ6 − ψ7) + ψ2 − ψ3 + ψ5 − ψ8; (α = 010)
A011(ψ1 + ψ4 − ψ6 − ψ7) − ψ2 − ψ3 + ψ5 + ψ8; (α = 011)
A100(ψ1 + ψ4 − ψ6 − ψ7) + ψ2 + ψ3 − ψ5 − ψ8; (α = 100)
A101(ψ1 − ψ4 + ψ6 − ψ7) − ψ2 + ψ3 − ψ5 + ψ8; (α = 101)
A110(ψ1 − ψ4 − ψ6 + ψ7) + ψ2 − ψ3 − ψ5 + ψ8; (α = 110)
A111(ψ1 + ψ4 + ψ6 + ψ7) − ψ2 − ψ3 − ψ5 − ψ8; (α = 111)

(3.16)
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Substituting ψi from Equations 3.12, we get:

S R
hϕα =

1
2



(A000 + 1)ϕ000 + (A000 − 1)ϕ111

(A001 + 1)ϕ001 + (A001 − 1)ϕ110

(A010 + 1)ϕ010 + (A010 − 1)ϕ101

(A011 + 1)ϕ011 + (A011 − 1)ϕ100

(A100 − 1)ϕ011 + (A100 + 1)ϕ100

(A101 − 1)ϕ010 + (A101 + 1)ϕ101

(A110 − 1)ϕ001 + (A110 + 1)ϕ110

(A111 − 1)ϕ000 + (A111 + 1)ϕ111

(3.17)

Let wh(x) ∈ Eθ
h be any arbitrary grid function, then it can be represented as a linear

combination of the basis elements ϕα, i.e.

wh(x) = a000ϕ000 +a001ϕ001 +a010ϕ010 +a011ϕ011 +a100ϕ100 +a101ϕ101 +a110ϕ110 +a111ϕ111 (3.18)

then

S R
h ( a000ϕ000 + a001ϕ001 + a010ϕ010 + a011ϕ011 + a100ϕ100 + a101ϕ101 + a110ϕ110 + a111ϕ111)

= ã000ϕ000 + ã001ϕ001 + ã010ϕ010 + ã011ϕ011 + ã100ϕ100 + ã101ϕ101 + ã110ϕ110 + ã111ϕ111.

Thus, we have the relation:

S̃ R
h aα = ãα (∵ S R

h : Eθ
h → Eθ

h; θ ∈ T low) (3.19)

with the representation matrix S̃ R
h , given as:

S̃ R
h =

1
2



A000+1 A111−1

A001+1 A110−1

A010+1 A101−1

A011+1 A100−1

A011−1 A100+1

A010−1 A101+1

A001−1 A110+1

A000−1 A111+1


(3.20)

This matrix converts to the conventional block matrix through a restructuring by a
permutation similarity transform. Note that similarity transforms with permutation
matrices are always eigenvalue-invariant. This leads us to:

S̃ ′
R
h =

1
2



A000+1 A111−1

A000−1 A111+1

A001+1 A110−1

A001−1 A110+1

A010+1 A101−1

A010−1 A101+1

A011+1 A100−1

A011−1 A100+1


(3.21)
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with S̃ ′
R
h = P S̃ R

h PT , where P is an appropriate permutation matrix. Likewise wading

our way through similar derivations we obtain S̃ ′
B
h as:

1
2



A000+1 −A111+1

−A000+1 A111+1

A001+1 −A110+1

−A001+1 A110+1

A010+1 −A101+1

−A010+1 A101+1

A011+1 −A100+1

−A011+1 A100+1


(3.22)

An extension to d-dimensions is now clear. Note that ω-RB Jacobi couples those
Fourier components that alias on the coarse grid. Motivated by the eigenvalue invari-
ance of this transformation, and without any loss of clarity, we now use the notation
S̃ R

h and S̃ R
h for the representation matrices S̃ ′

R
h and S̃ ′

B
h given by Equations 3.21 and

3.22.
Thus the Fourier representations of the half sweep operators which stand for the

smoothing steps over the red points (R) and the black points (B) w.r.t. the two-
dimensional minimal invariant subspaces [30] are represented by 2d−1 blocks that read:

S̃ R
h (θ, ω) =

1
2

(
A(θ, ω) + 1 A(θ′, ω) − 1
A(θ, ω) − 1 A(θ′, ω) + 1

)
and S̃ B

h (θ, ω) =
1
2

(
A(θ, ω) + 1 −A(θ′, ω) + 1
−A(θ, ω) + 1 A(θ′, ω) + 1

)
with A(θ, ω) = A2o(θ, ω), A4o(θ, ω) and A(θ′, ω) = A2o(θ′, ω), A4o(θ′, ω).

The amplification matrix S̃ h(θ, ω) is then given by:

S̃ h(θ, ω) = S̃ B
h (θ, ω) S̃ R

h (θ, ω). (3.23)

which is the d-dimensional Fourier representation of the ω-RB Jacobi operator, based
on (h −→ 2h) transfers.

3.4 The Red-Black Smoothing Factor ω
As a first step towards defining the smoothing factor for ω-RB Jacobi we recall that
since pattern relaxations intermix the high and the low frequencies, we need to filter
out the low ones. For the purpose of filtering out the low frequencies we replace
the real coarse-grid correction operator by an ideal coarse grid correction operator (a
projection operator onto the space of high frequencies) QH

h as:

QH
h ϕh(θ, x) =

{
0 if θ ∈ T low

ϕh(θ, x) if θ ∈ T high (3.24)

We now define the smoothing factor as follows:
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Definition 3.4.1. Smoothing factor The smoothing factor µ of theω-RB Jacobi oper-
ator is defined as the worst factor by which the high frequency errors are reduced per
iteration step. So with ν denoting the number of relaxation sweeps, and ρ the matrix
spectral radius, we have:

µ(ω, ν) := sup
{

ν

√
ρ
(
Q̃H

h S̃ ν
h

)}
θ ∈ T low (3.25)

or equivalently:

µ(ω, ν) := sup
{

ν

√
ρ
(
Q̃H

h (S̃ R
h S̃ B

h )
ν)}

θ ∈ T low (3.26)

3.5 Red-Black LFA Extension for Quadrupling in d-
dimensions

3.5.1 Fourier High/Low frequencies for quadrupling

The Fourier smoothing analysis based on full and partial coarsenings that consist both
of doubling (h → 2h) and quadrupling (h → 4h) -or only quadrupling- (as employed
in Chapter 4) is built upon a different set of indices. Now the frequencies and the
corresponding index-set would be defined as follows:

T low =
{
θ : θ ∈

[
−
π

4
,
π

4

)d}
T high =

{
θ : θ ∈ [−π, π)d \

[
−
π

4
,
π

4

)d}
with the space of harmonics Eθ

h as:

Eθ
h =

{
ϕh(θα, x) : α = (α1, α2, · · · , αd), α j ∈ {0,−1/2, 1/2, 1}

}
(3.27)

This Fourier space is 4d-dimensional. Regardless of the order of the basis elements,
an appropriate Fourier representation of the relaxation operator would consist of 2d+1

(2 × 2) blocks. Each block couples Fourier components that alias on the coarse grid.
The following example elaborates this extension:

Example 3.5.1. The 8 (2×2) blocks for quadrupling in 2d The order of occurrence
of these blocks in the representation is not important. In the case of quadrupling, the
frequency component having the index −1/2 aliases with 1/2, and the component with
the index 0 aliases with 1 on the coarse grid. The possible index pairs in 2d, i.e.,
α = (α1, α2) may be enumerated as:

α = {α1,α2, · · · ,α16}

= {(0, 0), (0,−1/2), (0, 1/2), (0, 1), (−1/2, 0), (−1/2,−1/2), (−1/2, 1/2), (−1/2, 1), (1/2, 0),

(1/2,−1/2), (1/2, 1/2), (1/2, 1), (1, 0), (1,−1/2), (1, 1/2), (1, 1)}
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We get the 8 (2 × 2) block matrices that turn up in S̃ R
h as:[

Aα1 +1 Aα16−1

Aα1−1 Aα16 +1

]
,

[
Aα2 +1 Aα15−1

Aα2−1 Aα15 +1

]
,

[
Aα3 +1 Aα14−1

Aα3−1 Aα14 +1

]
,

[
Aα4 +1 Aα13−1

Aα4−1 Aα13 +1

]
,[

Aα5 +1 Aα12−1

Aα5−1 Aα12 +1

]
,

[
Aα6 +1 Aα11−1

Aα6−1 Aα11 +1

]
,

[
Aα7 +1 Aα10−1

Aα7−1 Aα10 +1

]
,

[
Aα8 +1 Aα9−1

Aα8−1 Aα9 +1

]
and likewise for S̃ B

h . An extension for constructing the half sweep amplification ma-
trices in d-dimensions is therefore straight forward.

The definition of the projection operator QH
h and the smoothing factor µ remains

unchanged. Although comprehending the details is simple enough, the actual com-
putation of optimal Red-Black relaxation parameters and corresponding convergence
factors (for a case involving quadrupling) can be inefficient due to the huge number of
blocks involved in d-dimensions. There is however, a neat simplification which allows
a somewhat more efficient evaluation. This is illustrated in the following section.

3.5.2 Alternate Visualization of the Invariant Subspaces

22 04 4

2

2

0

4

4

0000

00

1

2

2a

4a

a

Figure 3.1: Aliasing frequencies in the frequency spaces a, 2a and 4a. Frequency
indicators are •, ×, ◦, 4, �. Superimposed indicators show aliasing frequencies.
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Example 3.5.1 shows the complete set of multi-indices αi. The actual aliasing
frequency pairs, can be obtained in this case by using Equation 3.28 for frequencies
occurring in T low.

(
θ

high
1

θ
high
2

)
=

(
θlow

1

θlow
2

)
−

(
αisign (θlow

1 )

α jsign (θlow
2 )

)
π

4
(3.28)

An alternate formulation is also possible, considering only the old multi-index set
where αi ∈ {0, 1}. To realize this, we slightly adjust our nomenclature to incorporate
frequencies existing in areas a, 2a, and 4a, as shown in Figure 3.1.

We use θa, θ2a, and θ4a to denote frequencies existing in the areas demarked by a,
2a, and 4a, respectively, in Figure 3.1. Clearly, only θ4a belongs to T low. Nevertheless,
the following relationships hold:

(
θ2a

1

θ2a
2

)
=

(
θ4a

1

θ4a
2

)
−

(
αisign (θ4a

1 )

α jsign (θ4a
2 )

)
π

2
(3.29)(

θa
1

θa
2

)
=

(
θ2a

1

θ2a
2

)
−

(
αisign (θ2a

1 )

α jsign (θ2a
2 )

)
π (3.30)

These relationships can be exploited to construct an efficient implementation of Fourier
analysis software. The following example illustrates the process.

Example 3.5.2. Optimization of only 2d minimal blocks Consider a low frequency
θ4a = (−π/5,−π/5) ∈ T low. Using Equation 3.29, and the multi-index α, obtain 3 (high)
frequencies in 2a. Enumerated with respect to α, these 4 frequencies are:

θ4a = θ2a
00 = (−

π

5
,−
π

5
), θ2a

01 = (−
π

5
,

3π
10

), (3.31)

θ2a
10 = (

3π
10
,−
π

5
), θ2a

11 = (
3π
10
,

3π
10

) (3.32)

Next, for each of these 4 frequencies, form 3 more by using Equation 3.30. This
leads to the 2d Red-Black block matrices. For an example case of frequency θ2a

00, this
gives

(
θ2a

00

)a

00
,
(
θ2a

00

)a

01
,
(
θ2a

10

)a

00
, and

(
θ2a

00

)a

11
. For clarity, θ2a

00 is now renamed as
(
θ2a

00

)a

00
,
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and leads to the determination of the spectral radius of the matrix Q̃1S̃ 1:

S̃ R
1 =

1
2



(
A2a

00

)a

00
+ 1

(
A2a

00

)a

11
− 1(

A2a
00

)a

00
− 1

(
A2a

00

)a

11
+ 1 (

A2a
00

)a

01
+ 1

(
A2a

00

)a

10
− 1(

A2a
00

)a

01
− 1

(
A2a

00

)a

10
+ 1


(3.33)

S̃ B
1 =

1
2



(
A2a

00

)a

00
+ 1 −

(
A2a

00

)a

11
+ 1

−
(
A2a

00

)a

00
+ 1

(
A2a

00

)a

11
+ 1 (

A2a
00

)a

01
+ 1 −

(
A2a

00

)a

10
+ 1

−
(
A2a

00

)a

01
+ 1

(
A2a

00

)a

10
+ 1


(3.34)

Q̃1 = [0, 1, 1, 1]T

S̃ 1 = S̃ R
1 S̃ B

1

This gives 1 spectral radius. Treating the other 3 frequencies, given in Equation set
3.31, in the same way, results in the other 3. As the context is of full quadrupling (for
ease of discussion), this implies that the other three projection operators Q̃2, Q̃3, and
Q̃4 will only contain ones. The maximum of these 4 spectral radii is the Red-Black
convergence factor for quadrupling. This process is equivalent to the one illustrated
in Example 3.5.2 and appears to be more efficient in d-dimensions.

This completes the discussion of Fourier analysis of Red-Black Jacobi.

Remark 3.5.1. Optimal smoothing parameters The projection operator QH
h plays

a very practical and important role in the evaluation of the optimal relaxation pa-
rameters ω. We elaborate its use in Chapter 4, and obtain ω- through the analysis
presented in this chapter, for different kinds of partial and full, doubling and quadru-
pling transfers.



Chapter 4
Multigrid for Multidimensional
Elliptic PDEs

In the last chapter we presented the local Fourier analysis in d-dimensions, which
sets the ground for the multigrid method and techniques presented in this chapter.
The main focus here is on multigrid convergence for multidimensional partial differ-
ential equations (PDEs) on non-equidistant grids, such as may be encountered in a
sparse grid solution. As a model problem we have chosen the anisotropic stationary
diffusion equation, on a rectangular hypercube. We develop techniques for build-
ing the general d-dimensional adaptations of the multigrid components. We propose
and develop partial grid coarsening strategies to handle anisotropies that are induced
due to discretization on a non-equidistant grid. These techniques incorporate both
h→ 2h, as well as h→ 4h grid transfers. Apart from the d-dimensional formulae and
techniques, we compute the optimal relaxation parameters -through LFA presented in
the last chapter- of point ω-Red-Black Jacobi method for a general multidimensional
case. These parameters are presented for the finite difference O(h2) and the O(h4)
long-stencil operators. Numerical experiments based on the techniques proposed in
this chapter are included.

4.1 Applications and Solution Techniques
Multidimensional partial differential equations have a diverse application in various
fields, which amongst others, include financial engineering [31], molecular biology [32],
and quantum dynamics [33, 34]. The existing literature on the multigrid treatment of
various problems, rarely explores issues that arise out of growth in the dimensionality
of the problem. The implications of dimensionality growth include deterioration of
the multigrid convergence rate, impractical storage requirements and huge amounts of
the CPU-time for single grid solution methods. Our main emphasis here is on the first
challenge. We abbreviate multigrid for d-dimensional PDEs as d-multigrid.

A multigrid treatment of multidimensional PDEs based on hyperplane relaxation

39
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has been proposed by Reisinger in [31]. We present a multigrid treatment based on
point relaxation and partial coarsening schemes. We demonstrate how the multigrid
convergence factor can be brought down for higher d by the suggested grid coarsening
strategies and a proper choice of the relaxation parameters in the smoothing process.

The strategy that we suggest in this chapter for good multigrid convergence is that
keeping the point smoothing method, we coarsen the grid simultaneously along all the
dimensions where the errors are strongly coupled. We call this strategy simultaneous
partial coarsening. This way we relax the anisotropy at each successive grid level,
till the problem is isotropic to the point where full coarsening is feasible. Full coars-
ening from this stage onwards, brings the grid to the coarsest possible level, where
we solve exactly. These strategies therefore consist of two main phases, the partial
coarsening phase and the full coarsening phase. We show that multigrid based on
quadrupling (h → 4h) transfers during the partial coarsening phase of the scheme,
renders a very efficient multigrid method if optimal relaxation parameters are used
in the point smoothing process. We would like to point out that partial coarsening
schemes have also been put forward by Larsson et al, identifying the conditions for
partial coarsening through LFA [28]. Moreover, the utility of adaptive grid coarsening
in multigrid has also been demonstrated by Elias et al and Horton and Vandewalle in
[35] and [36], respectively.

We begin with the discretization of a d-dimensional PDE, and show in Section
4.2, how this might be done with Kronecker tensor products. Section 4.3 describes d-
multigrid components that we use, i.e. point smoothing, transfer operators, coarsening
strategies etc., and concludes with a computational complexity analysis. Next, in
Section 4.4, we explain how optimal relaxation parameters for ω-RB Jacobi might be
obtained efficiently through the smoothing analysis done in Chapter 5. This section
highlights the role of the projection operator QH

h in general cases based on partial and
full doubling and quadrupling transfers and concludes with a tabular presentation (up
to 6d) of some optimal relaxation parameters. Finally, in Section 4.5, we present quite
a few numerical experiments and demonstrate the fine multigrid convergence that we
achieve.

4.2 The Discretization

We first recall that discrete operators can be implemented in two different ways. One
is the stencil method and the other is the matrix method. The stencil method saves
storage but is inherently difficult to implement due to the visual constraints due to
the multidimensionality of the problem. Therefore, to circumvent the complicated
implementation issues we use matrices (in sparse storage formats) and here we present
matrix generation formulae based on Kronecker-tensor-products.

4.2.1 The Continuous Problem and FDM Discretization

For analysis and experimentation we choose the d-dimensional stationary diffusion
equation, with Dirichlet boundary conditions, to serve as our model problem. As
in Chapter 2, x is a d-tuple, so that x = (x1, x2, · · · , xd), and {ai, bi, εi} ∈ R with
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εi ∈ (0,∞). The continuous problem then reads:

−Lu(x) = −

d∑
i=1

εi
∂2

∂x2
i

u(x) = f Ω(x), x ∈ Ω =

d∏
i=1

(ai, bi) ⊂ Rd (4.1)

u(x) = f Γ(x), x ∈ ∂Ω

Subsequently, the discrete counterpart reads

−Lhuh(x) = f Ω
h (x), x ∈ Ωh (4.2)

uh(x) = f Γ
h (x), x ∈ Γh = ∂Ωh

The finite difference discretization of the continuous operator Lh is chosen to be either
O(h2) accurate, giving a (2d + 1)-point stencil, or else O(h4) accurate, with a (4d + 1)-
point long-stencil for all interior points. The number of cells in the discretization grid
along the ith dimension -represented by Ni- need not be equal to the number of cells
along (say) the jth dimension. So with hi = (bi − ai)/Ni -the mesh size along the ith

dimension- the 1d variant of these multidimensional stencils are

(Lh)i =

(
∂2

∂x2
i

)
h
,

1
h2

i

[1 − 2 1] + O(h2), (4.3)

(Lh)i =

(
∂2

∂x2
i

)
h
,

1
12h2

i

[−1 16 − 30 16 − 1] + O(h4). (4.4)

It has to be noted that the O(h4) long stencil uses the so-called ghost-points (points
outside the discretization grid) when applied to points near the boundary. To allevi-
ate this problem we have the option of employing a different stencil, having shorter
connections at the boundary. Thus we can either employ the simple O(h2) operator
at the boundaries, or else use a different scheme with one-sided differencing. In this
work, we use the second order stencil, for points near the boundaries. The discretiza-
tion given by Equation 4.2 leads to the matrix equation Ahuh = bh as indicated by
Equation 2.5.

4.2.2 The Matrix Ah in Kronecker Tensor Products

We choose the so-called eliminated boundary scheme. In this scheme Dirichlet cor-
rections from the domain boundaries are incorporated in the right hand side bh and
are therefore eliminated from the matrix Ah. This scheme results in a total of M un-
knowns, -(M × M) being the order of the discretization matrix Ah- with:

M =

d∏
i=1

(Ni − 1).

We represent the discretization grid size by N, so that:

N = [N1,N2, · · · ,Nd]. (4.5)



42 Chapter 4. Multigrid for Multidimensional Elliptic PDEs

The discrete matrix Ah can be built by the following tensor product formula:

Ah =

d∑
i=1

{ d−1⊗
j=i

I(d+i− j) ⊗ (Lh)i ⊗

i−1⊗
j=1

I(i− j)

}
. (4.6)

⊗ is the Kronecker-tensor-product of matrices.
⊗

is the cumulative Kronecker-
tensor-product. For example:

3⊗
i=1

Pi = P1 ⊗ P2 ⊗ P3.

Kronecker-tensor-products are non-commutative and associative operations (see
[37]). The order is determined by the subscripts here and the associative hierarchy
does not matter.

In Equation 4.6 Ii, i ∈ {1, 2, · · · , d}, is the identity matrix of order (Ni − 1) and
(Lh)i is the 1d discrete Laplacian matrix, constructed through Equations 4.3 or 4.4 as
illustrated by the following example. Suppose that N = [8, 6] is the prescribed grid
size for a certain 2d problem, then we construct (Lh)i by writing down the discrete
stencil in Equation 4.4 for each point, including the boundaries. Then we isolate the
left and the right boundary vectors (as shown below) and incorporate them in the right
hand side bh. For example (Lh)1 is the following matrix (without the isolated columns
on the left and the right) according to the choice O(h4) of the computational accuracy:

ε1

12h2
1



12
−1

0
0
0
0
0



−24 12 0 0 0 0 0
16 −30 16 −1 0 0 0
−1 16 −30 16 −1 0 0

0 −1 16 −30 16 −1 0
0 0 −1 16 −30 16 −1
0 0 0 −1 16 −30 16
0 0 0 0 0 12 −24

︸                                                             ︷︷                                                             ︸
L1

0
0
0
0
0
−1
12


.

1d discrete operator matrices constructed in this way for each grid dimension, are
to be substituted in Equation 4.6 for building up the discrete d-dimensional operator
matrix Ah. (The O(h2)-discretization is handled similarly.)

4.2.3 The Right-Hand-Side bh

The right hand side bh consists of the source function f Ω
h and the boundary function f Γ

h .
It is important to define a consistent enumeration of grid points in high dimensions.
The grid index of an unknown is represented by a d-tuple j = ( jd, jd−1, · · · , j1), where
ji runs in the range 1, 2, · · · ,Ni. The complete set of all possible grid point indices can
thus be modelled by a rectangular array J having d columns, and M rows. Each row
can be considered to represent a particular grid index j. In our scheme, the order in
which the rows of this index array J are laid out, is the natural d-dimensional extension
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of what we commonly know as the lexicographic ordering in 2 or 3 dimensions. The
index arrayJ can be represented as:

J = [Jd J(d−1) · · · Ji · · · J2 J1], (4.7)

where each Ji is a column vector of length M. Also consider the following definitions
which we require to build the index-set for the interior and the boundary points, Let;

ηi = [1, 2, · · · , (Ni − 1)]T , i = 1, 2, · · · , d (see Equation 4.5), (4.8)

1i = [1, 1, · · · , 1]︸        ︷︷        ︸
Total Ni

T T stands for transpose

We now formulate the columns of J as follows:

Ji =

d−1⊗
j=i

1(d+i− j) ⊗ ηi ⊗

i−1⊗
j=1

1(i− j). (4.9)

At this stage the vector of source function values can be computed as the development
of the index-set J is complete. Thus, computing the source function for each grid
coordinate (row of the array J), and denoting it by S, we have S = f Ω

J .
Now for computing the contribution of boundaries in bh, recall that we isolated

two column vectors, namely the left and the right boundary coefficient vectors from
the 1d discrete operators in each dimension. Considering the case of the ith dimension
if we denote these by li and ri respectively, then we can define the ith d-dimensional
left and right boundary coefficient vectors, viz, Li and Ri as follows:

Li =

d−1⊗
j=i

1(d+i− j) ⊗ li ⊗
i−1⊗
j=1

1(i− j), (4.10)

Ri =

d−1⊗
j=i

1(d+i− j) ⊗ ri ⊗

i−1⊗
j=1

1(i− j).

The contribution of the boundary-values in bh has two parts, i.e., values from the left
boundary and values from the right boundary. We denote the two by BL and BR,
respectively. BL is the cumulative sum of the d left boundaries and likewise for the
right. At this point a word about the boundary index set is just in order. If in Equation
4.7 any Ji is replaced by a column vector consisting of the left Dirichlet boundary
value, ai, we get a left boundary index set and if we replace it by a vector of the right
Dirichlet boundary value, bi, we get a right boundary index set. If the left and the
right boundary index sets are given as:

JLi = [Jd J(d−1) · · · J(i−1) ai J(i+1) · · · J2 J1],

JRi = [Jd J(d−1) · · · J(i−1) bi J(i+1) · · · J2 J1],
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then

BL =

d∑
i=1

(Li � f Γ
JLi

), (4.11)

BR =

d∑
i=1

(Ri � f Γ
JRi

).

� represents component-wise multiplication of the operand column vectors.
Thus we have the right hand side bh as

bh = S + BL + BR (4.12)

and the discretization is complete.

4.3 d-Multigrid Based on Point Smoothing
The core of this chapter is the coarsening strategies proposed here which are based
on a mixture of doubling (h → 2h) and quadrupling (h → 4h) grid transfers and
which -coupled with point based relaxation- yield very efficient multigrid methods for
problems on non-equidistant grids. The aim is to close upon a robust method that
applies for general grid-aligned anisotropies in d dimensions.

The essential components of d-multigrid are the smoothing method and the coarse
grid correction. For anisotropic problems it is a choice to keep the point smoothing
method and to coarsen only along a sub-set of the dimensions, precisely those that
are strongly coupled. This ensures that coarsening takes place only where the errors
are smooth. For nearly isotropic problems the best strategy is to combine the point
smoothing method with doubling based full coarsening and to use the optimal relax-
ation parameters obtained for d dimensions.

Remark 4.3.1. (Multigrid algorithm in the literature) Multigrid algorithm as pre-
sented in Chapter 2 does not change for the higher-dimensional case, however, the
components have to be generalized to match this new situation. General multigrid
algorithms with slight variations are also presented in the literature, notably in [2, 6,
8, 9, 38, 39].

4.3.1 The Relaxation Method

Of the many available point smoothing based relaxation methods, we choose the ω-
Red-Black Jacobi method due to its excellent smoothing effect for problems of the
Poisson type as described in Chapter 2, Section 2.3.1, Description 2.3.5. From an im-
plementational point of view, this Red-Black smoothing procedure which is based on
partial steps depends upon a partitioning process by which the index-set (represented
by Equation 4.7) of the interior grid-points, can be dissected into the red part (Jr), and
the black part (Jb). The grid point enumeration that we employ in our implementation
scheme is such that the points are arranged linearly (in a column vector), counted out
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in the lexicographical order for a d-dimensional grid. The unequal number of cells
along different dimensions of the grid makes this partitioning process somewhat non-
trivial. In Appendix C we present a way to bring about this segregation of odd and
even points from a purely implementational aspect.

We also employ optimal relaxation parameters ωopt in the relaxation process. It is
well known that ω = 1 serves as a good choice for the 2d isotropic case. In the case of
anisotropy and higher dimensions the error smoothing effect of the relaxation method
can be enhanced by the use of optimal relaxation parameters [30]. This implies that a
search for ωopt pays off. We employ d-dimensional Local Fourier Smoothing Analysis
for this purpose, see Section 4.4.

4.3.2 Coarsening Strategies to Handle Anisotropies

We present two grid-adaptive coarsening procedures as our test cases, both of which
have shown excellent convergence results. We call them Strategy-1 and Strategy-2.
Both the strategies are similar in the sense that they consist of two distinct coarsening
phases, the partial coarsening phase and the full coarsening phase. The difference is
in the partial coarsening phase, where the transfer-type in Strategy-1 is doubling (h→
2h) and in Strategy-2 is quadrupling (h → 4h). In the full coarsening phase both the
strategies are identical and consist of doubling transfers only.

In Strategy-1 we first identify the dimension(s) having the strongest coupling. This
is indicated by the magnitude of the coupling factor c̃i defined as:

c̃i = εi ×

(
Ni

bi − ai

)2

(4.13)

see Equation 4.1 and 4.5. The larger the coupling factor c̃i the stronger the coupling.
Fourier Analysis suggests that all dimensions having a coupling factor c̃i within a
range of 1.3 times the largest coupling factor identified, can be doubled simultane-
ously. This decision is made (at each successive grid level) and identifies all those
dimensions along which doubling will take place. Employing this strategy recursively
makes the discrete problem isotropic inasmuch as all coupling factors are within this
range, onwards from here full-doubling takes over. Once the coarsest possible grid is
reached an exact solution takes place. In Section 4.5 we evaluate this strategy for the
O(h2) (2d + 1)-point stencil and for the O(h4) (4d + 1)-point long stencil.

In Strategy-2 the threshold value is 1.0, which means that we only quadruple along
the dimension(s) which are identified as having the strongest coupling (having the
largest c̃i). This ensures that quadrupling (in comparison with doubling) takes place
along fewer dimensions. This strategy gives good convergence when employed in
conjunction with optimal relaxation parameters, and, is cheaper than Strategy-1 be-
cause of quadrupling in the partial phase. Moreover, we suggest that a strategy based
on quadrupling in the full coarsening phase should not be employed in a general mul-
tidimensional case as full quadrupling always loses against full doubling, and hence
is quite apt to hamper multigrid convergence.

We take the grid size along each dimension always as a power of 2. When the
anisotropy stems only from discretization on non-equidistant grids, as encountered in
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the sparse-grid solution, the sequence of coarse grids generated by the two strategies
are as follows.

Example 4.3.1. Grid coarsening with both strategies Suppose that a particular
discretization grid for a certain 5d problem is G = [ 32 8 8 128 32 ]. εi = 1,∀ i
and Ω = (0, 1)5. Then the sequence of grids that we get is the following:

S trategy − 1 S trategy − 2
Ω6 = [ 32 8 8 128 32 ]
Ω5 = [ 32 8 8 64 32 ]
Ω4 = [ 32 8 8 32 32 ]
Ω3 = [ 16 8 8 16 16 ]
Ω2 = [ 8 8 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

Ω4 = [ 32 8 8 128 32 ]
Ω3 = [ 32 8 8 32 32 ]
Ω2 = [ 8 8 8 8 8 ]
Ω1 = [ 4 4 4 4 4 ]
Ω0 = [ 2 2 2 2 2 ]

(4.14)

A similar experiment is shown available in Section 4.5, Table 4.7.

4.3.3 Coarse Grid Discretization
An important component in the coarse grid correction process is the choice of the
coarse grid operator LH . In this chapter we use the coarse grid analog of the discrete
operator on the fine grid. Once the next coarser grid is decided we discretize the
anisotropic diffusion operator using the same discrete stencils as presented in Section
4.2.

A particularly good choice of the coarse grid operator for the O(h4) fine grid dis-
cretization is to employ the O(h4) long stencil only along the non-coarsened dimen-
sions of the grid and to discretize with the O(h2) stencil on the coarse grids along the
dimensions where partial coarsening takes place. This has the marked advantage of
saving CPU-time as now the coarse-grid operator has increased sparsity. Moreover,
on very coarse grids this is advantageous because at grid points adjacent to boundary
points the long stencil cannot be applied since it has entries which lie outside the dis-
crete domain, whereas the O(h2)-discretization can be applied throughout the domain.
The overall accuracy remains fourth order as we have the fourth order accuracy on the
finest grid. This coarse grid discretization scheme fits very nicely with the numerical
experiments and 2-grid and 3-grid analysis (not shown here) confirm this.

We do not use the Galerkin operator because of its disadvantage of being usually
more dense than the simple coarse grid analog of the fine grid operator (unless spe-
cial transfer operators are employed to generate the coarse grid operators). In high d
dimensions this disadvantage becomes more serious and impractical.

4.3.4 The Transfer Operators
We employ the d-dimensional analogs of the Full-Weighting (FW) restriction operator
and of the bilinear interpolation operator in two dimensions for the intergrid transfers
of the grid functions. In this section we present a tensor formulation to generate
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the restriction and prolongation operator matrices. The 2d FW restriction operator
given in Description 2.3.7 is the Kronecker tensor product of the following x1 and x2

directional 1d FW operators:

(I2h
h )x1 ,

1
4

[
1 2 1

]
, (I2h

h )x2 ,
1
4

12
1

 .
A formula based on Kronecker tensor products for building up a FW restriction oper-
ator matrix R, reads

R =

d∏
i=1

(Ri)ki , (4.15)

(Ri)ki =

ki−1∏
l=0

[ d−1⊗
j=i

IN(d+i− j) ⊗O Ni
2(ki−l−1)

⊗

i−1⊗
j=1

I N(i− j)
2k(i− j)

]
.

The quantities involved in Equation 4.15 for the dummy subscript a, are:

Ia is the identity matrix of order (a − 1) × (a − 1).
Oa is the 1d FW restriction operator matrix, order =

( a
2 − 1

)
× (a − 1).

N = [N1,N2, · · · ,Nd], as in Equation 4.5.
K = [k1, k2, · · · , kd] is the coarsening request, ki is the number of (h → 2h) transfers
along the ith dimension.

Example 4.3.2. Quadrupling along one dimension The above description of K
means that ki = 2 for quadrupling along the ith dimension. Suppose that a certain
four-dimensional grid is given by N = [32, 32, 32, 128], and a transfer operator for
quadrupling along the 4th dimension has to be obtained through Equation 4.15, then
in this case K = [0, 0, 0, 2].

Once the FW restriction operator matrix in d-dimensions is set, the prolongation
(d-linear interpolation) operator matrix can be obtained by the following relation:

P = 2(
∑d

i=1 ki)(RT ). (4.16)

A generalized restriction operator Equation 4.15 gives us the freedom to experiment
with different types of coarsening strategies depending on the grid. Note that the
FW restriction operator given by Equation 4.15 provides the required matrix for any
number of coarsenings along any number of dimensions for an abstract d-dimensional
problem.

4.3.5 Computational Work for d-Multigrid

The practical feasibility of a d-multigrid method also has to take into account an esti-
mate of the computational work that it involves. Differing slightly from the notation
from [2, 8], we call this work-estimate W0, assuming that a particular multigrid method
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is based on a hierarchy of grids (Ω0,Ω1, · · · ,Ωl−1,Ωl,) where Ωl is the coarsest grid.
The computational-work W0 per multigrid cycle on Ω0 is modeled by the recursion:

Wl−1 = W l
l−1 + Wl, Wk = Wk+1

k + γk+1Wk+1 (k = l − 2, l − 3 · · · , 2, 1). (4.17)

Wk+1
k is the work estimate for a single 2-grid cycle (hk, hk+1) excluding the work

needed to solve the defect equation on Ωhk+1 and Wl is the work required to solve
exactly on the coarsest grid. It is reasonable to assume that the multigrid components
(relaxation, computation of residual and the transfer of grid functions) applied to a
single unknown require a number of arithmetic operations which -independent of k- is
bounded by a small constant C. With Mk the total number of unknowns at grid level k
we have,

Wk+1
k 6 CMk (k = l − 1, l − 2, · · · , 0).

For a fixed cycle index γ (the number of times the coarse grids are cycled) and with
the work on the coarsest grid neglected this leads to

W0 6 C
[
M0 + γM1 + γ2M2 + · · · + γl−1Ml−1

]
. (4.18)

Before we proceed further, we consider it important to point out at this stage that
the coarsening strategies (algorithms) that we use do not employ the same transfers
at all grid levels. Depending on the anisotropy of the system, Strategy-1 employs
(h → 2h) transfers (along the strongly coupled dimensions) so that after applica-
tion of this strategy at each level the grid comes closer to isotropy. When an accept-
able isotropy is achieved Strategy-1 resorts to standard full coarsening till the grid
is brought to the coarsest possible level which the particular discretization allows.
Strategy-2 is hybrid in the sense that it is composed of a mixture of standard and
quadrupling transfers, moreover, it is adaptive just like Strategy-1. In Strategy-2 we
employ full (h → 2h) transfers when isotropy is achieved. Note that for the type of
grid-induced anisotropy encountered in the sparse-grid solution method, the number
of dimensions along which the grid is coarsened, increases (or remains constant in the
case of an equidistant grid) at each successive level. This gives the following:

W0 6
2 j·s

(2 j·s − γ)
CM0,

W0 6
τ

(τ − γ)
CM0 for γ < τ = 2 j·s. (4.19)

Here j represents the number of dimensions coarsened and s = 1 for (h → 2h) trans-
fers and s = 2 for quadrupling. The worst case would be when the grid is highly
stretched along a single dimension, which implies that coarsening takes place only
along j = 1 dimension. With quadrupling, i.e. s = 2, this still renders τ = 4, which
implies that the complexity of the method is still O(M0) for γ = 1, 2, 3. This feature
makes quadrupling particularly attractive in higher dimensions for non-equidistant
grids. Strategy-1 also gives an O(M0) algorithm for γ = 1, 2, 3 as long as j ≥ 2
whereas for j = 1 one has to apply a V-cycle.

If the problem is isotropic with an equidistant grid, we essentially have s = 1 and
j = d, which gives the work estimates that appear in Table 4.1.
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Table 4.1: Multigrid work estimates for isotropic problem on equidistant grids.

γ d = 2 d = 3 d = 4 d = 5 d = 6

1 4
3 CM0

8
7 CM0

16
15 CM0

32
31 CM0

64
63 CM0

2 2 CM0
4
3 CM0

8
7 CM0

16
15 CM0

32
31 CM0

4 O(M0 log2 M0) 2 CM0
4
3 CM0

8
7 CM0

16
15 CM0

The 2d and 3d results are well-known [2], and an estimate for a general d (isotropic
problem on equidistant grid) can be obtained by setting j = d in Equation 4.19.

This leads us now to apply the standard multigrid procedure to our model prob-
lem as the multigrid components have been adjusted for a general multidimensional
setting, along with a computational complexity estimate.

4.4 Optimal Relaxation Parameters for ω-RB Jacobi

In this section, we concentrate on the efficient evaluation of relaxation parameters in
context of the coarsening strategies developed in Section 4.3.2. For the most part in
this section we carry on the definitions and notations used earlier in Chapter 3, and as
present in [8, 9] and [7, 30].

Consider the d-dimensional anisotropic diffusion operator

−

d∑
i=1

εi
∂2

∂x2
i

with εi > 0. (4.20)

The anisotropy is further induced by the use of unequal mesh sizes as well as by
the unequal dimensions of the domain. Therefore, the first step in the analysis is
to simplify the operator, which makes the analysis more convenient. In this regard,
we first get rid of the effect that spatial non-uniformity brings, by considering an
equivalent operator on an equidistant (hyper) square grid, i.e.,

−

d∑
i=1

c̄i
∂2

∂x2
i

with c̄i ∈ (0,∞) (4.21)

(where c̄i are given by Equation 4.13), and then scaling the real positive coefficients c̄i

as in [7, 30], as follows:

−

d∑
i=1

ci
∂2

∂x2
i

with ci = c̄i/

d∑
j=1

c̄ j and hence
d∑

i=1

ci = 1. (4.22)

In this section, anisotropies are modeled by the coefficients ci, which is more appro-
priate for the analysis.
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Table 4.2: µ(1), ωopt and associated µ(ωopt) for ν = 1 relaxation sweep.

Left: Doub. along all dims., equidistant grid, isotropy, O(h2).
Right: Quad. along all dims., equidistant grid, isotropy, O(h2).

Doubling (h→ 2h)
d µ(1) ωopt µ(ωopt) ωub

2 0.25 1.049 0.16 1.072
3 0.44 1.133 0.23 1.144
4 0.56 1.195 0.28 1.202
5 0.64 1.243 0.31 1.250
6 0.69 1.283 0.35 1.285

Quadrupling (h→ 4h)
µ(1) ωopt µ(ωopt) ωub

0.73 1.315 0.31 1.316
0.81 1.398 0.40 1.393
0.86 1.454 0.45 1.455
0.89 1.496 0.50 1.502
0.90 1.528 0.53 1.519

Left: Doub. along 1 dim., non-equidistant grid, 128 × 32(d−1), O(h2).
Right: Quad. along 1 dim., non-equidistant grid, 128 × 32(d−1), O(h2).

Doubling (h→ 2h)
d µ(1) ωopt µ(ωopt) ωub

2 0.125 0.946 0.08 1.033
3 0.125 0.963 0.10 1.033
4 0.125 0.980 0.11 1.033
5 0.125 0.997 0.122 1.033
6 0.15 1.013 0.13 1.04

Quadrupling (h→ 4h)
µ(1) ωopt µ(ωopt) ωub

0.52 1.182 0.22 1.181
0.55 1.190 0.25 1.197
0.57 1.199 0.27 1.207
0.59 1.209 0.29 1.219
0.60 1.219 0.30 1.225

The corresponding eigenvalues (Fourier symbols) of L2o
h and L4o

h read:

L̃2o
h (θ) =

2
h2

1 − d∑
i=1

ci cos (θi)

 and

L̃4o
h (θ) =

1
6h2

15 −
d∑

i=1

ci (16 cos (θi) − cos (2θi))

 ,
respectively.

Consequently, we derive the Fourier symbols of ω-Jacobi relaxation for L2o
h and

L4o
h discrete operators from Equation 3.10 as:

A2o(θ, ω) = 1 − ω
h2

2
L̃h(θ) = 1 − ω

1 − d∑
i=1

ci cos (θi)

 and

A4o(θ, ω) = 1 − ω
6h2

15
L̃h(θ) = 1 − ω

1 − 1
15

d∑
i=1

ci (16 cos (θi) − cos (2θi))

 ,
respectively, see [18, 7, 30]. A rigorous version is derived in Appendix B. From
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Table 4.3: µ(1), ωopt and associated µ(ωopt) for ν = 2 relaxation sweeps.

Left: Doub. along all dims., equidistant grid, isotropy, O(h2).
Right: Quad. along all dims., equidistant grid, isotropy, O(h2).

Doubling (h→ 2h)
d µ(1) ωopt µ(ωopt)

2 0.25 1.0107 0.23
3 0.44 1.1136 0.28
4 0.56 1.1832 0.31
5 0.64 1.2356 0.35
6 0.69 1.2771 0.37

Quadrupling (h→ 4h)
µ(1) ωopt µ(ωopt)

0.73 1.3062 0.39
0.81 1.3928 0.46
0.86 1.4507 0.50
0.89 1.4934 0.53
0.90 1.5266 0.56

Left: Doub. along 1 dim., non-equidistant grid, 128 × 32(d−1), O(h2).
Right: Quad. along 1 dim., non-equidistant grid, 128 × 32(d−1), O(h2).

Doubling (h→ 2h)
d µ(1) ωopt µ(ωopt)

2 0.23 0.8490 0.18
3 0.23 0.8682 0.19
4 0.23 0.8858 0.19
5 0.23 0.9022 0.20
6 0.23 0.9174 0.20

Quadrupling (h→ 4h)
µ(1) ωopt µ(ωopt)

0.52 1.1598 0.30
0.55 1.1735 0.31
0.57 1.1864 0.32
0.59 1.1986 0.32
0.60 1.2100 0.33

Left: Doub. along all dims., equidistant grid, isotropy, O(h4).
Right: Quad. along all dims., equidistant grid, isotropy, O(h4).

Doubling (h→ 2h)
d µ(1) ωopt µ(ωopt)

2 0.28 1.0260 0.25
3 0.46 1.1108 0.29
4 0.57 1.1683 0.33
5 0.65 1.2128 0.36
6 0.70 1.2492 0.38

Quadrupling (h→ 4h)
µ(1) ωopt µ(ωopt)

0.76 1.3110 0.40
0.84 1.3782 0.47
0.87 1.4238 0.52
0.90 1.4579 0.55
0.91 1.4847 0.58

Left: Doub. along 1 dim., non-equidistant grid, 128 × 32(d−1), O(h4).
Right: Quad. along 1 dim., non-equidistant grid, 128 × 32(d−1), O(h4).

Doubling (h→ 2h)
d µ(1) ωopt µ(ωopt)

2 0.24 0.8859 0.20
3 0.26 0.8957 0.21
4 0.25 0.9122 0.22
5 0.25 0.9268 0.22
6 0.25 0.9399 0.23

Quadrupling (h→ 4h)
µ(1) ωopt µ(ωopt)

0.59 1.1900 0.35
0.61 1.1942 0.37
0.62 1.2046 0.38
0.64 1.2146 0.38
0.65 1.2243 0.39
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Chapter 3, Equation 3.26, we have

µ(ω) := sup
θ∈T low

{
ν

√
ρ
(
Q̃H

h (θ)S̃ ν
h(θ, ω)

)}
.

which we now use to determine the optimal relaxation parameters for ω-RB Jacobi
in d-dimensions. Towards this end, the first step is to define and subsequently dis-
cretize the low frequency subdomain. Theoretically, the number of frequency divi-
sions should match the number of divisions employed for discretizing the problem,
[9]. However, much fewer points in the frequency domain usually suffice to determine
near optimal parameters. Irrespective of doubling or quadrupling, the low frequency
Fourier domain gets extended with partial coarsening, and theoretically all these fre-
quencies should be accounted in the optimization code (that searches out the best ω).
The practical situation is somewhat different. It is always sufficient to search within
the set of frequencies in the smallest low frequency domain, i.e., the low frequency
domain for full coarsening. This is due to the fact that all frequencies outside this do-
main alias with a frequency inside this domain, and therefore redundant optimization
checks can be easily eliminated. This is not intended to convey, that all frequencies
outside the low frequency domain (for full coarsening) are high frequencies. The ac-
tual filtering of low and high frequencies according to the coarsening strategy is done
by the projection operator.

The next important step is to define the projection operator QH
h precisely for the

coarsening strategy at hand. Partial coarsening (based on doubling) along a subset
of the dimensions is also incorporated simply by modifying the projection operator
Q̃H

h in the optimization code. In this case all those indices α would be considered as
corresponding to a low frequency that have a zero at all the positions corresponding
to the coarsened dimensions, regardless of the entry at the positions corresponding to
the non-coarsened dimensions.

Partial quadrupling is incorporated as before by a modification of the projection
operator only. The projection operator in any case (partial or full) should contain zeros
for all indices α that index a frequency as low, and ones for all indices that index a
frequency as high. Indices α are d-tuples. Each one of the d positions, within the
d-tuple index, represents a dimension. We categorize an index (and subsequently the
frequency it is attached with) as high -if- at the positions corresponding to quadrupled
dimensions, the index contains a [±1/2 or 1] OR a [1] at the positions corresponding to
doubled dimensions; otherwise we categorize it as low.

This describes how the optimal Red-Black relaxation parameters can be computed
through a computer program. Note that there are explicit (but very lengthy) analytical
formulas for the optimal relaxation parameters ωopt in case of full coarsening applied
to the second order discretization [18, 30]. Moreover, there is a close to optimal upper
bound ωub [30] for the optimal relaxation parameters which is given by the following
handy expression:

ωopt < ωub =
2

1 +
√

1 − µ(ω = 1)
.

For partial coarsening and especially for the fourth order discretization it seems to be
very difficult to derive analytic expressions for ωopt. However, for the second order
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discretization it turned out that ωub is a satisfactory approximation for ωopt even in
case of partial coarsening and quadrupling (but not necessarily an upper bound any-
more), see Table 4.2 which presents ωopt (optimized for ν = 1) and ωub for equidistant
and non-equidistant grids. This is a nice generalization of the results from [30]. For
the fourth order discretization this is no longer true and we have to stay with the nu-
merically derived values.

From the values in Table 4.3 (optimized for ν = 2) we see that the smoothness
enhancement effect of using optimal relaxation parameters is more prominent and pro-
nounced with Strategy-2. With Strategy-1 this enhancement becomes prominent in the
case of nearly isotropic problems (with grids that are equidistant along (d−2) or more
dimensions). With anisotropic problems where anisotropy is induced by discretization
on grids highly elongated along a single dimension (and dealt with Strategy-1), the
choice ω = 1 is more suitable -first- because the optimal values themselves are very
close to 1 and therefore do not bring about a substantial enhancement, -and second-
the cost of relaxation itself is cut down, which saves CPU-time.

4.5 Numerical Experiments
We now present the results of some of our numerical experiments. The emphasis is
on grid-induced anisotropies. The PDE is discretized on various equidistant and non-
equidistant grids and experimental results are presented. We measure the quality of
our multigrid method by the so-called contraction number, defined as follows:

Definition 4.5.1. (Multigrid contraction number) The only quantities available to
estimate the quality of a multigrid method are the defects di

h. We use this to define
the multigrid contraction number qm, measured over the last few (say, n) cycles of the
multigrid solution.

qm :=
(
‖dm

h ‖

‖dn
h‖

)1/m−n

. (4.23)

where m is the total number of cycles the multigrid algorithm takes to match the stop-
ping criterion (described later). We use the discrete L2 norm for measurements as
presented in [8].

The contraction number qm is a good empirical estimate of the multigrid asymp-
totic convergence factor ρ(Mh), i.e., the spectral radius of the actual multigrid iteration
operator (see Chapter 2, Section 2.2.3). The numerical results -presented in the Tables
(4.4 -4.7)- depict a close match between the theoretical smoothing factor µ, and qm. µ
is adapted from Equation 3.26.

We compute specific values of µ for each experiment (having its own coarsening
pattern), and display them for correspondence with the contraction numbers in all the
results. All the experiments employ one pre and one post smoothing, and so ν = 2
has already been incorporated in the displayed values of µ. The optimal relaxation
parameters ωopt that we employ are also computed for ν = 2. For each order of
accuracy and for each dimension (up to d = 6), we have chosen two kinds of grids,
one equidistant and one non-equidistant (highly stretched in one dimension).
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Table 4.4: Results of numerical experiments for V(1, 1) and W(1, 1) on equidistant
grids. The contraction number with the number of cycles consumed i.e. (qm/# it.)
is presented. For a correspondence-comparison the smoothing factors [µ(1)]2 and
[µ(ωopt)]2 (computed for coarsening based on the finest grid), is also displayed. Re-
sults presented include experiments with ω = 1 as well as ω = ωopt.

G = 1282 V W V W
[µ(1)]2 = 0.06 [µ(1.011)]2 = 0.05

O(h2)C2
2 0.10/8 0.06/7 0.09/8 0.05/7

G = 1282 [µ(1)]2 = 0.08 [µ(1.026)]2 = 0.06
O(h4)C4

4 0.13/9 0.10/8 0.12/9 0.08/7
O(h4)C4

2 0.10/8 0.07/7 0.09/8 0.05/7

G = 1283 V W V W
[µ(1)]2 = 0.20 [µ(1.114)]2 = 0.08

O(h2)C2
2 0.22/11 0.18/10 0.12/9 0.07/7

G = 643 [µ(1)]2 = 0.21 [µ(1.111)]2 = 0.08
O(h4)C4

4 0.26/12 0.22/11 0.16/10 0.09/8
O(h4)C4

2 0.24/12 0.21/11 0.13/9 0.07/7

G = 644 V W V W
[µ(1)]2 = 0.32 [µ(1.183)]2 = 0.10

O(h2)C2
2 0.33/14 0.30/12 0.16/10 0.08/7

G = 324 [µ(1)]2 = 0.33 [µ(1.168)]2 = 0.11
O(h4)C4

4 0.39/16 0.34/14 0.20/10 0.11/9
O(h4)C4

2 0.35/15 0.34/14 0.15/9 0.11/8

G = 165 V W V W
[µ(1)]2 = 0.41 [µ(1.236)]2 = 0.12

O(h2)C2
2 0.38/16 0.38/15 0.18/10 0.09/8

G = 86 V W V W
[µ(1)]2 = 0.48 [µ(1.277)]2 = 0.14

O(h2)C2
2 0.35/15 0.34/15 0.12/9 0.11/9

qm is displayed against the number of multigrid cycles that the experiment took to
reduce the following quotient:

‖bh − Ahum
h ‖

‖bh‖

by seven orders of magnitude. This termination criterion is equivalent to the one
based on relative residual reduction because our starting solution in these experiments
is always an all zero vector. The test function employed for the experiments is:

u(x) =

∑d
i=1 sin(dπ2xi)

dπ +
∑d

i=1 xi
, (4.24)

εi = 1 ∀ i, and Ω = (0, 1)d for all the problems. The values of this function at
the boundary are taken as Dirichlet boundary conditions and its analytically computed
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Table 4.5: Results of numerical experiments for V(1, 1) and W(1, 1) with Strategy-
1 on grids stretched along 1 dimension. The observed contraction number against
the number of cycles consumed i.e. (qm/# it.) is presented. For a correspondence-
comparison the smoothing factors [µ(1)]2 and [µ(ωopt)]2 (computed for coarsening
based on the finest grid), is also displayed. Results presented include experiments
with ω = 1 as well as ω = ωopt.

G = 512 × 32 V W V W
[µ(1)]2 = 0.05 [µ(0.835)]2 = 0.03

O(h2)C2
2 0.06/8 0.003/4 0.06/8 0.03/6

G = 512 × 32 [µ(1)]2 = 0.06 [µ(0.879)]2 = 0.04
O(h4)C4

4 0.10/8 0.03/6 0.09/8 0.07/7
O(h4)C4

2 0.10/7 0.02/6 0.05/7 0.04/6

G = 512 × 322 V W V W
[µ(1)]2 = 0.05 [µ(0.835)]2 = 0.03

O(h2)C2
2 0.20/11 0.005/4 0.12/9 0.03/6

G = 128 × 322 [µ(1)]2 = 0.06 [µ(0.978)]2 = 0.06
O(h4)C4

4 0.24/11 0.04/6 0.17/9 0.05/6
O(h4)C4

2 0.17/10 0.04/6 0.11/8 0.04/6

G = 128 × 83 V W V W
[µ(1)]2 = 0.05 [µ(0.836)]2 = 0.03

O(h2)C2
2 0.20/11 0.007/4 0.11/8 0.04/5

G = 128 × 323 [µ(1)]2 = 0.06 [µ(0.9121)]2 = 0.05
O(h4)C4

4 0.33/13 0.04/6 0.21/9 0.06/6
O(h4)C4

2 0.27/12 0.05/6 0.15/9 0.03/6

G = 128 × 84 V W V W
[µ(1)]2 = 0.05 [µ(0.837)]2 = 0.03

O(h2)C2
2 0.24/12 0.009/4 0.11/8 0.04/6

G = 128 × 85 V W V W
[µ(1)]2 = 0.05 [µ(0.837)]2 = 0.03

O(h2)C2
2 0.27/13 0.009/5 0.12/9 0.04/6

Laplacian forms the source function for these experiments. The experiments include
the V -and the W-cycles. In some of the experiments the grids used for the O(h2) op-
erator are different from the ones for the O(h4) operator. This only serves the purpose
of accumulating results for slightly different-sized experiments. C2

2 indicates the use
of the second order stencil along all coarsened and non-coarsened dimensions, like-
wise for C4

4. C4
2 indicates the use of the O(h4)-long-stencil along all non-coarsened

dimensions and the use of the O(h2)-stencil on the coarse grids along the dimensions
where coarsening takes place. This hybrid coarse grid discretization gives 4th order
accuracy and converges faster than the conventional 4th order long stencil.

Table 4.4 presents experimental results for equidistant grids. A comparison of
the convergence results with and without optimal relaxation parameters indicates the
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Table 4.6: Results of numerical experiments for V(1, 1) and W(1, 1) with Strategy-2
on grids stretched along 1 dimension. The contraction number with the number of
cycles employed i.e. (qm/# it.) is presented. For a correspondence-comparison the
smoothing factors [µ(1)]2 and [µ(ωopt)]2 (computed for coarsening based on the finest
grid), is also displayed. Results presented include experiments with ω = 1 as well as
ω = ωopt.

G = 512 × 32 V W V W
[µ(1)]2 = 0.25 [µ(1.147)]2 = 0.09

O(h2)C2
2 0.27/13 0.24/11 0.14/10 0.08/9

G = 512 × 32 [µ(1)]2 = 0.32 [µ(1.190)]2 = 0.12
O(h4)C4

4 0.34/14 0.31/13 0.20/10 0.13/8
O(h4)C4

2 0.31/13 0.30/13 0.12/9 0.09/7

G = 512 × 322 V W V W
[µ(1)]2 = 0.25 [µ(1.147)]2 = 0.09

O(h2)C2
2 0.30/13 0.24/11 0.17/13 0.08/10

G = 128 × 322 [µ(1)]2 = 0.37 [µ(1.194)]2 = 0.14
O(h4)C4

4 0.34/14 0.35/14 0.22/10 0.13/9
O(h4)C4

2 0.34/14 0.35/14 0.16/9 0.12/8

G = 128 × 83 V W V W
[µ(1)]2 = 0.25 [µ(1.148)]2 = 0.09

O(h2)C2
2 0.32 0.24/11 0.16/13 0.08/10

G = 128 × 323 [µ(1)]2 = 0.39 [µ(1.205)]2 = 0.14
O(h4)C4

4 0.38/16 0.37/15 0.24/11 0.14/9
O(h4)C4

2 0.38/16 0.36/14 0.22/11 0.12/8

G = 128 × 84 V W V W
[µ(1)]2 = 0.26 [µ(1.149)]2 = 0.09

O(h2)C2
2 0.35/15 0.24/11 0.17/13 0.08/10

G = 128 × 85 V W V W
[µ(1)]2 = 0.26 [µ(1.150]2 = 0.09

O(h2)C2
2 0.38/16 0.24/11 0.18/13 0.08/10

benefits of using them for multidimensional problems. The cut down in the multi-
grid convergence factor as well as in the number of required multigrid cycles is quite
significant for d ≥ 3.

Table 4.5 presents experimental results for non-equidistant grids which we have
chosen to be highly stretched in only one dimension. Because of this characteristic
these experiments are computationally more expensive than any other as coarsening
takes place only along the elongated dimension. This is exactly the opposite of the
previous case, where coarsening took place along all dimensions and hence the cut
down in the number of unknowns at each level was optimal. In this table we display
the results that we get from Strategy-1 which is based purely on h → 2h transfers.
Optimal relaxation parameters in this case pay off only with V-cycles, with ω = 1



4.5. Numerical Experiments 57

serving as a perfect compromise with W-cycles.

Table 4.7: A general 5d experiment on a non-equidistant grid. The finest grid is given
by G = [32 8 8 128 32]. The domain is Ω = (0.11, 1.21)×(0.5, 1.51)×(0.25, 1.26)×
(0, 1) × (0, 1.11), and the constant coefficients c = [200.33, 10−7, 2, 1.5, 200.49].
[H]

Strategy 1 V W V W
[µ(1)]2 = 0.08 [µ(1.031)]2 = 0.058

O(h2)C2
2 0.13/11 0.07/9 0.08/9 0.058/8

Strategy 2 V W V W
[µ(1)]2 = 0.55 [µ(1.319)]2 = 0.16

O(h2)C2
2 0.53/31 0.53/31 0.16/11 0.14/11

In Table 4.6 we have reworked the experiments of Table 4.5 but with Strategy-2
this time. Partial quadrupling (Strategy-2) ensures an O(M0) algorithm even with grids
of this type. Note that the computational complexity of the experiments in Table 4.5
is O(M0 log2 M0), even though the multigrid convergence factor is quite impressive
there. These results show the important role of optimal relaxation parameters in en-
hancing convergence of multigrid with quadrupling transfers.
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Figure 4.1: Convergence behaviour of different multigrid cycles for a 4d problem, on
a non-equidistant grid [64 64 64 16] (anisotropy with 3,750,705 unknowns)

To make the discussion complete we have included some more experiments on a
nearly equidistant grid. The results are reported in Figure 4.1. The contraction number
qm is plotted against the number of cycles. A comparison of the results of Strategy-1
and Strategy-2 suggests that for these kind of grids, a combination of Strategy-2 with
V-cycles and optimal relaxation parameters works very nicely.

We also performed a general 5d anisotropic experiment. The different domain di-
mensions are not equal. The results are displayed in Table 4.7. Clearly, V-cycles with
optimal weighting in the relaxation process coupled with either coarsening strategy
gives excellent results. We would like to point out that we expect Strategy-1 to be
more dependable than Strategy-2 if the number of dimensions coarsened on the finest
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grid is greater than d/2.

Remark 4.5.1. (Reaching FMG optimality) The multigrid convergence factors dis-
played in the tables are mostly under 0.1, implying that a full multigrid algorithm
starting on the coarsest grid is expected to reach an approximate solution up to the
discretization accuracy in just one or two cycles.

Remark 4.5.2. (Solving problems on very coarse grids) It is also important to point
out that for very coarse discretization grids (say 8 points along all dimensions), the
asymptotic convergence of the iterative method ω-RB Jacobi is also quite satisfactory.
A 6d problem (on a very coarse finest grid) takes the same CPU-time to asymptotically
converge with ω-RB Jacobi as with multigrid.



Chapter 5
d-Multigrid as Bi-CGSTAB
preconditioner

In this chapter we present a robust solver based on the Krylov subspace method Bi-
CGSTAB combined with the d-multigrid method as a preconditioner. Instead of de-
veloping the perfect multigrid method, as a stand-alone solver for a single problem
discretized on a certain grid, we aim for a method that converges well for a wide class
of discrete problems arising from discretization on various anisotropic grids. This is
exactly what we encounter during a sparse grid computation of a multidimensional
problem.

5.1 Overview: d-Dimensional PDEs & Methods
Multidimensional PDEs can be parabolic, and they have application in a variety of
fields, as we discussed in Chapter 4, Section 4.1. In the context of their numerical
approximation there are two main limiting factors on computing speed; one is the
phenomenon of temporal march of successive solutions and the other is the multiple
spatial-dimensionality of the problem which renders an exponential computational
complexity on regular tensor product grids. Traditionally, this exponential growth in
the number of discrete unknowns is known as the curse of dimensionality [40], and
it has continually eluded and marred solution techniques. The sparse grid solution
method [41, 42, 43] relieves this so-called curse to some extent (and for a limited
kind of problems). The technique consists of discretizing the problem on many grids,
each with lesser number of nodes (sparse grids), solving these subproblems, and then
combining the solutions to obtain a mimic of the solution on the original dense grid.
Different combination techniques can be employed; we use the technique proposed in
[42].

The efficiency of the sparse grid solution method depends on the efficient solution
of the underlying subproblems, some of which are highly anisotropic, and each of
which has the same spatial dimensionality as the original problem. This was one of

59
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the principal reasons for the development of d-multigrid in Chapter 4. In this chapter,
we take on a challenging multidimensional application problem from mathematical
finance, and develop a solver based on d-multigrid preconditioned Bi-CGSTAB.

Bi-CGSTAB [44] is well known and belongs to the Krylov family of general pur-
pose iterative solvers. It is widely accepted that all iterative solvers based on Krylov
subspaces require preconditioning for faster convergence. Preconditioning is a process
aimed at clustering the scattered eigenvalues of the coefficient matrix. It is important
to point out that the performance of stand alone multigrid is dependent significantly
on the choice of optimal parameters and components, especially for high-dimensional
problems; however, this is not quite the case when multigrid is used as a precondi-
tioner. By choosing multigrid as a preconditioner we do not need to search for the
ideal under-relaxation, which is grid anisotropy dependent, but can rather stay with
fixed parameters. Important theoretical and experimental insights into multigrid pre-
conditioning of Krylov subspace solvers can be had from earlier work in this context
[45, 46, 14].

In Section 5.2 we point out that the Black-Scholes multi-asset option pricing PDE
can be reduced to a standard d-dimensional diffusion equation, which underscores
the need of an efficient solver for discrete diffusion systems. Next, in Section 5.3
we present the sparse grid technique along with the computation of accuracy bounds.
Section 5.4 deals with the preconditioner and its components which include point
smoothing and grid transfer strategies. These strategies are based on the idea of re-
peated partial coarsening in the direction(s) of strong coupling. In Section 5.5 we
present experimental results based on the full grid solution method. This includes
results for d-multigrid employed both as a stand alone solver as well as a precondi-
tioner. Section 5.6 contains results from numerical experiments (on the model prob-
lem) based on the sparse grid technique with d-multigrid preconditioned Bi-CGSTAB.
There we demonstrate in tables and figures the results that we get; and finally, in Sec-
tion 5.7 we solve the same transformed Black-Scholes PDE of Section 5.2, exhibiting
the convergence of the proposed method in a real application.

5.2 Financial Application with Model Problem
The multi-asset Black-Scholes option pricing (parabolic) PDE [47] is defined as:

∂V
∂t

+
1
2

d∑
i=1

d∑
j=1

ρi jσiσ jS iS j
∂2V

∂S i∂S j
+

d∑
i=1

(r − δi) S i
∂V
∂S i
− rV = 0, (5.1)

(0 < S 1, ..., S d < ∞, 0 6 t < T ).

V stands for the option price; S i are the d underlying asset prices; t, the current time;
ρi j, the correlation coefficients between the ith and the jth asset prices; σi, the volatility
of the ith asset price; r, the risk free interest rate and δi the continuous dividend yield
for asset i. The equation comes with a final condition,

V(S,T ) = max{
d∑

k=1

wkS k − K, 0}, (5.2)
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where K is the exercise price and 0 ≤ wk ≤ 1 are the weights of the assets in the
basket. The PDE represented by Equation 5.1 is a second order partial differential
equation in d dimensions and 2d boundary conditions are mandatory. As the asset
price domain is truncated S k ∈ [0, S max

k ], we first of all need a boundary condition
at S k = 0. When using the reduced form of Equation 5.1, where every coefficient
belonging to a derivative with respect to S k vanishes at S k = 0, a (d − 1)-dimensional
partial differential equation remains at the boundary. This is sometimes called the
natural boundary condition. In particular, the boundary condition at S 1 = 0 or S 2 = 0
for a 2-asset option is represented by the well known 1D Black-Scholes equation for
a vanilla option.

Also for S k = S max
k a boundary condition must be prescribed. If S max

k is large
enough, i.e. wkS max

k � K, a linearity condition can be applied, which means that the
option price can be assumed to show a linear growth in that coordinate direction. In
this case we set the second derivative with respect to S k equal to zero at that boundary.
All other derivatives remain present. An appropriate size of the truncated domain is
important for this boundary condition not to have a negative effect on the option prices
at the spot price and/or at the exercise price K.

It has been shown [47, 48] that Equation 5.1 under the following simple log trans-
form of the asset price S i:

xi =
1
σi

(
r −

σi
2

2

)
τ +

1
σi

lnS i, i = 1, 2, ..., d; (5.3)

τ = T − t,

converts into the d-dimensional diffusion equation, given by:

∂V
∂τ

=
1
2

d∑
i=1

∂2V
∂xi

2 , −∞ < xi < ∞, 0 < τ 6 T, (5.4)

Thus we choose the d-dimensional diffusion equation, with transformed initial condi-
tions and Dirichlet boundary conditions, to serve as our model problem, in this chapter.

In what follows x is a d-tuple x = (x1, x2, · · · , xd). For {ai, bi, ci, τ1, τ2} ∈ R and
ci > 0 the model problem reads:

∂

∂t
u(x, t) =

d∑
i=1

ci
∂2

∂xi
2 u(x, t); x ∈

Ω =

d∏
i=1

[ai, bi]

 ⊂ Rd; t ∈ [τ1, τ2]; (5.5)

u(x, t) = f Γ(x, t); x ∈ Γ = ∂Ω; xi ∈ {ai, bi}.

We use the implicit (second order) Crank-Nicolson time stepping scheme for the tem-
poral discretization. The spatial part is handled by second order FDM, also used in
Chapter 4. For the model problem we set Dirichlet boundary conditions at all spa-
tial boundaries of the domain. In contrast with Chapter 4, we use the non-eliminated
boundary scheme in this chapter. This is helpful for transition between the actual
application and the model problem. The spatial discretization grid is given by N =

[N1,N2, · · · ,Nd], Ni represents the number of divisions along the ith dimension, and
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the total number of points in the finest grid (incl. boundaries) is M =
∏d

i=1(Ni + 1).
As in Chapter 4, we represent the index of a grid point by a d-tuple ( jd, j(d−1), · · · , j1)

Written in terms of matrix operators, the Crank-Nicolson time stepping scheme
reads:

(Lh + Dk)uh,k(x, t + k) = (−Lh + Dk)uh,k(x, t) (5.6)

The matrix operators have the order (M × M). Dk is a diagonal matrix containing 1/k

on the main diagonal, and Lh is the iteration matrix obtained similarly as in Chapter 4,
Section 4.2.2. Kronecker tensor products are employed in this work for defining the
d-dimensional operators. This completes the discretization.

5.3 The Sparse Grid Method
Consider the task of the numerical approximation of a parabolic d-dimensional prob-
lem discretized with 2n points per spatial coordinate. Without loss of clarity we sub-
stitute N for this number. The grid thus formed is termed as a full grid and a full
grid based solution process involves (at the minimal), vectors of the size 2n.d. For 6
space dimensions and only 32 divisions along each axis, the storage cost is around
9 gigabytes per vector, and grows worse for increasing d. The sparse grid approach,
developed by Zenger and co-workers [41, 43] is a technique that splits the full grid
problem of M = Nd points up into layers of subgrids. Each sub-grid represents a
coarsening in several coordinates up to a minimal required number of points. In the
so-called sparse grid combination technique, the partial solutions that are computed
on these grids, are combined a-posteriori by interpolation to a certain point or region.

Definition 5.3.1. Sparse grid multi-index A multi-index for a d−dimensional grid is
denoted by Id, and is a d−tuple ni, i = 1, . . . , d, which represents a d-dimensional
grid with Ni grid points in coordinate i, with Ni = 2ni . The sum of a multi-index |Id | is
defined by:

|Id | =

d∑
i=1

ni (5.7)

Example 5.3.1. Layer number According to Definition 5.3.1 the multi-index Id of a
full grid with N = 2n points per coordinate reads Id = {n, n, . . . , n}, with |Id | = nd
being the layer number.

The full grid solution will be denoted by u f
n ; the sparse grid solution after the

combination will be denoted by uc
n and the exact solution by uE . Now, we can define

the sparse grid solution [42], as:

Definition 5.3.2. The sparse grid solution The combined sparse grid solution uc
n

corresponding to a full grid solution u f
n reads

uc
n =

n+d−1∑
k=n

(−1)k+1
(
d − 1
k − n

) ∑
|Id |=k

u f
Id
, (5.8)

with u f
Id

being the solution of the problem on a grid with multi-index Id such that |Id |

equals k.
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Figure 5.1: Construction of a 2D sparse grid; (a)–(d): grids on layer 5, (e)–(g): grids
on layer 4; (h) combined sparse grid solution

For solutions having bounded mixed derivatives, the sparse grid representation (for
most practical purposes) can be used instead of the full grid solution. For a simple 2d
case, the subgrids (as constructed by the sparse grid scheme) are depicted in Figure
5.1, Diagrams (a) - (g). Note that the shape of the stretch in all these grids is different,
which implies that in each of these subproblems we have a different grid induced
anisotropy. If the subgrids are simply combined without any interpolation, which
means that all the evaluated points in every sub-grid are added with the binomial
coefficients given in Equation 5.8; then the number of points in the full grid with
ni = n reads N f = (2n)d. From Equation 5.8 it follows that the number of problems to
be solved in the sparse grid technique reads:

Zn,d =

n+d−1∑
k=n

(
k − 1
d − 1

)
=

n
d

(
n + d − 1

d − 1

)
−

n − d
d

(
n − 1
d − 1

)
(5.9)

Furthermore the number of points Nn employed in a grid with |Id | = n reads

Nn = 2n. (5.10)

Combining (5.9) and (5.10) results in the total number of points employed in the sparse
grid technique

Nc
n =

n+d−1∑
k=n

Nk

(
k − 1
d − 1

)
=

n+d−1∑
k=n

(
k − 1
d − 1

)
2k (5.11)
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It is known that the error of the discrete solution from a second order finite differ-
ence discretization of the 2D Laplacian can be split [49] as

u f
n − uE = C1(x1, h1)h2

1 + C1(x2, h2)h2
2 + D(x1, h1, x2, h2)h2

1h2
2 (5.12)

With the combination technique as in Definition 5.3.2 and the splitting in (5.12), the
dimension dependent absolute error (for the Laplacian), reads, [50]:

εn = |uc
n − uE | = O(h2

n

(
log2 h−1

n

)d−1
), (5.13)

with hn the finest mesh size along one dimension.

5.4 The d-Multigrid Preconditioner
We employ d-multigrid (described in ample detail in Chapter 4) as a preconditioner for
Bi-CGSTAB due to the robustness that the resulting solver possesses. The components
that we typically use for the work in this chapter, are (1) pointwise RB Jacobi for
smoothing, (2) DCG operator on the coarse grids, and (3) FW restriction and bilinear
prolongation for grid transfer. We use either one V(1, 1), or one F(1, 1) cycle for each
of the two preconditioning steps in standard Bi-CGSTAB.

An advantage of the pointwise smoothing method combined with the partial coars-
ening technique adopted here is that each problem in the sparse grid setting gets an in-
dividual treatment. The coarsening pattern is different for, -and automatically adapted
to each anisotropic grid that is involved . This may not be the case for a multigrid
method with a fixed coarsening and hyperplane smoothing strategy. Furthermore, a
multidimensional multigrid method based on a parallel pointwise RB Jacobi smooth-
ing method can be parallelized. Nevertheless, the parallelization of a multidimensional
algorithm is essentially non-trivial.

5.5 Experiments Based on the Full grid Solution Method
In this chapter full grid solution refers to a solution on a regular tensor product grid
(where the sparse grid technique is not used). As described in the previous section,
we have quite a strong and robust multigrid preconditioner. Before we actually use it
in the sparse grid setting, we would like to test its performance as a stand alone solver
versus as a preconditioner for Bi-CGSTAB in a full grid solution process.

5.5.1 d-Multigrid Performance in Stationary Cases
A useful numerical insight for time marching solution processes (our ultimate aim
here) comes from an insight into the stationary process per time step. We use the test
function given by Equation 4.24. We have conducted a number of numerical experi-
ments -isotropic and anisotropic- and have included the convergence graphs for them.
These graphs show the residual reduction against multigrid cycles for d-multigrid used
in these two contexts (solver and preconditioner). Multigrid is an O(M) solver (where
M is the number of unknowns on the finest grid) when optimal relaxation and ideal
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coarse grid correction are available. In such a situation multigrid is extremely ef-
ficient. Some of the graphs here show a tough competition between multigrid as a
solver against multigrid as a Bi-CGSTAB preconditioner. This happens due to the
fact that for the model problem the employed relaxation method and the coarse grid
correction form near optimal d-multigrid attributes. Evidently, in any situation where
tuning multigrid with optimal attributes is not a choice, multigrid works better as a
Krylov-preconditioner than as a stand alone solver.
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Figure 5.2: Convergence diagram for a 5-dimensional isotropic problem, 32 divisions
along each dimension.

First of all, we check out d-multigrid performance for a 5-dimensional isotropic
case, with 32 divisions along all dimensions of the domain. The number of unknowns
in the system is 39, 135, 393. In this case the V(1,1) multigrid (multigrid method based
on V cycles with 1 pre and 1 post smoothing steps) preconditioned Bi-CGSTAB far
out performs the V(1,1) multigrid solver; Figure 5.2, (here we choose ω = 1 in ω-RB
Jacobi). However, with ωopt = 1.24 included in the game (a possibility for the model
problem) the comparison is not as bright. This confirms that no great Krylov induced
enhancement should be expected when multigrid (as a solver) approaches optimality.

Next we present some experiments based on problems with discrete anisotropies
that result from discretization on a non-equidistant grid, i.e. a grid where the num-
ber of divisions is different along different dimensions of the hyper domain. We have
selected 3 multidimensional problems, each with a different discrete anisotropy. The
problems have been chosen with the aim of harvesting experimental results for grids
highly stretched along 1 dimension as well as grids highly stretched along multiple
dimensions. The anisotropies are handled with the partial coarsening schemes as il-
lustrated in Chapter 4, Section 4.3.2. The results appear in Figures 5.3, 5.4 and 5.5.
Here, we find that the F(1,1) MG cycles are more suited than V(1,1), both for the stand
alone multigrid solver as well as a preconditioner for Bi-CGSTAB, if the coarsening
strategy is based on doubling. Quadrupling suits the situation more when the grid is
stretched along only a few dimensions, (preferably < d/2) and when optimal relax-
ation parameters are available. However, with quadrupling, V(2,2) and F(1,1) cycles
seem to yield better results than V(1,1).

In Figure 5.6 we have only chosen the CPU-time scale (for presenting results)
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Figure 5.3: Convergence diagram for a 6-dimensional anisotropic problem, grid
stretched along d/2 dimensions and given by N = [32, 8, 32, 8, 32, 8]. # of unknowns
is 26,198,073. Diagram (a) shows a comparison between multigrid as a solver and
multigrid as a preconditioner, on the iteration scale, Diagram(b) on the CPU-time
scale.
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Figure 5.4: Convergence diagram for a 7 dimensional anisotropic problem, grid
stretched along 1 dimension, and given by N = [8, 8, 8, 64, 8, 8, 8], # of unknowns
is 34,543,665.

because with difference in the transfer scheme (doubling vs quadrupling), the number
of multigrid cycles are not really comparable. Quadrupling -in contrast with doubling-
relies on optimal relaxation to quite some extent; in fact, the better the relaxation
process the shorter the CPU-time. This points us to the fact that if optimization in
the relaxation process is an impossibility we might be better off with doubling for all
kinds of grid based discrete anisotropies.
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Figure 5.5: Convergence diagram for a 4 dimensional anisotropic problem, grid
stretched along (d − 1) dimensions, and given by N = [128, 128, 128, 8], # of un-
knowns is 19,320,201
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Figure 5.6: Convergence diagrams comparing d-multigrid based on doubling trans-
fers against quadrupling transfers for V(2,2) -Diagram (a)- and F(1,1) -Diagram(b)-
multigrid cycles. This 5 dimensional problem is discretized on N = [8, 8, 2048, 8, 8],
# of unknowns is 13,443,489.

5.6 Experiments Based on the Sparse grid Solution

5.6.1 d-Multigrid as a Preconditioner in the Time-independent Case
As the solver works for every kind of grid that might arise within the sparse grid
setting (as described in section 4), the aim is now to reach a reasonable number of
dimensions. The test function for the sparse grid stationary experiment reads:

u(x) =

d∏
i=1

ex2
i = exp

 d∑
i=1

x2
i

 , (5.14)

with Ω = [0, 1]d, ci = 1. The approximation is done for 2 6 d 6 8 with a mimic of the
grid with 1024 cells per coordinate. In a full grid setting the maximum problem would
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have a size of 10248 = 280, i.e., 253 GB of memory, which is - of course - immensely
huge. The maximum size of an 8D problem in the sparse grid setting chosen here is

Table 5.1: Time independent experiments of problem (5.14) using sparse grids. TOP:
is the 2d case. BOTTOM: 8d case. Column one gives nmax, the largest number of cells
in one coordinate.

nmax Value Error Conv Time #probl Th. Conv

d=2

16 1.65 5.52 · 10−3 3.05 0.04 sec. 7 3.00
32 1.65 1.72 · 10−3 3.21 0.07 sec. 9 3.20
64 1.65 5.16 · 10−4 3.34 0.10 sec. 11 3.33
128 1.65 1.50 · 10−4 3.43 0.12 sec. 13 3.43
256 1.65 4.30 · 10−5 3.50 0.16 sec. 15 3.50
512 1.65 1.21 · 10−5 3.55 0.25 sec. 17 3.56

1024 1.65 3.36 · 10−6 3.60 0.33 sec. 19 3.60

d=8

16 7.63 2.43 · 10−1 1.50 18.51 sec. 165 0.53
32 7.54 1.48 · 10−1 1.64 1m 51s 495 0.84
64 7.47 8.33 · 10−2 1.77 9m 38s 1287 1.12
128 7.43 4.40 · 10−2 1.89 40m 4s 3003 1.36
256 7.41 2.20 · 10−2 2.00 2h 31m 7s 6435 1.57
512 7.40 1.04 · 10−2 2.10 9h 8m 45s 12869 1.75

1024 7.39 4.76 · 10−3 2.19 29h 40m 12s 24301 1.91

1024 × 27 = 217, which is only 1 MB. The solution at the central point in the domain
xi = 0.5 is computed here. The results are described in detail for d = 2 and d = 8 in
Table 5.1 and the error and convergence for all values of d are plotted in Figure 5.7. In
the table, the time indicated is the total computational time for the sparse grid solution
including the interpolation. The number of problems #probl is as in Equation 5.9 and
the theoretical convergence Th.Conv from Equation 5.13.

The table and figures show the dependence of the number of dimensions in the
convergence according to the theoretical convergence ratio in equation (5.13). Al-
though the theoretical convergence of the sparse grid method is low when d is high at
small numbers of nmax (the largest number of cells in one direction), the convergence
in this test experiment is reasonable. A possible reason may be the smoothness of the
analytic solution.

Table 5.2 presents a comparison of the total number of multigrid cycles when
multigrid is employed both as a solver as well as a preconditioner for Bi-CGSTAB
for solving all sparse grid subproblems on a layer of a d-dimensional problem, with
increasing d. Presented are the maximum, the minimum and the average numbers of
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Figure 5.7: LEFT: Decay of the error |uc
n − uE |, with uE the exact solution (5.14).

RIGHT: Convergence of the error in the left picture.

iterations, as well as the total number of subproblems solved on which these numbers
are based. The stopping criterion is the residual being smaller than 10−14, which
is severe but gives a good insight in the comparison. For both solvers we choose
smoothing relaxation parameter ω = 1. We see that the average number of multigrid
cycles -when multigrid is used as a preconditioner instead of being used as a solver-
does not reduce significantly for low values of d. However the cycle difference in
the two usages does become significant for higher d because then the total number of
subproblems also increase binomially. As the number of subproblems to be solved is
more than 5000 for the 7D problem a gain in average of about 2 multigrid iterations
is still interesting. The time for the highest level in the case d = 8 was over 105

seconds which is 28 hours. However, the number of subproblems is 24300, so the
average computational time per grid is only 5 seconds. If the sparse grid method is
parallelized over 10 machines, the time would be 2.8 hours in total, because the sparse
grid is only a combination technique of subproblems.

5.6.2 d-Multigrid as a Preconditioner in the Time dependent Case
For the time dependent case, we choose as the test problem solution,

u(x, t) = et
d∏

i=1

e
xi√

d = exp

t +
1
√

d

d∑
i=1

xi

 , (5.15)

with Ω = [0, 1]d, t > 0 and ci = 1. The approximation is done for 2 6 d 6 5 with
1024 cells as the maximum number per coordinate in the sparse grid technique. The
solution of the central point in the domain xi = 0.5 is computed at time t = 0.1. The
number of time steps used is fixed at 400.

The grid convergence results are described in detail for d = 2 and d = 5 in Table
5.3 and the errors and convergence for all values of d are plotted in Figure 5.8. In the
table, again “time” is the total computation time for the complete sparse grid solution
including the interpolation and time integration. The number of problems is as in (5.9)
and the theoretical convergence from equation (5.13).
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Table 5.2: Comparison of the total number of pure multigrid and multigrid precon-
ditioned Bi-CGSTAB iterations (maximum, minimum and average number), for all
the subgrids on the finest layer of a d-dimensional problem. # grids is the number of
subgrids involved in the sparse grid solution

d Max Min Average # grids
Bi-CGSTAB with MG

2 12.0 4.0 9.400 10
3 14.0 6.0 10.691 55
4 14.0 6.0 10.982 220
5 16.0 6.0 10.999 715
6 16.0 6.0 10.928 2002
7 16.0 6.0 10.791 5005
8 14.0 6.0 10.488 11440

Pure Multigrid
2 13.0 5.0 10.000 10
3 20.0 6.0 12.436 55
4 21.0 7.0 13.155 220
5 24.0 8.0 13.221 715
6 22.0 8.0 13.185 2002
7 21.0 8.0 12.997 5005
8 20.0 8.0 12.762 11440

Again, the results in the table and figures shows the dependence of the number
of dimensions in the error. The total time for the 5d computation is again relatively
small per grid and the accuracy results are satisfactory for the time dependent case.
The multigrid convergence remains excellent, as in the stationary test case above.

5.7 Multi-Asset Option

The last experiment is the computation of the price of a basket option by solving
equation (5.4) with the sparse grid technique. The corresponding initial condition
reads:

u(x, 0) = max

 d∑
i=1

wieσi xi − K, 0

, (5.16)

with wi percentages of the assets in the underlying basket, σi the volatility in asset i
and K the exercise price. This payoff function has a non-differentiability in the hyper-
plane when the basket sum equals the strike price. This will be problematic for the
sparse grid solution of this problem, as one requirement for sparse grid convergence is
that numerical solutions have bounded mixed derivatives [41]. Still we are interested
in the convergence of sparse grids for this option pricing problem.

The remaining problem parameters are set for each asset as
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Table 5.3: Time dependent experiments with solution (5.15) using sparse grids. TOP:
is the 2d case. BOTTOM: 5d case. Column one gives the maximum number of cells
per coordinate.

X = 0.5d Control
Grid Value Error Conv Time #probl Th. Conv

d=2
8 2.24 1.37 · 10−4 2.96 2.14 sec. 5 2.67

16 2.24 4.36 · 10−5 3.14 5.67 sec. 7 3.00
32 2.24 1.33 · 10−5 3.28 10.87 sec. 9 3.20
64 2.24 3.93 · 10−6 3.38 19.12 sec. 11 3.33

128 2.24 1.14 · 10−6 3.46 31.53 sec. 13 3.43
256 2.24 3.23 · 10−7 3.52 49.01 sec. 15 3.50
512 2.24 9.07 · 10−8 3.56 1m 10s 17 3.56
1024 2.24 2.56 · 10−8 3.54 1m 40s 19 3.60

d=5
8 3.38 9.67 · 10−5 1.98 9.02 sec. 21 0.79

16 3.38 4.45 · 10−5 2.17 36.99 sec. 56 1.27
32 3.38 1.92 · 10−5 2.32 2m 10s 126 1.64
64 3.38 7.83 · 10−6 2.45 7m 17s 251 1.93

128 3.38 3.06 · 10−6 2.56 21m 28s 456 2.16
256 3.38 1.15 · 10−6 2.65 1h 58s 771 2.34
512 3.38 4.24 · 10−7 2.72 3h 8m 18s 1231 2.50
1024 3.38 1.50 · 10−7 2.83 8h 57m 46s 1876 2.62
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Figure 5.8: LEFT: Decay of the error |uc
n − uE |, uE from (5.15). RIGHT: Convergence

of the error in the left picture.
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Table 5.4: Option prices of basket calls. TOP: Sparse grid option prices for d = 2 and
d = 3. BOTTOM: Option prices for the higher dimensions. n represents the maximum
number of point in one dimension

d=2 d=3
n Value Error Value Error
8 2.291 5.11 · 10−1 2.102 4.51 · 10−1

16 2.727 7.60 · 10−2 2.498 5.46 · 10−2

32 2.801 1.10 · 10−3 2.562 1.00 · 10−2

64 2.807 4.23 · 10−3 2.563 9.04 · 10−3

128 2.811 8.56 · 10−3 2.562 9.87 · 10−3

256 2.807 4.65 · 10−3 2.555 3.28 · 10−3

512 2.803 7.72 · 10−4 2.554 1.39 · 10−3

1024 2.803 6.52 · 10−4 2.553 3.61 · 10−4

d=4 d=5
8 1.983 4.32 · 10−1 1.896 4.32 · 10−1

16 2.364 5.05 · 10−2 2.273 5.42 · 10−2

32 2.429 1.45 · 10−2 2.343 1.57 · 10−2

64 2.427 1.19 · 10−2 2.341 1.36 · 10−2

128 2.422 7.02 · 10−3 2.331 3.97 · 10−3

256 2.420 5.35 · 10−3 2.335 7.88 · 10−3

512 2.417 2.69 · 10−3 2.330 2.28 · 10−3

1024 2.413 1.29 · 10−3 2.326 1.77 · 10−3

• wi = 1/d, 1 ≤ i ≤ d

• K =e 40,

• r = 6%,

• T = one year,

• σi = 20%, 1 ≤ i ≤ d

• δi = 4%, 1 ≤ i ≤ d

• ρi j = 0.25, i , j.

The price of the option is computed for 2 6 d 6 5 where d represents the number
of assets in the basket. The outer domain boundaries are placed at S = 5K to mimic
infinity in (5.1). In the x−domain, this means that Ω = [−σ−1

i log 5, σ−1
i log 5]d. The

sparse grid approximation contains grids with at most 1024 cells per coordinate and
with 128 time steps. The results of the experiments are summarized in Table 5.4.

In the table, satisfactory grid convergence is observed for the lower-dimensional
cases, but it is no longer regular. In particular when d is increasing, the convergence
becomes irregular. The reason may lie in the fact that in higher dimensions a large
number of subgrids is included with only a very small number of grid points in many
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dimensions (ni = 2 in this test). An alternative is to use the sparse grid technique based
on a larger number of points in each dimension (ni at least 4 or 8) see, for example,
[51]. Furthermore, the accuracy is hampered by the fact that the initial condition is
non-differentiable.

The multigrid convergence, however, remains excellent.
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Chapter 6
A geometric multigrid method for
PDEs on stretched grids

We now switch themes in terms of application and shift our focus to efficient multigrid
methods for logarithmically stretched grids. The emphasis is on geometric L-shaped
coarsening techniques that we have developed in this context. The presented method
is matrix free, in contrast with alternatives such as Algebraic Multigrid (AMG) or cer-
tain preconditioned Krylov subspace based solution methods. For a Poisson model
problem, we explain, both visually and in a descriptive way, how the stretched fine
grid may yield a sequence of coarser grids so as to maintain the complementarity be-
tween relaxation and coarse grid correction. We also present complexity estimates of
the method, thus demonstrating its efficiency. Through figures and numerical experi-
ment tables, we provide convergence histories for the model problem discretized -and
solved- on various stretched grids with our method.

6.1 Introduction

Many real life application problems have discontinuities or kinks in specific regions
of the domain and, therefore, the selection of a discretization grid is usually dictated
by specific accuracy requirements in these regions. The regions are often restricted
locally to certain parts of the domain, and require a higher concentration of grid points.
This local concentration of grid points gives rise to anisotropy in the resulting linear
system. As discussed in the preceding chapters, anisotropy -due to strongly varying
connection strengths in the discrete operator- poses well known convergence problems
for standard multigrid with pointwise smoothing [8, 52]. The well known remedial is
to smooth -or coarsen, in such a way so that complementarity between the smoothing
process and the coarse grid correction process is preserved. The former approach is
well-developed and precisely known [8, 6], although its practical use is not very viable
when problem dimensionality increases. The latter approach is open to development
and numerous works have surfaced in this context, see [26, 27, 28, 53].
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Higher grid resolution may be obtained from two geometrically different ideas,
AMR (Adaptive Mesh Refinement) [54, 55, 56, 57] and Grid Stretching; both ap-
proaches may give rise to structured and unstructured grids. For geometric classifi-
cation, we refer the grids arising from locally adapted mesh refinement as amr-type
grids, while those resulting from the use of a global stretching parameter (detailed in
Section 6.2.3) as str-type grids. While structured str-type grids form the main theme
in this chapter, structured amr-type grids with a specific local refinement topology, are
the subject of Chapter 7. Solution methods for unstructured grids usually make use of
quad -or oct tree data structures [58, 59]. Uniform grid stretching occurs when mesh
sizes are equidistant throughout a particular dimension but are non-equidistant across
different dimensions. On the contrary, non-uniform grid stretching can be defined as
the case where the grid has variable mesh sizes even within a single dimension. These
grids are often the result of a coordinate transform of the grid variables.

In Chapter 4, we showed that for uniformly stretched multi-dimensional grids, par-
tial coarsening along the stretched dimensions gave an optimal multigrid algorithm.
One of the important inferences from the local Fourier analysis in that theme of work,
was that if the dimensions of the grid (or equivalently, grid cells) stayed within a fac-
tor of 1.3 of each other, they could all be coarsened together. Beyond this factor,
coarsening must only be done with respect to the highly elongated dimension(s). The
reason is that the Fourier smoothing factor of the relaxation method deteriorates sig-
nificantly, if standard coarsening is performed while one (or more) grid dimensions is
out of proportion. In this chapter, we see that this rule can be applied successfully to
grid cells on an individual basis as well. On the individual basis, this rule translates
to a similar bound on the mesh aspect ratio of the cell. Based on this, we introduce
a novel grid coarsening method (for 2d stretched grids), and perform numerical tests
on a Poisson-type model problem. The specific type of grid stretching handled in this
chapter is called, the Power-law grid stretching, and belongs to the family of logarith-
mic stretching.

A well known alternative to geometric multigrid treatment of grid stretching is the
use of algebraic multigrid (AMG) [3, 60]. AMG starts out with a given matrix and
constructs all the multigrid components algebraically, through variational principles,
during the actual solution process which thus entails a setup phase with an associ-
ated cost. In this chapter, the presented multigrid method circumvents the drawbacks
of AMG while still ensuring its excellent convergence factors for PDEs on stretched
grids. We introduce a hybrid technique that uses an AMG-style coarsening, in a geo-
metric multigrid setting. Coarse grids in the proposed method are formed by agglom-
eration of the fine grid cells depending on how square (in shape) a particular candidate
agglomeration is, depending on a particular priority criterion. If the grid is traversed
in L-shaped lines, this entire process retains a nice structure and allows for an efficient
implementation of the process; which is how it gets the name L-shaped coarsening.
We combine L-shaped coarsening with point smoothing, piecewise constant restric-
tion, bilinear interpolation, and present a geometric method that converges very well
for the Poisson model problem.

An outline of the chapter is as follows. In Section 6.2, we specify the model
problem, the Power-law grid stretching scheme, and the cell centered finite volume
discretization that we use. Section 6.3 follows, with details of the geometric multigrid
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components for the new method. Here, we explain in precise detail the L-shaped grid
coarsening technique, along with a visual display of the coarsened grids obtained. The
discretization coarse grid (DCG) operator comes next, and is followed by the descrip-
tion of the transfer operators. In Section 6.4, we do a complexity analysis for this
method. This is followed by Section 6.5, in which we provide numerical experiments
based on 1d and 2d grid stretching. A simple jump discontinuity experiment and an
experiment on amr-type grids are also performed to test the robustness of the method.
Convergence histories are presented both in tabular and in visual displays; finally, in
the last section, some conclusions are drawn from the work.

6.2 Cell Centered FVM, and Grid Stretching

6.2.1 The Model Problem

The 2d Poisson type equation (on a unit square, with Dirichlet boundary conditions)
is given as:

−∇ ·A∇u(x, y) = f Ω(x, y), (x, y) ∈ Ω = (0, 1) × (0, 1)
u(x, y) = f Γ(x, y), (x, y) ∈ S ⇒ x ∈ {0, 1} or y ∈ {0, 1}

(6.1)

where

A =

[
a1(x, y) 0

0 a2(x, y)

]
and a1 and a2 are smoothly varying functions.

6.2.2 The Cell Centered Finite Volume Scheme

To define a cell centered finite volume scheme, the entire domain is divided into rect-
angular control volumes, with nodes in the center of the cells. Each node represents
the value of the unknown averaged over the control volume. Integrating both sides of
Equation 6.1, and then applying the Gauss Divergence theorem, results in an integral
over the boundary of the domain. After division of the domain into control volumes,
the so-called flux balance equation per finite volume can be immediately deduced as:

−

3∑
k=0

∫
S mk

(A∇umk ) · n̂k dS mk =

∫
Ωm

f ΩdΩm (6.2)

where m indexes a rectangular control volume, S mk denotes the kth face of the bound-
ary of control volume m, n̂k is the outward unit normal from this face, um is the value
of u averaged over the control volume, m, and (∇umk ) refers to the gradient of um com-
puted at the midpoint of S mk . Ωm is the volume of the mth cell, such that Ω = ∪ Ωm.
Equation 6.2 is the foundation equation of FVM here, which can be approximated in
a number of ways, one of which is detailed in Section 6.3. When this is done for all
values of m, the result is an (m × m) system of linear equations.
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(a) West edge (b) North east corner (c) Center (d) All corners

Figure 6.1: (str-type grids): A depiction of different str-type concentrations of control
volumes, obtained through Equation 6.3 with α = 1.07

6.2.3 Grid Stretching and the Power-law Scheme
In this chapter, we treat multigrid for a specific variety of str-type grid stretching,
called the Power-law grid stretching. In what follows, we use the terms left and right to
indicate the decreasing and the increasing directions -respectively- along a particular
dimension. xstr is the point from where the stretching ensues. Dirichlet boundaries
are pinned down first, and then we divide the segment to the left and the right of the
stretching point into a specified number of control volumes. The mesh sizes along
each dimension are generated by the 1-dimensional formula presented in Equation
6.3. In the following, xmin, xmax are the domain boundaries along the ith dimension, so
that xmin ≤ xstr ≤ xmax holds. NL and NR are the specified number of cells on the left
and the right of xstr, respectively. Similarly αL and αR are the stretching parameters
-to be used- respectively on the left and the right of xstr. When this is provided, we
choose:

hk =

{
(xstr − xmin)/

(
α

NL
L −1
αL−1

)}
× α(NL−1−k)

L , k = 0 · · · (NL − 1);

hk =

{
(xmax − xstr)/

(
α

NR
R −1
αR−1

)}
× α(k−NL)

R , k = NL · · · (NL + NR − 1);
(6.3)

Using this, we can generate specific stretched grids, some of which are depicted in
Figure 6.1. In Section 6.5, we experiment both with 1d and 2d grid stretching. For
2d stretching, the method that we present in this chapter has been developed for grids
having control volume concentration at a domain corner. However, we point out that
the other 2d stretchings (i.e., those having concentrations either at the center or at all
the four corners of the domain) are merely unions of the types that we treat here and,
therefore, the results carry over to them as well.

6.3 L-shaped Coarsening and Multigrid Components

6.3.1 The Enumeration Scheme and L-shaped Coarsening
We focus on domains that are stretched with the same parameter for both x and y
dimensions (i.e., α = αx = αy), however, some general settings can also be easily
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(a) A 4 × 4 stretched grid
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Figure 6.2: Grid enumeration in L-shaped strips

dealt with. This allows us to use symmetry advantageously for storage purposes.
The entire domain is divided into L-shaped control-volume strips. In general, an L-
strip consists of a vertex-cell, a vertical segment consisting of control volumes, and
likewise, a horizontal segment. The different L-strips in the discrete domain have
different number of cells, each of which has a different volume. The different L-strips
are ordered in priority of cell density, so that the most densely saturated strip comes
first, and the strips with descending saturation of control-volumes follow. The last
strip invariably consists of only the vertex control volume, being devoid of horizontal
-and vertical segments.

Example 6.3.1. (Enumeration of the L-strips and ordering of the cells) Consider
Figure 6.2. (a) shows a simple stretched Cartesian grid with 4× 4 control volumes. In
(b), these control volumes are enumerated into the 4 L-strips, L0 · · · L3, and nodes are
placed in the center of each control volume. The disassembly is virtual and only shown
as a depiction of the enumeration. Note the ordering of the control volumes. Each L-
strip complies with the general description in this section. (c) shows the same grid
as in (a) but with the grid enumerated in L-strips and control volumes carrying the
described ordering. In the cell-indices in (c), the larger digit represents the index of
the L-strip, while the smaller ones represent the indices of the control volumes within
it.

Grid coarsening in this setting is performed by agglomeration of control volumes
on the fine grid [61, 62]. Selection of prospective fine grid cells to agglomerate is done
by virtually isolating two L-lines and comparing the different mesh aspect ratios that
we seek to improve through the coarsening process. The mesh aspect ratio, mar, of a
cell is defined as:

mar =
h
w
,

where h and w represents the height and the width of the cell, respectively.
The global guiding principle in selecting fine grid cells to agglomerate is that the

newly constructed coarse grid cell should reflect an improvement in the mesh-aspect
ratio over other prospective fine cell agglomerations. A pair of L-strips is virtually iso-
lated and inspected cell by cell. The process is guided by the enumeration scheme of
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our method. Coarsening starts by agglomerating the vertex cells. This agglomeration
always gives a perfectly square coarse cell. Then the vertical segment is inspected, 4
cells at a time, i.e., 2 cells of each adjacent vertical strip; and a choice is made between
horizontal-semi-coarsening (2×1) or full-coarsening (2×2). This choice is not solely
dependent on the mesh aspect ratios; in fact, it is biased in favour of full-coarsening if
this comes within a certain threshold. The decisions are stored and automatically car-
ried over to the horizontal segment due to symmetry. A pair of fine grid L-strips thus
gives a coarse grid L-strip. This process of inspecting fine grid L-strips in pairs is con-
tinued until the grid is depleted. It is important to note that this particular coarsening
process leads us to store a connection structure which has exactly half the number of
elements as the control volumes in the given grid. The following example is provided
to elaborate on this process in greater detail.

Example 6.3.2. (L-shaped coarsening) Consider the grids in Figure 6.3. The grid in
Figure 6.3(b) represents the coarse grid chosen for the fine grid in Figure 6.3(a). To il-
lustrate the process, we inspect L0 and L1 together, in Figure 6.3(a). First, we agglom-
erate the vertex cells, 0, 1, 8, 15, and then move up the vertical segment. Two different
prospective agglomerations to consider next are either combining Cells 2, 3, 16, 17
together, called prospect 1, or combining Cells 2 and 16, called prospect 2. The
coarsening pattern that we employ is such that individually agglomerating Cell 2 with
Cell 3 and Cell 16 with Cell 17 is not an option, nor is not agglomerating at all. Put
simply, we rule that while traversing the vertical segment, the decision has to be made
between semicoarsening in the x-direction or full-coarsening, depending on mar1 and
mar2, which are the mesh aspect ratios of the two prospects, respectively. This ensures
that nodes stay aligned along 1 dimension and reduces unnecessary book keeping. We
define the difference, di, for the ith coarsening prospect as di = |1 − mari|. Although it
seems relatively simple to pick the prospect with the smaller difference, we point out
that this does not lead to an optimal reduction of complexity. As mentioned earlier,
we set a priority criterion in favour of prospect 1, as it allows a greater reduction
of unknowns, compared with prospect 2. We use a threshold value, such that if d1 is
less than -or equal to it, then prospect 1 is selected and prospect 2 dropped, even if
d2 < d1; however, if comparison with the threshold fails, then the prospect with the
lesser d is selected straight away. On the coarser grids, there is an additional check;
if a situation such as depicted by Cells 2, 3, 12 of Figure 6.3(b) arises, then we sim-
ply carry out this 3-cell agglomeration and do not venture to fatten the prospective
coarse grid cell any further. In particular, this check ensures that the boundary of the
coarsened cell is shared with its neighbour in the adjacent L-strip.

On the finest grid, the coarsening process detailed above results automatically in
full-coarsening along a particular diagonal portion of the grid and in semi-coarsening
as the proximity to the domain edges grow. All coarser grids add a band of (full-
coarsened) cells to the right and the left of this diagonal portion, adding up to com-
plexity reduction. Figure 6.4 gives the complete sequence of coarse grids generated
for a 642 fine grid stretched with α = 1.03. In Section 6.5, we solve the model problem
on this sequence of grids and demonstrate the convergence of the resulting multigrid
solver.

Remark 6.3.1. (Structure on coarse grids) We would like to point out that the coarse
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Figure 6.3: (a) shows an (8×8) grid concentrated at the lower-left corner. The stretch-
ing parameter used along both dimensions is α = 1.07 and xstr = 0.0. Thin lines
connecting the nodes emphasize that -unlike coarser levels- all nodes on the finest
grid are aligned horizontally and vertically (there are no hanging nodes). The heavy
stair-case line shows the symmetry of the grid which is advantageous both from a
storage as well as a computational point of view. (b) displays the first coarse grid con-
structed from (a) using the technique described in this section. Note that there may be
hanging nodes on the coarser levels.

grids are structured along L-shaped strips, within which they are aligned horizontally
and vertically. This is deliberate, in order to keep data access optimal and the imple-
mentation geometric. A multigrid method based on similar algebraic rules of coars-
ening, but without geometric constraints would be non-optimal (due to non-optimal
data access) if implemented without storing matrices.

Remark 6.3.2. (Aspect-ratio bound for good multigrid convergence) We would
like to highlight that the aspect ratio of a particular cell is tolerable up to a value
of 1.3 from the point of view of multigrid convergence [29] with pointwise smooth-
ing, i.e., LFA smoothing factors do not deteriorate if dimensions have a size disparity
within this range, and are coarsened together. Seeking the value 1.0 for prospective
agglomerations is idealistic and impractical, often leading to coarsening choices that
imply very poor reduction of unknowns per grid level. This observation leads us to
use a threshold value of 0.3.

Remark 6.3.3. (Nodal position on the coarsened grid) After the coarsening process
is over and the coarse grid is constructed, we place the nodes (i.e., unknowns) in the
center of the coarse grid control volumes.
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(a) Level 1 (b) Level 2 (c) Level 3

(d) Level 4 (e) Level 5 (f) Level 6

Figure 6.4: The complete sequence of coarse grids obtained by coarsening a 642 grid
stretched with α = 1.03, by the described algorithm. Visually, the coarse grids seem
unstructured but in fact they are aligned vertically and horizontally within each L-strip.

6.3.2 The DCG Operator and Pointwise relaxation
The DCG Operator

On the coarse grids, we have a matrix free discretization coarse grid DCG operator,
which is a cheaper option compared to matrix based methods. The discretization
scheme on the coarse grids is the same as that on the finest grid, i.e. the cell centered
FVM. Consider Figure 6.3(b); if the mth control volume is defined by the rectangle
ABCD, then;∫ B

A
a2

∂um

∂y
dxm −

∫ C

B
a1

∂um

∂x
dym −

∫ D

C
a2

∂um

∂y
dxm +

∫ A

D
a1

∂um

∂x
dym =

∫
Ωm

f ΩdΩm

(6.4)

follows directly from Equation 6.2. The right hand side of Equation 6.4 can be ap-
proximated simply by the point value of the source function multiplied by the volume
of the cell. Each first order derivative on the left hand side is approximated by the
central O(h2) FDM if the particular kth face of the control-volume boundary is not a
portion of the domain boundary. However, if it is, then the derivative is approximated
by the O(h) one-sided FDM. For a uniform equidistant grid layout, this scheme results
in second order accuracy [63].

For the finest grid, it is important to point out that the discretization of the deriva-
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tives in Equation 6.4 -being through finite differences- is trivial due to the perfect
alignment of the nodes with their horizontal and vertical neighbours. The only gen-
eral guiding principle for constructing a successful DCG operator on the coarser grids
is the conservation of flux through each face of the control volume. For an example
that illustrates how the conservation of flux is actually maintained during computa-
tions, consult Appendix D. We define the flux as the net flow through a particular face
of the cell; for example, the flux through the east face of the mth control volume is:

Feast
m =

∫ C

B
a1

∂um

∂x
dym

Example 6.3.3. (coarse grid stencil for the hanging nodes) In Figure 6.3(b), Nodes
2 and 3 do not have horizontal neighbours and, therefore, make use of ghost points g1

and g2, respectively, which, in turn, are linearly interpolated from the points directly
above and beneath them. In effect, this means that (on the east side) Node 2 is con-
nected with Nodes 11 and 12, while Node 3 is connected with Nodes 12 and 13. The
same applies to Nodes 7 and 8 in the horizontal segment. As a general rule, whenever
a node is missing, we linearly interpolate it from its collinear neighbours.

Remark 6.3.4. (Alternative flux definition) In contrast to our definition of the flux
as the net flow through a boundary, flux is also often defined as the rate of flow, i.e.,
without incorporating the length of the boundary segment (dym in this case) in the
definition. This is useful where flux has to be averaged across control volumes such as
might be encountered in an AMR setting [8]. In our work, however, defining flux as the
net flow is more helpful. Mathematically the two definitions are equally acceptable.

Example 6.3.4. (Conservation of flux) For Nodes 2, 3, and 12 of Figure 6.3(b),
conservation of flux would mean that the following equality holds:

Fwest
12 = − (Feast

2 + Feast
3 )

Pointwise relaxation

The relaxation process in our multigrid method is a variant of the lexicographical
point-based Gauss-Seidel relaxation method. The variation is only in terms of the pat-
tern in which the domain is traversed. The smoothing properties of a stationary itera-
tive method, such as Gauss-Seidel, are not invariant of the relaxation pattern in which
the unknowns are visited. The traversal pattern in this work, trivially, is in L-shaped
strips following the enumeration of the domain in these structures, and the ordering
of the control volumes within them. Each L-strip is visited in the enumeration order.
Within each strip, first the node in the vertex control volume is relaxed, then each of
the nodes (in enumeration order) in the control volumes in the vertical segment, and
finally the nodes in the horizontal segment of an L-strip. The observed smoothing
properties are superior to those of classical lexicographic Gauss-Seidel and slightly
inferior to Red-Black Gauss Seidel; however, they are sufficiently good to provide
excellent multigrid convergence in this set-up for Poisson’s equation.
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6.3.3 The Transfer Operators
The Restriction Operator

We use piecewise constant restriction to transfer grid functions from finer grid lev-
els to coarser grid levels. In our cell centered setting, due to variable mesh sizes,
this requires averaging across cells that are different in volume. Therefore, we use a
volume-average based restriction, which is a generalization of the piecewise constant
FP restriction in Chapter 2, Description 2.3.9.

Here, we explain the method through which fine grid cells are restricted to coarse
grid cells. Let m f denote a subset of indices of control volumes of the finer level,
which would be agglomerated to form the control volume mc, after the coarsening has
taken place; i.e., Ωmc =

∑
Ωi, i ∈ m f . vi represents any grid function that has to be

averaged, such as the residual.
Nodes contained in the subset m f of fine level l contain values averaged over their

respective control volumes, i.e.:

vi =

∫
Ωi

v dΩi

|Ωi|
, i ∈ m f (6.5)

likewise, the coarse node mc, should contain a value representing the average over the
control volume mc of level (l + 1),

vmc =

∫
Ωmc

v dΩmc

|Ωmc |
(6.6)

which gives:

vmc =

 ∑
Ωi,i∈mc

∫
Ωi

v dΩi

 /|Ωmc | (6.7)

⇒ vmc =

∑
i∈m f

vi |Ωi|

 /|Ωmc | (6.8)

This averaging formula contains a contribution from each of the fine grid cell in
the subset m f , respective to its volume. The cumulative contribution is then distributed
over the coarse grid cell volume, to represent an average value within it. All fine to
coarse transfers in this chapter make use of this restriction.

The Prolongation Operator

We use simple node-position based bilinear interpolation for transferring grid func-
tions from coarse to fine levels. From a global perspective, the nodes are ordered
into horizontal and vertical segments of L-strips. Each fine grid horizontal or vertical
segment has a similarly oriented coarse grid segment to its left and right. In general,
the nodes on these left and right neighbours are not aligned with the fine grid nodes
and, therefore, first have to produce linearly interpolated values which are collinear
with the fine grid nodes. After these values have been interpolated in one dimension,
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(a) (b)

(c) (d) (e)

Figure 6.5: (a) and (b) represent the third and the fourth levels respectively of a 322

grid stretched with α = 1.06, respectively. In (c), (d), and (e), these levels are super-
imposed to demonstrate the prolongation for level 3 from level 4. Each fine grid node
is interpolated by information from all 4 surrounding sides.

the fine grid nodes are subsequently interpolated from them. The interpolation (anal-
ogous to restriction) is based on the actual relative distancing of the nodes, and not
on the fixed component prolongation stencils. This process ensures that each fine grid
node is interpolated with 4 coarse nodes (from all four surrounding sides), and that the
interpolation process is never uni-directional.

Example 6.3.5. (Interpolating a fine grid L-strip) Consider Figure 6.5. Grid-levels
3 and 4 of a particular grid sequence are superimposed to elaborate on how bilinear
interpolation takes place in the L-shaped setting. The coarse grid is represented by
thick grey lines, and the fine grid by fine black lines. L1 and L2 strips of the coarse grid
are shown shaded along with their nodes, represented by hollow grey circles. These
coarse grid L-strips enclose L3 and L4 strips of the fine grid, containing solid black
and solid white -shaded nodes, respectively. In the figure, the interpolation for the
black nodes is demonstrated; white nodes are only there to emphasize that they too
would have to be interpolated from the same set of coarse nodes. The black crosses
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represent ghost positions, collinear both with the coarse grid nodes and (black) fine
grid nodes. The interpolation takes place in two stages. Proceeding from (c), first
the crosses are interpolated linearly from the coarse grid nodes (hollow grey circles).
Once these ghost points are populated, the original coarse grid nodes have no role
left. They are deliberately not shown in (e) to depict this. At this stage, the black
fine grid nodes are finally interpolated linearly from the crosses with which they are
collinear. This scheme gives bilinear accuracy. Note that interpolation of the solid
white fine grid nodes would employ the same coarse grid nodes, but the position of
the crosses would change and reflect collinearity with the white nodes.

The interpolation coefficients are only computed for the vertical segment and are
retained for use with the horizontal segment to take advantage of symmetry. Each L-
strip (and, subsequently, each control volume in it) is treated in the enumeration order.
The nodal values adjacent to the domain boundary are interpolated from coarse grid
values on one side and from the boundary value on the other side. This scheme turns
out to be a better transfer than interpolating the boundary nodes linearly from only
one side.

Remark 6.3.5. (Final assembly into the multigrid algorithm) The actual solution
process has a small setup phase in which all of the coarse grids are constructed and
stored. The storage complexity for any grid never exceeds the number of control vol-
umes in it. This is managed through a data structure embodying the L-shaped enu-
merated grid, which yields all grid parameters, including the mesh sizes, the nodal
positions, symmetry information, etc., and is, therefore, indexed to point to a particu-
lar member within a family of grids. It is important to point out that the natural form
of discretization of FVM or FEM (unlike FDM) has the right-hand side scaled. This
implies that the residual also has the same scaling, and, therefore, must be neutralized
and re-scaled both before and after restriction to the coarse grid.

6.4 Complexity
Carrying over the notation from Chapter 4, we define a work unit, wu as:

1 wu = C M0 (6.9)

where C is a small constant. We measure the complexity of our multigrid method
in terms of the computational work W0. The basic complexity relationship given in
Chapter 4, Inequality 4.18 holds, and observing the method from a 2-grid perspective
helps in estimating its complexity. In Figure 6.6, the grid reduction in a 2-grid setting
is displayed. The specific tie-shapes are the regions where 4-cell agglomerations take
place, whereas in the darker regions close to the domain edges, semicoarsening in
either direction is performed. It has already been discussed that this hybrid behaviour
pays off in the form of better complexity values. In this particular figure, the grid sizes
range from 82 to 2562, and α ranges from 1.01 to 2.0. Although these grids appear
greatly different in their layout, they have a common denominator, as they share a
common measure of the worst aspect ratio (which has been deliberately brought about
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(a) 642 grid, α = 1.04 (b) 322 grid, α = 1.09

(c) 162 grid, α = 1.20 (d) 82 grid, α = 2.00

Figure 6.6: A variety of fine and coarse grids with a reduction factor ≈ 2.34

by specific combinations of grid sizes and stretching parameters). In turn, all of them
display a grid reduction factor around 2.34. This directly suggests that the coarsening
factor depends greatly on the maximal aspect ratio. For a closed form estimate of the
complexity in a 2-grid setting, we consider the first two grids. The control volumes on
the fine grid are aligned both horizontally and vertically and, therefore, the cell index i
runs from 0 to (

√
M0−1) in both directions. The mesh-sizes are governed by Equation

6.3, and after a slight modification, are given by;

hi =
xmax(αM0−1
α−1

)αi, i = 0, · · · , n, · · · , (M0 − 1)

During the inspection of the vertical segment for coarsening decisions (as outlined
in Section 6.3.1), the index of the last cell (on the first strip L0) chosen for full (2 ×
2) coarsening, is represented by n. After selecting n, it is fairly straight forward to
connect the first two grids in a closed form formula.

Let c1 denote the number of cells in the coarse grid that were obtained by agglom-
erating 4 cells (2 × 2 coarsening) of the fine grid, and c2 denote the remaining coarse
grid cells, obtained from semi-coarsening. c1 depends on the value of n and is always
found to be of the form given in Equation 6.10. The connection between the first two
grids is given as;

c1 =

{
(M0 − n + 1)n +

n−1∑
i=1

(n − i)
}

c2 = 2(M0 − 4c1)
M0 = (4c1 + 2c2)M1

(6.10)

For estimating the computational complexity of a multigrid method with a se-
quence of l grids, i.e., (Ω0,Ω1, · · · ,Ωl−1), all grids in the sequence have to be taken
into account. However, in this situation, a grid reduction function, τ(M0, α), in closed
form is not apparent. The relation between the fine grid level, k, and the coarse grid
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Table 6.1: A closed form for τ(M0, α) is not readily available and, therefore, discrete
(empirically observed) values -averaged over a sequence of l grids- are shown for a
diverse combination of grid sizes and α

α

M0 1.00 1.02 1.04 1.06 1.08 1.10
42 4 4 4 4 4 4
82 4 4 4 4 3.28 3.29

162 4 4 3.50 3.51 3.58 3.23
322 4 3.62 3.40 3.22 2.96 2.87
642 4 3.52 3.17 2.72 2.64 2.50

1282 4 3.22 2.72 2.45 2.36 2.34
2562 4 2.77 2.37 2.29 2.27 2.26

Table 6.2: Work estimates, W, computed from 6.12, and measured in work units, wu.
α

M0 1.00 1.02 1.04 1.06 1.08 1.10
42 1.33 1.33 1.33 1.33 1.33 1.33
82 1.33 1.33 1.33 1.33 1.44 1.44

162 1.33 1.33 1.40 1.40 1.39 1.45
322 1.33 1.38 1.42 1.45 1.51 1.53
642 1.33 1.40 1.46 1.58 1.61 1.67

1282 1.33 1.45 1.58 1.69 1.73 1.75
2562 1.33 1.56 1.73 1.77 1.79 1.79

level, (k + 1), is as follows:

Mk = τ(M0, α) Mk+1, k = 0, 1, 2 · · · , l − 1 (6.11)

where τ is independent of k. Thus Equations 6.11 and 4.18 yield:

W0 ≤
τ(M0, α)

τ(M0, α) − γ
C M0 (6.12)

which can be used to evaluate the required work units for a given discrete problem.
Values of τ(M0, α) averaged over l grids, for varying combinations of grid sizes

and stretching parameters are shown in Table 6.1.
For a geometric multigrid method (with standard coarsening) on an equidistant 2d

grid, the computational work-per-cycle is bounded by 4
3 . In contrast, a method that

only employs semi-coarsening throughout the grid will yield work-per-cycle equal
to 2. It is then natural to expect that the method presented here lies between these
bounds, as parts of the grid undergo 2 × 2 agglomeration while other parts only 2 ×
1. In Table 6.2 and Figure 6.7, we present the work estimates for V-cycles (γ =

1) obtained from substituting the averaged values of the grid reduction factor τ in
Equation 6.12. The unit of measurement for these estimates is a work unit, wu, as
defined in Equation 6.9. Work units for grid sizes ranging from 82 to 2562 are shown
against values of the stretching parameter α ranging from 1.0 (i.e. no stretching)
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Figure 6.7: A 3d representation of the complexity of the presented method against the
grid size and the stretching parameter.

to 1.1. It is well known that with semi-coarsening-only multigrid algorithms, W-
cycle methods do not yield an optimal complexity [8]; however, we see that although
our method gets relatively expensive with severe stretching (and consequently bad
mesh aspect ratios), the average value of the grid reduction factor, τ(M0, α), always
stays above 2.00. This is due to the fact that a semi-coarsening-only strategy is never
employed when a grid is being reduced. The computational complexity grows directly
with the mesh aspect ratio, which -in our case- is directly related to α as well as the
grid size. Quite apparently for a 2562 grid, stretching with α = 1.01 and α = 1.02 is
quite sufficient for local grid refinements in practical applications. The complexity in
this situation is around 1.5, whereas for an unrealistically high stretching with α = 1.1
on 2562 grid, the complexity is 1.79, still well under the bound set by algorithms that
only semi-coarsen.

6.5 Numerical Experiments and Results
In this section, we demonstrate the presented method at work, by solving boundary
value problems based on the model problem described in Section 6.2. Through the
Poisson equation, we approximate the following test function:

u(x, y) =
sin(2π2x) + sin(2π2y)

(2π + x + y)
(6.13)

The results include the residual decay and the achieved multigrid convergence factors.
These quantities are displayed against the number of multigrid V-cycles required for
convergence. The stopping criterion for convergence is defined by the relative residual
going below the tolerance value set at 10−8.

Experiments with 2 kinds of grid stretching are performed. 1-dimensional stretch-
ing, i.e., grids stretched only along the x-axis and equidistant along the y-axis; and 2-
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Table 6.3: Multigrid convergence factors against the number of V-cycles (separated
by obliques) for different values of α. Grid stretching in these experiments was only
along the x-axis.

αx → 1.00 1.02 1.04 1.06 1.08 1.10
Grid
↓

162 0.13 / 7 0.13 / 7 0.14 / 7 0.15 / 7 0.13 / 7 0.13 / 7
322 0.12 / 7 0.15 / 8 0.14 / 7 0.13 / 7 0.13 / 7 0.11 / 7
642 0.12 / 7 0.15 / 8 0.12 / 7 0.12 / 7 0.09 / 6 0.08 / 6
1282 0.11 / 7 0.13 / 7 0.09 / 6 0.09 / 6 0.08 / 6 0.09 / 6

dimensional stretching, i.e., grids stretched along both the axes with the same stretch-
ing parameter, α. The multigrid convergence factor is estimated empirically by the
contraction number qm (see Definition 4.5.1), which depicts the average defect reduc-
tion over m cycles.

6.5.1 Experiments With 1-Dimensional Grid Stretching

(a) Level 1 (b) Level 2 (c) Level 5 (d) Level 6

Figure 6.8: The first two and the last two grids of the sequence for a 642 grid stretched
only along the x-axis with α = 1.01

The results of 1-dimensional stretching are presented first. The coarsening tech-
nique, as described earlier for the 2-dimensional grid stretching, virtually isolates two
vertical strips and makes decisions about the different prospective agglomerations.
Figure 6.8 gives the complete grid sequence for an example problem with a 642 grid
and α = 1.01. The guiding principle for building the coarse grids is the same as de-
scribed in Section 6.3.1; a prospective agglomeration should relax the tense aspect
ratios. The only notable difference (with the 2-dimensional grid stretching case) is
that the control-volume strips are vertical and not L-shaped. The rest of the process
is similar. Multigrid convergence factors for a variety of stretching parameters, α, are
displayed in Table 6.3.
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Table 6.4: Multigrid convergence factors and the number of V(1, 1)-cycles (separated
by obliques) for different values of α. These experiments are based on 2-dimensional
grid stretching

α→ 1.02 1.04 1.06 1.08 1.10
Grid
↓

82 0.13 / 6 0.13 / 7 0.14 / 7 0.14 / 7 0.14 / 7
162 0.17 / 8 0.17 / 8 0.17 / 7 0.15 / 7 0.15 / 7
322 0.18 / 8 0.16 / 7 0.16 / 7 0.15 / 7 0.14 / 7
642 0.15 / 7 0.14 / 7 0.12 / 6 0.11 / 6 0.11 / 6

1282 0.15 / 7 0.12 / 6 0.12 / 7 0.15 / 7 0.17 / 8
2562 0.15 / 8 0.13 / 8 0.17 / 9 0.18 / 9 0.19 / 9
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Figure 6.9: Residual decay for two-dimensional stretching, against the number of V
cycles employed. Figure (a) represents the decay achieved for different α with the
L-shaped coarsening scheme. Figure (b) represents the same solution achieved by
AMG.

6.5.2 Experiments With 2-Dimensional Grid Stretching

The Model Problem

The results of experiments with 2-dimensional grid stretching are shown in Table 6.4.
The multigrid convergence factors are quite satisfactory for different α-values giving
a range of moderate to severe stretchings. The residual decay for 2-dimensional grid
stretching experiments are presented in Figure 6.9. Besides good convergence, all
of the experiments display a good linear reduction of the residual (measured in the
discrete L2-norm), around an order of magnitude per V-cycle.

Remark 6.5.1. (On accuracy, timing and comparison with AMG) We verified both
the accuracy of the discretization scheme as well as of this multigrid scheme in approx-
imating the exact discrete solution, to be quadratic. The next important test performed
was measuring CPU time, for a problem on a 2562 grid (and α = 1.02) solved both
with the proposed method as well as AMG with standard components. AMG reports
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0.41 seconds and our method, 0.5 seconds; which is satisfactory considering the low
storage cost of the proposed method.

Remark 6.5.2. (Stress test) Figure 6.10 shows a kind of stress-test. A 322 grid is
stretched with α = 5.0, and the model problem is solved on this grid with the pre-
sented method for the purpose of checking if the method withstands such severe grid
stretching. The residual decay is, however, exceptional, around 20 orders of magni-
tude in 25 iterations, confirming that the method does not break down.
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Figure 6.10: Residual decay for 2-dimensional stretching, against the number of
V(1,1) cycles employed. Note the particularly high stretching for the 322 grid

The Model Problem With a Simple Jump Discontinuity

In this part, we perturb the model problem slightly, by dividing the domain into two
parts, as shown in Figure 6.11(a). The domain is partitioned into an L-shaped subdo-
main, and the remaining square portion, as demarked by the interface line (solid L-line
in Figure 6.11(a)); so that the Poisson-type equation has different constant coefficients
in the different parts of the domain but the same analytic solution everywhere. From
Equation 6.1;

a1 = a2 = d1, (x, y) ∈ Region I

a1 = a2 = d2, (x, y) ∈ Region II

The interface line is used in forming the coarsest grid L-strip, which thereby ensures
that the interface line never gets annihilated during the construction of coarse grids. As
a consequence, prolongation and restriction across this bounding line (discontinuity)
takes place at each grid level, moreover, we stay with the prolongation and restriction
described in Section 6.3.3 and do not use operator-dependent transfer operators; nei-
ther do we need the Galerkin coarse grid operator. Table 6.5 shows the V(1, 1)-cycle
results of the presented method when tested with this problem.

We see that the method performs fairly well even with severe jumps across the
interface line.
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IRegion

II

Re
gi
on

(a) Domain divided into a square,
and an L-shaped sub-domains

(b) The coarsest grid L-strip is con-
structed with the interface line

Figure 6.11: The subdomains used in the test with a jump discontinuity

Table 6.5: Multigrid convergence factor for 642 and 1282 problem with jump discon-
tinuity across sub-domain interface

d1/d2 → 2 101 102 103 104 105

Grid / α
↓

642 / 1.03 0.16 / 7 0.33 / 13 0.40 / 16 0.40 / 16 0.40 / 16 0.40 / 16
2562 / 1.009 0.15 / 7 0.30 / 12 0.35 / 14 0.29 / 12 0.29 / 12 0.29 / 12

The Model Problem on Amr-type Grids

Here, we experiment with the model problem on some amr-type grids. We show that
the methods developed in this chapter for str-type grids work nicely for certain variants
of the amr-type grids as well. In these amr-type grids, there are no perturbed mesh
aspect ratios to improve, and, therefore, the coarsening is always standard, implying
a grid reduction factor of at least 4 on all levels. In the present work, we do not
perform any implementational adjustments, and simply run the problem on a different
grid-sequence. The enumeration is L-shaped and no multigrid components have been
altered. The convergence pattern is almost identical to that of str-type grids.

The shape of the amr-type grids that we use depends on 3 parameters. The number
of layers (of different-sized control volumes), the number of control volumes tiled
between adjacent layers, and the proportion of cell-volume between cells of adjacent
layers; denoted respectively, by n, c, and p. Thus the representation, (n × c, p),
describes a particular amr-type grid completely. In Figure 6.12, the complete grid
sequence is shown for the finest grid represented by (8 × 2, 2). The coarse grids look
quite similar to the ones in Figure 6.4, the only difference being that, except on the
coarsest grid, all the grids in the amr-type sequence have the same cell volume within
each L-strip. The results of the experiments on these grids are displayed in Table 6.6,
and appear quite satisfactory and stable. Moreover, we use amr-type grid saturation in
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(a) Level 1 (b) Level 2 (c) Level 3 (d) Level 4

Figure 6.12: The grid sequence for the amr-type grid, (8 × 2, 2). The finest grid has
8 layers, with 2 cells tiled in each. Cells in adjacent layers are at a volume proportion
of 4.

Table 6.6: Multigrid convergence factors for different amr-type grids.

(n × c, p)→ (4 × 2, 2) (8 × 2, 2) (8 × 4, 2) (4 × 32, 2) (2 × 64, 2)
q̂(m) / m→ 0.16 / 7 0.16 / 7 0.16 / 7 0.16 / 7 0.16 / 7

Chapter 7 to handle strongly varying wavenumbers in 2d Helmholtz equations.



Chapter 7
Multigrid Preconditioning for the
Indefinite Helmholtz

In this chapter we develop multigrid preconditioners for the high-frequency indefinite
Helmholtz equation. The wavenumbers of these equations have a strongly varying
spatial dependence. A peculiar property of the solution is that it has the so-called
evanescent waves (with extremely steep gradients at the domain edges) which per-
turb the problems and they get very difficult to solve efficiently. We propose and test
multigrid preconditioning schemes for these problems. One of the proposed schemes
is based on the multigrid ideas developed in Chapter 6 and customized here for the
problem at hand. We analyze the model problems for their requirement of minimal
numerical resolution due to accuracy constraints, and discretize them on locally re-
fined grids that are customized according to this requirement. These grids are piece-
wise equidistant with two different layers of cells, having a specific ratio between
their mesh sizes. The multigrid method is then employed to approximately invert the
Krylov-preconditioner, which is the complex shifted Helmholtz operator as in [14].

7.1 Application, and the Model Problems

2d Helmholtz problems with strongly varying Helmholtz terms arise as simplified
models of equations originating from quantum mechanics [12]. The solutions also
exhibit evanescent waves at the south and the east edges of the domain. One of the
ways to tackle these problems efficiently is to saturate grid cells (up to a margin)
near these boundaries, and to use a larger mesh size (at least double) elsewhere in
the domain. Another method is to use the same mesh size throughout and to employ
a sophisticated multigrid method (for preconditioner inversion). In this chapter, we
explore the merits of both these approaches. Cell-centered Finite Volume Method is
used for discretizing the continuous problem. This scheme has an anticipated second
order accuracy over both grid topologies that we use, i.e., the full-grid as well as
customized grids with local refinement.

95
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7.1.1 Application Problem
We now give a short introduction to the application which leads to these model prob-
lems. The scattering of the elementary particles is governed by the fundamental equa-
tion of quantum mechanics, i.e., the Schrödinger equation:

ι~
∂

∂t
ψ(r, t) = −

~2

2m
∇2ψ(r, t) + V(r, t)ψ(r, t) (7.1)

where ι =
√
−1, ~ is the Planck’s constant, m is the mass of the particle, and r repre-

sents the radial displacement. The wave function ψ and the potential energy V , have
both spatial as well as temporal dependence. In general, ψ does not have a sepa-
rable form, i.e., the spatial and temporal parts cannot be isolated. However, in the
case of certain potentials this is possible and results in the so-called time-independent
Schrödinger equation, commonly abbreviated as TISE [64, 65]:

−
~2

2m
∇2ψ(r) + V(r)ψ(r) = Eψ(r) (7.2)

where E is constant. The TISE is obviously a Helmholtz-type equation.
McCurdy et al, in [12], describe a scattering problem, where they study the colli-

sional breakup of a system of charged particles. The typical scenario is that an electron
hits a Hydrogen molecule (H2) and ejects out from it, two electrons leaving a positive
charged Hydrogen ion. The mechanics of this collision involves the Schrödinger equa-
tion for this problem in six variables. They decompose this problem in sets of coupled
2d second order differential equations, and solve them numerically through finite dif-
ferences. The real part of the radial functions in 2d displays evanescent waves that
decay exponentially and are eventually absorbed.

In a similar research scenario, Vanroose1 et al, in [66], report on the photo-induced
breakup of the H2 molecule while studying molecular electron correlation. They study
similar phenomena as in [12], where both electrons are ejected out of the Hydrogen
molecule by the absorption of a single photon. The mechanics of the ejected electrons
is described by the TISE with spatially dependent wavenumber, and leads to the model
problems.

7.1.2 The Model Problems
The general form of the Helmholtz boundary value problem representing the two
model problems is:[
−∇2 − φ(x, y)

]
u(x, y) = f (x, y) (x, y) ∈ Ω = (0, L)2 (7.3)

u(0, y) = u(x, 0) = 0 Dirichlet at South/West edges
∂u
∂x

= −ιKu(L, y) 1st order Sommerfeld at East edge

∂u
∂y

= −ιKu(x, L) 1st order Sommerfeld at North edge

1The Helmholtz model problems of this chapter originate from Wim Vanroose, University of Antwerpen;
and stem from the research conducted in [66]



7.2. Mesh Size Analysis of the Model Problems 97

Model problems 1 and 2 are henceforth abbreviated as MP1 and MP2. For both
model problems, K ranges between 0 and 5, and f (x, y) = 1

ex2+y2 . The model problems
are further characterized by:

MP1: φ(x, y) = λ

(
1

ex2 +
1

ey2

)
+ K2; 0 < λ < 10 & L = 50 (7.4)

MP2: φ(x, y) =
1
x

+
1
y

+ K2; 50 < L < 200 (7.5)

For some specific λ, K, and L, the solution appears in Figure 7.1.

7.2 Mesh Size Analysis of the Model Problems
To ensure acceptable numerical solution, the discretization of the indefinite Helmholtz
equation has to satisfy certain mesh size constraints. These constraints appear in [13,
67] and are based on finite element formulations. One such constraint is that k2h3

should stay constant (where k is the constant wavenumber in (0, 1)2 domain). We
consider instead the accuracy criterion used in [14], i.e., the mesh size constraint kh <
0.625(= 5/8) on the finest grid, which ensures acceptable accuracy (10 discrete points
per wave) of the computed solution. This constraint is a worst-case limit of the one in
[13], and is therefore sufficient. To speculate about the mesh sizes required for MP1
and MP2, we first transform these equations to the dimensionless form, i.e., we scale
the entire system to the unit square. For this, let x̃ = x/L, and ỹ = y/L. Evaluating the
second derivatives, we are led to the following transformation to (0, 1)2.

MP1⇒−
∂2u
∂x̃2 −

∂2u
∂̃y2 − L2

(
λ

[
1

eL2 x̃2 +
1

eL2 ỹ2

]
+ K2

)
u(x̃, ỹ) =

L2

eL2(x̃2+ỹ2)

MP2⇒−
∂2u
∂x̃2 −

∂2u
∂̃y2 − L2

(
1
x̃L

+
1

ỹL
+ K2

)
u(x̃, ỹ) =

L2

eL2(x̃2+ỹ2)

Comparing these equations with the standard indefinite Helmholtz equation (with con-
stant wavenumber k), we have:

MP1⇒ k = L

√(
λ

[
1

eL2 x̃2 +
1

eL2 ỹ2

]
+ K2

)
; L = 50 (7.6)

MP2⇒ k = L

√(
1
x̃L

+
1

ỹL
+ K2

)
(7.7)

7.2.1 The Mesh Size Analysis for MP1
The mesh size analysis of MP1 is particularly straightforward. We can obtain an
upper limit on the wavenumber in (0, 1)2 for MP1 (for given values of λ and K), by
evaluating the supremum of k from Equation 7.6. It is straight forward to see that this
supremum occurs at the origin, i.e., at (x̃, ỹ) = (0, 0). Therefore, for MP1 the highest
possible wavenumber in the unit square domain is given by:

k = 50
√

2λ + K2
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(a) MP1 with λ = 7, K = 2

(b) MP2 with L = 100, K = 5

Figure 7.1: The surface generated by the real part of the model problem solution for
specified values of the parameters.
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Table 7.1: Maximum mesh size limits for MP1

K 1 2 3 4 5
λ

0 0.625 0.312 0.208 0.156 0.125
1 0.360 0.255 0.188 0.147 0.120
2 0.279 0.221 0.173 0.140 0.116
3 0.236 0.197 0.161 0.133 0.112
4 0.208 0.180 0.151 0.127 0.109
5 0.188 0.167 0.143 0.122 0.105
6 0.173 0.156 0.136 0.118 0.102
7 0.161 0.147 0.130 0.114 0.100
8 0.151 0.139 0.125 0.110 0.097
9 0.143 0.133 0.120 0.107 0.095

10 0.136 0.127 0.116 0.104 0.093

Substituting this expression in kh = 5/8, we can calculate the maximum mesh size limit
to be observed for MP1 in the unit square. As the scaling to the unit square was only
for the purpose of analysis, we multiply the obtained mesh sizes by L = 50, which can
then be directly used in the experiments. After multiplication by L, this gives:

h =
5

8
√

2λ + K2

For varying values of λ and K, these mesh sizes limits are given in Table 7.1
As an example, consider the task of solving MP1 for (λ,K) = (9, 2). Reading from

Table 7.1, we must have a mesh size of 0.133 which amounts to 376 cells along each
dimension. To have multilevel compatibility, we realize this limit as 3842, which after
8 times of successive halving, can be solved exactly at the size of 32. We immediately
see that if we use a uniform equidistant grid, this results in 147456 unknowns, in order
to ensure sufficient accuracy of the computed solution. An experiment based on this
speculation is carried out in Section 7.5.

It is immediately apparent that this mesh size constraint is due to the strong vari-
ation of the wavenumber at the origin. This gives rise to the idea of grid saturation
near the origin and along the edges. Care must be exercised however, in marking the
dense and the sparse regions of the grid. To ensure that the dense area is wide enough
to engulf the entire subdomain where evanescent waves are expected, we mark off the
domain by the straight lines y = 1/3, and x = 1/3. See Figure 7.2. We find that the
mesh size requirements in the sparse region of the grid (depicted as the white region
in Figure 7.2), is practically dependent only on K, and the small contribution from the
λ term in Equation 7.6 can be neglected. This gives the mesh sizes in the first row
of Table 7.1. For MP1 with (λ,K) = (9, 2), the mesh size required (in the remaining
white region) is conveniently more than two times the fine mesh size required near the
origin. This local mesh refinement topology agrees well with the constraint kh < 5/8,
and therefore provides sufficient confidence in the numerical solution.
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Figure 7.2: The figure depicts the isolation of the dense (gray) and the sparse (white)
regions of the domain

7.2.2 The Mesh Size Analysis of MP2

Compared to MP1, the mesh size analysis proceeds somewhat differently for MP2.
We realize that for MP2, the wavenumber supremum cannot directly be obtained in
the unit square, as the function φ has a singularity at the origin. We therefore choose
to stay with the maximum discrete wavenumber that our cell-centered discretization
scheme allows. In the unit square, the maximum discrete wavenumber k is obtained
by substituting (x̃, ỹ) = (h/2, h/2) in Equation 7.7. Subsequently, substitution of this k
in kh = 5/8, gives a quadratic expression, from which we pick the positive mesh size,
and discard the negative. We take care to scale back the mesh sizes to (0, L)2.

k = L

√
4

hL
+ K2

⇒ h =
1
2

− 4
K2 +

√(
4

K2

)2

+

(
5

4K

)2
 (7.8)

Equation 7.8, gives the maximum mesh size limit required in the proximity of the ori-
gin. We chop off the domain at the lines y = 1/3 and x = 1/3. The mesh size requirement
in the truncated domain (white area in Figure 7.2) is much less for moderate values of
K, as expected. h for the truncated domain is given by Equation 7.9, and is scaled to
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Table 7.2: Upper limit on the mesh size for MP2 with respect to (0, L)2

K 1 2 3 4 5
L
∀ L 0.095 0.089 0.082 0.075 0.068

Table 7.3: Upper limit on the mesh size for MP2 with respect to (L/3, L)2

K 1 2 3 4 5
L
50 0.591 0.308 0.207 0.156 0.125

100 0.607 0.310 0.208 0.156 0.125
150 0.613 0.311 0.208 0.156 0.125
200 0.616 0.311 0.208 0.156 0.125

the (0, L)2 domain as before.

k =
√

L(6 + LK2)

⇒ h =
5
8

√
L

6 + LK2 (7.9)

Tables 7.2 and 7.3 gives the mesh size limits that must be obeyed in the proximity of
the origin, and in the truncated domain, respectively.

This completes the discussion of the essential discrete resolution.

7.3 The Discretization

In this section, we consider the discretization of the model problems. The discussion
involves the evaluation of numerical fluxes for a grid cell that is surrounded by cells
equal to itself (in area) on all four sides. In this section, we avoid the discussion of
flux mismatch at the interface of refinement layers, as that is dealt exactly as described
in Chapter 6 and demonstrated in Appendix D. The discretization scheme is the cell-
centered FVM as mentioned earlier. We also demonstrate at least one method of
discretizing the first order derivative boundary conditions and eliminating them from
the operator.

Integrating Equation 7.3 over the domain Ω, gives:∫
Ω

[
−∇ · ∇ − φ(x, y)

]
u(x, y) =

∫
Ω

f (x, y) (7.10)

We cover the domain with a cell centered grid having M square control volumes in all,
and apply the Gauss Divergence theorem. For the purpose of this section, let m index
an anonymous (interior) control volume. This implies that the nodal location (xm, ym)
is neighboured by (xm, ym−1), (xm+1, ym), (xm, ym+1), and (xm−1, ym), to its south, east,
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north and west respectively. Then, for this mth cell 2ABCD:∫ B

A

∂um

∂y
dxm −

∫ C

B

∂um

∂x
dym −

∫ D

C

∂um

∂y
dxm +

∫ A

D

∂um

∂x
dym −

∫
Ωm

φmumdΩm =

∫
Ωm

fmdΩm

(7.11)

The numerical flux (i.e., the 1st order derivative in each of the first four terms) is
approximated by central finite differences, at the center of each edge (AB, BC, CD,
and DA) of the mth control volume. φm = φ(xm, ym), which is the value of the spatial
wavenumber φ computed at the center of the cell; and likewise fm. The principle of
prime importance here, is the conservation of flux, which is ensured by imposing the
condition that the sum of the net fluxes (see Remark 6.3.4) to-and-from a cell edge is
zero.

Let h represent the mesh size, then for an interior cell we approximate each of the
fluxes in Equation 7.11 by O(h2) central finite differences. E.g. the net flux through
the south face of the mth interior cell Fs is:

Fs =

∫ B

A

∂um

∂y
dxm ≈

u(xm, ym) − u(xm, ym−1)
h

h (7.12)

The other terms in Equation 7.11 are approximated w.r.t. their point values, such as:∫
Ωm

φmumdΩm ≈ h2φ(xm, ym)u(xm, ym)

Now, we describe the flux discretization for control volumes adjacent to a domain
boundary. For generality, we implement Robin boundary conditions on all edges of
the domain, and realize Dirichlet and 1st order Sommerfeld as its special cases. As
an example, consider the south (Dirichlet) edge of the domain, and let the prescribed
Robin boundary condition on this edge be given by:

c(1)
s
∂u(xm, 0)

∂y
+ c(0)

s u(xm, 0) = gs(xm, 0) (7.13)

c(1)
s , c(0)

s ∈ C. E.g. c(1)
s = gs = 0, and c(0)

s = 1, gives us the required homogeneous
Dirichlet boundary condition on the south edge. We discretize the derivative in the
Robin boundary, Equation 7.13, by the O(h) one sided finite difference, at the midpoint
of the appropriate cell interface. We show the evolution for the south and the north
edges, which carries over similarly to the west and the east edges, respectively.

c(1)
s

u(xm, ym) − u(xm, 0)
h/2

+ c(0)
s u(xm, 0) + O(h) ≈ gs(xm, 0) (7.14)

c(1)
n

u(xm, L) − u(xm, ym)
h/2

+ c(0)
n u(xm, L) + O(h) ≈ gn(xm, L)

and leads to:

u(xm, 0) =
−2c(1)

s

−2c(1)
s + hc(0)

s

u(xm, ym) +
hgs(xm, 0)

−2c(1)
s + hc(0)

s

(7.15)

u(xm, L) =
2c(1)

n

2c(1)
n + hc(0)

n

u(xm, ym) +
hgn(xm, L)

2c(1)
n + hc(0)

n
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Next, we discretize the appropriate boundary fluxes of the boundary neighbouring
cells with 1-sided O(h) finite differences, and then we substitute in them, the boundary
approximations acquired from the discrete boundary conditions, and given by equa-
tions, such as Equation 7.15. This gives the following O(h) boundary approximations,
(Fedge) now represents the flux through a boundary edge:

Fs ≈
u(xm, ym) − u(xm, 0)

h/2
h

⇒ Fs ≈ 2
1 +

2c(1)
s

−2c(1)
s + hc(0)

s

 u(xm, ym) −
2hgs(xm, 0)

−2c(1)
s + hc(0)

s

(7.16)

Similarly, the other boundary fluxes are approximated as:

Fe ≈ 2
1 − 2c(1)

e

2c(1)
e + hc(0)

e

 u(xm, ym) −
2hge(L, ym)

2c(1)
e + hc(0)

e

(7.17)

Fn ≈ 2
1 − 2c(1)

n

2c(1)
n + hc(0)

n

 u(xm, ym) −
2hgn(xm, L)

2c(1)
n + hc(0)

n

(7.18)

Fw ≈ 2
1 +

2c(1)
w

−2c(1)
w + hc(0)

w

 u(xm, ym) −
2hgw(0, ym)

−2c(1)
w + hc(0)

w

(7.19)

Depending on the location of the mth control volume within the grid, appropriate
discrete approximations of the continuous flux are substituted in Equation 7.11. The
last terms of Equations 7.16 - 7.19 are substituted into the right hand side of the sys-
tem. We immediately recognize this as the eliminated boundary scheme for our model
problems, and this completes the cell-centered FVM discretization.

Remark 7.3.1. (Alternative O(h2) discretization of the boundary fluxes) The dis-
cretization of the boundary fluxes that we employ in our work is only first order ac-
curate. A proof is present in [63], which ensures that this scheme is second order
accurate and that the accuracy pollution near the domain boundary is strictly local.
An alternative O(h2) discretization is also available [68]. It consists of using the fol-
lowing 1-sided O(h2) stencils for discretizing the Robin boundary conditions as well
as the boundary fluxes.

Forward Difference:
∂u(0, y)
∂x

=

(
1

3h

) [
−8u(0, y) + 9u(h/2, y) − u(3h/2, y)

]
Backward Difference:

∂u(L, y)
∂x

=

(
1

3h

) [
8u(L, y) − 9u(L − h/2, y) + u(L − 3h/2, y)

]

From the vantage point of approximating the solution, this O(h2) discretization near
the boundaries is a better approximation when at least two (out of the four) domain
edges have derivative boundary conditions prescribed on them. There is no known
enhancement in the numerical approximation if all the boundaries are Dirichlet. It is
important to point out that this stencil is asymmetric and therefore negative effects of
asymmetry degrade iterative solver performance to some extent. Therefore, we stay
with the O(h) boundary discretization.
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7.4 The Multigrid Preconditioned Krylov Solver
In this section we describe the actual numerical solver that we employ in our ex-
periments. The iterative Krylov method that we use is Bi-CGSTAB [44]. It is also
worthwhile to note that and a recent competitor called IDR(s) [69] provides a good
alternative to Bi-CGSTAB. We will not go into any length for describing the Krylov
component of the solver; rather, our aim is to describe here the preconditioning opera-
tor as well as the components of our multigrid method with which the preconditioning
operator is approximately inverted.

7.4.1 The Preconditioning Operator
The discrete indefinite Helmholtz operator cannot be handled directly by standard
multigrid. A sophisticated multigrid method, [70] by A. Brandt and I. Livshits, exists
for the indefinite constant coefficient Helmholtz equation. Efficient implementation of
this method makes use of rotated Cartesian grids and resolves the wave and the ray
components of the error separately. It is not readily obvious how this method may be
extended to incorporate strongly varying coefficients that are possessed (say) by MP1
and MP2. Another approach to solving the indefinite Helmholtz equation, is to use
preconditioned Krylov methods, and employ multigrid for approximate preconditioner
inversion. This approach can be traced back to the 80s [13, 71]. A good method
belonging to this approach was developed at Delft in 2006 by Y. Erlangga et al [14].
This approach employs the following complex shifted Helmholtz operator as a Krylov
preconditioner for the indefinite Helmholtz operator.

M = −∆ − (β1 − ιβ2)k2(x, y) (7.20)

where k is the wavenumber as in Section 7.2. This operator can be inverted approxi-
mately by multigrid, and has stood out to be more robust relative to the other precon-
ditioners such as proposed in [13, 71]. The best combination of the real parameters β1,
β2, reported in [14] is (1, 0.5). Reducing β2 brings the spectrum of the preconditioner
closer to that of the original problem (and makes it a better preconditioning operator),
but hampers its approximate multigrid inversion. As a general rule the least value of
β2, for which a good multigrid method might possibly be tuned in, turns out to be the
best preconditioner for the model problems considered here.

7.4.2 Smoother
In the context of the indefinite Helmholtz equation, it is known that fast local relax-
ation techniques such as Gauss-Seidel often perform worse than slower counterparts
such as ω-Jacobi. The reason [70] is that the frequencies corresponding to the in-
definite part of the spectrum are not treated adequately with local relaxation method.
The relatively faster methods such as Gauss Seidel thus excite these frequencies more,
compared to slower local methods such as ω-Jacobi or the Kacmarcz method [70]. An
alternative is to use global smoothing methods such as ILU(0) smoothing [8]. For the
indefinite Helmholtz, this was exploited in [72]. For solution techniques that store the
coefficient matrix, this is the smoother of choice for the complex shifted Helmholtz
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preconditioner. The following algorithm describes ILU(0) smoothing for n smoothing
steps. We’d like to point out that it is possible to implement some ILU(0) versions on
the stencil basis.

Let L and U represent the lower and the upper matrices (respectively) resulting
from the ILU decomposition (with zero fill-in) of the discrete operator (on level l,
denoted Al), so that:

Al = LU − R (7.21)

then n smoothing steps are executed as illustrated by Algorithm 3.

Algorithm 3 n smoothing steps based on ILU(0)
INPUTS: Al, n, vl (error), rhs (the right hand side)
OUTPUT: Smoothed vl

1 Evaluate L,U, and R
2 do i = 1 to n

dl = rhs + Rvl

el = L−1dl

vl = U−1el

continue

For experiments on locally refined grids we will use the ω-Jacobi point based
smoother with different values of the relaxation parameter ω. The parameter values
are mentioned with experimental results. In experiments on regular equidistant grids
we also use the ILU smoother, which seems to work best in the present context when
used in conjunction with an under-relaxation parameter. We mention the value of this
parameter with the experiments in Section 7.5.

7.4.3 Transfer Operators

We use the four-point restriction and bi-linear interpolation operators for grid transfer
as described in Chapter 2, Section 2.3. Implementationally, we use lexicographic
ordering in the regular grids, and L-shaped ordering of the grid unknowns in locally
refined grids. If transfer across the layer interface is required (in the case of locally
refined grids), then the transfer operators as described in Chapter 6, Section 6.3.3 are
employed. It suffices to mention that grid-math across layer interface involves extra
work, and can be circumvented by a careful choice of the finest grid.

7.4.4 The Coarse Grid Operators

Both, discretization coarse grid operators as well as the Galerkin coarse grid operators
are employed in the numerical experiments. The Galerkin operator is used in regular
grids, and the simple DCG operator on locally refined grids. Both work well in their
capacities, and have their own advantages and downsides.
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(a) Grid 5 (b) Grid 6 (c) Coarsest

Figure 7.3: An assortment of 3 grids, from a sequence of locally refined grids, chosen
from one of the experiments, the finest cannot be shown at this scale.

7.4.5 Cycle-type and Complexity

We can choose the finest grid in such a fashion so that standard coarsening is always
possible for both grid topologies. The grid size is halved at each coarse level, and
therefore, the usual complexity estimates for 2d grids (as presented in Chapter 4, Table
4.1) hold true. We experiment both with V as well as the F cycles. It turns out that with
ω-Jacobi smoothing, we essentially require F-cycles, whereas, with ILU(0) smoothing
V cycles can also sometimes perform the job. The cycle-types are mentioned with the
experiments in Section 7.5.

7.5 Numerical Experiments

7.5.1 Visuals of the Locally Refined Grid

Here we present visual examples of a locally refined grid, and some of the subsequent
coarse grids, that we use in the experiments for solving MP1 and MP2. Figure 7.3
displays the fifth, the sixth and the eighth (last) grid of a grid sequence which exactly
follows the refinement scheme described in Section 7.2.1. These figures result from
the actual implementation of the general idea represented by Figure 7.2, and Chapter
6.

7.5.2 Accuracy Vis-a-vis Grid Topology

The mesh size considerations of Section 7.2 ensure ample numerical resolution for
the computed solution. Our numerical scheme for the locally refined grids, use simple
bilinear interpolation at the layer interface. This prompts us to test and ensure that we
have second order accuracy with this scheme over the devised grid topology. For this
purpose, we substitute a substantially varying test function, given by:

u(x, y) =

(
sin

20 π x
L

+ sin
20 π y

L

)
/

(
x + y

L
+

1
5

)



7.5. Numerical Experiments 107

Table 7.4: MP1 results on equidistant grids with combinations of multigrid compo-
nents. Precon. shows the performance of the multigrid method on the preconditioner
as a stand-alone problem. This value is read as the observed multigrid contraction
number against the number of cycles used.

Problem (β1, β2) Grid MG-parameters Precon. Solver
Rel / ω / cycle / Restrict / CG

MP1-pb1 (1, 0.5) 3842 ω-JAC / 0.8 / F(1, 1) / FP / DCG 0.38/15 100
(1, 0.3) 3842 ILU(0) / 0.5 / F(1, 1) / FP / GCG 0.42/16 160
(1, 0.2) 3842 ILU(0) / 0.2 / F(1, 1) / FP / GCG 0.64/31 97

MP1-pb2 (1, 0.5) 3842 ω-JAC / 0.8 / F(1, 1) / FP / DCG 0.44/17 241
(1, 0.3) 3842 ILU(0) / 0.5 / F(1, 1) / FP / GCG 0.48/19 117
(1, 0.2) 3842 ILU(0) / 0.2 / F(1, 1) / FP / GCG 0.72/43 160

in Equation 7.3 and solve the resulting Helmholtz equation by our solver. The coef-
ficients of the boundary conditions are the same as for Equation 7.3, but their right-
hand-sides have been adapted so as to comply with this test function at the boundaries.
The numerical solution reproduces the test function accurate to the second order over
the grid refinement rendered by dividing every control volume into 4 square control
volumes. With this confidence of second order accuracy over the presented local re-
finement grid topology, we now test the solver through numerical experimentation
over regular and refined grids.

7.5.3 Experiments on Regular Equidistant Grids
In this batch of experiments we use regular equidistant grid and check solver perfor-
mance for MP1 and MP2. We select two problems from each category, i.e., MP1 and
MP2, by choosing combinations of particular parameters that define these problems,
as well as with combinations of components that define our multigrid method. This
forms four (4) problems in all that we test. These are enumerated as follows:

• MP1-pb1: (λ,K) = (7, 2)

• MP1-pb2: (λ,K) = (1, 4)

• MP2-pb1: (L,K) = (50, 1)

• MP2-pb2: (L,K) = (125, 2)

Experimental results are displayed in Tables 7.4 and 7.5.
The results in Table 7.4 present some very interesting features of this solver. A

prominent observation is the influence of using the global relaxation method ILU(0).
This conforms to the well-known phenomena [70, 73] that local GS-type smoothers
do a comparatively poor job for such indefinite problems. They excite the error com-
ponents that are invisible on the fine grid, thus jeopardizing the smoothing process
and making it ineffective. ILU(0) is somewhat more expensive than local relaxation
schemes. Nevertheless, it usually allows faster convergence compared to ω-Jacobi for
these model problems. For MP1 and MP2, the experiments suggest that the solver
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Table 7.5: MP2 results on equidistant grids with combinations of multigrid compo-
nents

Problem (β1, β2) Grid MG-parameters Precon. Solver
Rel / ω / cycle / Restrict / CG

MP2-pb1 (1, 0.5) 7682 ω-JAC / 0.8 / F(1, 1) / FP / DCG 0.33/13 118

MP2-pb2 (1, 0.5) 15362 ω-JAC / 0.8 / F(1, 1) / FP / DCG 0.36/13 225

is more reliable and stable with simple components, such as the ω-Jacobi smoother
(with different relaxation parameters ω), piecewise constant restriction, and the dis-
cretization coarse grid operator.

Another observation from the experiments in Table 7.4, is that for MP1, the highest
magnitude of the spatial wavenumber is not the only convergence hampering factor.
Geometric trait of the solution, also play a role in it, but it is somewhat non-trivial to
quantify exactly. It is clear that with (λ,K) = (7, 2) (solution with evanescent waves),
and with (λ,K) = (1, 4) (solution without evanescent waves), the highest wavenum-
ber is the same, and requires the same mesh resolution, however the convergence
behaviour is quite different in the two situations.

The ILU(0) smoother usually seems to work in a stable manner with the Galerkin
operator on the coarse grids. MP2 is more sensitive with respect to the smoother,
and ω-Jacobi seems to be a safe bet. The mesh size requirement for MP2 on regular
equidistant grids is given in Table 7.2. For MP2-pb1, this requirement translated into
grid size reads, 7682 (exact solve on grid level 9, i.e. 32); while for MP2-pb2, it is
15362 (exact solve on level 10 having a 32 grid size). The grid size is large owing
in turn to the large wavenumbers for MP2. Naturally, the number of iterations with
Bi-CGSTAB also grows linearly with the wavenumbers, as experienced by Erlangga
et al in [14]. The results are presented in Table 7.5.
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Figure 7.4: Residual reduction histories for some experiments.
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Table 7.6: Experiments on grids refined at the south and the west edges
Problem (β1, β2) Grid Precond. Solver (1 precond.) Solver (2 precond.)

MP1-pb1 (1,0.5) 1282 0.34/10 111 83
MP1-pb2 (1,0.5) 1282 0.36/12 278 201

MP2-pb1 (1,0.5) 2562 0.33/9 78 67
MP2-pb2 (1,0.5) 5122 0.38/11 382 185

7.5.4 Experiments on Locally Refined Grids
In this section we present a few results on the two model problems discretized on
locally refined grids, such that the mesh size requirements are fulfilled. In Section
7.5.3, we used the grid size 3842 for MP1, here in Table 7.6, we quote the locally
refined grid size as 1282. This simply implies that the white part (depicted in Figure
7.2) has the size 1282, while the mesh size in the adjacent fine layer is just half as
large. This scheme gives the required mesh density near steep gradients (and near the
singularity) of the solution.

We have not yet implemented an ILU(0) scheme for locally refined grids as cur-
rently the project is matrix-free. Although this relieves us of storage considerations,
this also implies the unavailability of more involved matrix-dependent smoothing
methods, such as ILU(0). We thus test our method only with ω-Jacobi, with varying
values of the complex shift parameter β2, and with FP restriction, bilinear prolonga-
tion and the DCG operator. The results of experiments on MP1 and MP2 on grids
amply refined near the perturbed regions, are presented in Table 7.6.

We see that MP2-pb1 is converged easier than MP1-pb1, however, this does not
scale well with changes in parameters on which the wavenumbers depends, and there-
fore, solving either of them is very challenging. We tested both problems with many
different complex shift values. For example, MP2-pb2 with β2 = 0.4 causes the solver
to converge in 485 iterations with 1 multigrid preconditioning step and in 286 itera-
tions with 2. Figure 7.4 gives a graphical residual reduction history for MP1 and MP2.
The reduction is around 7 orders of magnitude, and experiments with 2 multigrid pre-
conditioning cycles, show a stable reduction history. In cases where (say) 4 orders of
magnitude reduction suffices, the algorithm (for MP1-pb2) with 1 mg cycle / iteration,
would converge in around 125 iterations.

We see that although the proposed multigrid preconditioners are good, there is
still a lot of need for improvement. Moreover, both model problems, form a kind
of benchmark for multigrid preconditioned iterative solution techniques. They are
essentially non-trivial to solve, and require more research and perseverance.
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Chapter 8
Conclusions and Outlook

8.1 Conclusions
This thesis dealt with different problems containing the common issue of efficient
coarse grid correction. The two main themes treated here were grid-aligned anisotropy
for d-dimensional PDEs, and anisotropies resulting from logarithmic grid stretching.
Iterative solution of the indefinite Helmholtz equation (for applications from quantum
mechanics) formed the last part. There are therefore a number of conclusions from
this work which are summarized below.

The result from Chapter 4 is that efficient multigrid methods for high-dimensional
elliptic PDEs, on non-equidistant grids can be built through partial coarsening strate-
gies. Another important message in that chapter, is that point relaxation methods show
significantly enhanced smoothing properties in higher dimensions if used with opti-
mal relaxation parameters. To alleviate the implementation issues we showed how
difference operator matrices can be put together through tensor methods. This renders
testing in abstract higher d dimensions easy. Through numerical results supported
by the Local Fourier Smoothing analysis we also showed that partial quadrupling is
a strategy of choice in higher dimensions and ensures a computational complexity
of O(M0) (where M0 are total points on the finest level) even in the worst case, i.e.
coarsening in one dimension only. We have also confirmed this through a complexity
analysis. Results of the numerical experiments display the excellent multigrid con-
vergence that can be brought about with coarsening strategies proposed, analyzed and
experimented in Chapter 4.

A promising technique to handle high-dimensional PDE problems numerically
is the sparse grid method; which gives rise to an abundant number of smaller sized
problems on equidistant and non-equidistant grids. The non-equidistant grids gen-
erate a discrete anisotropy in the system. Although it is well known that multigrid
methods are amongst the fastest solvers for elliptic equations, the throughput of a
multigrid solver usually depends on how best it could be tuned with optimal attributes
which include optimal relaxation and an ideal coarse grid correction. It is often dif-
ficult to reach this optimality in a practical situation. Working only with ω = 1, i.e.,
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without access to optimal relaxation parameters, this optimality can be mimicked by
having multigrid as a preconditioner of a suitable Krylov subspace method, such as
Bi-CGSTAB. We showed in Chapter 5, how such a d-multigrid method works when
employed as a preconditioner, and supplemented the development with numerical ex-
periments and convergence diagrams. The resulting solver is quite robust and gener-
ally applicable to a wide class of discrete parabolic and elliptic problems. We demon-
strated the utility by solving the Black-Scholes equation for pricing options dependent
on multiple underlying assets. We also indicated that the grid convergence of the
sparse grid solution is irregular due to a non-differentiable payoff for this application,
whereas the convergence of multigrid preconditioned Bi-CGSTAB is excellent.

A geometric multigrid method based on L-shaped coarsening was developed and
presented in Chapter 6 for a cell-centered finite volume discretization scheme. This is
a hybrid coarsening strategy and results in a combination of full- and semicoarsening
in selected regions of the domain, guided by LFA. The method shows near-optimal
multigrid convergence with standard components, such as piecewise constant restric-
tion, simple bilinear interpolation and a stationary Gauss-Seidel point-based relax-
ation scheme. The numerical experiments demonstrated that the method works fine
for problems on 2d grids that were logarithmically stretched. Moreover, the method
can successfully handle severe stretching, even with V-cycles, without suffering a con-
vergence deterioration, and requires no Krylov acceleration. The complexity of the
method is comparable with well known approaches like FAC and MLAT ; the main
difference with these approaches is that the method proposed in Chapter 6, coarsens
the mesh in all regions of the computational domain simultaneously, and this leads to
a good complexity measure.

The indefinite Helmholtz equation arises in many scientific applications. These in-
clude seismics as well as quantum mechanics (QM) amongst others. In Chapter 7, we
tackled model problems which arise from simplification of the 6d Schrödinger equa-
tion in photo-induced Hydrogen ionization experiments. The solutions have evanes-
cent waves with very steep gradients at the south and west edges of the domain, and
singularity at the origin. The wavenumber is spatially dependent as well. We solved
this problem both on equidistant as well as grids locally refined in the regions of per-
turbation; by using multigrid for the complex shifted Helmholtz operator as a Krylov
preconditioner for the indefinite Helmholtz. The experiments indicated the need of
better iterative solvers than the current state-of-the-art. We also observed in that chap-
ter that these spatially dependent Helmholtz equations from this QM application posed
a tough benchmark for testing new iterative Helmholtz solvers.

8.2 Outlook

Efficient solution of d-dimensional PDEs still pose a challenge due to the curse of
dimensionality, even with the use of sparse grids. The reason is that the sparse grid
technique results in sub-problems, and therefore, storage requirements (amongst oth-
ers) of the largest subproblem is another issue. This can be analyzed in more detail.
Further, we also plan to exploit the parallel features of our d-dimensional solver by
automating the parallelism, and to work towards realistic higher-dimensional real-life
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problems.
Extension of the L-shaped coarsening technique to 3d would imply coarsening

decisions proceeding along 3d L-shaped geometric structures. Each of these struc-
tures would be composed of 3 half (or partial) planes parallel to the coordinate planes.
Similar to the 2d case, comparisons for coarsening would be between 2d partial coars-
ening and 3d full-coarsening for prospective agglomerations. The results are expected
to possess the usual scalability for dimensional extensions of the Poisson equation on
equidistant grids. However, work still remains to be done in this case.

Helmholtz equations are unique from the perspective that they are just scalar prob-
lems, which have continuously defied iterative solution techniques for a very long time
now. There are many ideas that float in this context, and new techniques can be re-
searched. Multigrid solution of these equations is one, another is the improvement
of the complex-shifted preconditioner. Deflation techniques coupled with this pre-
conditioner have also been developed, and require more outlook especially for 3 and
higher-dimensional Helmholtz type problems.

An important area which offers opportunity for development is parallelization of
many sequential numerical algorithms. Parallelization of multigrid customized for
any application at hand, is both important as well as non-trivial. With the advent
of desktop super-computing facilities, such as offered by Field Programmable Gate
Arrays (FPGAs) and Graphical Processing Units (GPUs), parallel computing is more
widely accessible than it was before, and forms a very interesting and potentially
rewarding field of research.
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Appendix A
The Multigrid Iteration Operator

A.1 Preliminaries
Before introducing the multigrid iteration operator, we would build on a few prelimi-
nary concepts. See [8, 2] for more preliminary results and insights.

Any linear iterative method for the matrix equation Ahuh = bh, can be represented
in general as:

ui+1
h = Mui

h + s; i = 1, 2, 3, · · · (A.1)

E.g., the Richardson-type iterative method,

ui+1
h =ui

h + τ(bh − Ahui
h)

⇒ =(Ih − τAh)ui
h + τbh

(A.2)

and the ω-Jacobi method,

ui+1
h = (Ih − ωD−1Ah)ui

h + ωD−1bh (A.3)

can both be realized in the form represented by Equation A.1.
We look into the ω-Jacobi method further. Let S h = (Ih − ωD−1Ah), so that with

an arbitrary u0
h, the ν1

th ω-Jacobi iterate is:

uν1
h = S ν1

h ui
h +

ν1−1∑
k=0

S k
h

ωD−1bh

which may be written as:

uν1
h = S ν1

h ui
h + sh (A.4)

(sh represents the last term of the equation).
We now show that any error correction iterative scheme (e.g. multigrid) can be

written as a particular Richardson iteration. Assume that ui
h is any approximation of

uh. Then:

ri
h = bh − Ahui

h = Ahei
h (A.5)
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If Âh is any easily invertible approximation of Ah, then approximate error êi
h can be

written as:

êi
h = Â−1

h ri
h (A.6)

and leads us to the iteration given by Equation A.7:

ui+1
h = ui

h + êi
h (A.7)

substituting the expressions for êi
h and subsequently ri

h in Equation A.7, from Equa-
tions A.6 and A.5 respectively; we have:

ui+1
h = (Ih − Â−1

h Ah)ui
h + Â−1bh (A.8)

which we recognize as a particular Richardson iteration where the constant τ has been
replaced by a more general approximation operator Â−1

h .
We would like to point out that in any iterative method, which can be described in

the form of Equation A.8, if the initial guess is an all zero vector, then the γth iterate
evolves as follows:

u0
h=0

u1
h=Â−1

h bh

u2
h=(Ih − Â−1

h Ah)Â−1
h bh + Â−1

h bh

=
(
Ih + (Ih − Â−1

h Ah)
)

Â−1
h bh

u3
h=

(
Ih + (Ih − Â−1

h Ah) + (Ih − Â−1
h Ah)2

)
Â−1

h bh

⇒ uγh=

(
Ih + (Ih − Â−1

h Ah) + (Ih − Â−1
h Ah)2

+ · · · + (Ih − Â−1
h Ah)γ−1

)
Â−1

h bh

=
(
Ih − (Ih − Â−1

h Ah)γ
) (

Ih − (Ih − Â−1
h Ah)

)−1
Â−1

h bh

=
(
Ih − (Ih − Â−1

h Ah)γ
)

A−1
h bh

(A.9)

A.2 The 2-grid Operator
In this section, we follow the same notation (and context) as in Section 2.2.3 (Chapter
2). We now move on to the two-grid operator that results from Algorithm 1. For k
and k + 1 representing the fine and the coarse levels respectively, we have:

ui+1
k = S ν2

k

(
S ν1

k ui
k + sk + Ik

k+1ek+1

)
+ sk (A.10)

= S ν2
k

(
S ν1

k ui
k + sk + Ik

k+1A−1
k+1Ik+1

k

{
bk − Ak(S ν1

k ui
k + sk)

})
+ sk

= S ν2
k

(
Ik − Ik

k+1A−1
k+1Ik+1

k Ak

)
S ν1

k ui
k + ŝk (A.11)

The last term ŝk is independent of ui
k therefore we get the 2-grid error iteration operator

as:

Mk+1
k = S ν2

k

(
Ik − Ik

k+1A−1
k+1Ik+1

k Ak

)
S ν1

k (A.12)

In Equation A.10, the error ek+1, can be replaced by a suitable approximation êk+1,
which can be obtained by recursively using a yet coarser grid in the 2-grid sense.
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Starting with an all zero initial guess, if γ cycles are employed for this approximation,
then we have:

ê(γ)
k+1 =

(
Mk+2

k+1

)γ
ê(0)

k+1 + s̃k

=
(
Ik+1 −

(
Mk+2

k+1

)γ)
A−1

k+1rk+1 (A.13)

according to the result obtained in Equation A.9. Replacing ek+1 in Equation A.10 by
ê(γ)

k+1 from Equation A.13, we get:

ui+1
k = S ν2

k

[
Ik − Ik

k+1

{
Ik+1 −

(
Mk+2

k+1

)γ}
A−1

k+1Ik+1
k Ak

]
S ν1

k ui
k + s̄k

where the term s̄k is independent of ui
k. Comparing this 3-grid equation with Equation

A.11, we immediately recognize the multigrid error iteration operator as:

Mk = S ν2
k

[
Ik − Ik

k+1 {Ik+1 − (Mk+1)γ} A−1
k+1Ik+1

k Ak

]
S ν1

k (A.14)

such that, k = 0, 1, 2, · · · , l (0 represents finest, l coarsest grid), and Ml+1 = 0.
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Appendix B
On Eigenfunctions and
Eigensymbols of Operators

In this appendix, we derive the eigenfunctions and eigensymbols1 of the continuous
and the discrete d-dimensional anisotropic stationary diffusion operator, with homo-
geneous Dirichlet boundary conditions. This is an important result and is used in quite
a few places in the thesis.

B.1 Modes and Symbols (Continuous Operator)
x is a d-tuple representing a Cartesian point in Rd, i.e., x = (x1, x2, · · · , xd). The
continuous anisotropic stationary diffusion -eigenvalue problem is then given as:

Lϕ(x) = L̃ϕ(x); x ∈ Ω = (0, 1)d (B.1)

ϕ(x) = 0; xi ∈ {0, 1}, (i = 1, 2, · · · , d) (B.2)

L = = −

d∑
i=1

εi
∂2

∂x2
i

; εi ∈ (0, 1) 3
d∑

i=1

εi = 1.0

where ϕ(x) represents the eigenfunctions, and L̃ represents the associated eigensym-
bols of the continuous operator L.

We employ the variable separable method to solve this eigenvalue problem. Let

ϕ(x) =

d∏
i=1

Xi(xi) (B.3)

Under this assumption ϕ is a product of d functions Xi, each depending on only a
single variable xi. When this is substituted in Equation B.1 and the result simplified,

1Eigenfunctions and eigensymbols are to continuous and discrete operators, what eigenvectors and
eigenvalues (respectively) are to matrices.
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we get:

−

d∑
i=1

εi

Xi

d2

dx2
i

Xi = L̃ (B.4)

As each term inside the summation depends on only a single variable, it is justified to
break this equation into d linear ordinary differential equations, which gives:

−
εi

Xi

d2

dx2
i

Xi = νi (i = 1, 2, · · · , d) (B.5)

where νi are constants with the condition that
∑d

i=1 νi = L̃. Solving these ODEs give d
solutions as follows:

Xi = C1e
√
−(νi/εi) xi + C2e−

√
−(νi/εi) xi (i = 1, 2, · · · , d) (B.6)

Depending on ci = νi/εi this results in:

Xi = Ai sinh(
√
−ci xi) + Bi cosh(

√
−ci xi) ci < 0 (B.7)

Xi = Ai sin(
√

ci xi) + Bi cos(
√

ci xi) ci > 0 (B.8)

Homogeneous boundary conditions rule out the solution represented by Equation B.7.
The boundary conditions take the form:

Xi(0) = 0, Xi(1) = 0

Substitution in the solution given by Equation B.8, gives:

Bi = 0, Ai sin(
√

ci) = 0,⇒
√

ci = liπ where li ∈ Z+

Thus the solution represented by Equation B.8 takes the form:

Xi(xi) = Ai sin(liπxi)

Substituting these d solutions in Equation B.3, we have:

ϕ(x) ≡
d∏

i=1

sin(liπxi) (B.9)

Note that the constant multiple
∏d

i=1 Ai has been conveniently removed from the above
representation. The legitimacy of the step stems from the result that all constant mul-
tiples of eigenfunctions are eigenfunctions of the original operator, with associated
eigensymbols scaled by their constant factors. We recognize that ϕ(x) in Equation B.9
are the eigenfunctions of the continuous Laplace operator as well as the anisotropic
operator. Substituting ϕ(x) in Equation B.1, results in the eigensymbols L̃:

L̃ = π2
d∑

i=1

εi l2i (B.10)
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B.2 Modes and Symbols (Discrete Operators)

Let L2o
h and L4o

h represent the O(h2) and the O(h4)-long-stencil FDM discretizations
of L, the continuous d-dimensional Laplacian. Along each dimension, the unit square
domain is discretized into N divisions, so that h = 1

N gives the mesh size. The eigen-
functions of the discrete operators are therefore approximated by the eigenfunctions
of the continuous operator, given by Equation B.9. This approximation is denoted by
ϕh(θ, x) and is given by:

ϕh(θ, x) =

d∏
i=1

sin
(
θi xi

h

)
; where θi = lih π, li = 1, 2, · · · ,N − 1 (B.11)

B.2.1 Eigensymbols of L2o
h (O(h2) Central FDM)

The complete d-dimensional stencil ((2d+1) star) is a sum of the individual 1d stencils.
For this reason, we will apply the kth 1d stencil to the representation in Equation B.11,
and sum the result over k. (Overline represents precedence of operation).

L2o
h ϕh(θ, x) =

d∑
k=1

εk

h2

[
−1 2 − 1

]  d∏
i=1

sin
(
θi jh

h

) ; j = 0, 1, · · · ,N

=

d∑
k=1

εk

h2

− sin(θk j − 1)
d∏

i=1
i,k

sin(θi j) + 2
d∏

i=1

sin(θi j)

− sin(θk j + 1)
d∏

i=1
i,k

sin(θi j)


=

d∑
k=1

2εk

h2

[
1 − cos(θk)

] d∏
i=1

sin(θi j)

= L̃2o
h (θ)

d∏
i=1

sin(θi j)

Therefore the eigensymbols of the discrete Laplacian in this case are:

L̃2o
h (θ) =

2
h2

[
1 −

d∑
k=1

εk cos(θk)
]

(B.12)

or alternately:

L̃2o
h (θ) =

4
h2

d∑
k=1

εk sin2
(
θk

2

)
(B.13)
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B.2.2 Eigensymbols of L4o
h (O(h4) FDM Long-stencil)

The 1d O(h4) FDM long-stencil is considered in this part. This leads to:

Lk
hϕh(θ, x) =

d∑
k=1

1
12h2

k

[
1 − 16 30 − 16 1

]  d∏
i=1

sin
(
θi jihi

hi

) .
Trigonometric considerations very similar to the last part, lead to the eigensymbols:

L̃4o
h (θ) =

1
6h2

15 −
d∑

k=1

εk(16 cos θk − cos 2θk)

 , (B.14)

or alternately

L̃4o
h (θ) =

1
3h2

d∑
k=1

εk

[
16 sin2 θk

2
− sin2 θk

]
. (B.15)



Appendix C
Matrix-Techniques for ω-RB
Jacobi

ω-RB Jacobi can be implemented in several ways depending on the test platform. We
have here a method that is suitable for iterations over a solution vector as opposed to
explicit update in a loop. The scheme that we present in this appendix is developed
to bring about the odd-even (red-black) partitioning with minimal manipulation of the
grid-points.

We store three vectors in this scheme (two of which have just half the storage
requirement as the first one). The first vector is the unmanipulated vector (henceforth
called the main-vector) containing values for all grid points (red as well as black), the
second vector has the values at the black points ejected out and replaced with zeros.
Symmetrically, the third has the values at the red positions ejected out and replaced
by zeros. This ejection-process is actually where our injection operators (henceforth
called ejectors) fit in.

First we construct the partition of the main vector storing the red and the black
parts, then we carry out the first partial ω-Jacobi sweep by updating only the red part.
This new red part along with the previously stored black part represents the main
vector after the first partial sweep. Carrying out the second partial sweep in exactly
the same manner, now for the black part instead, gives one ω-RB Jacobi iteration.

We present two injection operators, one for points of each color (even/odd cate-
gory). We denote these ejectors by ER, and EB, with

ER =

( d⊕
i=1

η(d−i+1)

)
mod 2,

EB = (ER + 1) mod 2.⊕
is the cumulative tensor sum of ηi, which counts the interior points along the ith

dimension, i has the reverse order (from d to 1) to match the lexicographic layout of
the grid points. Due to space limitations we can only provide a 2d example, although
this formulation is true in general for an abstract higher dimension d.
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Example 2: Consider a 2d grid G = [4, 5]. In all we have 12 interior points which
when counted in the lexicographic order, appear as follows:

u = [u11 u12 u13 u14 u21 u22 u23 u24 u31 u32 u33 u34]T .

Evidently, G, the collection of all the points, has the following partition:

GR = {u11, u13, u22, u24, u31, u33},

GB = {u12, u14, u21, u23, u32, u34}.

Therefore according to our scheme:

uR = [ u11 0 u13 0 0 u22 0 u24 u31 0 u33 0 ]T ,

uB = [ 0 u12 0 u14 u21 0 u23 0 0 u32 0 u34 ]T

and ηi in this case would be:

η1 = [1 2 3 4]T & η2 = [1 2 3]T

which leads to:

ER = (η2 ⊕ η1) mod 2
= [2 3 4 5 3 4 5 6 4 5 6 7]T mod 2
= [0 1 0 1 1 0 1 0 0 1 0 1]T

∴ EB = [1 0 1 0 0 1 0 1 1 0 1 0]T .

These red and black point ejectors now can be used to partition the grid as de-
scribed. Once this partition is obtained, ω-RB Jacobi relaxation sweeps are trivial to
perform, in that, they are no different than their 2d counterparts.



Appendix D
Derivation of the Discrete Flux
Balance Equations

To illustrate completely how the discrete coarse grid operator is built, we derive, in
this appendix, the discrete flux-balance equations for Nodes 2 and 12 of Chapter 6,
Figure 6.3. In the following, k indicates a face of the control volume; specifically, the
values 0, 1, 2, 3 point to the south, east, north, and west faces, respectively. Fk

m denotes
the outward flux through the kth face of the mth control volume. f Ω

m is the source func-
tion, f Ω, computed at (xm, ym), which is the Cartesian position of node m. hx

m and hy
m

are the width and the height (i.e. mesh-sizes along x and y) of the mth control volume,
respectively.

For Node m = 2 of Figure 6.3(b), Equation (6.4) yields:

F0
2 + F1

2 + F2
2 + F3

2 = f Ω
2 (hx

2 hy
2)

or

−F2
1 + F1

2 + F2
2 + F3

2 = f Ω
2 (hx

2 hy
2) (D.1)

where

F2
1 = a2

(
x1, y1 +

hy
1

2

)
(u1 − u2)

( 2hx
1

hy
1 + hy

2

)
F1

2 = a1

(
x2 +

hx
2

2 , y2

)
{u2 − (c1u11 + c2u12)}

( 2hy
2

hx
2 + hx

12

)
F2

2 = a2

(
x2, y2 +

hy
2

2

)
(u2 − u3)

( 2hx
2

hy
2 + hy

3

)
F3

2 = a1

(
x2 −

hx
2

2 , y2

) {
u2 − f Γ

(
x2 −

hx
2

2 , y2

)} ( 2hy
2

hx
2

)
Let

β2
1 = a2

(
x1, y1 +

hy
1

2

)( 2hx
1

hy
1 + hy

2

)
, β1

2 = a1

(
x2 +

hx
2

2 , y2

)( 2hy
2

hx
2 + hx

12

)
,

β2
2 = a2

(
x2, y2 +

hy
2

2

)( 2hx
2

hy
2 + hy

3

)
, β3

2 = a1

(
x2 −

hx
2

2 , y2

)( 2hy
2

hx
2

)
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and

β2 = β2
1 + β1

2 + β2
2 + β3

2

Then, from the flux balance equation (D.1), we get:

β2 u2 = f Ω
2 (hx

2 hy
2) + β2

1 u1 + β1
2 (c1u11 + c2u12) + β2

2 u3 + β3
2 f Γ

(
x2 −

hx
2

2
, y2

)
(D.2)

Similarly, for node m = 12, we get from (6.4):

F0
12 + F1

12 + F2
12 + F3

12 = f Ω
12 (hx

12 hy
12)

or

−F2
11 + F1

12 + F2
12 − (F1

2 + F1
3) = f Ω

12 (hx
12 hy

12) (D.3)

where

F2
11 = a2

(
x11, y11 +

hy
11
2

)
(u11 − u12)

( 2hx
11

hy
11 + hy

12

)
F1

12 = a1

(
x12 +

hx
12
2 , y12

)
{u12 − u18)}

( 2hy
12

hx
12 + hx

12

)
F2

12 = a2

(
x12, y12 +

hy
12
2

)
(u12 − u13)

( 2hx
12

hy
12 + hy

13

)
F1

3 = a1

(
x3 +

hx
3

2 , y3

)
{u3 − (c3u12 + c4u13)}

( 2hy
3

hx
3 + hx

12

)
Let

β2
11 = a2

(
x11, y11 +

hy
11
2

)( 2hx
11

hy
11 + hy

12

)
, β1

12 = a1

(
x12 +

hx
12
2 , y12

)( 2hy
12

hx
12 + hx

18

)
,

β2
12 = a2

(
x12, y12 +

hy
12
2

)( 2hx
12

hy
12 + hy

13

)
, β1

3 = a1

(
x3 +

hx
3

2 , y3

)( 2hy
3

hx
3 + hx

12

)
and

β12 = β2
11 + β1

12 + β2
12 + c2 β

1
2 + c3 β

1
3

Then from the flux balance equation (D.3), we get:

β12 u12 = f Ω
12 (hx

12 hy
12) + β2

11 u11 + β1
12 u18 + β2

12 u13 + β1
2 c1 u11 + β1

3 c4 u13 (D.4)

Equations (D.2) and (D.4) lay emphasis on the way we ensure flux balance in the
system. The flux through the south face of Cell 2 is the same quantity computed as
Cell 1’s north-face flux. Similarly, the flux through the west face of Cell 12 is the
cumulative flux flowing in from its west neighbours, i.e. Cells 2 and 3. We reiterate
that traversal of the L-strips is in such a fashion that the required fluxes are already
available if they have been computed previously. Particularly in connection with this
example, note that Cell 1 would be treated earlier than Cell 2, hence its north-face
flux is available for use as Cell 2’s south-face flux. Similarly Cell 2 and Cell 3 (due
to the enumeration scheme) would be treated earlier than Cell 12 and, therefore, their
east-face fluxes are already available to add up into the west-face flux of Cell 12.
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