26,722 research outputs found

    Robust Facial Expression Recognition via Compressive Sensing

    Get PDF
    Recently, compressive sensing (CS) has attracted increasing attention in the areas of signal processing, computer vision and pattern recognition. In this paper, a new method based on the CS theory is presented for robust facial expression recognition. The CS theory is used to construct a sparse representation classifier (SRC). The effectiveness and robustness of the SRC method is investigated on clean and occluded facial expression images. Three typical facial features, i.e., the raw pixels, Gabor wavelets representation and local binary patterns (LBP), are extracted to evaluate the performance of the SRC method. Compared with the nearest neighbor (NN), linear support vector machines (SVM) and the nearest subspace (NS), experimental results on the popular Cohn-Kanade facial expression database demonstrate that the SRC method obtains better performance and stronger robustness to corruption and occlusion on robust facial expression recognition tasks

    Robust Image Recognition Based on a New Supervised Kernel Subspace Learning Method

    Get PDF
    Fecha de lectura de Tesis Doctoral: 13 de septiembre 2019Image recognition is a term for computer technologies that can recognize certain people, objects or other targeted subjects through the use of algorithms and machine learning concepts. Face recognition is one of the most popular techniques to achieve the goal of figuring out the identity of a person. This study has been conducted to develop a new non-linear subspace learning method named “supervised kernel locality-based discriminant neighborhood embedding,” which performs data classification by learning an optimum embedded subspace from a principal high dimensional space. In this approach, not only is a nonlinear and complex variation of face images effectively represented using nonlinear kernel mapping, but local structure information of data from the same class and discriminant information from distinct classes are also simultaneously preserved to further improve final classification performance. Moreover, to evaluate the robustness of the proposed method, it was compared with several well-known pattern recognition methods through comprehensive experiments with six publicly accessible datasets. In this research, we particularly focus on face recognition however, two other types of databases rather than face databases are also applied to well investigate the implementation of our algorithm. Experimental results reveal that our method consistently outperforms its competitors across a wide range of dimensionality on all the datasets. SKLDNE method has reached 100 percent of recognition rate for Tn=17 on the Sheffield, 9 on the Yale, 8 on the ORL, 7 on the Finger vein and 11on the Finger Knuckle respectively, while the results are much lower for other methods. This demonstrates the robustness and effectiveness of the proposed method

    Dual-tree Complex Wavelet Transform based Local Binary Pattern Weighted Histogram Method for Palmprint Recognition

    Get PDF
    In the paper, we improve the Local Binary Pattern Histogram (LBPH) approach and combine it with Dual-Tree Complex Wavelet Transform (DT-CWT) to propose a Dual-Tree Complex Wavelet Transform based Local Binary Pattern Weighted Histogram (DT-CWT based LBPWH) method for palmprint representation and recognition. The approximate shift invariant property of the DT-CWT and its good directional selectively in 2D make it a very appealing choice for palmprint representation. LBPH is a powerful texture description method, which considers both shape and texture information to represent an image. To enhance the representation capability of LBPH, a weight set is computed and assigned to the finial feature histogram. Here we needn't construct a palmprint model by a train sample set, which is not like some methods based on subspace discriminant analysis or statistical learning. In the approach, a palmprint image is first decomposed into multiple subbands by using DT-CWT. After that, each subband in complex wavelet domain is divided into non-overlapping sub-regions. Then LBPHs are extracted from each sub-region in each subband, and lastly, all of LBPHs are weighted and concatenated into a single feature histogram to effectively represent the palmprint image. A Chi square distance is used to measure the similarity of different feature histograms and the finial recognition is performed by the nearest neighborhood classifier. A group of optimal parameters is chosen by 20 verification tests on our palmprint database. In addition, the recognition results on our palmprint database and the database from the Hong Kong Polytechnic University show the proposed method outperforms other methods

    A Classifier Based on Distance between Test Samples and Average Patterns of Categorical Nearest Neighbors

    Get PDF
    The recognition rate of the typical nonparametric method "k-Nearest Neighbor rule (kNN)" is degraded when the dimensionality of feature vectors is large. Another nonparametric method "linear subspace methods" cannot represent the local distribution of patterns, so recognition rates decrease when pattern distribution is not normal distribution. This paper presents a classifier that outputs the class of a test sample by measuring the distance between the test sample and the average patterns, which are calculated using nearest neighbors belonging to individual categories. A kernel method can be applied to this classifier for improving its recognition rates. The performance of those methods is verified by experiments with handwritten digit patterns and two class artificial ones.Ninth International Workshop on Frontiers in Handwriting Recognition (IWFHR\u2704), 26-29 Oct. 200

    Person Re-identification by Local Maximal Occurrence Representation and Metric Learning

    Full text link
    Person re-identification is an important technique towards automatic search of a person's presence in a surveillance video. Two fundamental problems are critical for person re-identification, feature representation and metric learning. An effective feature representation should be robust to illumination and viewpoint changes, and a discriminant metric should be learned to match various person images. In this paper, we propose an effective feature representation called Local Maximal Occurrence (LOMO), and a subspace and metric learning method called Cross-view Quadratic Discriminant Analysis (XQDA). The LOMO feature analyzes the horizontal occurrence of local features, and maximizes the occurrence to make a stable representation against viewpoint changes. Besides, to handle illumination variations, we apply the Retinex transform and a scale invariant texture operator. To learn a discriminant metric, we propose to learn a discriminant low dimensional subspace by cross-view quadratic discriminant analysis, and simultaneously, a QDA metric is learned on the derived subspace. We also present a practical computation method for XQDA, as well as its regularization. Experiments on four challenging person re-identification databases, VIPeR, QMUL GRID, CUHK Campus, and CUHK03, show that the proposed method improves the state-of-the-art rank-1 identification rates by 2.2%, 4.88%, 28.91%, and 31.55% on the four databases, respectively.Comment: This paper has been accepted by CVPR 2015. For source codes and extracted features please visit http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda
    • …
    corecore