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Abstract

The recognition rate of the typical nonparametric
method “�-Nearest Neighbor rule (�NN)” is degraded
when the dimensionality of feature vectors is large. Another
nonparametric method “linear subspace methods” cannot
represent the local distribution of patterns, so recognition
rates decrease when pattern distribution is not normal dis-
tribution. This paper presents a classifier that outputs the
class of a test sample by measuring the distance between the
test sample and the average patterns, which are calculated
using nearest neighbors belonging to individual categories.
A kernel method can be applied to this classifier for improv-
ing its recognition rates. The performance of those methods
is verified by experiments with handwritten digit patterns
and two class artificial ones.

1. Introduction

Nonparametric methods can be used with arbitrary data
distributions and without the assumptions that the forms of
the underlying pattern densities are known [1]. There are
several types of nonparametric methods in pattern recogni-
tion. The typical one is the �-nearest neighbor (�NN) rule.
The �NN rule has been implemented on pattern recogni-
tion systems because of its good performance and simple
algorithm. In the �NN rule, the class of a test sample is
chosen as the class of the majority of its �-nearest neigh-
bors [1, 2]. This approach includes the following features:
1) It has been proved that the error rate of �NN is close to
the Bayes error when both the number of training samples
and the value of parameter � are infinite. 2) We can de-
sign the classifier by �NN even if the number of training
samples is few. 3) We can implement �NN when the dis-
tribution of classes is overlapped with each other. 4) �NN
can be implemented easily due to its simple algorithm. The
main drawback to �NN is that recognition rates deteriorate
when the number of dimensions of a feature vector is large

Figure 1. An example of test sample (leftmost)
and its five nearest training samples.

[3]. For example, Figure 1 shows the example of a test sam-
ple from the MNIST dataset [4], and its five nearest training
samples, which are evaluated using the Euclidean distance.
In this example, the test sample is misclassified to ‘8’ be-
cause the selected five training samples include the three
samples of the class 8.

For reducing this type of misclassification, it is effec-
tive to use the classification method based on comparison
between the test sample and the global data distribution
of individual categories such as a linear subspace method
[5, 6]. In the linear subspace method, data distribution of
each class is represented by individual subspaces. The class
of a test sample is determined by computing the norm of
the projected test sample on the individual subspaces. This
approach cannot represent the local data distribution, so the
recognition rate decreases when data distribution is not nor-
mal distribution.

In order to overcome the difficulties of �NN and the
linear subspace method, we propose a new classification
method that classifies a test sample by measuring the dis-
tance between the test sample and the average patterns,
which are calculated using the �-nearest neighbors belong-
ing to individual categories. Furthermore, we show how to
apply kernel methods to the proposed method. The perfor-
mance of the proposed method is verified by experiments
with the real-life problem of handwritten digit recognition.

2 Classification by distance between test
samples and average patterns of categori-
cal nearest neighbors

In this section, we observe the nature of the �-nearest
neighbors of test samples for overcoming the difficulties
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Figure 2. The five training samples closest to
the test sample. Only the classes 3, 5 and 8
are shown. From top to bottom, the class 3,
5 and 8. At the right column are the average
patterns of each class.
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Figure 3. Relationship between the value of �
and distance.

found in �NN and the linear subspace method. Figure 2
illustrates the five nearest training samples of each class to
the test sample depicted in Figure 1. As shown in Figure 2,
they consist of various size and line-thickness images. Note
that the training samples for the classes 3 and 8 contain the
neighbors that are not similar to the test sample. To eval-
uate the relationship of the test sample and its neighboring
ones, we computed the average patterns using the �-nearest
neighbors of each class (see the rightmost in Figure 2). It
seems that the average pattern for the class 5 is similar to
the test sample, but other average patterns are not. So we
measured the distance between the test sample and these
average patterns. Figure 3 shows the relationship between
the number of �-nearest neighbors and the distance from
the test sample to the average patterns. This figure indi-
cates that the average pattern for the class 5 is closest to the
test sample, and the distance values of the classes 3 and 8
never drop as low as that of the class 5. In other words, the
distance between the test sample and the average pattern of
the class 5 becomes smaller than the other classes because
the training samples belonging to the class 5 are uniformly
distributed around the test sample. In addition, the dissim-
ilar training samples to the test sample are more and more
added to the average patterns for classes other than class 5
by increasing of �, so the distance values of these classes

never drop as low as that of the class 5.
According to the above observation and discussion, it is

expected that a high recognition rate can be achieved by
measuring the distance between the test sample and the av-
erage patterns instead of counting the number of the labels
of �-nearest neighbors such as �NN. Hence, we propose
a classifier that outputs the class of a test sample by mea-
suring the distance between the test sample and the average
patterns, which are calculated using the �-nearest neighbors
of individual categories.

2.1 Formulation

Let �� � ����� ���� ����� �� � �� ���� ��be a �-dimensional
training sample belonging to the class �, where � is the
number of the training samples belonging to the class �.
When a test sample � � ���� ���� ���� is given, the class of
the test sample (denoted by �) is chosen as

� � ���	
�
�

���
��

������
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� (1)

where 
� is the set of the 	-nearest training samples which
belong to the class �. The following relationship is estab-
lished between the individual samples of 
� :

��� � ��� � ��� � ��� � ��� � ��� � ���� (2)

This classification approach employs 	 as a parameter. In
this paper, we call this method CAP (classification using
Categorical Average Patterns). When 	 � �, CAP coincides
with the nearest neighbor rule (1-NN).

2.2 Kernel CAP

In recent years much research has been conducted on
kernel methods (e.g. [7, 8]), to which CAP described above
can be applied. When we apply the kernel method to CAP,
the class of the test sample is chosen as
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� (3)

where ���� is a mapping function that maps sam-
ples from an input space to a high-dimensional space.
We represent an inner product in the high-dimensional
space ������������� by an appropriate Mercer kernel
��������. Hence, the square of the Euclidean distance be-
tween the test sample � and the training sample �� in the
high-dimensional space is written as

�� � ������� ������

� ������������� � 
������������� �����������

� ��������� 
����� �� ����� ��� (4)
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Figure 4. Relationship between the value of �
and error rates.

In the same way, the equation (3) can be expanded as
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(5)
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Note that in the equations (4) and (5), the factor���� �� can
be ignored, because it is the common term in all classes.

In short, CAP that uses the kernel method is conducted
in the following manner. First, �� � ��������������� ��
is calculated for each class, and the �-nearest training sam-
ples ���� � �� ���� �� are selected for each class. Second,
the class of the test sample is determined by measuring the
distance between the test sample and the average patterns
in the high-dimensional space:

�
������

����������� �

�
�

����
����� ����. In this paper, we call this method

KCAP (Kernel CAP). Throughout this paper we use the
Gaussian kernel with width parameter �:

����� �� � ������ � ���� (6)

3 Experiments

3.1 Experimental results on MNIST

In this section, we show the property of the proposed
method using the MNIST dataset. The MNIST dataset con-
sists of 60,000 training and 10,000 test images. For the fea-
ture extraction, we use for peripheral direction contributiv-
ity feature (P-DC) [9, 10]. This feature set represents each
image as a 256 dimensional vector.

3.1.1 Influence of the parameter � on error rates

In a first experiment, we examined the relationship between
the parameter � and error rates. Figure 4 shows the results
of �NN and CAP. The result of KCAP was not included in

Table 1. Error rates on MNIST [%].
method test training

�NN (� � �) ���	 ��
�
DW�NN (� � ��) ���� ����
CLAFIC (� � ��) ���
 ��
�
PFM (� � ����) ���� �

SVM (� � �
�, 	 � ��) ��	� ����
CAP (� � ��) ���
 ����

KCAP (� � ��, � � ��) ���� ����
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Figure 5. Relationship between the number of
training samples and error rates.

this figure, because it was almost same as that of CAP. As
shown in this figure, the increase of � leads to the increasing
of the test and training error of �NN. In contrast, the test
error rate of CAP decreases while � is less than or equal to
about 10. In addition, the increasing rate against training
samples is smaller than that of �NN. Hence, selection of �
on CAP is easier than that on �NN.

Table 1 lists the lowest error rates with the parameter val-
ues of each classifier: �NN, the Distance-Weighted �NN
(DW�NN) [11], the basic linear subspace method CLAFIC
[5, 6], Potential Function Method (PFM) [12] with the
Gaussian potential function (see the equation (6)), Support
Vector Machine (SVM) [7], CAP and KCAP. In CLAFIC,
the parameter � indicates the dimensionality of subspaces.
In SVM, � and 	 indicate the scale parameter of the Gaus-
sian kernel and the soft margin constant, respectively. For
SVM, we used the SVM package, LIBSVM [13].

From the above table, we conclude that SVM outper-
forms all the other investigated techniques and the test error
rates of CAP and KCAP significantly are lower than those
of �NN, CLAFIC and PFM. Incidentally, some techniques
that select the appropriate prototypes by clustering such
as LVQ-�NN [14] have a property of a trade-off between
recognition rates and the number of prototypes [14]. That
is, if we desire a high-accuracy prediction, we should se-
lect a large number of prototypes (clusters). Consequently,
clustering-based classifiers with a large number of proto-
types will approach to the �NN rule, so we did not compare
them to the proposed method.
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Figure 6. Relationship between the dimen-
sionality of feature vectors and error rates.

3.1.2 Relationship between the number of training
samples and error rates

In a next experiment, we examined the influence of the
number of training samples on error rates. Figure 5 indi-
cates the changes in error rates when the number of train-
ing samples increases from 10,000, 30,000 to 60,000. This
experiment showed that the error rates of CAP were lower
than those of �NN in all range of the number of training
samples. However, no significant difference in the decreas-
ing rate of errors was found between CAP and �NN.

3.1.3 Influence of the dimensionality of feature vectors
on error rates

Next, we examined the relationship between the dimension-
ality of feature vectors and the error rates. In experiments,
dimension reduction was applied to the 60000 training sam-
ples using the Karhunen-Loéve expansion technique. The
changes in error rates were examined with the dimension-
ality ranging from 8 to 256. Figure 6 shows the results.
The result of KCAP was similar to that of CAP, so we did
not depict it in this figure. As shown in this figure, CAP
achieved lower error rates than �NN across all range. Also
note that the test error rate of �NN reached its minimum
when the number of dimensions was 32. On the other hand,
the test error rate of CAP reached its minimum when the di-
mensionality was 256. This empirical analysis showed that
CAP is effective for processing high-dimensional patterns.

3.2 Experimental results on USPS

In this section, we test the proposed method on the USPS
dataset [15]. The USPS dataset consists of fewer training
samples than MNIST. In addition, this dataset is more diffi-
cult to recognize than MNIST. The USPS consists of 7,291
training and 2,007 test images. In experiments, we used the
256-dimensional P-DC feature vector.

Table 2. Error rates on USPS [%].
method test training

�NN (� � �) ��� �

DW�NN (� � �) ���� �

CLAFIC (� � ��) ���� ����

PFM (� � ����) ���	 �

SVM (� � ���, � � �) ��	� ���


CAP (� � ��) ���� ����

KCAP (� � ��, � � ���) ���� ����
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Figure 7. Relationship between error rates
and the rate of outliers �.

Table 2 lists the lowest error rates with the parameter val-
ues of each classifier. The result showed that the proposed
method outperformed all the other investigated techniques.
Furthermore, the error rates of KCAP were lower than those
of CAP. That is, the use of kernel methods helped improve
the recognition performance of CAP.

3.2.1 Robustness Against Outliers

Next, we examined the nature of robustness against outliers
of each classifier by randomly replacing the class labels of
training samples. The averaged misclassification rates and
standard errors of each method by 100 trials are displayed
with error bars plot in Figure 7. The horizontal axis denotes
the rate of outliers (i.e., the rate of the number of the re-
placed training samples). The result of CAP and PFM were
similar to those of KCAP and CLAFIC respectively, so we
did not display them in this figure. The increase of outliers
led to the deterioration of averaged misclassification rates
and standard errors of �NN, but it did not lead to those of
SVM. The increasing rate of the averaged error of KCAP
was not so different from that of CLAFIC, but the standard
error of KCAP was small as well as that of SVM. This em-
pirical analysis showed that CAP and KCAP were robust to
outliers more than �NN and CLAFIC.
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Figure 8. An example of two-dimensional artificial samples and decision boundaries for each method.
Left: kNN (� � �). Middle: CAP (� � �). Right: KCAP (� � ��, � � ����).

e
rr
o
r 
ra
te
 (
%
)

kNN test error

CAP test error

KCAP test error

k
0 10 20 30

10

12

14

16

Figure 9. Relationship between test error and
the value of �.
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3.3 Experimental results on artificial patterns

Generally, the �NN rule can be applied to patterns
of which distribution is nonlinear, but it is not suitable
for high-dimensional patterns (e.g., handwritten charac-
ters). So CAP and KCAP are compared with �NN using
a low-dimensional artificial pattern with nonlinear distri-
bution. First, we created two classes that consist of two-
dimensional patterns by the following manner: Let ��,
��, �� and �� be the values randomly sampled from nor-
mal distributions which have the mean and variance ��� ���
of ��� ���, ���� ��, ��� ��� and �	�� ��. An equal number
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Figure 11. Relationship between the number
of training samples and error rates.
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Figure 12. Standard deviations of error rates.

of patterns were generated for the two-dimensional pat-
terns belonging to Class 1 (��) and Class 2 (��) given
by ���� ������ 
 ��� � �� and ����������� 
 ��� � ��
[16]. Figure 8 shows 300 training samples and the deci-
sion boundaries obtained by �NN, CAP and KCAP. The
two-class samples are indicated by dots, and the decision
boundaries are indicated by lines. As seen in this figure, the
decision boundary of KCAP is the smoothest one.

Next, the relationship between the parameter � and error
rates was conducted with the number of test and training
samples fixed at 100 and 300 respectively. Each test was
independently repeated 100 times under each test condition,
and the mean and variance of classification error rates were
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calculated. Figure 9 and 10 show the averages of test error
rates and training ones for each value of �. As shown in
those figures, the large value of � led to increase of the error
rates for �NN. In contrast, the error rates of CAP and KCAP
did not increase such as �NN. Hence, selection of � on CAP
and KCAP is easier than that on �NN.

Finally, classification tests were conducted with the
number of test samples fixed at 100 and the number of train-
ing samples varying from 30 to 300. The parameters of each
method were selected based on the above experiment (�NN:
�=5, CAP: �=9, KCAP: � � ��, � � ����). Each test
was independently repeated 100 times under each test con-
dition, and the mean and standard deviation of error rates
were calculated. Figure 11 shows the mean of error rates
for each number of training samples and for each method.
Two curved lines having the same dot indicate the mean of
test error rate (solid lines) and training error rate (dashed
lines) in the same method. This experiment showed that the
error rates of CAP and KCAP were lower than those of �NN
in any range of the number of training samples. It should be
noted that the test error rate of KCAP was lower than those
of �NN and CAP in all range of the number of training sam-
ples. That is, the use of kernel methods helped improve
the classification performance of CAP. Figure 12 shows the
standard deviation of error rates for each number of training
samples. This experiment showed that standard deviations
of the test error rates of CAP and KCAP was lower than of
�NN in all range of the number of training samples. Hence,
we can conclude that CAP and KCAP outperform the �NN
rule and have a high-generalization performance.

4 Conclusions

This paper has presented the algorithm that outputs the
class of a test sample by measuring the distance between
the test sample and the average patterns, which are calcu-
lated using the �-nearest neighbors belonging to individual
classes. It was verified by the experiments using handwrit-
ten digit patterns and a low-dimensional artificial one that
the proposed method achieved higher recognition rates than
other nonparametric methods such as �NN and linear sub-
space methods.

The computational cost of the proposed method is high
as well as that of �NN, because they are the methods
of complete storage (i.e., the method that stores all train-
ing samples in systems). For instance, the computational
costs of �NN and CAP are approximately ��������� and
������� respectively, where � is the number of classes.
However, the proposed method can measure the distance
between test samples and the average patterns on individ-
ual classes independently. Hence, it is able to reduce the
number of candidate classes by performing a rough classifi-
cation. In addition, subspace methods and neural networks

such as SVM may require recalculating subspaces and re-
learning support vectors when training samples are added,
but the proposed method only needs to add them. That is,
there is no need to reconstruct systems when training sam-
ples are added.

In short, the proposed method includes the following ad-
vantages: 1) CAP and KCAP can achieve lower error rates
than other nonparametric methods such as �NN and sub-
space methods. 2) The proposed method can be applied to
high-dimensional patterns. Hence, the recognition rate of
CAP can be improved by employing kernel methods. 3) We
can implement CAP and KCAP easily because of its sim-
ple algorithms. 4) There is no need to reconstruct systems
when samples are added.
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