7,316 research outputs found

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Higher brain functions served by the lowly rodent primary visual cortex

    Get PDF
    It has been more than 50 years since the first description of ocular dominance plasticity-the profound modification of primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain as a potential substrate for learning and memory. The pace of discovery has quickened considerably in recent years as mice have become the preferred species to study visual cortical plasticity, and new studies have overturned the dogma that primary sensory cortex is immutable after a developmental critical period. Recent work has shown that, in addition to ocular dominance plasticity, adult visual cortex exhibits several forms of response modification previously considered the exclusive province of higher cortical areas. These "higher brain functions" include neural reports of stimulus familiarity, reward-timing prediction, and spatiotemporal sequence learning. Primary visual cortex can no longer be viewed as a simple visual feature detector with static properties determined during early development. Rodent V1 is a rich and dynamic cortical area in which functions normally associated only with "higher" brain regions can be studied at the mechanistic level.National Eye Institute (Grant RO1 EY023037)National Institute of Mental Health (U.S.) (Grant K99 MH09965

    Role of deep learning in infant brain MRI analysis

    Get PDF
    Deep learning algorithms and in particular convolutional networks have shown tremendous success in medical image analysis applications, though relatively few methods have been applied to infant MRI data due numerous inherent challenges such as inhomogenous tissue appearance across the image, considerable image intensity variability across the first year of life, and a low signal to noise setting. This paper presents methods addressing these challenges in two selected applications, specifically infant brain tissue segmentation at the isointense stage and presymptomatic disease prediction in neurodevelopmental disorders. Corresponding methods are reviewed and compared, and open issues are identified, namely low data size restrictions, class imbalance problems, and lack of interpretation of the resulting deep learning solutions. We discuss how existing solutions can be adapted to approach these issues as well as how generative models seem to be a particularly strong contender to address them

    Object Recognition

    Get PDF
    Vision-based object recognition tasks are very familiar in our everyday activities, such as driving our car in the correct lane. We do these tasks effortlessly in real-time. In the last decades, with the advancement of computer technology, researchers and application developers are trying to mimic the human's capability of visually recognising. Such capability will allow machine to free human from boring or dangerous jobs

    VISUAL SALIENCY ANALYSIS, PREDICTION, AND VISUALIZATION: A DEEP LEARNING PERSPECTIVE

    Get PDF
    In the recent years, a huge success has been accomplished in prediction of human eye fixations. Several studies employed deep learning to achieve high accuracy of prediction of human eye fixations. These studies rely on pre-trained deep learning for object classification. They exploit deep learning either as a transfer-learning problem, or the weights of the pre-trained network as the initialization to learn a saliency model. The utilization of such pre-trained neural networks is due to the relatively small datasets of human fixations available to train a deep learning model. Another relatively less prioritized problem is amount of computation of such deep learning models requires expensive hardware. In this dissertation, two approaches are proposed to tackle abovementioned problems. The first approach, codenamed DeepFeat, incorporates the deep features of convolutional neural networks pre-trained for object and scene classifications. This approach is the first approach that uses deep features without further learning. Performance of the DeepFeat model is extensively evaluated over a variety of datasets using a variety of implementations. The second approach is a deep learning saliency model, codenamed ClassNet. Two main differences separate the ClassNet from other deep learning saliency models. The ClassNet model is the only deep learning saliency model that learns its weights from scratch. In addition, the ClassNet saliency model treats prediction of human fixation as a classification problem, while other deep learning saliency models treat the human fixation prediction as a regression problem or as a classification of a regression problem
    • …
    corecore