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It has been more than 50 years since the first description of ocular dominance plasticity—the profound modification of

primary visual cortex (V1) following temporary monocular deprivation. This discovery immediately attracted the

intense interest of neurobiologists focused on the general question of how experience and deprivation modify the brain

as a potential substrate for learning and memory. The pace of discovery has quickened considerably in recent years as

mice have become the preferred species to study visual cortical plasticity, and new studies have overturned the dogma

that primary sensory cortex is immutable after a developmental critical period. Recent work has shown that, in addition

to ocular dominance plasticity, adult visual cortex exhibits several forms of response modification previously considered

the exclusive province of higher cortical areas. These “higher brain functions” include neural reports of stimulus familiarity,

reward-timing prediction, and spatiotemporal sequence learning. Primary visual cortex can no longer be viewed as a simple

visual feature detector with static properties determined during early development. Rodent V1 is a rich and dynamic cortical

area in which functions normally associated only with “higher” brain regions can be studied at the mechanistic level.

Ocular dominance plasticity and the critical

period concept

Visual information is processed by a hierarchy of cortical process-
ing regions that extract increasingly abstract features from images
formed on the retinas (Hubel and Wiesel 1968; Felleman and Van
Essen 1991; Riesenhuber and Poggio 1999; DiCarlo et al. 2012).
Conscious perception somehow emerges from the distributed
neural representations of visual information as they cascade
through the brain. This basic conceptual framework, which has
dominated the field for decades, relies in part on the assumption
that primary visual cortex (V1) is an immutable feature detector
with properties established during a well-defined “critical period”
of developmental plasticity. The experimental roots of this model
are based on Hubel and Wiesel’s pioneering work on the ascend-
ing visual pathway in cats. In a series of studies, made possible
by the development of tungsten microelectrodes for in vivo re-
cording (Hubel 1957), they established several important features
of V1 that profoundly shaped how we understand the mechanistic
basis of visual processing and experience-dependent cortical plas-
ticity (Hubel and Wiesel 1962; Wiesel and Hubel 1963a,b, 1965;
Hubel et al. 1976).

First, they found that projections from the two eyes, which
remain segregated in the LGN, converge on single neurons in
V1 (Hubel and Wiesel 1962). These binocularly responsive neu-
rons have receptive fields in the two eyes with matched retinotopy
and stimulus preference. That is, a stimulus (usually an oriented
bar of light) found to elicit activity when presented to a specific
location on the retina of one eye would also elicit activity when
presented to the same retinal location on the other eye. They
also found that neighboring neurons share similar orientation
tuning preferences (Hubel et al. 1976). These observations implied
a degree of synaptic specificity that seemed difficult, if not impos-
sible, to accomplish through genetic coding alone, and suggested

an important role for early sensory experience in fine-tuning cor-
tical connectivity.

Second, they found that not all neurons are equally respon-
sive to both eyes; some neurons respond relatively robustly to
activity in one eye while others respond robustly to the other
eye. They termed this property “ocular dominance” (OD). Impor-
tantly, the distribution of OD values depends on visual experience
(Wiesel and Hubel 1963a,b, 1965). This was demonstrated by sub-
jecting kittens to a period of monocular deprivation (MD), i.e., the
temporary closing of one eyelid. Following MD most neurons in
V1, which normally respond to stimulation from either eye, can
be activated only by the eye that remained open. Despite the fact
that the closed eye and optic projections remain intact, the visual
cortex is no longer able to “see” the activity that it generated. This
finding has been interpreted to show that synaptic connectivity is
established via a competitive learning process, and OD plasticity
quickly became the premier model system to study how activity
drives the biophysical processes thought to accompany learning
and memory.

Third, they found the effects of visual deprivation decrease
with age (Hubel and Wiesel 1970). In kittens, the effects of MD ta-
per off at �3 mo of age. Before this point, restoration of normal
vision following MD can cause lost function and cortical respon-
siveness to recover. After this, however, normal vision results in
minimal recovery (Wiesel and Hubel 1965). This finding led to
the important and influential idea that experience-dependent
modifications to sensory cortex are restricted to a developmental
window analogous to the critical period of early embryogenesis
during which cell fate is irreversibly determined by local cellular
interactions (Spemann and Mangold 2001). As a result, it is diffi-
cult or impossible for visual experience to change cortical
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connectivity patterns after this window closes except in the dra-
matic case of neural damage (Kaas et al. 1990; Keck et al. 2008).

Rodent V1 reports stimulus familiarity

Most of the early studies investigating visual physiology and
developmental plasticity were performed in cats or monkeys.
Subsequent work has shown that rodent V1 shares manyof the fea-
tures fromthese animals including robust OD plasticity (Domenici
et al. 1992; Fagiolini et al. 1994; Gordon and Stryker 1996; Sawtell
et al. 2003). The mouse, in particular, has emerged as a model sys-
tem in which the modern genetic toolkit can be leveraged to probe
the mechanistic basis of experience-dependent developmental
plasticity, both in wild-type mice and in animals carrying muta-
tions that cause human disease. Like cats and monkeys, mouse
V1 contains a topographic mapping of visual space (Wagor et al.
1980; Wang and Burkhalter 2007; Smith and Hausser 2010), has
orientation-selective simple and complex cells (Ohki et al. 2005;
Niell and Stryker 2008), and synaptic specificity at the level of sin-
gle neurons (Ko et al. 2011). Because orientation-selective neurons
are intermingled with a “salt-and-pepper” organization (Ohki
et al. 2005), it is relatively easy to longitudinally sample the activ-
ity of neurons with a wide variety of response properties using
chronically implanted recording electrodes, and visually evoked
potentials (VEPs, visual stimulus-locked fluctuations in the local
cortical field potential) can be used to assess both visual function
and OD plasticity in awake animals (Huang et al. 1999; Porciatti
et al. 1999; Sawtell et al. 2003; Frenkel and Bear 2004). One of
the first surprises that emerged from studies of OD plasticity in
mice using chronic recording methods is that it can persist well
into adulthood (Sawtell et al. 2003; Hofer et al. 2006; Matthies
et al. 2013).

Our laboratory also noticed that the trough-to-peak magni-
tude of VEPs, evoked by a high-contrast phase-reversing grating
and recorded in awake animals using electrodes implanted in bin-
ocular V1 Layer 4 (see Fig. 1), increased steadilyover recording days
until they reached a plateau around the fourth or fifth day of stim-
ulus presentation (Sawtell et al. 2003). The initial assumption was
that “electrode drift”, possibly due to gliosis or some other com-
pensatory response to electrode implantation, was responsible
for this confounding instability. On closer examination, however,
this potentiation was found to be highly specific for the spatial
content of the visual stimulus used to elicit VEPs. As shown in
Figure 1B, the potentiated response to a phase-reversing sinusoidal
grating is lost when the same grating is rotated by 45˚. In other
words, baseline VEP magnitude is stable as long as a new orienta-
tion is used in each recording session. This effect, termed stimulus-
selective response potentiation (SRP), depends on mechanisms
shared with NMDA receptor-dependent long-term potentiation
(LTP) and reflects the neural coding of stimulus familiarity
(Frenkel et al. 2006; Cooke and Bear 2010).

Rodent V1 reports reward timing

The SRP phenomenon is fascinating in its own right and is poten-
tially a powerful tool to study visual recognition memory and the
pathophysiology of psychiatric disease (Cooke and Bear 2012). For
the purposes of this review, however, there are two particularly sa-
lient observations. First, visual experience robustly and directly
shapes the physiological response properties of V1 neurons in
adult mice. Second, as shown using a variety of experimental ap-
proaches (for review, see Cooke and Bear 2014), changes in the
physiological response properties are largely based on plasticity
occurring in V1 and not feedback from higher cortical regions.
These findings cast doubt on long-accepted ideas about adult pri-

mary visual cortex. The notion that V1 function is locked down
after development, implied by the critical period concept, com-
ports well with its presumptive function as a simple feature de-
tector. SRP and other forms of perceptual learning (Gilbert and
Li 2012), however, suggest that V1 may be able to learn a range
of capabilities beyond those characterized for the case of normal
vision.

Our laboratory set out to address this possibility directly by
pairing visual stimulation with an ethologically salient reward.
In a series of experiments (Fig. 2A,B; Shuler and Bear 2006), gog-
gles were used to deliver full-field flashes to either the left or the
right eye of water-deprived rats. This visual stimulus served as a
cue to begin licking a dispenser which delivered a water reward
following fixed temporal intervals (measured in number of licks).
The duration of these intervals depended on which eye had been
stimulated (n licks for the left eye, 2n for the right). In early trials,
as expected, visual responses recorded in V1 lasted only as long as
the flash (400 msec). After repeated presentations over several
days, however, the same brief stimuli evoked responses that per-
sisted until the time of reward delivery, even on trials during
which reward was not delivered. In essence, neurons in V1 had
learned to predict the time of anticipated rewards by responding
to visual inputs with dynamics reflecting the stimulus–reward in-
tervals established during the training period and not those of the
visual stimuli actually evoking their activity.

These results challenge the traditional view of V1 by showing
that activity in V1 neurons can both reflect past associations be-
tween sensory stimuli and gustatory rewards and can also explic-
itly represent neural instantiations of learned temporal intervals.
These functions are normally ascribed to “higher processing” re-
gions of the cortex and associated subcortical areas (Fuster and
Jervey 1981; Schultz et al. 1997; Komura et al. 2001; Egorov
et al. 2002; Leon and Shadlen 2003; Watanabe and Funahashi
2004), but not primary sensory areas. Models of the presumptive
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Figure 1. Stimulus-specific response potentiation (SRP). (A) Visual-
evoked potentials (VEPs) are recorded from both hemispheres of head-
fixed, awake, male C57BL/6 mice and driven by full-field, high-contrast,
phase-reversing sinusoidal grating stimuli. Electrodes are positioned in
Layer 4 of the binocular region of V1. (B) The trough-to-peak magnitude
of average VEPs evoked by a stimulus oriented at X˚ (blue) potentiates
over multiple viewings (Days 1–5). This potentiation is selective for the
specific stimulus, demonstrated by the fact that VEPs evoked by novel ori-
entations (on Days 5 and 9, offset in 45˚ increments from X˚, red and
green) have magnitudes equivalent to the Day 1 magnitude for X˚ and
also potentiate across repeated presentations. (Insets) Representative
VEP waveforms at indicated time points (scale bars, 100 mV × 50 msec).
(All data adapted from Frenkel et al. 2006).
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V1 visual processing algorithm provide no explanation for why
this temporal information should be available in V1 making it dif-
ficult to speculate on its functional consequences (although theo-
retical arguments against the standard feed-forward processing
model have been made, e.g., Hochstein and Ahissar 2002). The
observed neural activity, however, must result either from activity
that emerges in the earliest visual processing stages or be fed-back
from higher cortical areas (in which case the activity reported in
V1 is a low-level reflection of high-order processes). Accumulating
evidence puts the mechanism for learning reward-timing squarely
within V1.

The first indication that the relevant plasticity occurs locally
in V1 came from the fact that learned intervals did not transfer be-
tween the two eyes. There is no evidence that monocular segrega-
tion persists beyond V1, as would be required for any higher
learning locus to pass monocularly segregated temporal represen-
tations back into V1, and parsimony alone argues that the relative
simplicity of a local processing circuit is the most likely explana-
tion. These findings might be explained if a modulatory input
into V1 signifying reward-permitted long-term potentiation of re-
cently active synapses within the local circuit.

This theoretical possibility was explored computationally in a
series of papers that showed how reward-modulated plasticity of
excitatory synapses in the V1 circuit could produce temporal rep-

resentations with the same basic fea-
tures seen experimentally (Gavornik et
al. 2009; Gavornik and Shouval 2011;
Shouval et al. 2013, 2014). This learn-
ing model posits that a globally avail-
able reward signal allows Hebbian-type
associations, transiently encoded by
the molecular precursors of LTP termed
“proto-weights,” to be expressed as per-
manent synaptic modifications, and
that ongoing activity in the network
quashes additional potentiation once
evoked activity correctly predicts the
time of reward delivery. In addition to
making specific testable predictions
about how neural tuning curves and
recurrent excitation can influence the dy-
namics of evoked responses, these mod-
els also demonstrate that the circuits
in V1 constitute a sufficient substrate
to express and learn temporal intervals.
Although these computational works do
support the idea temporal coding can oc-
cur in V1, they cannot identify the rele-
vant biology actually used by the brain
to do so. For instance, what is the “reward
signal” required to encode time in V1?

Dopamine, which is often character-
ized as a modulatory reward signal
(Schultz 1998), is an obvious candidate.
Dopamine projections to V1 are relatively
sparse (Papadopoulos et al. 1989), howev-
er, whereas cholinergic projections from
the basal forebrain are robust and are
known to be responsive to thirst satiation
(Sullivan et al. 2003). The cholinergic sys-
tem is also well-documented to play an
important role in learning and memory
(Hasselmo 2006), and subsequent experi-
ments designed to test the theoretical
predictions described above showed de-
finitively that cholinergic activity is nec-

essary to learn interval timing in V1 (Chubykin et al. 2013). First,
targeted delivery of the immunotoxin 192-IgG-saporin was used
to selectively lesion cholinergic projections to V1 in rats. In these
experiments, V1 neurons were able to report intervals established
before the lesion, but they were unable to update their activity to
reflect new timings after the cholinergic projections were lost
(Fig. 2C). Neurons in control animals, in contrast, were able to
learn new intervals following sham injections. In addition to dem-
onstrating the necessary role of the cholinergic system, these ex-
periments are also highly suggestive that temporal interval
coding occurs locally in V1 since the saporin was delivered only
to V1.

Parallel efforts in slices of visual cortex, isolated from the rest
of the brain in vitro, show that cholinergic modulation of activity
in V1 is also sufficient to code temporal intervals. In these ex-
periments, electrical white matter stimulation in cortical slices in-
cluding area V1 was followed by brief application of carbachol
(a cholinergic agonist) after a fixed interval. As was the case in
vivo, extracellular recordings showed that Layer 5 neurons in
naı̈ve slices respond transiently to electrical stimulation with dy-
namics reflecting the stimulus duration. After the pairing proto-
col, evoked response durations accurately predicted the interval
between electrical stimulation and carbachol delivery established
during the training period (Fig. 2D). In addition to corroborating

2nth lick

reward
no

yes

reward
no

yes

end
nose
poke

nth lick

ITI

nose
poke

Right
Eye

Left
Eye

Water
Solenoid

Neural Acquisition
and Stimulus Control

Lick beam

Nose poke 
beam

Head-mounted
goggles

0

30

H
z

0

40

H
z

0 1 2 3 0 1 2 3

N
ai

ve
Tr

ai
ne

d

Rewarded Un-rewarded

Time (sec) Time (sec)

0 1 2 0 1 2

Time from Cue Onset (s)

Saline 192-IgG-saporin

re
ve

rs
ed

in
iti

al

re
ve

rs
ed

in
iti

al

R
O

C
 A

U
C

0.5

1.0

0

1.0

0 500 1000 1500 2000 2500
Time from Stim Onset (ms)

Baseline
Post−cond

L4

Stim

CCh

WM

Rec

N
or

m
al

iz
ed

F
iri

ng
 R

at
e

A B

C D

Figure 2. Reward-modulated interval timing learned in V1. (A) Schematic of the in vivo experimental
design and trial flow from Shuler and Bear (2006). Light flashes were delivered to either the left or right
eye following nose pokes and the number of licks (i.e., time) required before water-reward delivery de-
pended on which eye was stimulated. (B) In naı̈ve animals (top row), the duration of evoked responses
(raster plots over PSTH) matched the stimulus duration (400 msec, indicated by green rectangle). After
training, evoked activity persisted until the time of reward delivery (blue rectangles, left column), even
on unrewarded trials (right column, time when reward would have been given indicated by thick black
rectangles). (C) In Chubykin et al. (2013), rats were trained with a long interval between stimulus and
reward and then treated with local injections of either IgG-saporin (to lesion cholinergic projections) or
saline (control) in V1. The rats were then retrained with a short interval. Whereas the control animals
were able to learn the new shortened interval, those with lesions continue to report the original
timing. In both panels, the gray and blue vertical lines show the average reward-delivery times
before and after lesioning, the star indicates the average reported time post-lesion, and neural interval
reports are determined by a receiver operating characteristic (ROC) threshold crossing (see Chubykin
et al. 2013 for details). (D) Repeated delivery of carbachol (a cholinergic agonist) after electric white
matter stimulation produced a period of evoked spiking in mouse V1 slices that matched the interval
between the two stimuli (electrical stimulation at time 0, CCh delivery indicated by blue rectangle,
dashed lines show average scored response durations). (Data adapted from Shuler and Bear 2006
[A,B], and Chubykin et al. 2013 [C,D].)
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cholinergic involvement in this form of learning, this result also
demonstrates definitively that plasticity within isolated V1 cir-
cuitry can support temporal interval coding as predicted by the
models.

Rodent V1 reports familiar spatiotemporal

sequences

The abilities to recognize patterns in topographic mappings and
to process temporal information are critical features of nervous
system function (Patel et al. 2014). As we have seen, V1 can en-
code both spatial and associative-temporal aspects of visual expe-
rience. But can it also encode specific spatiotemporal experience?
We tested this by repeatedly presenting mice with a specific tem-
poral sequence of oriented gratings over a 4-d training period (Fig.
3A; Gavornik and Bear 2014). The sequence-evoked response mag-
nitude increased over training days in a manner similar to that de-
scribed above for SRP. If, as was the case with SRP, this potentiation
represented coding only of the training sequence’s spatial con-
tent, then response magnitudes should be largely independent
of the order and timing with which the sequence elements are pre-
sented. Instead, as shown in Figure 3B–D, the evoked responses
were largest when the sequence elements were presented with
the order and timing established during the training period;
when the same visual elements were presented with a novel order

or timing, evoked responses were smaller. This demonstrates that
neurons in V1 can learn to recognize both the ordinal and tempo-
ral content of spatiotemporal sequences.

The ability to make accurate predictions and react before
something happens confers a huge evolutionary advantage. How
the brain learns to extract and recognize relevant information
from temporally continuous streams of noisy sensory data, and
to use this information as the basis for predictions, remains a fun-
damental mystery. The results described above could be explained
if V1 learned to expect what it would see when. Indeed, our ex-
periments indicate that V1 can actively predict expected visual
stimuli with a high degree of temporal precision. This was de-
monstrated by removing a sequence element and replacing it
with a gray screen. As shown in Figure 3E, the electrical current
source/sink pattern evoked by an expected, but unshown, spatio-
temporal sequence element is almost identical to that evoked
when the stimulus is actually shown. That is, V1 is active when
it expects to see a stimulus even if the stimulus is not actually
shown.

As before, these findings show evidence of presumptive
“higher” cortical functions that are at odds with dogma. And, as
before, the possibility exists that the V1 physiology reflects learn-
ing and computations occurring elsewhere in the brain. Evidence
suggests, however, that the synaptic bases of the memories con-
stituting spatiotemporal representations also exist locally within

V1. This evidence consists of monocu-
larly separated response potentiation
(i.e., learning associated with a sequence
viewed through one eye does not trans-
fer to the other eye) and the ability of
pharmacological agents delivered locally
to V1 to block sequence potentiation.
Specifically, sequence acquisition was
prevented by antagonizing muscarinic
acetylcholine receptors (using scopol-
amine) but, surprisingly, blocking the
NMDA receptors (via CPP) had no effect.

A series of contemporaneous studies
also showed that V1 neurons can replay
activity sequences associated with visual
experience in the rat (Xu et al. 2012). In
these experiments, repeated presenta-
tions of a moving spot during a single
recording session created a sequential
representation of the evoked activity pat-
tern along the spot’s retinotopic trajecto-
ry. The quality of these representations,
replay of which could be cued via brief
flashes delivered at the stimulus trajec-
tory starting point, depended on cortical
state. In contrast to our experiments,
these sequential representations were
blocked by local delivery of the NMDAR
antagonist APV and the speed of replay
was largely independent of conditioning
motion speed.

Plasticity in V1 may provide

a window onto “canonical”

functions of neocortex

So what are the implications of these
studies? From the perspective of vision,
it is too early to say. V1 plasticity pro-
vides a possible substrate for various
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forms of perceptual learning, a process by which experience mod-
ifies visual detection thresholds (Gilbert and Li 2012). SRP, in par-
ticular, shares many of the hallmark features of perceptual
learning (Cooke and Bear 2014), and recent work has shown
that modulation associated with attention and locomotion can
change behaviorally assayed processing capabilities of V1 in the
mouse (Ayaz et al. 2013; Pinto et al. 2013; Fu et al. 2014). Thus,
physiological changes in V1 can potentially result in a materially
altered visual experience.

Unanswered questions of impact on vision aside, these find-
ings of higher order plasticity in early visual cortex support the
idea that there exists some common set of algorithmic primitives
responsible for learning and processing information in all areas of
the neocortex. Regionally specific functional differences, in this
framework, are more the consequence of anatomically deter-
mined input patterns than specialized plasticity mechanisms or
intracortical circuits. That is, visual cortex is visual cortex mainly
because it receives projections from the retina. If it were to receive
projections from the cochlea, for example, it would acquire the
properties of auditory cortex. The logical extreme of this idea is
the (somewhat polarizing) argument that vision is entirely empir-
ical (Purves and Lotto 2011).

The hypothesis of “canonical” neocortical function is one of
the most enduring in neuroscience, going back at least to the time
of Cajal (1899) who commented that the grossly homogeneous
six-layer neocortical structure might imply a common organiza-
tional plan. This idea has subsequently been proposed as a formal
framework to understand cortical function (Creutzfeldt 1977;
Mountcastle 1978; Douglas et al. 1989) and has been influential
in shaping how many think about the brain. Recent anatomical
analysis, using modern 3D reconstruction techniques, adds quan-
titative heft to earlier qualitative observations by showing that
stereotypic stochastic connectivity provides a sufficient basis to
create locally emergent functional specificity in cortical microcir-
cuits (Hill et al. 2012). There is also functional evidence to support
this idea. Notable in the context of the thought experiment de-
scribed above, barrel-like anatomical patterning can be created
in cortical tissue transplanted from V1 to S1 (Schlaggar and
O’Leary 1991), and auditory cortex can assume properties of the
visual cortex if retinal ganglion cell projections are rerouted to
the medial geniculate nucleus of the thalamus (for review, see
Newton and Sur 2005). Similarly, plasticity occurring in the con-
text of Braille learning causes nominally visual areas to acquire the
ability to process tactile information in blind people (Hamilton
and Pascual-Leone 1998). The tentative success of sensory substi-
tution systems, wherein artificial receptors are used to compen-
sate for sensory loss by stimulating a remaining sense (Bach-y-
Rita and Kercel 2003), also demonstrates the remarkable degree
to which adult brains can rewire themselves to make sense of
modality-specific stimulus patterns using brain regions that are
in no way specialized for the task.

A growing body of evidence shows that other primary sen-
sory areas share many of the properties described in V1. For exam-
ple, the interval timing work follows earlier findings that the
response properties of S1 neurons change according to whether
whisker stimulation occurs in the context of passive or active tac-
tile stimulation (Krupa et al. 2004). Context- and experience-
dependent modifications of the auditory cortex have been partic-
ularly well characterized (Weinberger 2004, 2011), the olfactory
cortex can acquire associative threat representations (Li 2014),
and NMDA receptor-dependent associative learning even occurs
within the primary motor cortex (Hasan et al. 2013). Recent re-
sults showing that rodents can volitionally generate specific neu-
ral activity patterns in S1 in order to receive reward (Clancy et al.
2014) further support the idea that primary sensory areas are capa-
ble of more than simple feature extraction within their specific

modality and can play an active role in behaviorally relevant cor-
tical processing.

Although this review is focused on work performed in ro-
dents, there are tantalizing clues that similar processes may also
be at play in humans and nonhuman primates. First, the per-
formance gains associated with visual perceptual learning involve
plasticity-modulated physiological changes in V1 (Schoups et al.
2001; Watanabe et al. 2002; Fahle 2004; Pourtois et al. 2008; Bao
et al. 2010; Vogels 2010; Sale et al. 2011; Jehee et al. 2012) and are
increased by cholinergic enhancement (Rokem and Silver 2013).
Second, temporal association and sequential motion enhances fa-
miliar object recognition and representation (Stone 1998, 1999;
Wallis 2002; Newell et al. 2004; Vuong and Tarr 2004; Cox et al.
2005; Balas and Sinha 2008, 2009; Li and DiCarlo 2008), showing
that the primate visual system learns to use both spatial and tem-
poral information. Third, human V1 responses are modulated by
prior reward history (Serences 2008; Stanisor et al. 2013) and code
expected reward value (Thomas et al. 2013). Fourth, predicted mo-
tion modulates the response of V1 neurons (Guo et al. 2007; Alink
et al. 2010) and can result in perceptual illusions (Muckli et al.
2005; Seitz et al. 2005).

Despite the conceptual simplicity implied by the notion of a
canonical neocortical circuit, no one really expects the cortical al-
gorithms to be simple. As Cajal (1906) noted while accepting the
Nobel Prize, nature is decidedly unimpressed by our desire for sim-
plicity. That being said, the anatomical and functional evidence is
sufficiently compelling to support the optimistic notion that we
can formulate models of canonical function sufficiently accurate
to provide biological insight. One influential class of models at-
tempting this feat is based on the observations that intracortical
connections provide the majority of excitatory drive to cortical
neurons and are roughly balanced by inhibition (Douglas et al.
1989; Douglas and Martin 2004, 2007). In these models, feed-
forward inputs from the sensory epithelia do not drive activity
so much as they allow the cortex to select a contextually appropri-
ate activation pattern using stereotypical laminar microcircuits
consisting of recurrent excitation and inhibition. These models
fit well (Bastos et al. 2012) into another popular theoretical frame-
work where the canonical function of cortex is a form of inference
based prediction (Rao and Ballard 1997, 1999; Lee and Mumford
2003; Spratling 2010; Tavazoie 2013), although we note that our
own finding that familiar spatiotemporal sequences evoke larger
responses than unexpected sequences seems to be at odds with
predictive coding models (Friston 2005; Wacongne et al. 2012).
It should also be noted that purely feed-forward transformations
seem best suited to account for rapid object categorization
(DiCarlo et al. 2012) and active research continues on classically
themed hierarchical models (e.g., Serre et al. 2007). Other models
of canonical function have also been proposed, although it is less
clear how they relate to our findings in visual cortex (e.g., Kouh
and Poggio 2008; Carandini and Heeger 2012; Wang 2013).
Ongoing efforts to use the concept of a canonical function to
build neuroprosthetics (Casanova 2013) or artificially intelligent
machines (e.g., Numenta (Hawkins and Blakeslee 2004),
Google’s “cat detector” (Le 2013), IBM’s Watson) further attest
to the seductive appeal of this hypothesis as a viable conceptual
basis to understand the brain.

In conclusion, we believe that the experiments summarized
in this review provide compelling evidence that the model of V1
as a simple feature detector provides an incomplete description
of its full computational capabilities. It is clear that feed-forward
processing plays an important role in vision, and the human dis-
order of amblyopia testifies powerfully to the functional reality of
a critical period that determines when and how visual experience
can modify the brain. However, it is increasingly apparent that
primary visual cortex maintains a remarkable degree of plasticity
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that persists well beyond the OD critical period and supports func-
tions not historically ascribed to V1. Accordingly, we believe that
V1 is a viable model system to probe the mechanistic basis of
learned higher order cortical functions and spatiotemporal mem-
ory storage in an accessible brain region.
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