8 research outputs found

    Enhanced Augmented Reality Framework for Sports Entertainment Applications

    Get PDF
    Augmented Reality (AR) superimposes virtual information on real-world data, such as displaying useful information on videos/images of a scene. This dissertation presents an Enhanced AR (EAR) framework for displaying useful information on images of a sports game. The challenge in such applications is robust object detection and recognition. This is even more challenging when there is strong sunlight. We address the phenomenon where a captured image is degraded by strong sunlight. The developed framework consists of an image enhancement technique to improve the accuracy of subsequent player and face detection. The image enhancement is followed by player detection, face detection, recognition of players, and display of personal information of players. First, an algorithm based on Multi-Scale Retinex (MSR) is proposed for image enhancement. For the tasks of player and face detection, we use adaptive boosting algorithm with Haar-like features for both feature selection and classification. The player face recognition algorithm uses adaptive boosting with the LDA for feature selection and nearest neighbor classifier for classification. The framework can be deployed in any sports where a viewer captures images. Display of players-specific information enhances the end-user experience. Detailed experiments are performed on 2096 diverse images captured using a digital camera and smartphone. The images contain players in different poses, expressions, and illuminations. Player face recognition module requires players faces to be frontal or up to ?350 of pose variation. The work demonstrates the great potential of computer vision based approaches for future development of AR applications.COMSATS Institute of Information Technolog

    Objective Quality Assessment and Optimization for High Dynamic Range Image Tone Mapping

    Get PDF
    Tone mapping operators aim to compress high dynamic range (HDR) images to low dynamic range ones so as to visualize HDR images on standard displays. Most existing works were demonstrated on specific examples without being thoroughly tested on well-established and subject-validated image quality assessment models. A recent tone mapped image quality index (TMQI) made the first attempt on objective quality assessment of tone mapped images. TMQI consists of two fundamental building blocks: structural fidelity and statistical naturalness. In this thesis, we propose an enhanced tone mapped image quality index (eTMQI) by 1) constructing an improved nonlinear mapping function to better account for the local contrast visibility of HDR images and 2) developing an image dependent statistical naturalness model to quantify the unnaturalness of tone mapped images based on a subjective study. Experiments show that the modified structural fidelity and statistical naturalness terms in eTMQI better correlate with subjective quality evaluations. Furthermore, we propose an iterative optimization algorithm for tone mapping. The advantages of this algorithm are twofold: 1) eTMQI and TMQI can be compared in a more straightforward way; 2) better quality tone mapped images can be automatically generated by using eTMQI as the optimization goal. Numerical and subjective experiments demonstrate that eTMQI is a superior objective quality assessment metric for tone mapped images and consistently outperforms TMQI

    High quality high dynamic range imaging

    Get PDF

    Local tone mapping operator for detail preserving reproduction of high dynamic range images.

    Get PDF
    Opseg osvetljaja koji se javlja u prirodnim scenama uveliko prevazilazi mogućnosti standardnih uređaja za snimanje i reprodukciju slike. Ljudski vizuelni sistem je evoluirao, tako da omogući efikasno funkcionisanje i percepciju detalja u uslovima velike promene osvetljaja. Kako bi se omogućila što realnija reprodukcija slika i video sadržaja, potrebno je obezbediti mogućnost snimanja i reprodukcije što šireg dinamičkog opsega osvetljaja. Razvoj tehnika za snimanje je napredovao i danas postoji mogućnost snimanja celokupnog dinamičkog opsega osvetljaja scene korišćenjem standardnih senzora. Razvoj displeja je međutim napredovao sporije i većina displeja koji su danas u upotrebi ima skroman dinamički opseg osvetljaja. Operator za redukciju dinamičkog opsega predstavlja ključnu komponentu sistema za reprodukciju scena širokog dinamičkog opsega (HDR), na standardnim displejima nižeg dinamičkog opsega (LDR)...Light intensity variations in natural scenes greatly exceed the capabillities of standard imaging and display devices. The human visual system has evolved to deal with these lightning conditions and enable efficient perception of details. In order to enable realistic reproduction of natural images and video, it is necessary to develop techniques and devices for capturing and reproduction of the high dynamic range content. Capturing techniques have evolved and now it is possible to capture entire dynamic range of the scene using standard sensors. The development of displays, however, has progressed more slowly and most of the displays that are used today exhibits modest dynamic range capabilities. Tone mapping operator is a key component that enables reproduction of the high dynamic range (HDR) images on the low dynamic range (LDR) displays..
    corecore